From flask to field: tracking the drivers of phytoplankton physiological ecology across marine ecosystems

Sonya Dyhrman Department of Earth and Environmental Sciences Lamont-Doherty Earth Observatory Columbia University

LAMONT-DOHERTY EARTH OBSERVATORY

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

The ocean makes our planet livable

The ocean acts as a buffer for CO₂ in the atmosphere

Sabine et al. (2004) Science

Between 1800 - 1994, ocean has absorbed ~120 petagrams of CO_2 Oceanic sink accounts for ~48% of fossil-fuel emissions

The vast unseen microbial populations play a critical role in ocean function

Marine Microbes - fundamental to ocean ecosystem function

• Marine microbes...

- Produce and consume green house gases
- Supply the marine food web
- Recycle organic matter
- Account for roughly half of global primary production

Image courtesy C-MORE

• make the planet habitable

Marine phytoplankton are highly diverse

Phytoplankton underpin ocean ecosystem function

Diatoms

N₂ Fixers

Phytoplankton play a profound role in the earth system

Half of global primary production

Seasonal chlorophyll distributions in the sea - highlights the global significance of phytoplankton

Sampling microbes across marine ecosystems

Tracking physiological ecology: from the flask to the field

Culture-based experiments

Species-specific responses to wellcontrolled environment

Limitations:

Species must be in culture Time consuming Extrapolations to the field

Field-based studies

Assess whole community dynamics in a natural environment

Limitations: Not species-specific

Micro/Mesocosm

'Omic-enabled advances allowing to query cells in their environment in a species-specific way

Challenges and opportunities in microbial oceanography

- Long standing challenges:
 - Populations are dilute
 - Few species-specific assays
 - Few genome or transcriptome sequences
- New opportunities
 - Novel concentration and detection strategies
 - Increases in whole genome sequences
 - Increases in transcriptomes for eukaryotic taxa

Increasingly able to use 'omic and 'metaomic approaches!

Leveraging 'omic data to study marine microbes

Taxonomic Diversity: Who is there?

Metabolic capacity: What are the molecular underpinnings of resource metabolism?

How did we get here?

• 1990s

- First marine bacterial WGS
- Fosmid cloning of community DNA

• 2000s

- BAC libraries of community DNA
- Sequencing and WGS assembly of whole community DNA
- First marine microbial eukaryote WGS
- 2010s
 - Bacterial community RNA sequencing
 - Bacterial community proteomics and metabolomics
 - SAGs
 - MMETSP marine microbial eukaryote transcriptomes
 - Eukaryotic community RNA sequencing

Cost per Raw Megabase of DNA Sequence

Ongoing challenges

We need to grow the inventory of species and genes

We have too few samples, and too few contiguous datasets

Processing loses ecological context

Lots of "dark matter"

Still too expensive to generate and store data

Vignettes

 Co-existing in a sea of competition: Leveraging transcriptome data to track the physiological ecology of phytoplankton from key groups

Transcriptome - enabled

Thank you

Gwenn Hennon

Mónica Rouco

Sheean Haley

Kyle Frischkorn

Matt Harke

Maria Hernandez Harriet Alexander

Core questions

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- What are the biogeochemical constraints on N₂ fixation?

Host microbiome interactions

- Who is there? Microbiome diversity
- What are they doing? Microbiome functional diversity, holobiont physiology and controls on N₂ fixation

Nitrogen-fixing marine cyanobacteria

- Symbionts
 - UNCYN-A
 - Richelia
- Free-living
 - Crococosphaera
 - Trichodesmium

-Trichodesmium contortum -Trichodesmium erythraeum

-Trichodesmium tenue -Trichodesmium thiebautii

-Trichodesmium spiralis -Trichodesmium hildebrandtii

Richelia

Crocosphaera

Trichodesmium

Trichodesmium: critical to ecosystem function

Photo: Chris Wade *Tricho.* micrograph: WHOI

Trichodesmium: critical to ecosystem function

Phosphorus pools in the open ocean

Lomas et al. (2010) Biogeosciences

Trichodesmium erythraeum IMS101 genome page

www.jgi.doe.gov

Phosphorus metabolic traits and trade-offs

- Phosphonate
 - C-P Lyase (Fe co-factor)

C-P

COP

COP

- Ester
 - *phoX* type alkaline phosphatase (Ca Fe co-factor)
 - *phoA* type alkaline phosphatase (Zn co-factor)

- Phosphite
 - *ptxD* gene cluster

PO₃

Dyhrman et al. 2006 Nature, Dyhrman and Haley 2010 AEM, Orchard et al. 2010 L&O, Van Mooy et al. 2015 Science

Comparative genomics: phosphorus traits and trade offs

Other N₂ fixing cyanobacteria genomes do not encode the same pathways for phosphorus metabolism - less available substrates, but less metal requirement

Dyhrman et al. 2006 Nature, Dyhrman and Haley 2010 AEM, Orchard et al. 2010 L&O, Van Mooy et al. 2015 Science

Tracking genomic potential with expression studies

Culture cells

Harvest and preserve samples

Transcriptome Proteome

Tatranscriptome analysis pipeline

Proteome analysis pipeline

How does *Trichdoesmium* respond to low phosphorus?

Transcriptome - proteome coordination

Transcripts turnover more quickly than proteins

How does Trichdoesmium respond to low phosphorus?

phoX transcripts

PhoX proteins

Tracking genomic potential with expression studies

Calibrating gene expression to growth and N₂ fixation

Calibrating gene expression to N₂ fixation

Orchard et al. in prep

Sampling different P regimes

DIP, TDP Measurements

Measurements of quantitative gene expression for *Trichodesmium sp.*

Gene expression increases at low phosphorus

Calibrating gene expression to N₂ fixation

Data predicts that P supply limits N₂ fixation in the western N. Atlantic

Constraints on *Trichodesmium* N₂ fixation

(Moore et al. 2004)

Molecular patterns corroborate predictive models in the western north Atlantic

phoX - P regulated ester metabolism (Orchard et al. 2009 Environ. Micro.)
idiA - Fe regulated iron metabolism (Chappell et al. 2013 ISME J.)
rnpB - reference gene
nifH - N₂ - fixation

Metatranscriptome analysis pipeline

Metatranscriptome analysis pipeline

The reality.....

Metatranscriptome analysis

Biomarkers consistent with model prediction

Significant differences in global transcription between the North Pacific and the North Atlantic

Ruoco et al. (2018) *ISMEJ*

Transcription patterns indicate metalloenzyme trade-offs and geochemical controls

Ruoco et al. (2018) ISMEJ

Summary - Metabolic traits and trade-offs

What phosphorus forms are bioavailable? What are the biogeochemical constraints on N₂ fixation?

- **Genome**: *Trichodesmium* genome suggests bioavailabiliy of phosphonate, ester, and phosphite
- Marker transcripts: Trichodesmium phoX expression levels suggests that supply of bioavailable P is low in the western N. Atlantic, which could constraint N₂ fixation
- Metatranscriptome: Predicted biogeochemical drivers of N₂ fixation are reflected in *Trichodesmium* transcriptional signals including likely metalloenzyme switching

Core questions

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- What are the biogeochemical constraints on N₂ fixation?

Host microbiome interactions

- Who is there? Microbiome diversity
- What are they doing? Microbiome functional diversity, holobiont physiology and controls on N₂ fixation

Modeling N₂ fixation is still a challenge

- Models do not balance the N cycle in the ocean or recapitulate patterns well
- Assays of nitrogen fixation are technically difficult = variability
- Information on distribution over time and with depth is still patchy
- Geochemistry is not necessarily a good predictor of distribution or N₂ fixation

Olson et al. 2015 DSR II

Host microbiome interactions

- *Trichodesmium* colonies harbor epibionts in cultures and field populations (Ruoco et al. 2016 *EM*)
- Quorum sensing communication molecules (acylated homoserine lactones - AHL) detected in colonies (Van Mooy et al. 2012 *ISME J*)
- Addition of AHLs to field colonies changes activity independent of geochemistry (Van Mooy et al. 2012 *ISME J*)

Image courtesy Tracy Mincer

Epibiont diversity

Are epibiont communities distinct as a function of colony morphology or environment?

16S rDNA analyses

DNA extraction

Paired-end sequencing: Miseq (2x150 bp) V4 region of 16S rRNA gene (515F-806R primers)

Output:

File_I1_001.fastq
File_R1_001.fastq
File_R2_001.fastq

Data visualization and statistical analyses:

R (vegan package – Oksanen et al. 2016

- Dissimilarity matrix
- Visualization: PCOA
- Mantel tests
- PERMANOVA (adonis function)

Metabolic inference

- PICRUSt (Langille et al., 2013)
- LEFSE (Sagata et al. 2011)

- .fasta
- .count_table

OTU table

(.csv)

 Green gene database Sequence processing: MOTHUR (Kozih et al. 2013)

- Demultiplex and make contigs
- Sequence cleaning (remove homopolymers and sequence trimming)
- Remove quimeras (UCHIME)
- Classify unique sequences (RDP training set)
- Remove non-bacterial sequences
- OTU clustering (97% similarity)

Colony composition by region

Colonies are not likely species specific, the raft morphology is more diverse except in the S. Pacific

Average epibiont community

16S amplicon sequencing indicates that *Trichodesmium* colonies harbor diverse epibionts distinct from common water column bacteria, and those found on sinking particles.

Microbiome community diversity (16S)

Microbiome communities significantly differ by ocean basin, and with colony morphology, except for the S. Pacific. Communities are distinct from the water column, and sinking particles.

What drives community assembly?

- *Niche?* What type of *Trichodesmium*, physiological ecology in the colony, environment..
- *Lottery?* Random selection of potential copiotrophs, role of taxonomic v. functional group uncertain...
- Working to examine the *Trichodesmium* holobiont with metagenomics/metatranscriptomics and "germ-free" *Trichodesmium*

Drivers of community assembly

Initial trial of "germ-free" *Trichodesmium* ran into problems - phase two scheduled for spring 2019.

Metabolic potential in the Trichodesmium holobiont

Each sample:

- 20 gigabytes
- ~120 million reads
- >200,000 protein coding genes

Metagenome Pipeline	Metatranscriptome Pipeline		
Pool reads and assemble	IDBA-UD	Pool reads and assemble	Eel Pond mRNAseq Protocol (Titus Brown)
Bin by read coverage and tetranucleotide frequency, assess bin completeness & length	MaxBin	Map reads from each sample to de novo assembly	RSEM
		Assign taxonomy and annotate (and	DIAMOND-BLAST (vs NR)
Locate ORFs, translate into	Prodigal	counts by species/group)	KEGG
Annotate proteins and assign taxonomy	DIAMOND-BLAST MEGAN? KEGG		Find genes/OGs with differential expression between samples ASC (no reps) EdgeR (reps)
Cluster binned scaffolds into orthologous groups	MCL	Normalize expression between different samples EdgeR (variance stabilize) TMM (NOISeq in R) TPM	Find genes/OGs with key expr. patterns RAIN (R) Thaben and Westermark, 2014

Composition of the holobiont

Nearly complete (65-90%) genome bins were reconstructed from a merged assembly and results are consistent with 16S data
Distribution of holobiont

Frischkorn et al. (2017) ISMEJ

Epibiont genome bins are detected at all stations, but the relative abundance varies

Microbiome diversity differs significantly between regions

Variable distribution of functional pathways among epibionts

 Differential pathway enrichment consistent with a microbiome that is modulated as a function of environment

Frischkorn et al. (2017) ISMEJ

Variable distribution of functional pathways among epibionts

 Differential pathway enrichment consistent with a microbiome that is modulated as a function of environment

 Phosphonate, heme and siderophore functions are enriched relative to water column microbes in the Sargasso Sea.

Frischkorn et al. (2017) ISMEJ

Comparing metabolic potential in the holobiont

Metagenomes Orthologous group analysis

Image courtesy Tracy Mincer

Epibionts v. Trichodesmium

Epibionts confer the majority of the metabolic potential

Orthologous (OG) group analysis suggests that epibionts confer the vast majority of metabolic functions to the holobiont.

Epibiont metabolism expands Fe and P functions for the holobiont.

Metabolic partitioning within the Trichodesmium holobiont

Organic Iron

Epibionts can produce organic iron complexes that likely modulate iron in the holobiont microenvironment

Uptake and metabolism of reduced phosphorus forms

C-P Lyase PhoX PhoA

Phosphite uptake

Phosphorus metabolisms are present in both *Trichodesmium* and the microbiome.

Answers to enduring mysteries... who makes C-P compounds?

Dyhrman et al. (2009) Nature Geo.

Van Mooy et al. (2015) *Science*

Phosphonates are produced at high rates in the holobiont - hot spot for reduced phosphorus cycling. Is it *Trichodesmium* or the epibionts?

Phosphonate production is a shared metabolism

Phosphonate biosynthesis

Phosphonate produced by both *Trichodesmium* and the epibionts – at least in this environment

Microbial cross talk within the Trichodesmium holobiont

Tracking the interactome... with metatranscriptome profiling after addition of NO and QS molecules

QS and cell signaling

Joint metagenome and metatranscriptome analysis

- South Pacific is undersampled and the dynamics of the *Trichodesmium* holobiont are not well understood
- Unique opportunity to sample metagenome, metatranscriptome, and key activities.
- Is there evidence of phosphorus reduction and cycling in this environment?

OUTPACE

Chlorophyll a Concentration (mg/m2)

10. NO

Physiological ecology of *Trichodesmium* and its microbiome in the western tropical South Pacific

Trichodesmium samples taken

Metatranscriptomes

 $\mathbf{\Lambda}$

Metagenomic evidence of P reduction

Dyhrman et al., 2006 Van Mooy et al., 2015

Genes are expressed with P reduction

Measure phosphate reduction

Percentage of radiolabeled phosphate taken up and reduced by *Trichodesmium* colonies

- ✓ Genes detected
- ✓ Genes expressed
- ✓ Activity measured
- ? Interactions & ecology?

Evidence for use of reduced phosphorus compounds in *Trichodesmium* and the microbiome

Summary - Host microbiome interactions

What is the role of the microbiome in *Trichodesmium* physiological ecology?

- 16S community amplicon sequencing: Colonies harbor diverse epibionts distinct from water column, that are dynamically curated across gradients in the environment
- Metagenomics: Epibionts confer substantial metabolic potential which likely underpins *Trichodesmium* fitness
- Metatranscriptomics: Distinct physiology and interactions between *Trichodesmium* and its microbiome

Core questions

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- What are the biogeochemical constraints on N₂ fixation?

Host microbiome interactions

- Who is there? Microbiome diversity
- What are they doing? Microbiome functional diversity, holobiont physiology and controls on N₂ fixation

A strategy for assessing the physiological impact of the microbiome on *Trichodesmium* N₂ fixation

Microbiome members can can communicate using a mechanism called quorum sensing

A strategy for assessing the physiological impact of the microbiome on *Trichodesmium* N₂ fixation

A strategy for assessing the physiological impact of the microbiome on *Trichodesmium* N₂ fixation

AHLs found in colonies

Trichodesmium can't "hear" QS molecules

AHLs can be used to selectively modify microbiome behavior

Selectively modifying the *Trichodesmium* microbiome with AHLs in the North Atlantic

Microbiome modulates N₂ fixation

Summary – host microbiome interactions focus on N₂ fixation

Can the microbiome modulate host N₂ fixation?

- **Metagenome**: *Trichodesmium* can't "hear" AHLS, while the microbiome can
- Metatranscriptome: AHL addition induces known quorum sensing responses and shifts host N₂ fixation
- Understanding the mechanisms that underlying interactions will help models and predictions of *Trichodesmium* distribution and N₂ fixation

Summary - Host microbiome interactions

What is the role of the microbiome in *Trichodesmium* physiological ecology?

- 16S community amplicon sequencing: Colonies harbor diverse epibionts distinct from water column, that are dynamically curated across gradients in the environment
- Metagenomics: Epibionts confer substantial metabolic potential which likely underpins *Trichodesmium* fitness
- Metatranscriptomics: Distinct physiology and interactions between *Trichodesmium* and its microbiome

Conclusions

Genome-enabled approaches are providing new tools to trace the activities and physiological ecology of *Trichodesmium* and its microbiome.

Lessons learned: There is value in comparisons/time-series and having coincident datasets (Mulit-omics)

