Internode certainty and related measures

Jacob L. Steenwyk

A refresher...

A refresher...

The next few slides are from Antonis Rokas

Concatenation Yields an Absolutely Supported Phylogeny

Salichos & Rokas (2013) Nature

Rokas & Carroll (2006) PLoS Biol.

Rokas & Carroll (2006) PLoS Biol.

Rokas & Carroll (2006) PLoS Biol.

Rokas & Carroll (2006) PLoS Biol.

Quantifying Incongruence

Internode Certainty (IC): a

measure of the support for a given internode by considering its frequency in a given set of trees jointly with that of the most prevalent conflicting internode in the same set of trees

Tree Certainty (TC): the sum of IC across all internodes

IC and TC are implemented in the latest versions of RAxML

Ratio of "Heads/Tails"

l. (2014) Mol. Biol. Evol.; Kobert et al. (2016) Mol. Biol. Evol.; Zhou et al. (2018) bioRxiv

Quantifying Incongruence

Internode Certainty (IC): a

measure of the support for a given internode by considering its frequency in a given set of trees jointly with that of the most prevalent conflicting internode in the same set of trees

Tree Certainty (TC): the sum of IC across all internodes

IC and TC are implemented in the latest versions of RAxML

Ratio of Support for Two Conflicting Internodes

Internode certainty (in other words...)

Case 1: High conflict

Case 2: Low conflict

Developments of internode certainty

• The original implementation was originally developed for phylogenies with complete taxon representation Salichos and Rokas (2013) Nature Salichos *et al.* (2014) Mol. Biol. Evol.

Developments of internode certainty

• The original implementation was originally developed for phylogenies with complete taxon representation Salichos and Rokas (2013) Nature Salichos *et al.* (2014) Mol. Biol. Evol.

• Corrections for partial taxon representation has been implemented in current versions of RAxML. Kobert *et al.* (2016) Mol. Biol. Evol.

Developments of internode certainty

• The original implementation was originally developed for phylogenies with complete taxon representation Salichos and Rokas (2013) Nature Salichos *et al.* (2014) Mol. Biol. Evol.

• Corrections for partial taxon representation has been implemented in current versions of RAxML. Kobert *et al.* (2016) Mol. Biol. Evol.

• Quartet based IC measures, QuartetScores, are more accurate with partial gene trees but is currently under review **Zhou** *et al.* (2018) bioRxiv

• Verbose usage of RAxML's calculations of IC provides detailed information about conflicting bipartitions *RAxML_verboseSplits.suffix*

Verbose can only be used with trees that have full taxon representation

Taxa names

Partition information *xx/yy/zz*

- xx = Trees supporting ref.
- *yy* = gene support freq.
 - zz = Internode certainty

• Exact bipartition topology for a given bipartition can be examined among files with the following syntax RAxML_verboseIC.suffix.0 ... RAxML_verboseIC.suffix.N-1

- 1. Uncinocarpus_reesii
- 2. Coccidioides_posadasii
- 3. Penicilliopsis_zonata
- 4. Xeromyces_bisporus
- 5. Monascus_ruber
- 6. Penicillium_camemberti
- 7. Penicillium_digitatum
- 8. Penicillium_roqueforti
- 9. Aspergillus_fumigatus
- 10. Aspergillus_niger
- 11. Aspergillus_oryzae

• Exact bipartition topology for a given bipartition can be examined among files with the following syntax RAxML_verboseIC.suffix.0 ... RAxML_verboseIC.suffix.N-1

1. Uncinocarpus_reesii

- 2. Coccidioides_posadasii
- 3. Penicilliopsis_zonata
- 4. Xeromyces_bisporus
- 5. Monascus_ruber
- 6. Penicillium_camemberti
- 7. Penicillium_digitatum
- 8. Penicillium_roqueforti
- 9. Aspergillus_fumigatus
- 10. Aspergillus_niger
- 11. Aspergillus_oryzae

Topology 1

1189/92.385392/0.850774

-** ----

• Exact bipartition topology for a given bipartition can be examined among files with the following syntax RAxML_verboseIC.suffix.0 ... RAxML_verboseIC.suffix.N-1

1. Uncinocarpus_reesii

- 2. Coccidioides_posadasii
- 3. Penicilliopsis_zonata
- 4. Xeromyces_bisporus
- 5. Monascus_ruber
- 6. Penicillium_camemberti
- 7. Penicillium_digitatum
- 8. Penicillium_roqueforti
- 9. Aspergillus_fumigatus
- 10. Aspergillus_niger
- 11. Aspergillus_oryzae

Topology 1

** ----

Topology 2

1189/92.385392/0.850774 26/2.020202/0.850774

• Exact bipartition topology for a given bipartition can be examined among files with the following syntax RAxML_verboseIC.suffix.0 ... RAxML_verboseIC.suffix.N-1

1189/92.385392/0.850774

26/2.020202/0.850774

Other definitions...

IC-All

 computed by taking into account all conflicting bipartitions with that have ≥5% support and not only the most supported conflict

Other definitions...

IC-All

 computed by taking into account all conflicting bipartitions with that have ≥5% support and not only the most supported conflict

TC-All

The sum of IC-All values

Other definitions...

IC-All

 computed by taking into account all conflicting bipartitions with that have ≥5% support and not only the most supported conflict

TC-All

The sum of IC-All values

Relative tree certainty

A value from 0 (no certainty) to 1 (high certainty)

Concordance factors

Concordance factors

- proportion of the genome for which a given clade is true Baum (2007) Taxon

Concordance factors

Concordance factors

- proportion of the genome for which a given clade is true Baum (2007) Taxon

Gene or site concordance factors

proportion of genes or sites for which a given clade is true
more precisely, percentage of decisive gene trees (or sites) with a given branch
Minh (2018) bioRxiv

Concordance factors

Concordance factors

- proportion of the genome for which a given clade is true Baum (2007) Taxon

Gene or site concordance factors

proportion of genes or sites for which a given clade is true
more precisely, percentage of decisive gene trees (or sites)
with a given branch
Minh (2018) bioRxiv

Great additional analysis when bootstrapping becomes unreliable!!

A refresher...

The next few slides are from Antonis Rokas

...But in Others It Stems from One or Two Genes

Slide from Antonis Rokas Shen et al. (2017) Nature Ecol. Evol.

Phylogenetic Signal per Gene for the Two Hypotheses

Shen et al. (2017) Nature Ecol. Evol.

Sampling of 3 Additional Taxa "Breaks" the Long Branch

Slide from Antonis Rokas *n*, *Opulente*, *Kominek*, *Zhou et al.* (2018) Cell

Sampling of 3 Additional Taxa Decreases Gene's Signal

2,408 genes, 329 - 332 yeast taxa

Slide from Antonis Rokas *n*, *Opulente, Kominek, Zhou et al. (2018) Cell*

Internode certainty and related measures

Jacob L. Steenwyk

