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Bayesian Phylogenetics
• Brief review of probability
• Bayes theorem
• Bayesian inference – Rev Bayes experiment
• Introduction to MCMC
• Understanding MCMC output
• Summarising the posterior distribution
• Convergence diagnostics

• Bayesian asymptotics (approximating the 
likelihood for large data)
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Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3
White 10 5

20
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Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3
White 10 5

20

• You take one ball randomly out of the bag
• What is the probability that it is yellow and 

made by A?
• P(Y, A) = ?



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3
White 10 5

20

• P(Y, A) = 2 / 20 = 0.1 or 10%
• P(Y, A) is known as the joint probability of 

Y and A



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3
White 10 5

20

• You place the ball back in the bag, mix and 
take out another ball

• What is the probability that it is white?
• P(W) = ?



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3 5
White 10 5 15

12 8 20

• P(W) = 15 / 20 = 0.75
• P(W) is known as the marginal probability

of W 

Table margin!

Table margin!



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:

Brand A Brand B
Yellow 2 3 5

White 10 5 15

12 8 20

• But note that:

• P(W) = 10 / 20 + 5 / 20 = 0.75 or

• P(W) = P(W, A) + P(W, B)

• The marginal is the sum over the joints!



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3 5
White 10 5 15

12 8 20

• Assume you took out a white ball, what is the 
probability that it was made by A?

• P(A | W) = ?



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3 5
White 10 5 15

12 8 20

• P(A | W) = 10 / 15 = 0.666…
• P(A | W) is the conditional probability of A 

given W



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3 5
White 10 5 15

12 8 20

• But note that:
• P(A | W) = (10 / 20) / (15 / 20) = 0.666 … or
• P(A | W) = P(W, A) / P(W)
• The conditional is the joint over the 

marginal



Golf Balls in a Bag
• Suppose you place twenty golf balls in a dark 

bag:
Brand A Brand B

Yellow 2 3 5
White 10 5 15

12 8 20

• Note we can reverse the conditional:
• P(W | A) = P(W, A) / P(A)
• P(W | A) = (10 / 20) / (12 / 20) = 0.833… 



Bayes Theorem
• P(W | A) = P(W, A) / P(A)
• P(A | W) = P(W, A) / P(W)
• This means that:
• P(W, A) = P(A) x P(W | A)
• P(W, A) = P(W) x P(A | W)
• Thus

P(W | A) = P(W) × P(A | W) / P(A)
• This is Bayes theorem!



Marginal Probability
• P(A) = P(W, A) + P(Y, A)
• P(A) = P(A | W)P(W) + P(A | Y)P(Y)
• Suppose there are balls of n different colours in 

the bag, then
• P(A) = P(A | C1)P(C1) + … + P(A | Cn)
• P(A) = Σi P(A | Ci)P(Ci) 



Rev Bayes Thought Experiment 
(modified)
• We have a perfectly even, horizontal table with 

raised edges
• A ball is thrown onto the table and its resting 

position marked with a coin
• We are never allowed to see the ball or coin 
• The ball is thrown again and we are told if:
• The ball landed left or right of the coin
• The ball landed in front or behind the coin

• After n throws, can we guess the position of 
the coin?



Rev Bayes Thought Experiment 
(modified)
• Revered Bayes showed how to calculate a 

reasonable guess
• Not only that, he showed that with sufficient 

throws, we would eventually become almost 
certain of the coin’s position!
• We will learn his method



Rev Bayes Thought Experiment 
(modified)

Coin

0 1
0

1

x

y

f(x, y) = ?The coin marks 
the position of 
the ball for the 
initial throw



Rev Bayes Thought Experiment 
(modified)

f(x, y)

We assume a uniform 
distribution over x and y: 
f(x, y) = 1



Rev Bayes Thought Experiment 
(modified)

Coin

0 1
0

1

x

y

• L: left
• R: right
• F: front
• B: back

Ball

P(L, F | x, y) = ?



Rev Bayes Thought Experiment 
(modified)

Coin

0 1
0

1

x

y

The probability, after one 
throw, is the landing area:

• P(L, F | x, y) = xy
• P(L, B | x, y) = x (1 – y)
• P(R, F | x, y) = (1 – x) y
• P(R, B | x, y) = (1–x)(1–y)



Rev Bayes Thought Experiment 
(modified)

Coin

0 1
0

1

x

y

The probability, of a 
sequence of throws, is 
the product of the single 
throw probabilities:

• T3 = ({L,F}, {L,F}, {R,B})

P(T3 | x, y) = P(L, F | x, y)2 P(R, B | x, y)



Rev Bayes Thought Experiment 
(modified)
The probability, of a sequence of throws, are the 
product of the single throw probabilities:

• T3 = ({L, F}, {L, F}, {R, B})
• P(T3 | x, y) = P(L, F | x, y)2 P(R, B | x, y)
• P(T3 | x, y) = (xy)2(1 – x)(1 – y)

In general, the probability after n throws is:

• P(Tn | x, y) = xa (1 – x)(n – a) yb (1 – y)(n – b)

• a and b: number of left and front landings
• n: total number of throws 



Rev Bayes Thought Experiment 
(modified)
We have defined the marginal density of x and y, and 
calculated the conditional probability of Tn given x, y:

• f(x, y) = 1
• P(Tn | x, y) = xa (1 – x)(n – a) yb (1 – y)(n – b)

Thus, we now have the joint density of Tn, x, y:

• f(Tn, x, y) = f(x, y) P(Tn | x, y)



Rev Bayes Thought Experiment 
(modified)
Thus, according to the Bayes theorem:

• f(x, y | Tn) = f(x, y) P(Tn | x, y) / P(Tn)

Our problem is calculating the marginal probability P(Tn)

Recall that the marginal probability is the sum over the 
joint probabilities. Here, x and y are continuous, so 
instead of a double sum, we have a double integral:

• P(Tn) = ∬ f(Tn, x, y) dx dy
• P(Tn) = [a! (n – a)! b! (n – b)!] / [(n + 1)!]2



Rev Bayes Thought Experiment 
(simulation)
Computer simulation of modified Bayes experiment:

1. Sample x and y from the joint uniform f(x, y). This is 
the position of the coin

2. Set a = b = n = 0
3. Sample two numbers, w and z, from the joint uniform. 

This is the position of the ball after one throw
4. Set a = a + 1 if w < x (ball is at left)
5. Set b = b + 1 if z < y (ball is at front)
6. Repeat steps 3-5 n times
7. Calculate f(x, y | Tn)



Rev Bayes Thought Experiment 
(simulation)

f(x, y | Tn)

a:
b:
n:

f(x, y | Tn) = xa (1 – x)(n – a) yb (1 – y)(n – b) / P(Tn) R code: https://dosreislab.github.io

# lefts
# fronts
# throws



Rev Bayes Thought Experiment 
(simulation)

x

y

Coin

Additional 
throws



Bayesian Terminology
• The marginal of x and y, f(x, y), is known as the prior 

distribution of x and y
• This is because f(x, y) reflects our prior knowledge 

before any data have been observed
• The conditional f(Tn | x, y) is known as the likelihood

of Tn (the data)
• P(Tn) is known as the marginal likelihood
• f(x, y | Tn) is known as the posterior distribution of 

x and y
• This is because f(x, y | Tn) reflects our posterior 

knowledge after the data have been observed



fu(x | Tn) = xa (1 – x)(n-a)

f(x | Tn) = C xa (1 – x)(n-a)

C = (n + 1)! / [a! (n – a)!]
C = 1 / P(Tn)

fu: unnormalized density – has the same shape as the normalised density f

Rev Bayes Thought Experiment



Rev Bayes Thought Experiment
• So, can we ignore the marginal likelihood, P(Tn)?
• No. 
• The density must be normalised because the 

probability is the area under the curve:
• P(v < x < w) = ∫v f(x | Tn) dxw

P(v < x < w)

Note:
• P(0 < x < 1) = 

∫0 f(x | Tn) dx = 1

• For multi-dimensional 
densities, the probability is 
the volume under the 
surface

1



General Bayesian Model

! " # = ! " ! # " /!(#)

• #: data
• " = ("1, … , "+): model parameters
• ! # = ∫! " ! # " d"
• ! # is an n-dimensional integral
• Usually, this integral does not have an analytical 

solution
• What do we do?

Posterior Prior Likelihood Marginal L



Sampling from Histograms

321
0

20

40
C = 20 + 40 + 20
C = 80
P(1) = 20/80 = 0.25

0.5

0.25



Sampling from Histograms

321
0

20

40

Visit-my-neighbour game:
• Select a starting point
• Throw a coin to propose a visit 

to one of my neighbours
• Then accept/reject visit:
• Accept* if h(n) > h(m)
• Accept with P = h(n)/h(m) 

if h(n) < h(m)
Note:
• If I am missing a 

neighbour, h(n) = 0
• h(n)/h(m) = P(n)/P(m)
• To play this game, we 

don’t need to know C
• Play as long as you want

h(2)

*n: neighbour, m: myself



Sampling from Histograms

321
0

20

40

Visit-my-neighbour game:
Given I’m currently at 2:

Visit 1

Visit 3

Stay at 2

Stay at 2

1/4

1/2

1/4



Sampling from Histograms



Sampling from Histograms
26

53

21

Expected: 25:50:25 In this game, time spent in a site is 
proportional to the site’s probability



Sampling from Histograms
Visit-my-neighbour game:
• Works for any histogram
• Gaps (areas with h=0) are 

overcome by using proposals 
of different lengths

• This algorithm is known as 
Markov Chain Monte Carlo or 
MCMC



Sampling from Densities
MCMC:
• Also works for continuous 

densities
• Start at some point a
• Use some density g(a’ | a) 

to propose neighbour a’
• Accept or reject with
• P = min {1, f(a’)/f(a)}

• Make sure:
• g(a’ | a) = g(a | a’)

a

g(a’ | a)



Markov Chain Monte Carlo

• J. Chem. Phys., (1953) 21: 1087–1092.
• Hastings, Biometrika, (1970) 57: 97–109.
• Monte Carlo: Stan Ulam and John von Newmann



Markov Chain Monte Carlo
• So, how do I calculate ! " < $ < % = ∫(

) * $ d$?

P(v < x < w)

• ! " < $ < % ≈ -.
/

• na: times red area was 
visited

• N: total number of visits
• $̅ = ∫1

2$* $ d$
• $̅ ≈ ∑456/ $4/8
• xi: values visited
• MCMC gives you an 

approximate answer
• Answer gets better with 

large N 



Bayesian Phylogenomics
• In phylogenomics our interest may be, for example, in 

estimating:
• A tree topology, T
• The branch lengths, b, given the topology T
• Some model parameters, θ
• Given a genomic alignment matrix (our data) G

• Posterior distribution of T, b, θ given G:

• ! ", $, % & = ! % ( " ! $ " ×((&|%, ", $)/((&)

• ( & = ∑/ ∫ ! %, "/, $ d%d$
• ( & is impossible to calculate, so we need MCMC
• E.g. (("|&) ≈ 34/5



Example: 2s K80 model

Human Orang

d

• d: molecular distance
• k: trans/transv ratio
• Kimura (1980) 

substitution model
• Alignment: 948 mit

sites, 84 trans, 6 transv
• (2017) Nat. Ecol. Evol., 1: 

1446.

initial 
state

burn-in
phase

stationary
phase



Example: 2s K80 model
Trace of k

Trace of d

Stationary phase – 95% CI

Stationary phase – 95% CI



Example: 2s K80 model
• The sample from the stationary phase can be summarised to 

obtain the approximation to the posterior distribution 

!" ≈ 28.7
95% CI = (13.9, 51.9)

)̅ ≈ 0.10
95% CI = 
(0.08, 0.13)



Proposal Step Size
• In this example, we use uniform distributions to 

propose new values:
• !"~$(! − '(/2, ! + '(/2)
• ."~$(. − '//2, . + '//2)
• '(,'/ are known as the proposal step sizes

k

wk

k + wk/2 k – wk/2



Mixing and Convergence Rate
• Mixing: the ability of the chain to explore state-space 

quickly
• If you reject too many proposals you stay in the 

same place too long
• If you accept too many proposals you (usually) 

move slowly and stay in the same region too long
• Proposal step size affect mixing:
• Step is too big: you reject most proposals
• Step is too small: you make baby steps

• Convergence rate: how quickly the chain moves into 
the stationary phase

• Proposal step size also affects convergence rate
• Small sizes lead to low convergence rate



Example: 2s K80 model

Effect of step size on d

Mixing (acceptance %):
Small: 91% (high), Medium: 30% (great), Large: 12% (low)



Mixing and Fine-tuning
• Analysis of normal distribution indicate that mixing is 

best at 30% (20% – 40%)
• Fine-tuning: Adjusting the step sizes to achieve 

optimal mixing
• Most MCMC software will do this automatically for you, 

but sometimes you may need to fix it manually:
• % is too high: increase step size
• % is too low: decrease step size

• Remember MCMC estimates are approximate:
• "̅ ≈ ∑% "%/'

• For two chains with the same length, the errors in the 
estimates are larger for the chain with poorest mixing

• Remember calculations are done after removing burn-
in samples



Autocorrelation
• MCMC samples are autocorrelated because accepted 

values are modifications of the previous values 
• 2s K80 example,  r1 = corr(di, di+1):

Small step:
r1 = 0.99

Medium:
r1 = 0.68

Large step:
r1 = 0.86



Autocorrelation Function

Lag, L

AC
F(

L)
 =

 r L
= 

co
rr(

d i,
 d

i+
L)

• Chains that mix 
well have ACF 
that decay fast



Efficiency
• Chains that lead to estimates with small errors with 

respect to the chain’s size are said to be efficient
• Efficiency relates to the autocorrelation of the chain:
• High (+) autocorrelation: Low efficiency
• Moderate (+) autocorrelation: Efficient chain
• No autocorrelation: Independent sampling (very 

efficient)
• (-) autocorrelation: Super efficient chain

• Efficiency:
• Eff = 1/[1 + 2 )* + )+ + ), … ]
• Eff = 1: as efficient as independent sampling
• Eff = 0.2: 20% as efficient as independent 

sampling



Effective Sample Size (ESS)
• Effective Sample Size = Chain Size × Efficiency
• ESS = $×Eff
• For example, MCMC chain with N=1,000 and Eff=20%
• Then ESS = 200, meaning the chain has the same 

estimate error as an equivalent, independent chain of 
size 200

• Stochastic simulation theory recommendation:
• N should be between 1,000 to 10,000 for 

independent sampling
• Thus, ESS should be between 1,000 to 10,000
• This is hard to achieve in Bayesian phylogenomics
• You must try to have at least ESS > 200



Convergence
• MCMC is an stochastic algorithm
• This means an MCMC histogram is an approximation 

of the posterior density
• This approximation improves as N → ∞
• You must use convergence diagnostics to assess 

whether the MCMC sample has converged to the 
posterior



Convergence to Normal Dist

! = 0
!̂ = 0.121
ESS = 100



Convergence to Normal Dist

! = 0
!̂ = 0.064
ESS = 1000



Convergence to Normal Dist

! = 0
!̂ = 0.006
ESS = 10,000



Convergence
• In practice the shape of the posterior density is not 

known
• Thus, you cannot compare your MCMC histogram to 

the true posterior
• The way around this is to run two or more MCMC 

chains and compare their histograms, traces, posterior 
means, and credibility intervals

• If they are similar it is likely you have converged
• Important:
• The chains should start from different starting 

points
• Starting points can be chosen randomly or
• chosen so that they are over-dispersed



Convergence

"̂# = 0.010
"̂( = 0.014
CI,-%,# = (−1.99,2.01)
CI,-%,( = (−1.98,2.05)
ESS = 1000

Chains that have 
converged can be 
merged into a larger 
chain 
ESSL = ESSA + ESSB



Multi-modal Densities

Initial state – chain A

Initial state – chain B



Multi-modal Densities

No convergence!
Chains failed to cross 
the posterior valley



Multi-modal Densities
• Using over-dispersed or random starting points is a 

good way to detect multi-modal posteriors
• If you detect a multi-modal posterior:
• Run the chains for a very long time
• Eventually, the chains will cross the valley back and 

forth and the histograms will convergence
• Note you should not merge short chains that are 

stuck at different modes
• This is because the probability of the chain getting 

stuck is different from the probability mass under 
the mode

• Using fixed starting points is a bad idea
• ESS is not a measure of convergence



Thinning the Chain
• In phylogenomics it is difficult to construct efficient 

chains
• This happens because we usually have too many 

parameters
• Real-life phylogenomic MCMC chains are highly 

correlated
• To get good estimates, you must run the chain for a 

very long time
• If you write down every chain visit, you would run out 

of hard drive space very quickly
• Thinning: Writing down only a fraction of all chain 

visits (e.g. every 100th or 1000th visit)



Bayesian Asymptotics
• Asymptotics refers to how the posterior estimates 

behave as our sample size (the amount of data) 
increases

• In well-behaved problems, the posterior converges to 
the shape of the likelihood

• That is, the prior has little relevance when we have a 
lot of data 



Example: 2s JC69

90 differences
948 mit sites

Posterior = Prior x Likelihood
• Prior
• Likelihood
• Posterior

• The likelihood tends to the 
normal distribution as the 
number of sites goes to 
infinity



Example: Phylogenomic Dating
• In phylogenomics, the likelihood of the alignment is 

the product of the likelihood of sites
• ! " #, % = ∏()*

+ !(-(|#, %)
• gi: i-th site pattern
• P: number of site patterns
• P: can be over one million in a phylogenomic 

alignment
• When analysing large genomes, the likelihood of the 

branch lengths given the tree is very close to the 
multivariate-normal (MVN) distribution

• Thus, we can approximate the likelihood using the 
MVN

• This is much faster than traditional likelihood



Bayesian Dating
• Thorne et al. (1998) MBE, 15: 1647 developed the 

approximation idea for Bayesian clock-dating



Example: Mammal Divergences
• dos Reis et al. (1998) Proc. R. Soc. B, 279: 3491
• Analysed 36 mammal genomes
• Alignment is 21 million sites
• MCMC approximate likelihood analysis time: 15 days
• Exact likelihood (not done): over one year
• We will use MCMCTree’s approximate likelihood method 

in the practical with a Primates example



Example: Mammal Divergences



To Learn More …
• Holder & Lewis (2003) Phylogeny estimation: 

Traditional and Bayesian approaches. Nat. Rev. 
Genet., 4: 275

• Chen, Kuo & Lewis (2014) Bayesian phylogenetics: 
Methods, algorithms, and applications. CRC Press

• Yang (2014) Molecular evolution: A statistical 
approach. Oxford University Press

• Nascimento, dos Reis & Yang (2017) A biologist’s 
guide to Bayesian phylogenetic analysis. Nat. Ecol. 
Evol., 1: 1446

• THE END


