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Bayesian Phylogenetics

* Brief review of probability

 Bayes theorem

 Bayesian inference — Rev Bayes experiment
e Introduction to MCMC

« Understanding MCMC output
« Summarising the posterior distribution
 Convergence diagnostics

« Bayesian asymptotics (approximating the
likelihood for large data)



Rev Thomas Bayes Paper

L11. " An Effay towards folving a Problem in
the Doftrine of Ghances. By the late Rev.
Mr. Bayes, F. R.S. communicated by Mr.

Price, in a Letter 1o John Canton, A4. M.
F. R. S§.

Dear Sir,

Read Dec. 23, ' Now fend you an effay which I have
1703- found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,

Philosophical Transactions of the Royal Society of London,
(1763) 53: 370—418. doi:10.1098/rstl.1763.0053.




Rev Thomas Bayes Paper
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Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A | Brand B
Yellow 2 3
White 10 5




Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A | Brand B
Yellow 2 3
White 10 5

20

* You take one ball randomly out of the bag
« What is the probability that it is yellow and
made by A?

« P(Y,A) =7



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A | Brand B
Yellow 2 3
White 10 5

20

« P(Y,A)=2/20=0.10r 10%
* P(Y, A) is known as the joint probability of
Y and A



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A | Brand B
Yellow 2 3
White 10 5

20

* You place the ball back in the bag, mix and
take out another ball

« What is the probability that it is white?

¢« P(W)="7?



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark

bag: Table margin!
Brand A | Brand B "
Yellow 2 3 5
White 10 5 15
Table margin! —~ 12 3 20

« P(W)=15/20=0.75

» P(W) is known as the marginal probability

of W



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A  Brand B
Yellow 2 3 5
White 10 5 15
12 8 20

But note that:

PWW)=10/20+5/20=0.75o0r

P(W) = P(W, A) + P(W, B)
The marginal is the sum over the joints!




Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark

bag:
Brand A  Brand B
Yellow 2 3 5
White 10 5 15
12 8 20

« Assume you took out a white ball, what is the

probability that it was made by A?

« P(A|W)="?



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark

bag:
Brand A | Brand B
Yellow 2 3 5
White 10 5 15
12 8 20

« P(A[W)=10/15=0.666...
* P(A | W) is the conditional probability of A

given W




Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark
bag:

Brand A  Brand B
Yellow 2 3 5
White 10 5 15
12 8 20

« But note that:

« P(A|W)=(10/20)/(15/20) = 0.666 ... or

+ P(A| W) =PW, A)/P(W)

« The conditional is the joint over the
marginal



Golf Balls in a Bag

« Suppose you place twenty golf balls in a dark

bag:
Brand A  Brand B
Yellow 2 3 5
White 10 5 15
12 8 20

« Note we can reverse the conditional:

* POW | A) =P(W, A) / P(A)
- P(W | A) = (10/20) /(12 / 20) = 0.833...




Bayes Theorem

* P(W [ A) = P(W, A) / P(A)
* P(A | W) = P(W, A) / P(W)
* This means that:
* P(W, A) = P(A) x P(W | A)
* P(W, A) = P(W) x P(A | W)
* Thus
P(W | A) = P(W) x P(A | W) / P(A)
 This is Bayes theorem!



Marginal Probability

* P(A) = P(W, A) + P(Y, A)
* P(A) = P(A | W)P(W) + P(A | Y)P(Y)

« Suppose there are balls of n different colours in
the bag, then

* P(A) = P(A | C))P(Cy) + ... + P(A | C,)
* P(A) = 2,P(A | C)P(C)



Rev Bayes Thought Experiment
(modified)

« We have a perfectly even, horizontal table with
raised edges

* A ball is thrown onto the table and its resting
position marked with a coin

« We are never allowed to see the ball or coin

 The ball is thrown again and we are told if:
« The ball landed left or right of the coin
« The ball landed in front or behind the coin

 After nthrows, can we guess the position of
the coin?



Rev Bayes Thought Experiment
(modified)

« Revered Bayes showed how to calculate a
reasonable guess

* Not only that, he showed that with sufficient
throws, we would eventually become almost
certain of the coin’s position!

« We will learn his method



Rev Bayes Thought Experiment
(modified)

1 :
Coin
y |- O
The coin marks
the position of fx,y) =7
the ball for the |
initial throw
0 X 1



Rev Bayes Thought Experiment
(modified)

Mo TeteTese sov e e el

0.8 0.2
We assume a uniform '
distribution over x and y:

f(x,y) =1

1.0 0.0



Rev Bayes Thought Experiment
(modified)

o L: left
| « R: right

P(Ll F | X, Y) =7 : e F: front

« B: back




Rev Bayes Thought Experiment
(modified)

1 The probability, after one
throw, is the landing area:
® O
, * P(L, F[x,y) =Xy
:COin * P(LIB X, Y)=X(1_Y)
1 [ S * PR, FIxy)=(1-Xx)y
i * PR, B[ X y)=(1-x)(1-y)
@
‘ I
0O



Rev Bayes Thought Experiment
(modified)

1 The probability, of a
sequence of throws, is
O the product of the single
throw probabilities:
Coin
y ____________________ (Ib __________ ° T3 = ({LIF}I {LIF}I {RIB})
‘ |
O |
P(T3 | X, Y) = P(LI F | X, Y)Z P(RI B | X, Y)
0 ' |

0 X 1



Rev Bayes Thought Experiment
(modified)

The probability, of a sequence of throws, are the
product of the single throw probabilities:

* T3 = ({LI F}l {LI F}I {RI B})
° P(T3 | X, Y) = P(LI F | X, Y)z P(RI B | X, Y)

* P(T3 1%, y) =(xy)X(1-x)(1-y)
In general, the probability after n throws is:

* P(Th %, y) =x2 (1 =x)"-2)yb (1 —y)n-b)
« a and b: number of left and front landings
 n: total number of throws



Rev Bayes Thought Experiment
(modified)

We have defined the marginal density of x and y, and
calculated the conditional probability of T,, given X, y:

+ f(x,y) =1
* P(Ta | X, y) =x2 (1 —x)n-2)yb (1 —y)n-b)

Thus, we now have the joint density of T,, X, y:

* f(To, X, y) = (X, y) P(Ty [ X, ¥)



Rev Bayes Thought Experiment
(modified)

Thus, according to the Bayes theorem:
» f(x, ¥y | To) =f(x, y) P(Th | X, ) / P(Ty)
Our problem is calculating the marginal probability P(T,)

Recall that the marginal probability is the sum over the
joint probabilities. Here, x and y are continuous, so
instead of a double sum, we have a double integral:

+ P(T,) = J] f(T,, x, y) dx dy
+ P(T,) =[a! (n—a)! bl (n—b)!]/ [(n + 1)!]2



Rev Bayes Thought Experiment
(simulation)

Computer simulation of modified Bayes experiment:

1.

W~

No ;A

Sample x and y from the joint uniform f(x, y). This is
the position of the coin

Seta=b=n=0

Sample two numbers, w and z, from the joint uniform.
This is the position of the ball after one throw
Seta=a+ 1ifw < x (ballis at left)

Setb=b + 1ifz <y (ball is at front)

Repeat steps 3-5 n times

Calculate f(x, y | T,)




Rev Bayes Thought Experiment
(simulation)

30 =\’

20
f(XI y | Tn) 10
0
0.0 1.0
0.2 0.8
0.4 0.6
oo g : e 04 N
08 oo a: 9 # lefts
D¢ b: 26 # fronts
1.0 0.0 n: 30 # throws

f(x, y | Tn) =x@ (1 —x)(n-a yb (1 —y)n=b) / P(T,) R code: https://dosreislab.github.io



Rev Bayes Thought Experiment
(simulation)

1.0

0.8 +
O Coin
: . - -
0.6 - | ® Additional
y s throws

0.4 +

0.2 1

0.0 T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0



Bayesian Terminology

« The marginal of x and y, f(x, y), is known as the prior
distribution of x and y

« This is because f(Xx, y) reflects our prior knowledge
before any data have been observed

« The conditional f(T, | X, y) is known as the likelihood
of T, (the data)

« P(T,) is known as the marginal likelihood

« f(x,y| T, is known as the posterior distribution of
X and y

« This is because f(x, y | T,) reflects our posterior
knowledge after the data have been observed



Rev Bayes Thought Experiment

fulx | Tp) = x2 (1 —x)(n2)

f(x | To) = Cx@ (1 — x)(n-2)
C=(n+1D!/[al(n-2a)!]
C=1/P(Ty)

0.0 0.2 0.4 0.6 0.8 1.0

X

f,: unnormalized density — has the same shape as the normalised density f



Rev Bayes Thought Experiment

« S0, can we ignore the marginal likelihood, P(T,)?

* No.

« The density must be normalised because the
probability is the area under the curve:

« Plv<x<w)=[Vf(x]|T,)dx

Note:
« PO<x<1)=
P(v < X < W) [of(x | T)dx =1

* For multi-dimensional
densities, the probability is
0 t—"----- =~ the volume under the
00 02 04 06 08 10 surface




General Bayesian Model

fID) = f(8)f(DI6)/f (D)

Posterior Prior Likelihood Marginal L

D: data

0 = (64 ..,0,): model parameters

f(D) = [f(6)f(DI6)dE

f(D) is an n-dimensional integral

Usually, this integral does not have an analytical
solution

What do we do?



Sampling from Histograms

C=20+40+ 20
0.5 {-------------- C =80
P(1) = 20/80 = 0.25

0.25 -~ == |-




Sampling from Histograms

Visit-my-neighbour game:

« Select a starting point

« Throw a coin to propose a visit
to one of my neighbours

« Then accept/reject visit:
« Accept* if h(n) > h(m)

h(2) « Accept with P = h(n)/h(m)

50-1-- L if h(n) < h(m)

Note:
« If I am missing a
neighbour, h(n) = 0
* h(n)/h(m) = P(n)/P(m)
O « To play this game, we
0 v don’t need to know C
1 ) 3 * Play as long as you want

*n: neighbour, m: myself

L =




Sampling from Histograms

Visit-my-neighbour game:
Given I'm currently at 2:

40-1-------------- A
Visit 1 1/4

1/2

20-t--7—17--"-"---1 |-------
Visit 3 1/4




Sampling from Histograms

3.0 1

2.5

2.0 1

1.5 1

1.0

0 20 40 60 80 100




Sampling from Histograms

26
3.0
25
53
2.0
1.5
21
1.0
0 20 40 60 80 100

visit

Expected: 25:50:25 In this game, time spent in a site is
proportional to the site’s probability



Sampling from Histograms

Visit-my-neighbour game:
« Works for any histogram
» Gaps (areas with h=0) are

overcome by using proposals
of different lengths

0.10 —  This algorithm is known as
Markov Chain Monte Carlo or
MCMC

0.05 — I

5 6 7 8 9 10 11 12 13 14 15

0.15




Sampling from Densities

MCMC:

« Also works for continuous
densities

 Start at some point a

« Use some density g(a’ | a)
to propose neighbour a’

« Accept or reject with

« P=min{1, f(a")/f(a)}

Make sure:

- g(@la)=g9g(a|a’)

0.3

0.2




Markov Chain Monte Carlo

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicaoras METrROPOLIS, ARIANNA W, ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucusTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY
. . ) POTENTIAL BETWEEN THE PARTICLES
HE purpose of this paper is to describe a general . _
method, suitable for fast electronic computing In order to reduce the problem to a feasible size for
machines af caleulating the nranerties of anv snhstance  numerical work, we can, of course, consider only a finite

« J. Chem. Phys., (1953) 21: 1087-1092.
« Hastings, Biometrika, (1970) 57: 97-109.
 Monte Carlo: Stan Ulam and John von Newmann




Markov Chain Monte Carlo

+ S0, how do I calculate P(v < x <w) = [ f(x)dx?

N °P(v<x<w)z%

* n,: times red area was
P(v < X < W) visited

« N: total number of visits
¢ X = foooxf(x)dx

» X = Yilix/N

 X;: values visited

« MCMC gives you an

| | | | | I approximate answer

00 02 04 06 08 10 < Answer gets better with
large N




Bayesian Phylogenomics

« In phylogenomics our interest may be, for example, in
estimating:
« A tree topology, T
- The branch lengths, b, given the topology T
« Some model parameters, 6
« Given a genomic alignment matrix (our data) G

 Posterior distribution of T, b, 8 given G:
* f(T,b,0|G) = f(B)P(T)f(bIT)XP(G|6,T,b)/P(G)
* P(G) =%;J f(6,T; b)dodb

 P(G) is impossible to calculate, so we need MCMC
E.g. P(T|G) = ny/N



Example: 2s K80 model

Quartz 2 [*]

Posterior

initial
state

burn-in
phase

stationary
phase

distance, d

Human Orang
A

d

\4

d: molecular distance
k: trans/transv ratio
Kimura (1980)
substitution model
Alignment: 948 mit
sites, 84 trans, 6 transv

(2017) Nat. Ecol. Evol., 1:
1446.



Example: 2s K80 model

@) @) Quartz 2 [*]
Trace of k
100
80 ]
50 - Stationary phase — 95% CI
o4 W oW A N
204 W T W A YW
[ | I I | I I
0 100 200 300 400 500 600
Trace of d
0.25
0.20
0.15 Stationary phase — 95% CI
0.10 - TV NP Yl A PPN YA N e AT
[ | | | | | |




Example: 2s K80 model

« The sample from the stationary phase can be summarised to
obtain the approximation to the posterior distribution

Histogram of k

k ~ 28.7
95% Cl = (13.9, 51.9)

Quartz 2 [*]

600
500

Histogram of k

y

d ~ 0.10

[k 95% ClI =
 (0.08,0.13)

[ |

| | I

0.08 0.10 0.12 0.14 0.16

d



Proposal Step Size

« In this example, we use uniform distributions to
propose new values:
e d'~U(d—-wgz/2,d+wg;/2)
o k'~U(k —wy/2,k+wy/2)
* w,, Wy are known as the proposal step sizes

Wy

kK —w/2 k K + wy/2



Mixing and Convergence Rate

Mixing: the ability of the chain to explore state-space
quickly
« If you reject too many proposals you stay in the
same place too long
 If you accept too many proposals you (usually)
move slowly and stay in the same region too long
Proposal step size affect mixing:
« Step is too big: you reject most proposals
« Step is too small: you make baby steps
Convergence rate: how quickly the chain moves into
the stationary phase
Proposal step size also affects convergence rate
« Small sizes lead to low convergence rate



Example: 2s K80 model

O ® Quartz 2 [*]

Effect of step size on d

000, O small
©0090%,,

: + medium

* ©0,405000950000000%,4
00
\ °%, ® large
Laaaad 000,
\ %00

OOOOOOOO
-]

o
000

000000°0
oo o°°°°°°° o
0000 RRRNS

099040000

e 'S
000 ’m,‘\t

\ad “‘b";‘;".‘ozuo.::oouooo. oo,
..........f."'o’o. 0, 0; ssscscsssee Lad ..... ’2..:::..

secgect

Mixing (acceptance %):
Small: 91% (high), Medium: 30% (great), Large: 12% (low)

| | | | | |
0 20 40 60 80




Mixing and Fine-tuning

Analysis of normal distribution indicate that mixing is
best at 30% (20% — 40%)

Fine-tuning: Adjusting the step sizes to achieve
optimal mixing

Most MCMC software will do this automatically for you,
but sometimes you may need to fix it manually:

* % is too high: increase step size

* % is too low: decrease step size

Remember MCMC estimates are approximate:

e d= Zi dl/N

For two chains with the same length, the errors in the
estimates are larger for the chain with poorest mixing
Remember calculations are done after removing burn-
in samples



Autocorrelation

« MCMC samples are autocorrelated because accepted
values are modifications of the previous values
« 25 K80 example, r; = corr(d;, di;+):

® Quartz 2 [*]
0.30 0.30 H . 0.30
Small step: . Medium: Large step:
o4 =099 ;| o»4r, =068+ | o=r =0.86
&
0.20 f 0.20 ’ 0.20
I
0.15 — ® 0.15 — : o0 0.15
0.10 / 0.10 ’ 0.10
0.05 — 0.05 0.05 —
0.00 — 0.00 - 0.00 —

0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30 0.00 0.10 0.20

0.30




Autocorrelatlon Function

Quartz 2 [*]

Autocorrelation on d (medium step size) . Chains that mix

- well have ACF
that decay fast

r 1T

______________________________________




Efficiency

« Chains that lead to estimates with small errors with
respect to the chain’s size are said to be efficient
« Efficiency relates to the autocorrelation of the chain:
- High (+) autocorrelation: Low efficiency
 Moderate (+) autocorrelation: Efficient chain
« No autocorrelation: Independent sampling (very
efficient)
« (=) autocorrelation: Super efficient chain

« Efficiency:
e Eff=1/[1+20q4+1, +135...)]
« Eff = 1: as efficient as independent sampling
« Eff = 0.2: 20% as efficient as independent
sampling



Effective Sample Size (ESS)

« Effective Sample Size = Chain Size x Efficiency

 ESS = NXEff
« For example, MCMC chain with N=1,000 and Eff=20%

« Then ESS = 200, meaning the chain has the same
estimate error as an equivalent, independent chain of
size 200

 Stochastic simulation theory recommendation:

« N should be between 1,000 to 10,000 for
independent sampling

« Thus, ESS should be between 1,000 to 10,000

« This is hard to achieve in Bayesian phylogenomics

« You must try to have at least ESS > 200



Convergence

« MCMC is an stochastic algorithm

* This means an MCMC histogram is an approximation
of the posterior density

 This approximation improves as N — oo

* You must use convergence diagnostics to assess
whether the MCMC sample has converged to the
posterior



Convergence to Normal Dist

0.6 — ,l.l — O
. I 4 =0.121
~ ESS = 100
04 — -
: Ay
X 03 - H -
Il
0.2 — —
ALTHINL
N /Pﬁ/_ P\
N




Convergence to Normal Dist

® O Quartz 2 [*]
0.6 U= 0
. 4 = 0.064
] ESS = 1000
0.4 — ?">§
X 03 / \
0.2 - 717 KK
N Jﬁ’r ﬂﬂn@
0.0 | 1 I 1
4 -2 0 2 4




Convergence to Normal Dist

0.6 U= 0
s i = 0.006
ESS = 10,000
0.4 — %;g-\§
X 03 - / \
/ \
02 %7 \\
N /ﬁ‘ﬂﬂ/ \MK
0.0




Convergence

In practice the shape of the posterior density is not
known
Thus, you cannot compare your MCMC histogram to
the true posterior
The way around this is to run two or more MCMC
chains and compare their histograms, traces, posterior
means, and credibility intervals
If they are similar it is likely you have converged
Important:

« The chains should start from different starting

points
« Starting points can be chosen randomly or
« chosen so that they are over-dispersed



Convergence

@® Quartz 2 [*]

Histograms of two chains

_ iy = 0.010
04 - L iz = 0.014
IHI Close,a = (—1.99,2.01)
0.3 - | HT Closy, 5 = (—1.98,2.05)
~ a 3 ESS = 1000
< 02 (][]
. I Chains that have
0.1 - { H1 converged can be
—— e merged into a larger
0.0 =l o i
—— 11— |chain
3 2 - 0 1 2 3 | ESS, = ESS, + ESSg




Multi-modal Densities

O ® Quartz 2 [*]

Initial state — chain B .N




Multi-modal Densities

O O

0.5

0.4

0.3

0.2

0.1

0.0 —

Quartz 2 [*]

Histogram of chains A and B

No convergence!

Chains failed to cross
the posterior valley




Multi-modal Densities

 Using over-dispersed or random starting points is a
good way to detect multi-modal posteriors
- If you detect a multi-modal posterior:
« Run the chains for a very long time
« Eventually, the chains will cross the valley back and
forth and the histograms will convergence
* Note you should not merge short chains that are
stuck at different modes
 This is because the probability of the chain getting
stuck is different from the probability mass under
the mode
 Using fixed starting points is a bad idea
« ESS is not a measure of convergence



Thinning the Chain

In phylogenomics it is difficult to construct efficient
chains

This happens because we usually have too many
parameters

Real-life phylogenomic MCMC chains are highly
correlated

To get good estimates, you must run the chain for a
very long time

If you write down every chain visit, you would run out
of hard drive space very quickly

Thinning: Writing down only a fraction of all chain
visits (e.g. every 100t or 1000t visit)



Bayesian Asymptotics

« Asymptotics refers to how the posterior estimates
behave as our sample size (the amount of data)
InCreases

« In well-behaved problems, the posterior converges to
the shape of the likelihood

« That is, the prior has little relevance when we have a
lot of data



Example: 2s JC69

density

©

30

20

10

7 948 mit sites

Quartz 2 [*]

90 differences

e — -
——
—_———

Posterior = Prior x Likelihood

Prior

Likelihood ====-=

Posterior

The likelihood tends to the
normal distribution as the
number of sites goes to
infinity

0.00 0.05




Example: Phylogenomic Dating

In phylogenomics, the likelihood of the alignment is
the product of the likelihood of sites

L(GIT,b) = [1i=y L(g:lT, b)

g:. i-th site pattern

P: number of site patterns

P: can be over one million in a phylogenomic
alignment

When analysing large genomes, the likelihood of the
branch lengths given the tree is very close to the
multivariate-normal (MVN) distribution

Thus, we can approximate the likelihood using the
MVN

This is much faster than traditional likelihood



Bayesian Dating

« Thorne et al. (1998) MBE, 15: 1647 developed the
approximation idea for Bayesian clock-dating

Estimating the Rate of Evolution of the Rate of Molecular Evolution

Jeffrey L. Thorne,* Hirohisa Kishino,T and lan S. Painter*

*Program in Statistical Genetics, Statistics Department, North Carolina State University; and tDepartment of Social and
International Relations, University of Tokyo

A simple model for the evolution of the rate of molecular evolution is presented. With a Bayesian approach, this
model can serve as the basis for estimating dates of important evolutionary events even in the absence of the

Approximate Likelihood Calculation on a Phylogeny for

Bayesian Estimation of Divergence Times

Mario dos Reis' and Ziheng Yang*'?

'Department of Biology, University College London, Darwin Building, Gower Street, London, United Kingdom
2Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

*Corresponding author: zyang@ucl.ac.uk

Associate editor: Oliver PybUS MOL B’OL EVOL 28(7):21 61 —21 72. 201 1




Example: Mammal Divergences

« dos Reis et al. (1998) Proc. R. Soc. B, 279: 3491

« Analysed 36 mammal genomes

 Alignment is 21 million sites

« MCMC approximate likelihood analysis time: 15 days

« Exact likelihood (not done): over one year

« We will use MCMCTree'’s approximate likelihood method
in the practical with a Primates example



Example: Mammal Divergences

(a) Monotremata (1,3) h-
Prototheria L(48.6)
0.0 . .
Marsupialia (2, 31) ‘/?‘
P Metatheria o
37 B(162.9, 191.1) Victathe Atlantogenata 44 L(55.6) N h
41* <5 - - = === Xenarthra (2, 5)
: — = | fossil cal. | Afrotheria (3, 11)
Theria 38 B(124,171.2) ' i A | Lagomorpha (2, 5) d
B o (61.5) 58
Euarchontgglires 57 =L i . o
Pl tali 564 proi—t 3 fossil cal. [ Rodentia (5, 21) M
acentali 5 5.8)
' i ‘l. -k <Scadenua(l 1) CQ
Eutheria U (131.5) 40 63 (61.5) Dermoptera (0, 1)
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