
Multiple Sequence Alignment
Lisa Pokorny & Marina Marcet-Houben

Multiple Sequence Alignment (MSA)

Fig. 9.2. Warnow. 2017. Computational Phylogenetics. An Introduction to Designing Methods for Phylogeny Estimation. CUP.

Multiple Seq Alignment (MSA)

Standard two-phase approach: 1st ALIGNMENT (positional homology)

2nd TREE BUILDING

Fig. 9.1. Warnow. 2017. Computational Phylogenetics. An Introduction to Designing Methods for Phylogeny Estimation. CUP.

➔ Sum-of-Pairs Alignment (SOP)
➔ Tree Alignment (TL) and Generalized TL
➔ Sequence Profiles
➔ Profile Hidden Markov Models (HMM)
➔ Reference-based Alignments
➔ Template-based Methods
➔ Seed Alignment Methods
➔ Weighted-Homology Pair Methods
➔ Progressive Methods
➔ Divide-and-Conquer Methods
➔ Co-estimation of Alignments and Trees
➔ Structure Informed Methods, etc.

Optimization Problems & MSA Methods (MSAMs)

Figs. 9.4, 9.6–9.8. Warnow. 2017. Computational Phylogenetics. An Introduction to Designing Methods for Phylogeny Estimation. CUP.

Phylogenetic Tree Estimation w/o Alignment?

Fig. 1. Bogusz & Whelan. 2017. Syst. Biol. 66(2):218–231

Comparing MSAMs

Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.

Mean dist btw MSAMs

Fig. 1. Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.

Dist btw trees w ≠ MSAMs

Fig. 2. Blackburne & Whelan. 2013. Mol. Biol. Evol. 30(3):642–653.

Even more MSAMs comparisons

Fig. 4. Liu et al. 2013. Syst. Biol. 61(1):90–106.

Modeler Precision vs. Recall Expansion Ratios

Fig. 6. Nute et al. 2018. Syst. Biol. https://doi.org/10.1093/sysbio/syy068 Fig. 7. Nute et al. 2018. Syst. Biol. https://doi.org/10.1093/sysbio/syy068

Know Your Limits

Data type → DNA vs. RNA, coding vs. non-coding nucleotides (wobble bp), AAs, proteins, etc.

Data properties → substitution (≠ mutation) rate strength (↑ vs. ↓), indel size and rate (% gap & gap
length), pairwise sequence identity (PID), etc.

Data matrix properties → # of tips, # of sequences, (alignment length ∝) data matrix weight, e.g., light
(K, M) vs. heavy (G, T), etc.

CPU time and RAM memory → computing resources available

Divide and Conquer Method: PASTA

PASTA estimates alignments and ML trees from unaligned sequences using an iterative approach. In
each iteration, it first estimates a multiple sequence alignment using the current tree as a guide and then
estimates an ML tree on (a masked version of) the alignment. By default, PASTA performs 3 iterations,
but a host of options enable changing that behavior. In each iteration, a divide-and-conquer strategy is
used for estimating the alignment. The set of sequences is divided into smaller subsets, each of which
is aligned using an external alignment tool (default is MAFFT). These subset alignments are then
pairwise merged (by default using Opal) and finally the pairwise merged alignments are merged into
a final alignment using a transitivity merge technique. The division of the dataset into smaller subsets
and selecting which alignments should be pairwise merged is guided by the tree from the previous
iteration. The first step therefore needs an initial tree.

Acknowledgment: The current PASTA code is heavily based on the SATé code developed by Mark Holder's group at KU.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

PASTA

Fig. 1. Mirarab et al. 2015. J. Comp. Biol. 22(5):377–386.

PASTA for nucleotides and AA

Fig. 2. Mirarab et al. 2015. J. Comp. Biol. 22(5):377–386.

PASTA for proteins

Sup. Figs. 1 & 2. Collins & Warnow. 2018. PASTA for proteins Bioinformatics 34(22):3939–3941.

Running PASTA (from Command-line)

If your installation is successful, you should be able to run PASTA by running the following command from any location.
Open up a terminal window and type:

run_pasta.py --help

Running PASTA with the --help option produces the list of options available in PASTA. PASTA automatically picks its
algorithmic settings based on your input, so you can ignore most of these options (but -d is essential if you have anything
other than DNA sequences). The basic command-line usage you need to know is:

run_pasta.py -i input_fasta_file

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Running PASTA (from Command-line)

The -i option is used to specify the input sequence file. The input file needs to be in the relaxed FASTA format. This
command will start PASTA and will run it on your input file.

For a test run, use the cd command to go to the data directory under your PASTA installation directory. From there, run

run_pasta.py -i small.fasta

This will start PASTA and will finish quickly (30 seconds to 5 minutes based on your machine). Read PASTA output and
make sure it finishes without producing any errors. If PASTA runs successfully, it produces a multiple sequence alignment
and a tree, which we will explore in the next step.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Inspecting the Output of PASTA

The two main outputs of PASTA are an alignment and a tree. The tree is saved in a file called [jobname].tre and the
alignment file is named [jobname].marker001.small.aln. The [jobname] is a prefix which is by default set to pastajob, but
can be changed by the user (see option -j below). When you start PASTA, if your output directory (which is by default
where your input sequences are) already contains some files with the pastajob prefix, then the pastajob1 prefix is used,
and if that exists, pastajob2 is used, and so forth. Thus the existing files are never overwritten. The name of your job and
therefore the prefix used for output files can be controlled using the - j argument for command-line or the "Job Name" field
on the GUI.

Tree Viewing Software (TVS) → https://en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software

Alignment Viewing Software (AVS), e.g., http://doua.prabi.fr/software/seaview or http://www.ormbunkar.se/aliview/

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

https://en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software
http://doua.prabi.fr/software/seaview
http://www.ormbunkar.se/aliview/

Light-weight AVS — AliView & SeaView

AliView → Larsson, A. (2014). AliView:
a fast and lightweight alignment viewer
and editor for large data sets.
Bioinformatics 30(22):3276–3278.
http://dx.doi.org/10.1093/bioinformatics
/btu531

SeaView → Gouy M., Guindon S. &
Gascuel O. (2010) SeaView version 4 :
a multiplatform graphical user interface
for sequence alignment and
phylogenetic tree building. Molecular
Biology and Evolution 27(2):221–224.
https://academic.oup.com/mbe/article/2
7/2/221/970247

http://dx.doi.org/10.1093/bioinformatics/btu531
http://dx.doi.org/10.1093/bioinformatics/btu531
https://academic.oup.com/mbe/article/27/2/221/970247
https://academic.oup.com/mbe/article/27/2/221/970247

Inspecting the Output of PASTA

What about bootstrapping?

PASTA does not perform bootstrapping. The tree outputted by PASTA, depending on the options used, might include
support values on the branches. These are not bootstrap support values. Instead, they are SH-like local support values
computed by FastTree, and are generally believed to be not as reliable as bootstrap support values. In our experience they
tend to overestimate support. Thus, if you want to have support values that can be trusted, we suggest that you use the
PASTA alignment and an external tool (e.g., RAxML) for bootstrapping. If your alignment is too big for bootstrapping using
RAxML, you can always use FastTree or IQ-tree for bootstrapping.

Comparing alignments

When two alignments are generated on the same set of sequences, one can ask how similar they are. We have a tool
called FastSP http://www.cs.utexas.edu/~phylo/software/fastsp/ that compares two alignments and tells you how similar or
different they are. FastSP does not require installation. You can just download it and run it (Java is required). Assuming
FastSP is located at ~/bin/, you can, e.g., compare the reference alignment and your estimated alignment:

java -jar ~/bin/FastSP_1.6.0.jar -r 16S.E.ALL.referene.fasta -e pastajob.marker001.16S.E.ALL.unaligned.aln

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

http://www.cs.utexas.edu/~phylo/software/fastsp/

Running PASTA (from Command-line)

You can script a while loop in bash to run PASTA on multiple fasta files. First open a text editor

nano pasta_loop.sh

Write your bash script

#!/bin/bash
while read targetname;
 do
 python ABSOLUTE_PATH_HERE/run_pasta.py -i "$targetname".fasta -j $targetname
 done < targetlist.txt

Close CTRL+x and save your script. This script assumes all target files are in the same folder in fasta format. It also
assumes that folder contains a text file listing all targets. From there, run

bash pasta_loop.sh

Understanding and Using PASTA Options

The command line allows you to alter the behavior of the algorithm using a variety of configuration options. Running PASTA
with the -h option lists all the options that can be provided to the command-line (see below for the most important ones). In
addition to the command-line itself, PASTA can read the options from one or more configuration files. The configuration
files have the following format:

[commandline]

option-name = value

[sate]

option-name = value

Note that as mentioned before, with every run, PASTA saves the configuration file for that run as a temporary file called
[jobname]_temp_pasta_config.txt in your output directory. You can view one of these files in a Text editor for better
understanding the format of the configuration file.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

PASTA can read multiple configuration. Configuration files are read in the order they occur as arguments (with values in
later files replacing previously read values). Options specified in the command line are read last. Thus these values
"overwrite" any settings from the configuration files.

The following is a list of important options used by PASTA. Note that by default PASTA picks these parameters for you,
and thus you might not need to ever change these (with the important exception of the -d option):

● Initial tree: As mentioned before, PASTA needs an initial tree for doing the first round of the alignment. Here is how
the initial tree is picked.

○ If a starting tree is provided using the -t option, then that tree is used.

run_pasta.py -i small.fasta -t small.tree

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

PASTA can read multiple configuration. Configuration files are read in the order they occur as arguments (with values in
later files replacing previously read values). Options specified in the command line are read last. Thus these values
"overwrite" any settings from the configuration files.

The following is a list of important options used by PASTA. Note that by default PASTA picks these parameters for you,
and thus you might not need to ever change these (with the important exception of the -d option):

● Initial tree: As mentioned before, PASTA needs an initial tree for doing the first round of the alignment. Here is how
the initial tree is picked.

○ If a starting tree is provided using the -t option, then that tree is used.
○ If the input sequence file is already aligned and --aligned option is provided, then PASTA computes a ML

tree on the input alignment and uses that as the starting tree.
■ If the input sequences are not aligned (or if they are aligned and --aligned is not given), PASTA uses

the following procedure for estimating the starting alignment and tree. It 1) randomly selects a subset of
100 sequences, 2) estimates an alignment on the subset using the subset alignment tool (default
MAFFT-l-insi), 3) builds a HMMER model on this "backbone" alignment, 4) uses hmmalign to align the
remaining sequences into the backbone alignment, 5) runs FastTree on the alignment obtained in the
previous step.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

● Data type: PASTA does not automatically detect your data type. Unless your data is DNA, you need to set the data
type using -d command. Your options are DNA, RNA, and PROTEIN.

run_pasta.py -i BBA0067-half.input.fasta -t BBA0067-half.startingtree.tre -d PROTEIN

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

● Data type: PASTA does not automatically detect your data type. Unless your data is DNA, you need to set the data
type using -d command. Your options are DNA, RNA, and PROTEIN.

● Tree estimation tool: the default tool used for estimating the phylogenetic tree in PASTA is FastTree. The only
other option currently available is RAxML. You can set the tree estimator to RAxML using the --tree-estimator
option. However, Be aware that RAxML takes much longer than FastTree. If you really want to have a RAxML tree,
we suggest obtaining one by running it on the final PASTA alignment. You can change the model used by FastTree
(default: -nt -gtr -gamma for nt and -wag -gamma for aa) or RAxML (default GTRGAMMA for nt and PROTWAGCAT for AA)
by updating the [model] parameter under [FastTree] or [RAxML] header in the input configuration file. The model
cannot be currently updated in the command line directly as an option.

● Subset alignment tool: the default tool used for aligning subsets is MAFFT, but you can change it using the
--aligner option. We strongly suggest alignment subset size should always be no more than 200 sequences,
because for subsets that are larger than 200, the most accurate version of MAFFT (-linsi) is not used.

● Pairwise merge tool: the default merger too is Opal. You can change it using --merger option. If you have trouble
with Opal (java version, memory, etc.) using Muscle should solve your problem and in our experience, it doesn't
really affect the accuracy by a large margin.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

● CPUs: PASTA tries to use all the available cpus by default. You can use --num_cpus to adjust the number of threads
used.

run_pasta.py -i small.fasta --num_cpus 1

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

● CPUs: PASTA tries to use all the available cpus by default. You can use --num_cpus to adjust the number of threads
used.

● Number of iterations: the simplest option that can be used to set the number of iterations is --iter-limit, which
sets the number of iterations PASTA should run for. You can also set a time limit using --time-limit, in which case,
PASTA runs until the time limit is reached, and then continues to run until the current iteration is finished, and then
stops. If both options are set, PASTA stops after the first limit is reached. The remaining options for setting iteration
limits are legacies of SATé and are not recommended.

● Masking: Since PASTA can produce very gappy alignments, it is a good idea to remove sites that are almost
exclusively gaps before running the ML tree estimation. By default, PASTA removes sites that are more than 99.9%
gaps. You can change that using the --mask-gappy-sites option. For example, using --mask-gappy-sites 10 would
remove sites that are gaps for all sequences except for (at most) 10 sequences. Increasing the masking can make
PASTA a bit faster and can potentially reduce the memory usage. But it could also have a small effect on the final
tree. If unsure, leave the option unchanged. Note that the final alignment outputted by PASTA is NOT masked, but
masked versions of the output are also saved as temporary files (see below).

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Understanding and Using PASTA Options

● Maximum subset size: two options are provided to set the maximum subset size: --max-subproblem-frac and
--max-subproblem-size. The --max-subproblem-frac option is a number between 0 and 1 and sets the maximum
subset size as a fraction of the entire dataset. The --max-subproblem-size option sets the maximum size as an
absolute number. When both numbers are provided (in either a configuration file or the command line), the LARGER
number is used. This is an unfortunate design (legacy of SATé) and can be quite confusing. Please always double
check the actual subset size reported by PASTA and make sure it is the value intended. The default subset sizes
should work just fine. In our limited experiments, we have noticed that reducing the maximum subset size from 200
to 100 for very large datasets increases speed with little or no effect on the final alignments.

● Temporary files: PASTA creates many temporary files, and deletes most at the end. You can control the behavior
of temporary files using few options: --temporaries sets the directory where temp files are created, -k instructs
PASTA to keep temporary files, and --keepalignmenttemps will keep even more temporary files. Note that these are
different from the temporary files created in the output directory (which are always kept).

● Dry run: The --exportconfig option can be used to just create a config file and exit without actually running PASTA.
This is useful for making sure the configurations are correct before actually running the job.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Running PASTA Using Configuration Files

The configurations used for running PASTA are all saved to a configuration file, and also, PASTA can be run using a
configuration file. These configuration files are useful for multiple purposes. For example, if you want to reproduce a PASTA
run, or if you want to report the exact configurations used. Always make sure to keep the produced configuration files for
future reference. Note however, that configuration files can be used as input only using command-line.

Let's open myjob_temp_pasta_config.txt under the data directory and take a look at it. Notice that the options we referred
to are all mentioned here.

Now imagine that we wanted to instruct PASTA to use the JTT model instead of WAG for a protein run. Here is how we can
accomplish that. Copy the myjob_temp_pasta_config.txt file as a new file (e.g. cp myjob_temp_pasta_config.txt
jtt_config.txt). Then open jtt_config.txt using a text editor of your choice. Find model = -wag -gamma -fastest under
the [FastTree] header. Remove the -wag option and save the config file. Note that the default model in FastTree is JTT,
and therefore, when the -wag is removed, it automatically switches to using JTT. To run PASTA using this new
configuration file, run:

run_pasta.py jtt_config.txt

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

Running PASTA Using Configuration Files

Adding custom parameters to aligners: It is also possible to add custom parameters to alignment and merge tools. To do
so, you need to use the config file. Under each alignment tool in the config file, you can add an args attribute and list all the
attributes you want to pass to that tool. For example, to run MAFFT with your choice of gap penalty value, edit the config file
under the [mafft] heading to something like:

[mafft]

path = [there will be a path here to your pasta directory]/bin/mafft

args = --op 0.2 --ep 0.2

and use this config file to run PASTA.

Note that PASTA does not try to understand these extra parameters you pass to external tools. It simply appends these
parameters to the end of the command it executes.

At this stage, if you have input files that you like to have analyzed, you know enough to start doing that.

Email: pasta-users@googlegroups.com for all issues.

https://github.com/smirarab/pasta/blob/master/pasta-doc/pasta-tutorial.md

MAFFT

MAFFT is a multiple sequence alignment program for unix-like operating systems. It offers a range of multiple alignment
methods, L-INS-i (accurate; recommended for <200 sequences), FFT-NS-2 (fast; recommended for >2,000 sequences),
etc. Accuracy-oriented methods:

*L-INS-i (probably most accurate; recommended for <200 sequences; iterative refinement method incorporating local
pairwise alignment information):
mafft --localpair --maxiterate 1000 input [> output]
linsi input [> output]

*G-INS-i (suitable for sequences of similar lengths; recommended for <200 sequences; iterative refinement method
incorporating global pairwise alignment information):
mafft --globalpair --maxiterate 1000 input [> output]
ginsi input [> output]

*E-INS-i (suitable for sequences containing large unalignable regions; recommended for <200 sequences):
mafft --ep 0 --genafpair --maxiterate 1000 input [> output]
einsi input [> output]

https://mafft.cbrc.jp/alignment/software/manual/manual.html

Bali-Phy

http://www.bali-phy.org/ (find PASTA implementation here → https://github.com/MGNute/pasta)

Profile HMM Methods: SEPP, TIPP, UPP, & HIPPI

SEPP stands for "SATé-enabled Phylogenetic Placement", and addresses the problem of phylogenetic placement of short
reads into reference alignments and trees.

TIPP stands for "Taxonomic Identification and Phylogenetic Profiling", and addresses the problem of taxonomic
identification and abundance profiling of metagenomic data.

UPP stands for "Ultra-large alignments using Phylogeny-aware Profiles", and addresses the problem of alignment of very
large datasets, potentially containing fragmentary data. UPP can align datasets with up to 1,000,000 sequences.

HIPPI stands for "Highly Accurate Protein Family Classification with Ensembles of HMMs", and addresses the problem of
classifying query sequences to protein families.

https://github.com/smirarab/sepp

UPP is a modification of SEPP for performing alignments of ultra-large and fragmentary datasets. UPP operates in four
steps:

● In the first step, UPP partitions set S into a backbone set and a query set and computes an alignment and tree on
the backbone set using PASTA, which is a direct improvement to SATé.

● In the next step, UPP decomposes the backbone alignment into an ensemble of profile Hidden Markov Models
(HMMs).

● The third step in UPP searches for the best alignment of the query sequence to each HMM.
● The final step inserts the query sequence into the backbone alignment using the best scoring HMM.

Our study shows that UPP results in accurate alignments, and that ML trees estimated on the alignments are also highly
accurate. UPP has good accuracy on datasets that contain fragmentary sequences.

UPP

https://github.com/smirarab/sepp/blob/master/README.UPP.md

To run UPP, invoke the run_upp.py script from the bin sub-directory of the location in which you installed the Python
packages.

To see options for running the script, use the command: python <bin>/run_upp.py -h

The general command for running UPP is: python <bin>/run_upp.py -s <unaligned_sequences>

This will run UPP(Default). This will automatically select up to 1,000 sequences to be in the backbone set, generate a
PASTA alignment and tree, and then align the remaining sequences to the backbone alignment.

UPP

https://github.com/smirarab/sepp/blob/master/README.UPP.md

To run UPP, invoke the run_upp.py script from the bin sub-directory of the location in which you installed the Python
packages.

To see options for running the script, use the command: python <bin>/run_upp.py -h

The general command for running UPP is: python <bin>/run_upp.py -s <unaligned_sequences>

This will run UPP(Default). This will automatically select up to 1,000 sequences to be in the backbone set, generate a
PASTA alignment and tree, and then align the remaining sequences to the backbone alignment.

UPP can also be run using a configuration file. To run using a configuration file, run: python <bin>/run_upp.py -c
sample.config

To run UPP(Fast), run: python <bin>/run_upp.py -s input.fas -B 100

UPP currently assumes that the input sequences are nucleotide sequences. To select the input data type, run: python
<bin>/run_upp.py -s input.fas -m [dna|rna|amino]

UPP

https://github.com/smirarab/sepp/blob/master/README.UPP.md

Trimming
Lisa Pokorny & Marina Marcet-Houben

Multiple sequence alignments can have many different forms

Conserved

Noisy

Why can alignments be noisy?

Biological reasons: If we compare sequences from proteins from distantly related species,
there is high chance that only the functional part of the protein is well conserved in terms
of sequences. Other parts, such as loops, are more likely to have altered their amino acid
sequence, bot in terms of amino acid content and with the presence of indels.
Even when the prediction of the multiple sequence alignment is correct, it may negatively
affect the inference of the phylogenetic tree.

Errors:

- Errors derived from genome assembly problems
- Errors derived from gene prediction
- Errors derived from alignment of multiple sequences

Different trimming programs aim to solve some of the problems caused by the presence of gaps
or badly aligned regions.

Biological reasons

Errors in multiple sequence alignments

Errors in sequencing

Errors in gene predictions

Traditional block-based methods
(Gblocks, trimAl, BMGE, Zorro, …)

Segment based methods
(Prequal, hmmcleaner)

To trim or not to trim

The trimming of multiple sequence alignments is still a controversial topic. Some authors claim that it’s
necessary to improve phylogenetic reconstruction and the detection of evolutionary events.

Whereas some others claim it either does not have any effect or it make the problem worse.

There’s little difference.

The probable truth: it depends on the dataset and the methodology used.

Program Number of citations (Google scholar)

BMGE 381

trimAl 1737

Gblocks 5736

Trimming alignments tends to be part of a normal phylogenetic
reconstruction pipeline.

The first one: GBLOCKS (http://molevol.cmima.csic.es/castresana/Gblocks.html)

Gblocks selects blocks in a similar way as it is usually done by hand but following a
reproducible set of conditions. The selected blocks must fulfill certain requirements with
respect to the lack of large segments of contiguous nonconserved positions, lack of gap
positions and high conservation of flanking positions, making the final alignment more
suitable for phylogenetic analysis.

The white and grey
blocks under the
alignments represent the
parts of the alignment
that Gblocks would keep
using a more relaxed
and a more stringent
approach.

http://molevol.cmima.csic.es/castresana/Gblocks.html

How to run Gblocks: website
The is an on-line server that you can use if you
only want to trim one alignment.

At the end of the alignment representation there’s a
link to obtain the trimmed alignment.

How to run Gblocks: command line

Used to upload your alignment file (Fasta or NBRF/PIR format)

Once the alignment has been introduced it will go back to the main menu and
you can choose option g which will execute the program with the default
parameters.

Example Gblocks -

A- Start Gblocks and open the file called EOG092D2PES.alg (use the o option). Then use g to
obtain the blocks with the default parameters. Pay attention to how long your resulting alignment
is and which percentage of the alignment has been kept with the default parameters.

If you go to the folder where the sequences are, you will see that there are now two new files:
EOG092D2PES.alg-gb contains the trimmed alignment while EOG092D2PES.alg-gb.htm has a
html representation of the alignment and the blocks that have been kept. Open it and have a
look. Afterwards, rename the file to EOG092D2PES.default.htm so that it is not lost.

Option b in the Gblocks menu allows you to change the parameters by which the blocks are
defined.

B.- Use this option to adjust the minimum number of sequences needed to define a conserved position and
the minimum number of sequences to define a flanking region. Assign a random number within the accepted
scope. How does this affect your alignment?

Again have a look at the results. Do you see a change between the blocks that have been selected? Again
rename the file so that it is not lost

C.- Now decrease the length of your conserved blocks. Did that have an effect on your alignment? What
happens if you increase it?

Check out the results again and compare them with the previous runs of Gblocks.

D.- These alignments are in general pretty conserved. What do you think would happen if we were comparing
more distantly related species?

trimAl was initially born because Gblocks could be too restrictive
when automatically building thousands of alignments. Unlike
Gblocks, trimAl implements different trimming strategies based on
gap content, similarity or consistency across different alignment
methods. It also implements a conservation score which always
ensures that a percentage of the alignment is conserved.

(https://github.com/scapella/trimal)

trimAl has a wide array of options, including user defined trimming parameters:

And automated methods that predict the best parameters for a given alignment:

Automated methods:

Gappy-out + trimming by similarity scores → they will only delete blocks of data so if one column has
been marked to be deleted but it is surrounded by non-marked columns it will be kept in the alignment.
The two methods differ on how they define the block size.

Will use a decision tree in order to
choose which of the two methods will
work best on the alignment.

readAl: Reformatting MSAs
One of the main problems of alignments is the fact that different formats exist, and there may not be a
match between the output format of an alignment program and the input format the next program
needs.

NEXUS format FASTA format PHYLIP format

readAl: Reformatting MSAs

readAl is a sister program to trimAl that allows us to convert alignment between each other.

 readal -in [input file] -format -out [output file]

Input file → Alignment file

Output file → Resulting file

Format → Can be any of the formats that readAl has and that you wish to use as output:
Fasta, phylip, mega, nexus, clustal,...

Use one of the previous alignments to try out the following things
1.- Open the alignment file (EOG092D2PES.alg) and check in which format it has been generated.
Now use readal to (make sure each result is in a different file):

- Change the format of the current alignment to fasta format
- Change the format of the current alignment to nexus format
- Change the format of the current alignment to clustal format
- Use the -onlyseqs option

Open the different files and notice the differences between the alignment formats.

Tip: readal is run like this:

readal -in alignment_file -out trimmed_alignment_file -format
FORMAT_NAME

You can check out all the formats supported by readal by typing: readal -h

2.- Use trimAl to trim the alignment (EOG092D2PES.alg) according to a gap threshold using the following parameters:

- A gap threshold of 0.1 (-gt 0.1)
- A gap threshold of 0.5 (-gt 0.5)
- A gap threshold of 0.9 (-gt 0.9)

Make sure that the output of your alignment is in phylip format. Now you can visualize each alignment either using a
text editor or using seaview. Which of the previous commands deletes the largest amount of columns?

3.- Now use the -gt 0.5 command but add a conservation score of different values: 30, 50 and 80 (-cons option). Again
make sure that your output alignment is in phylip format. Which effect does it have on the trimmed alignment?

4.- Now instead of using the gap threshold, we’ll be using the similarity threshold (-st). Repeat the trimming of the
original alignment using different similarity thresholds (0.1, 0.5 and 0.9). Again, how does the alignment trimming vary?
Which approach is more aggressive? How can you make sure you don’t loose all the alignment?

6.- Now we are going to use the automated trimming methods. Trim your alignment using:

- Use the different automated trimming methods: -gappyout, -strict, -strictplus, -automated1
- Use the more radical methods to delete all the columns with gaps in your alignment: -nogaps

Of all the trimming strategies you’ve tried, which is the best one? Can you know?

BMGE (Block mapping and gathering through entropy)

BMGE is a trimming method that bases its trimming on the calculation of the entropy generated
from moving between the different stated found in each column in an alignment. It compares
these entropy value to standard substitution matrices to see whether the entropy values have
biological meaning. For each column of the alignment a score is calculated. BMGE then
removes the blocks with high entropy values (poorly conserved regions).

BMGE is a command line program that runs on Java, so you’ll have to have Java installed for it
to run.

The easy way to run BMGE is simply calling:

BMGE -i EOG092D2PES.alg -t AA -o EOG092D2PES.BMGE.alg

This will result in a trimmed alignment

You can obtain a visual output by using the option -oh

BMGE -i EOG092D2PES.alg -t AA -oh EOG092D2PES.BMGE.html

BMGE also implements other trimming methods such as gap based:

BMGE -i EOG092D2PES.alg -t AA -h 1 -w 1 -g 0.1 -o
EOG092D2PES.gapBased.phy

Where -h makes sure there is no entropy trimming and -w says that the sliding window
should be of one so that all columns are considered for trimming.

Prequal

Another kind of trimming tools are those that try to address errors caused by miss-assemblies or
gene prediction errors.

Different to the previous programs they work on the multi-sequence fasta and they try to identify
non-homologous regions within the sequences included in the multi-fasta. These non-homologous
regions are then masked or altogether removed from the sequence prior to the alignment.

How to run Prequal:

A.- Note that this time the input is an un-aligned multi fasta file.

prequal inputFile

The result will be a filtered fasta file where some parts of the alignments have been deleted and
some others are masked (see stretches of X)

Alignment and trimming
challenge
Lisa Pokorny & Marina Marcet-Houben

In phylogenomics we will not work with one single set of sequences that have to
be aligned and trimmed. But rather with a large set. So, how can we work with
them? Which programs can we use? How can we adjust the parameters to
create good alignments?

https://datadryad.org/resource/doi:10.5061/dryad.rj87v

