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Interspecific data are not independent 

Felsenstein 1985 



Evolution has a mode and tempo 

Simpson 1946 



The relationship between phylogeny, 
classification and traits  



Axis of biodiversity 
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Outline 
}  Definitions and some assumptions 
}  Models of evolution 

}  Continuous 
}  Brownian, Early Burst, Ornstein-Uhlenbeck, Trend 

}  Discrete 
}  Mk model, extended Mk models (SYM, ARD), threshold model 

}  Phylogenetic signal 

}  Ancestral-state reconstructions 
}  Parsimony 
}  Maximum-likelihood 
}  Stochastic mapping 

 



Definitions: what is trait? 
}  Heritable and reliable species-specific characteristics 

}  morphology 
}  behavior  
}  physiology 
}  life-history 
}  gene sequence 

}  Continuous vs. discrete 
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Definitions: what is trait? 
}  Continuous traits 

}  Ordinal 
}  Interval 



Definitions: what is trait? 
}  Heritable and reliable species-specific characteristics 

}  morphology 
}  behavior  
}  physiology 
}  life-history 
}  gene sequence 

}  Continuous vs. discrete 
}  Often measured with error 

}  Within-species variance 
}  Use of proxies 
}  Apple / orange problem 

}  Original vs. log transformed scale  
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marsupials 

crocodiles 

birds 
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crocodiles 
birds 
lizards 
snakes 
rodents 
primates 
marsupials 

A phylogenetic tree is the hierarchical classification of taxa that 
reflects their evolutionary relationships 

Definitions: what is tree? 



OTU [operational taxonomic unit] 
or external node or tip 

Branch 

Internal node 

Root 

Phylogram of primate-infecting malaria 

Terminology 

most common  
recent ancestor 



Root	

50	million	years	
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Evolutionary trees 
measure time. 

Time scaled phylogenies are ultrametric 

Root	

Ultrametricity	
All	tips	are	an	equal	

distance	from	the	root.	
X	
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b	
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Evolution of continuous traits 



Brownian motion 

Robert Brown (1773 – 1858) 

dX(t) = σ2 * t 
 t = the step over which BM occurs 
 σ2 = Brownian rate 

 
stochastic, “random walk”: changes 
of movements occur randomly and 
independently, in both direction and 
distance, at any time interval 
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Brownian motion on a phylogeny 
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shared component  

independent 
component  

C)



Brownian motion on a phylogeny 

O’Meara et al. 2006 
 



Brownian motion on a phylogeny 

O’Meara et al. 2006 
 

Expected trait 
variance under BM 

rate of evolution 

mean total 
evolutionary history 
(average distance 

from tips to the root)  

mean of non-
independent 

evolutionary history 
(average amount of 

shared-distance) 



C: Variance-covariance matrix 

b c a 
d 

c = b 
c+d = a 
b+d = a 



H C G 

H 

C 

G 
b c a 

d 

Diagonal = tree length 

C: Variance-covariance matrix 



b c a 
d 

Diagonal = tree length 

H C G 

H d+c 
C d+b 
G a 

C: Variance-covariance matrix 
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b c a 
d 

Off-diagonal = shared branch 
length for each pair 

H C G 

H d+c 
C d+b 
G a 

C: Variance-covariance matrix 
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b c a 
d 

Off-diagonal = shared branch 
length for each pair 

H C G 

H d+c d 
C d d+b 
G a 

C: Variance-covariance matrix 



b c a 
d 

Off-diagonal = shared branch 
length for each pair 

H C G 

H d+c d 0 
C d d+b 
G 0 a 

C: Variance-covariance matrix 



b c a 
d 

Off-diagonal = shared branch 
length for each pair 

H C G 

H d+c d 0 
C d d+b 0 
G 0 0 a 

C: Variance-covariance matrix 



1 1 2 
1 4 3 

1 
1 Human Pan Gorilla Pongo Gibbon 

Human 4 3 2 1 0 

Pan 3 4 2 1 0 

Gorilla 2 2 4 1 0 

Pongo 1 1 1 4 0 

Gibbon 0 0 0 0 4 



Human Pan Gorilla Pongo Gibbon 

Human 4 3 2 1 0 

Pan 3 4 2 1 0 

Gorilla 2 2 4 1 0 

Pongo 1 1 1 4 0 

Gibbon 0 0 0 0 4 

[  4     -      ] 

average 
distance from 
tips to the root 
(tree length)  



[  4     -    1.6] 

average amount 
of shared-
distance 

(average entry 
of C)  

Human Pan Gorilla Pongo Gibbon 

Human 4 3 2 1 0 

Pan 3 4 2 1 0 

Gorilla 2 2 4 1 0 

Pongo 1 1 1 4 0 

Gibbon 0 0 0 0 4 



[  4     -    1.6] 2.4 = 
Human Pan Gorilla Pongo Gibbon 

Human 4 3 2 1 0 

Pan 3 4 2 1 0 

Gorilla 2 2 4 1 0 

Pongo 1 1 1 4 0 

Gibbon 0 0 0 0 4 



O’Meara et al. 2006 
 



Alternatives to Brownian motion 

}  Variable rates over the tree 

}  Declining rates through time (Early Burst, EB/AC) 

}  Accelerating rates through time (Late Burst, LB/DC) 

}  A single stable adaptive peak (Ornstein-Uhlenbeck, 
OU) 

}  Variable adaptive peaks (Ornstein-Uhlenbeck, OU) 

}  Trends in the mean trait value (BM with a trend) 

}  Mixtures of the above, and more 
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Tree transformations: altering rate of 
evolution 

}  Longer branches, higher rate 

}  Pagel’s transformations 

}  Alteration of the C matrix 



b c a 
d 

H C G 

H d+c d 0 
C d d+b 0 
G 0 0 a 

Lambda: multiplying off-diagonals 



b c a 
d 

H C G 

H d+c λd λ0 
C λd d+b λ0 
G λ0 λ0 a 

Lambda: multiplying off-diagonals 



1 1 2 
1 

H C G 

H 2 λ1 λ0 
C λ1 2 λ0 
G λ0 λ0 2 

Lambda: multiplying off-diagonals 



1 1 2 
1 

H C G 

H 2 λ 0 
C λ 2 0 
G 0 0 2 

Lambda: multiplying off-diagonals 



λ	=	0		

2 2 
2 

H C G 

H 2 0 0 
C 0 2 0 
G 0 0 2 

Lambda: multiplying off-diagonals 



2 1 1 
1 

H C G 

H 2 1 0 
C 1 2 0 
G 0 0 2 

Lambda: multiplying off-diagonals 

λ	=	1		



2 
0.5 

1.5 
1.5 

H C G 

H 2 0.5 0 
C 0.5 2 0 
G 0 0 2 

Lambda: multiplying off-diagonals 

λ	=	0.5		



Lambda: multiplying off-diagonals 

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps

Ateles geoffroyi

Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata

Cebus albifrons

Cebus apella

Callicebus moloch

Avahi laniger
Lambda = 0

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps

Ateles geoffroyi

Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata

Cebus albifrons

Cebus apella

Callicebus moloch

Avahi laniger
Lambda = 0.5

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps

Ateles geoffroyi

Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata

Cebus albifrons

Cebus apella

Callicebus moloch

Avahi laniger
Lambda = 1 (default)



}  Shortens the internal branches relative to the tips 

}  λ = 0: no relationship between trait and phylogeny = 
star phylogeny 

}  λ = 1: trait values are as expected under Brownian 
motion = phylogeny is unchanged 

}  Measure of PHYLOGENETIC SIGNAL 

Lambda: multiplying off-diagonals 



Phylogene/c	signal	
statistical non-independence among 
species trait values due to their 
phylogenetic relatedness OR 
 
the tendency for related species to 
resemble each other more than 
expected by chance 
 
Note this is a pattern not a process 



Phylogenetic	signal	

}  Theory	vs.	real	world	>	phylogenetic	
signal	is	an	empirical	issue	
}  Convergent	evolution	(distantly		

related	species	are	similar)	

}  Character	displacement		(closely	
related	species	are	dissimilar)	

}  Phylogenetic	signal	in	the	data	can	
be	lower	than	expected	



Quantifying	phylogenetic	signal	

e.g. Freckleton et al. 2002; Bllomberg et al. 2003 



Phylogene/c	signal	

Many measures have been suggested. 
The two most popular are: 

 1) Pagel’s λ 
 2) Blomberg’s K (K not kappa) 

 



Phylogene/c	signal:	Blomberg’s	K	

(Very simply)  MSE  = mean squared error  
    = variance in trait  

 



Phylogene/c	signal:	Blomberg’s	K	

LOW – if tree 
explains variation 
in the data well 

 = LARGE 

Variance of the tip data relative  
to phylogenetic mean 

Variance of the tip data  
relative to phylogeny 



Phylogene/c	signal:	Blomberg’s	K	

 = SMALL 

HIGH – if tree doesn’t 
explain variation in the 

data well 

Variance of the tip data relative  
to phylogenetic mean 

Variance of the tip data  
relative to phylogeny 



Phylogene/c	signal:	Blomberg’s	K	

is different for every tree (it 
depends on tree size and shape)  

Therefore we divide observed value by the 
expected value under Brownian motion so we can 
compare trees 



• K	=	1:	trait	values	are	as	expected	under	
BM	(	=	λ	=	1)	

• K	>	1:	trait	values	more	similar	than	
expected	under	BM	

• K	=	0:	no	rela/onship	between	phylogeny	
and	trait	(	=	λ	=	0)	

Phylogene/c	signal:	Blomberg’s	K	



Blomberg’s	K:	Summary	

1)  Ra/o	of	variance	in	trait	rela/ve	to	
phylogene/c	mean	and	variance	in	
trait	rela/ve	to	phylogeny	

2)  K	=	0:	no	rela/onship	between	trait	
and	phylogeny	

3)  K	=	1:	trait	values	are	as	expected	
under	Brownian	mo/on	

4)  K	>	1:	trait	values	more	similar	than	
expected	under	Brownian	mo/on	

	
	

	



Phylogene/c	signal:	λ	versus	K*	

1.  Ranges	from	0	to	just	
above	1	(though	most	
func/ons	in	R	fix	lambda	
to	be	<=1)	

2.  The	maximum	possible	
value	is	set	by	the	tree	in	
ques/on	

1.  Ranges	from	0	to	some	
trait	dependent	
maximum	

2.  Useful	for	looking	at	
phylogene/c	signal	in	
traits	showing	a	lot	of	
conserva/sm	(PNC:	see	
Losos	2008,	Cooper	et	al	
2010)	



Other	methods	

}  Nested	analysis	of	variance		 	 	(Harvey	&	Pagel	1991)	
}  Autocorrelation	coefficient	(ρ)	 	 	(Cheverud	et	al.	1985,	

	 	 	 	 	 		Gittleman	&	Kot	1990	
	 	 	 	 	 		see	also	Grafen	1990)	

}  R2		 	 	 	 	 	 	(Cheverud	et	al.	1985,	
	 	 	 	 	 	(Gittleman	&	Kot	1990)	

}  Moran’s	I	 	 	 	 	 	(Gittleman	&	Kot	1990)	

}  Randomization	for	discrete	characters	(Maddison	&	Slatkin	1991)	

}  Quantitative	covergence	index	(QCI) 	(Ackerly	&	Donoghue	1998)	
}  Fritz	and	Purvis’ D 	 	 	(Fitz	&	Purvis	2010)	
}  … 	 		



b c a 
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H C G 

H d+c d 0 
C d d+b 0 
G 0 0 a 

Delta: elements are raised to a power δ 



b c a 
d 

H C G 

H (d+c)δ (d)δ (0)δ 

C (d)δ (d+b)δ (0)δ 

G (0)δ (0)δ (a)δ 

Delta: elements are raised to a power δ 



Delta: elements are raised to a power δ 

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps

Ateles geoffroyi

Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata

Cebus albifrons

Cebus apella

Callicebus moloch

Avahi laniger
Delta = 0.1

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps

Ateles geoffroyi

Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata
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Callicebus moloch

Avahi laniger
Delta = 1 (default)

Alouatta pigra

Alouatta seniculus

Ateles belzebuth

Ateles fusciceps
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Ateles paniscus

Aotus trivirgatus

Callithrix jacchus

Callithrix penicillata

Cebus albifrons

Cebus apella

Callicebus moloch

Avahi laniger
Delta = 2



}  Scales	overall	path	lengths	in	the	
phylogeny	(node	height)	

}  Can	be	used	to	test	for	accelerated	
evolution	versus	adaptive	radiation	
}  δ	<	1	shorter	paths	(earlier	evolution	in	the	

phylogeny)	contribute	disproportionately	
to	trait	evolution	(adaptive	radiation)	

}  δ		>	1	longer	paths	contribute	more	to	trait	
evolution	(accelerated	evolution)		

}  Delta	is	a	parameter	that	detects	
differential	rates	of	evolution	over	time	
and	re-scales	the	phylogeny	to	a	basis	
in	which	the	rate	of	evolution	is	
constant	

Delta: elements are raised to a power δ 



b c a 
d 

H C G 

H d+c d 0 
C d d+b 0 
G 0 0 a 

Kappa: branch length are raised to a 
powerκ 



b c a 
d 

H C G 

H dκ+cκ dκ 0κ 

C dκ dκ+bκ 0κ 

G 0κ 0κ aκ 

Kappa: branch length are raised to a 
powerκ 



Kappa: branch length are raised to a 
powerκ 
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Kappa: branch length are raised to a 
powerκ 

}  Differentially	stretches	or	compresses	individual	phylogenetic	
branch	lengths	

}  Can	be	used	to	test	for	a	punctuational	versus	gradual	mode	
of	trait	evolution	
}  κ	<	1	compresses	longer	branches	more	than	shorter	ones	

}  κ		>	1	stretches	longer	branches	more	than	shorter	ones	

}  κ	~	0	evolution	is	independent	on	branch	length	(punctuational	
evolution)	

}  κ	~	1	gradual	evolution	

}  Captures	patterns	of	“speciational”	change	in	tree	
}  character	change	is	more	or	less	concentrated	at	speciation	

events	



Alternatives to Brownian motion 

}  Variable rates over the tree 

}  Declining rates through time (Early Burst, EB/AC) 

}  Accelerating rates through time (Late Burst, LB/DC) 

}  A single stable adaptive peak (Ornstein-Uhlenbeck, 
OU) 

}  Variable adaptive peaks (Ornstein-Uhlenbeck, OU) 

}  Trends in the mean trait value (BM with a trend) 

}  Mixtures of the above, and more 
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Early Burst (EB/AC) - Late Burst (LB/DC) 

}  EB: BM with a declining rate parameter, most of the 
phenotypic divergence occurs early in the phylogeny 

}  LB: BM with an accelerating rate parameter, most of the 
phenotypic divergence occurs late in the phylogeny 

Harmon et al. 2010 
 



Early Burst (EB/AC) - Late Burst (LB/DC) 

Harmon et al. 2010 
 

rate = σ0
2 * e(-bt) 

rate = σ0
2 * e(bt) 

initial value for the net 
rate parameter 

parameter describing 
the pattern of rate 

change through time 
starting parameter 



Early Burst (EB/AC) - Late Burst (LB/DC) 

}  Consistent with the adaptive radiation hypothesis 
}  Clades entering into new niches should diversify quickly 

}  Rates slow down as the niches fill  

Moen & Morlon 2014 
 

The adaptive radiation of the bird clade Vanginae 



Alternatives to Brownian motion 

}  Variable rates over the tree 

}  Declining rates through time (Early Burst, EB/AC) 

}  Accelerating rates through time (Late Burst, LB/DC) 

}  A single stable adaptive peak (Ornstein-Uhlenbeck, 
OU) 

}  Variable adaptive peaks (Ornstein-Uhlenbeck, OU) 

}  Trends in the mean trait value (BM with a trend) 

}  Mixtures of the above, and more 



The Ornstein-Uhlenbeck process 

Leonard Ornstein (1880 – 1941) George Uhlenbeck (1900 – 1988) 

dX(t) = α[Θ-X(t)]dt + σdB(t) 
 
 

 
 
 
 
 

Bayesian walk under the 
influence of friction: 

tendency to move back 
towards a central location 

(rubber band effect) 
 
 
 
 
 
 



The Ornstein-Uhlenbeck process 

Leonard Ornstein (1880 – 1941) George Uhlenbeck (1900 – 1988) 

dX(t) = α[Θ-X(t)]dt + σdB(t) 
 
 

 
 
 
 
 

change towards an optimum 

Bayesian walk under the 
influence of friction: 

tendency to move back 
towards a central location 

(rubber band effect) 
 
 
 
 
 
 

Brownian motion 



From: Detecting Adaptive Evolution in Phylogenetic Comparative Analysis Using the Ornstein–Uhlenbeck 
Model 
Syst Biol. 2015;64(6):953-968. doi:10.1093/sysbio/syv043 
Syst Biol | © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All 
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dX(t) = α[Θ-X(t)]dt + σdB(t) 

α = 0, Θ = 2, σ= 0.01 
 
 
 
 
 
 
 

α = 0.8, Θ = 2, σ= 0.01 
 
 
 
 
 
 
 

if α = 0, it defines a diversifying process (BM), if α > 0 it 
becomes an equilibrium process (OU) 

σ2*time  

σ2/2α  
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dX(t) = α[Θ-X(t)]dt + σdB(t) 

α = 0.1, Θ = 1, σ= 0.01 
 
 
 
 
 
 
 

α = 0.8, Θ = 1, σ= 0.01 
 
 
 
 
 
 
 

The higher the attraction parameter α the more quickly 
the optima is reached and the lower the variance  



dX(t) = α[Θ-X(t)]dt + σdB(t) 
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α = 0.1, Θ = 1, σ= 0.01 
 
 
 
 
 
 
 

α = 0.1, Θ = 2, σ= 0.01 
 
 
 
 
 
 
 

The higher the optimal value Θ the 
greater the trait value 
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dX(t) = α[Θ-X(t)]dt + σdB(t) 

α = 0.1, Θ = 2, σ= 0.01 
 
 
 
 
 
 
 

α = 0.1, Θ = 2, σ= 0.1 
 
 
 
 
 
 
 

The higher the rate parameter σ 
the greater the variance 



The Ornstein-Uhlenbeck process 

trait optimum 

ancestral state 

strength of selection 

rate 



Alternatives to Brownian motion 

}  Variable rates over the tree 

}  Declining rates through time (Early Burst, EB/AC) 

}  Accelerating rates through time (Late Burst, LB/DC) 

}  A single stable adaptive peak (Ornstein-Uhlenbeck, 
OU) 

}  Variable adaptive peaks (Ornstein-Uhlenbeck, OU) 

}  Trends in the mean trait value (BM with a trend) 

}  Mixtures of the above, and more 



BM with trend 

dX(t) = σdB(t) 
 
 

 
 
 
 
 

rate normal distribution 
where mean = t * µ 

µ > 0 : increase 
µ < 0 : decrease 

µ = 0 : BM without trend 
 
 
 

Hone et al. 2005 
 

Cope’s rule 
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σ= 0.01, μ = 0.05 
 
 
 
 
 
 
 



Alternatives to Brownian motion 

}  Variable rates over the tree 

}  Declining rates through time (Early Burst, EB/AC) 

}  Accelerating rates through time (Late Burst, LB/DC) 

}  A single stable adaptive peak (Ornstein-Uhlenbeck, 
OU) 

}  Variable adaptive peaks (Ornstein-Uhlenbeck, OU) 

}  Trends in the mean trait value (BM with a trend) 

}  Mixtures of the above, and more 



How to choose from so many models? 



Theoretical 
Akaike information criterion (AIC, AICc, QAIC) 
Bayesian information criterion (BIC) 
CP (Mallow's Cp) 
Deviance information criterion (DIC) 
Focused Information criterion (FIC) 
Final prediction error (FPE) 
Geweke and Meese criterion 
Generalized prediction error (GPE) 
Hannan and Quinn criterion (HQ) 
Kullback information criterion (KIC, KICc) 
Minimum description length (MDL) 
Minimum message length (MML) 
Predicted squared error (PSE) 
Predicted Residual Sum of. Squares criterion 
Schwarz information criterion (SIC) 
Structural risk minimization (SRM) 
Takeuchi's information criterion (TIC) 
VC-dimension 

Empirical 
Adjusted R-squared 
Bootstrap 
Cross-validation 
Generalized cross-validation 
k-fold crossvalidation 
leave-one-out crossvalidation 
Jacknife 
Linear regression 
Shibata’s model selector 
signal-to-noise ratio 
test set validation 

Model selection methods 



Ø Model comparison 
} evaluate multiple hypotheses in 

competition with one another 
} nested models  

¨ likelihood ratio tests (“old tool”) 

} non-nested models 
¨ model comparison based on information 

theory (IT) 

Model selection methods 



Likelihood, Maximum likelihood and 
likelihood ratio 

}  Likelihood: probability of obtaining the observed data 
under a given hypothesis (model and its parameters) 
}  Pr(D|H)  (but not Pr(H0|D)!) 

}  The multivariate normal likelihood for BM 

 

tip values expected tip values 

rate-scaled C  



Likelihood, Maximum likelihood and 
likelihood ratio 

}  Likelihood: probability of obtaining the observed data 
under a given hypothesis (model and its parameters) 
}  Pr(D|H)  (but not Pr(H0|D)!) 

}  The multivariate normal likelihood for BM 

 

tip values expected tip values 

rate-scaled C  

model and its 
parameters: (starting 
value, strenght and 
direction of trend..) 



Likelihood, Maximum likelihood and 
likelihood ratio 

}  Maximum likelihood:  the value of one or more 
parameters for a given model, which maximizes the 
likelihood 

 



Likelihood, Maximum likelihood and 
likelihood ratio 

}  Likelihood ratio:  model fit of one model relative to 
another  

}  Likelihood ratio test (LRT): a statistical test of the 
goodness-of-fit between two models 
}  LRT = 2 * [ ln(L1) - ln(L2) ] 
}  approximates a chi-square distribution 
}  with df = nr.  of parameters differing between models 

 



fit 
(likelihood) 

parsimony 
(nr. of parameters) 

Akaike 1974 
 

Akaike’s Information Criterion  

Information theoretic approach  



Candidate 
models 

AIC ΔAIC Akaike 
weight 

BM -51.49 0.00 0.867 
BM with  
κ = 0 

-47.72 3.77 0.132 

BM with 
trend 

-37.59 13.90 0.001 

EB -32.95 18.54 0.000 
OU -32.06 19.43 0.000 

Information theoretic approach  



}  More than one models are selected  
}  Δ values, model likelihoods, model weights and 

evidence ratios (instead of P values) 
}  hypothesis H4 is 22 times more likely than H2 

}  the probability of H4 is 0.78, while the probability of H2 is 
0.015 

}  significant, strong, robust….  
}  Model averaging 
}  Uncertainty is inherent to biological data 

Information theoretic approach  



Evolution of body size in Anolis lizards 

Butler and King 2004 
 



Evolution of discrete traits 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution  

}  The threshold model 



The Mk model 
}  Evolutionary changes between k > 1 states of a character 
}  Markov process:  change depends on current state only 
}  Every state is equally likely 

Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 



The Mk model 
}  Instantaneous rate of change parameter: q 

}  number of changes of character over t when t ~ 0   
}  q12 = q21 , q12 = q13 …  

}  Transition matrix, Q 

}  Probability distributions of traits after t 
}  P(t) =eQt 

0 



The Mk model 

q12 = q21  pstate0= 0.5  

if unif(0,1) < 0.5 
     state0 = 0 
 if unif(0,1) > 0.5 
     state0 = 1 
 



The Mk model 

if state0 = 0 
 and unif(0,1) < 0.525 
     state1 = 0 
 and unif(0,1) > 0.525 
     state1 = 1 
 



The Mk model 

if state0 = 1 
 and unif(0,1) < 0.475 
     state1 = 0 
 and unif(0,1) > 0.475 
     state1 = 1 
 



The Mk model 



The Mk model 

Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution  

}  The threshold model 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 
}  SYM 

}  ARD 

}  Models accommodating changes in the rate of 
evolution  

}  The threshold model 



The extended Mk model 
}  The Mk model assumes: q12 = q21 , q12 = q13 … 

}  Memoryless: a character that changes state from 0 -> 1 has an 
equal probability of reverting back 

}  Homogeneous: same rate among all states 

}  SYM only assumes: q12 = q21  

}  ARD: all rates can be different 

}  more parameters  
}  Q and P(t) matrices can be redefined 
}  can lead to different states at the nodes and the tips 



The extended Mk model 

Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution  

}  The threshold model 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution 

}  Mk is more suitable for sequence data (protein, DNA) 
}  extensions exists (e.g. adding heterogeneity across sites) 

}  incorporate characters evolving under a shared model 

}  Morphological character evolution 
}  shared model across characters is unjustified 

}  each character require specific parameters 

}  The threshold model 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution 

}  Pagel’s model 

}  Other Mk models that allows parameters vary across 
clades and/or time 

}  The threshold model 



Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 

Tree transformations: altering rate of 
evolution 

}  Longer branches, higher rate 

}  Pagel’s transformations 

}  Alteration of the C matrix 



Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 

Tree transformations: altering rate of 
evolution 

}  Longer branches, higher rate 

}  Pagel’s transformations 

}  Alteration of the C matrix 



Harmon 2018: Phylogenetic Comparative Methods learning from trees 
 copied based on CC-BY-4.0 license 

 

Tree transformations: altering rate of 
evolution 

}  Longer branches, higher rate 

}  Pagel’s transformations 

}  Alteration of the C matrix 

but: when trait evolve rapidly, lose historical 
information quickly: if q is high distinguishing 

between λ = 0 and δ > 0 models 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution 

}  Pagel’s model 

}  Other Mk models that allows parameters vary across 
clades and/or time 
}  rate of evolution varies between clades (multi-rate discrete 

models) 

}  different Q matrix for different branches 

}   rate parameters in Q varies with time 

}  The threshold model 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
evolution  

}  The threshold model 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 

}  Models accommodating changes in the rate of 
 evolution  

}  The threshold model 
}  the effective rate of change depends on the amount of time 

that a lineage has been in that state (while Mk is memoryless) 

}  more realistic for some biological characters 

}  allows variation in in transition rates without more 
parameters 



The threshold model 

}  liability:  the value of the discrete phenotype is 
determined by a latent continuous trait, if it crosses a 
fixed threshold value, the character changes state 
(Wright 1934) 
}  unobserved, unmeasured (e.g. hormone) with multivarate 

normal distribution 

}  can follow a BM (or OU) motion model of evolution 
(Felsenstein 2005, 2012) 

}  proxy for the complex, multilocus genetic changes that are 
likely to underlie a shift in a discretely measured ecological 
trait (Revell 2013). 



The threshold model 

Cybis et al 2015 

if a character changed state recently from A -> C, it is 
much more likely to change back immediately (when 

near the threshold) than far in the future.  



The threshold model 

Revell 2013 



Discrete trait models 

}  The Mk model 

}  The extended Mk model 
}  SYM 

}  ARD 

}  Models accommodating changes in the rate of evolution  
}  Pagel’s model 

}  Other Mk models that allows parameters vary across clades 
and/or time 

}  The threshold model 



How to choose from so many models? 



What is the likelihood for a change 0->1? 

L = 0.475 
  



but we do know the 
state at root and 
internal braches   

What is the likelihood for observed tip 
data given the tree and the model? 



What is the likelihood for observed tip 
data given the tree and the model? 

Felsenstein’s (1973) 
pruning algorithm : 

likelihood of 
comparative (tip) given a 

tree and model 



Felsenstein’s (1973) 
pruning algorithm : 

likelihood of 
comparative (tip) given a 

tree and model 

estimate 
parameters 
(q) of the Mk 
model 

What is the likelihood for observed tip 
data given the tree and the model? 



Felsenstein’s (1973) 
pruning algorithm : 

likelihood of 
comparative (tip) given a 

tree and model 

choosing 
among 
different 
models 

What is the likelihood for observed tip 
data given the tree and the model? 



Evolution of reproductive modes in frogs 

Gomez-Mestre et al 2012 



Evolution of reproductive modes in frogs 

Gomez-Mestre et al 2012 



Ancestral state reconstructions 



Ancestral state estimation 
}  Given 

}  the tree 
}  the character (continuous vs. discrete) 
}  the model of evolution  

}  one can provide estimates for character states at the 
nodes or along the branches of the phylogeny 

}  these are associated with uncertainty 
}  different approaches exists 

}  provide very nice graphs, but hard to check if they are true 
}  just to name some of them…  



Parsimony  



Parsimony  
}  Unordered (Fitch) 

}  Ordered (Wagner) 

}  Irreversible (Camin-Sokal) 

}  Dollo 

}  Step matrix 



Parsimony  
}  Limitations: 

}  Does not care about branch lengths (one change per branch 
regardless of how long) 

}  Performs poorly with rapidly evolving traits, favors divergence 
toward the tips of the tree 
}  the parsimony reconstruction will only accurately reflect the 

evolutionary process for our character when Q is very small 

}  Does not provide errors, and does not say anything about less 
supported models 



Maximum likelihood 
}  Uses the Mk model for evolution of 

discrete traits 
}  Uses maximum likelihood 

}  to estimate rates 
}  to reconstruct ancestral states in a form of 

probability 

}  Incorporate branch lengths 
}  Works well with fast rates 
}  Confidence/error around estimates 
}  It has its own limitations 

}  requires a model 
}  local optima problem for non-convex 

surfaces  

 
 



Felsenstein’s (1973) pruning algorithm 

likelihood of subtree 
rooted at node x 
 

character state at 
node x 

 

branch lenght 
 

possible character 
states 

 

nested sum of transition 
probabilities along the hierarchical 

structure  of the tree 



Felsenstein’s (1973) pruning algorithm 

likelihood of subtree 
rooted at node x 
 

character state at 
node x 

 

branch lenght 
 

possible character 
states 

 

nested sum of transition 
probabilities along the hierarchical 

structure  of the tree 

find the assignment to Sx for all x internal 
nodes that maximizes the likelihood of the 

observed data for a given tree. 



Maximum likelihood 
}  Joint reconstruction: finding 

the set of character states at 
all nodes that (jointly) 
maximize the likelihood 

}  Marginal reconstruction:  
finding the state at the 
current node that maximizes 
the likelihood independently 
of the reconstruction of all 
other ancestral states 

 
 

http://blog.phytools.org/2015/05/about-how-acemarginaltrue-does-not.html 



Stochastic character mapping 
}  Sampling character histories in direct proportion to their 

posterior probability under a model 
}  sample a transition matrix Q 
}  sample ancestral states 
}  simulate character histories along all the edges of the tree 

conditioned on Q and node states 

 
 

Bollback 2006  



Stochastic character mapping 

Revell 2012   



Stochastic character mapping 

Revell 2012   



Ancestral state estimation of continuous 
characters 

}  Maximum likelihood: need to find set of ancestral states 
that maximize the probability of data & tree 

http://www.phytools.org/eqg2015/asr.html Revell 2012   



Ancestral state estimation of continuous 
characters 

http://www.phytools.org/eqg2015/asr.html Revell 2012   



Uncertainty  Bias 

Ancestral state estimation of continuous 
characters 

http://www.phytools.org/eqg2015/asr.html Revell 2012   


