Introduction

This workshop will be an overview of an RNASeq workflow using widely accepted analysis techniques. We will perform a case study examining gene knockout of Atg5 in macrophages of B6 mice.

This Workflow will be posted to my github repository with the outputs from the commands

WorkFlow Overview

  1. Quality control (Skipping this step)
  2. Map reads to genome
  3. Count reads mapped to annotated genes
  4. Data Assessment/Quality Control
  5. Detect differentially expressed genes
  6. Data Visualization (Pretty Plots)
  7. Pathway analysis

Data originate from a study on norovirus infection (https://www.ncbi.nlm.nih.gov/sra/?term=PRJEB10074)

Case Study

Black 6 Mice +/- Atg5 (5 knockouts and 9 controls)   - Macrophage cells
Sequencing – Ilumina HiSeq
  - Single-end
  - 50 bp reads

READ MAPPING

UPDATE:

Type the following commands to download the correct raw data files.

$ wget https://www.dropbox.com/s/xe5zszwq849ym6h/Data.tar.gz  
$ tar -zxvf Data.tar.gz  

This will overwrite your Data folder. If you look in this Data directory, you will see the correct raw read files. You will also notice a file called mm_ref_GRCm38.p2_chr1.fa . This is the fasta file required for running IGV after mapping. Move this file to MouseGenome_GRCm38

Let’s recall some useful unix commands from earlier in the week. List the files in this directory. Now, Take a look at a few lines of “AACGCATT.fq”. How many reads are there in this file?

Now let’s move up one directory back to our main project directory, Transcriptomics.

STEP 1: READ MAPPING with STAR

OPTIONS (more options available in the STAR manual)

--runThreadN NumberOfThreads
--genomeDir /path/to/genomeDir
--readFilesIn /path/to/read1 [/path/to/read2] 
--readFilesCommand (uncompression command)*
--outFileNamePrefix 
--outFilterMismatchNmax N (recommended 0.06*readLength)
--outSamtype (sorted or unsorted)

STAR Command

$ STAR --runThreadN 2 --outBAMsortingThreadN 2 \
  --genomeDir <GENOME_INDEX_DIRECTORY> \
  --readFilesIn <READS_DIR><file> \
  --outFileNamePrefix <OUTPUT_DIR><prefix>. \
  --outFilterMismatchNmax 3 \
  --outReadsUnmapped Fastx \
  --outSAMtype BAM SortedByCoordinate 

Now run the STAR command with “AACGCATT.fq” as the input file and output it to the STAR_Mapping directory. ####Note: For each exercise, “prefix” will be replaced with “AACGCATT”

Once the command has completed Take a look at the files inside STAR_Mapping generated by STAR to make sure all files have been generated. You should have files with the same extensions as in the image below.