Genomics Tutorial 2019.

Instructors:

e Josie Paris & the Workshop Team!
e Konrad Paszkiewicz in absentia (don’t worry he’s not dead).

Important Notes

username: genomics
password: see the whiteboard

Objectives:

Part 1:

Short Read Genomics: An Introduction

Understand how short reads are generated.
Understand paired-end reads

See possible sources of errors

Learn about adaptors

: QC, Alignment and Variant Calling

Interpret FASTQ quality metrics

Remove poor quality data

Trim adaptor/contaminant sequences from FASTQ data

Count the number of reads before and after trimming and quality control

Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using
BWA

Convert the SAM file to BAM format (Binary AlignMent format)

Identify and select high quality SNPs and Indels using SAMtools

Identify missing or truncated genes with respect to the reference genome

Identify SNPs which overlap with known coding regions

Part 3: Assembly of Unmapped Reads

Extract reads which do not map to the reference sequence

Assemble these reads de novo using SPAdes

Generate summary statistics for the assembly

Identify potential genes within the assembly

Search for matches within the NCBI database via BLAST and against the Pfam database

1 of 88

Part 4:

Visualize the taxonomic distribution of BLAST hits
Perform gene prediction and annotation using RAST

De-novo Assembly Using Short Reads

Perform QC and adaptor-trim lllumina reads.

Assemble these reads de novo using SPAdes

Generate summary statistics for the assembly

Understand how to incorporate long PacBio reads into the assembly.

Identify open reading frames within the assembly

Search for matches within the NCBI database via BLAST and against the Pfam database
Visualize species distribution of potential matches

2 of 88

Table of Contents

Instructors: 1
Important Notes 1
Objectives: 1
Part 1: Short Read Genomics: An Introduction 1
Part 2: QC, Alignment and Variant Calling 1
Part 3: Assembly of Unmapped Reads 1
Part 4: De-novo Assembly Using Short Reads 2
Part 1: Short Read Genomics: An Introduction 5
Introduction 5
Principles of lllumina-based Sequencing 6
DNA Library Preparation 7
Sequencing 8
Base-calling 10
What are paired-end reads and why are they necessary? 11
Inherent Sources of Error 13
Frequency Cross-talk and Normalisation Errors 13
Phasing/Pre-phasing 14

Reads Containing Adaptors 14
Part 2: QC, Alignment and Variant Calling 15
Introduction 15
Quality Control 15
Quality scores 15
FASTQ Format 16
Quality control — Evaluating the Quality of lllumina Data 17
Task 1 17
Quality Scores 19

Per tile Sequence Quality 21
Per-base Sequence Content: 21
Sequence Duplication Levels: 22
Overrepresented Sequences 23

Task 2 24

We can perform a quick check (although this by no means guarantees) that the sequences in read
1 and read 2 are in the same order by checking the ends of the two files and making sure that the

headers are the same. 25
Aligning lllumina Data to a Reference Sequence 26
Sequencing Error 26
PCR Duplication 26

3 of 88

Indexing a Reference Genome 27

Task 3: Generating an index file from the reference sequence 27
Task 4: Aligning Reads to the Indexed Reference Sequence 29
Task 9: Convert SAM to BAM File 32
Task 5: Sort BAM File 34
Task 6: Remove Suspected PCR Duplicates 34
Task 7: Index the BAM File 35
Task 8: Obtain Mapping Statistics 35
Task 9: Cleaning up 36
Task 10: QualiMap 37
Task 11: Load the Integrative Genomics Viewer 39
Task 12a: Import the E.coli U00096 Reference Genome to IGV 40
Task 12b: Load the BAM File 42
SNPs and Indels 45
Task 13: Read about the Alignment Display Format 45
Task 14a: Manually Identify a Region Without any Reads Mapping. 45
Task 14b: Manually Identify a Region Containing Repetitive Sequences. 48
Task 15: Identify SNPs and Indels Manually 48
Example: Identifying Variants Manually 48
Region U00096.3:2,108,392-2,133,153 49
Region U00096.3:3,662,049-3,663,291 49
Regions U00096.3:4,296,332-4,296,428 52
Region U00096.3:565,965-566,489 53
Recap: SNP/Indel Identification 53
Automated Analyses 53
Automated Variant Calling 53
Task 16: Identify SNPs and Indels using Automated Variant Callers 53
Task 23: Compare the Variants Found using this Method to Those You Found in the Manual
Section 57
Quickly Locating Genes which are Missing Compared to the Reference 57
Part 3: Assembly of Unmapped Reads 58
Introduction 58
Extraction and QC of Unmapped Reads 58
Task 1: Extract the Unmapped Reads 58
Task 2 59
Task 3: Evaluate QC of Unmapped Reads 59
De-novo Assembly 59
Task 4: Learn More About de novo Assemblers 59
Task 5: Generate the Assembly 60
params.txt 61

4 of 88

contigs.fasta 62

scaffolds.fasta 62
assembly_graph.fastg 62

Task 6: Assessment of the Assembly 62
Analysing the de novo Assembled Reads 63
Task 7: Search Contigs against NCBI non-redundant Database 64
Task 8: Obtain Open Reading Frames 66
Task 9: Search Open Reading Frames against NCBI non-redundant Database 67
Task 10: Review the BLAST Format 68
Additional Checks 69
Task 11: Check that the Contigs do not Appear in the Reference Sequence 69
Task 12: Run Open Reading Frames Through pfam_scan 69
Part 4 De novo Assembly Using Short Reads &
Introduction 71
Task 1: Start the Assembly 72
Assembly Theory 72

Task 2: Checking the Assembly 76
Task 3: Map Reads Back to Assembly 77
Task 4: View Assembly in IGV 80
Annotation of de novo Assembled Contigs 83
Task 5: Obtain Open Reading Frames 83
Hybrid de novo Assembly 83
Task 7: QC the Data 84
Task 8: lllumina Only Assembly 85
Task 9: Create Hybrid Assembly 86
Task 10: Align Reads Back to Reference 87
Summary 90
Concluding Remarks 90

Part 1: Short Read Genomics: An Introduction

1. Introduction

Welcome to the genomics tutorial! Generating large amounts of data in biology is easy
these days. In little more than a fortnight we can generate more data than the entire human
genome project generated in over a decade of work. Making biological sense out of that data,
understanding its limitations and how the analysis algorithms work is now the major challenge for
researchers. The aim of this workshop is to take you through an example project. On the way, you
will learn how to evaluate the quality of data as provided by a sequencing facility, how to align the
data against a known and annotated reference genome and how to perform a de-novo assembly.
In addition you will also learn how to compare results between different samples.

5 of 88

This workshop is broken into 4 parts. You should feel free to take as long as you like on each part.
It is much more important that you have a thorough understanding of each part, rather than try to
race through the entire workshop material.

The four parts are:

1. Short Read Introduction

2. Remapping a strain of E.coli to a reference sequence
3. Assembly of unmapped reads

4. Complete de-novo assembly of all reads

For this tutorial we will assume little background knowledge, except for a basic familiarity with the
Linux operating system and the cloud. We will cover the basics of how genomic DNA libraries are
generated and sequenced, and the principles behind short read paired-end sequencing. We will
look at why data can vary in quality, why adaptor sequences need to be filtered out and how to
quality control data. You may well do similar tasks in other tutorials at this workshop, especially
quality control and assembly techniques, this is good practice!

Then we will take the plunge and align the filtered reads to a reference genome, call variants and
compare them against the published genome to identify missing, truncated or altered genes. This will

involve the use of a publicly available set of bacterial E.coli lllumina reads and reference genome.

In parts 3 and 4 we will look at how one can identify novel sequences which are not present in the
reference genome.

A word on notation. If you see something like this:

cd ~/genomics_tutorial/reference_sequence

It means, type the highlighted text into your terminal. Please type the text, using all the tricks (e.g. tab
completion) that you have learnt in the Unix tutorial. Copying and pasting will sometimes not work with
certain characters and can cause errors. Also, please keep an eye for underscores!

Principles of lllumina-based Sequencing

There are several sequencers currently on the market. These include PacBio, MinlON and the
various lllumina platforms (HiSeq, NextSeq, NovaSeq, MiSeq etc). Other (now obsolescent) platforms
included Life Tech SoLID and Roche 454 and many more are likely to appear in the future!
Regardless of the sequencer, all of these rely on making hundreds of thousands of clonal copies of a
fragment of DNA and sequencing the ensemble of fragments using DNA polymerase or in the case of
the SOLID via ligation. This is simply because the detectors (basically souped-up digital cameras),
cannot detect fluorescence (lllumina, SollD, 454) or pH changes (lon Torrent) from a single molecule.
The 'third-generation' Pacific Biosciences SMRT (Single Molecule Real Time) RSII and Sequel
sequencers are able to detect fluorescence from a single molecule of DNA. However, the machines

6 of 88

are very large (the RSII is almost 2 tons) and produces less than a tenth of the data of an lllumina
MiSeq run and for long reads >10kb error rates are generally around 10-12%. The Oxford Nanopore
MinlON is another ‘third-generation’ single-molecule system which measures changes in electrical
current through a Nanopore as a single molecule is ratcheted through it. Although error rates are also
high (5-10%), and per-base costs are higher, the technology has improved rapidly and will probably
replace second generation systems over the next few years.

We will mainly look at the Illlumina sequencing pipeline here, but the basic principles apply to other
second-generation sequencers. If you would like further details on other platforms then we
recommend reading: Mardis ER. Next-generation DNA sequencing methods. Annual Reviews
Genomics Hum Genet 2008; 9 :387-402.

A typical sequencing run would begin with the user supplying 1ng-1ug of genomic DNA to a
sequencing facility along with quality control information in the form of an automated electrophoresis
output (e.g. Agilent Bioanalyser/Tapestation trace) or gel image and quantification information.

DNA Library Preparation

For most sequencing applications, paired-end libraries are generated. Genomic DNA is
sheared into 300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are
repaired and an overhanging adenine base is added, after which oligonucleotide adaptors are ligated.
In many cases the adaptors contain unique DNA sequences of 6-12bp which can be used to identify
the sample if they are 'multiplexed' together for sequencing. This type of sequencing is used
extensively when sequencing small genomes such as those of bacteria because it lowers the overall
per-genome cost.

A) Workflow of the automated library preparation B) Automated size selection

)mm a) Genomic DNA _
TIM]MLJ b) Fragmentation o T
oD besads
DMA procipilat O"l’
oo beads
c) End Repair —
M>>I p—
DA FM‘E'NIHUW‘
onko beads
DA precpiabion
DAL o) 0aTailing e
DheA nrec:.p:ahm‘
oo bedds 1
MMW e) Adapter Ligation

7 of 88

A) Steps a through e explain the main steps in lllumina sample preparation: a) the initial genomic
DNA, b) fragmentation of genomic DNA into 500bp fragments, c) end repair, d) addition of A bases to
the fragment ends and e) ligation of the adaptors to the fragments.

B) Overview of the automated the size selection protocol: The first precipitation discards fragments
larger than the desired interval. The second precipitation selects all fragments larger than the lower
boundary of the desired interval.

Borgstréom E, Lundin S, Lundeberg J, 2011 Large Scale Library Generation for High Throughput
Sequencing. PLoS ONE 6: e19119. doi:10.1371/journal.pone.0019119

Sequencing

(adapted from Margulis, E.R., reference below)

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to
form monoclonal clusters. The single molecule amplification step for the lllumina HiSeq 2500 starts
with an lllumina-specific adapter library and takes place on the oligo-derivatized surface of a flow cell,
and is performed by an automated device called a cBot Cluster Station. The flow cell is either a 2 or
8-channel sealed glass microfabricated device that allows bridge amplification of fragments on its
surface, and uses DNA polymerase to produce multiple DNA copies, or clusters, that each represent
the single molecule that initiated the cluster amplification.

Separate or multiple libraries can be added to each of the eight channels, or the same library can be
used in all eight, or combinations thereof. Each cluster contains approximately one million copies of
the original fragment, which is sufficient for reporting incorporated bases at the required signal
intensity for detection during sequencing. The lllumina system utilizes a sequencing- by-synthesis
approach in which all four nucleotides are added simultaneously to the flow cell channels, along with
DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for
details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is
chemically blocked such that each incorporation is a unique event. An imaging step follows each base
incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the
instrument optics at a cluster density of 600,000-800,000 per mm?. After each imaging step, the 3'
blocking group is chemically removed to prepare each strand for the next incorporation by DNA
polymerase. This series of steps continues for a specific number of cycles, as determined by
user-defined instrument settings, which permits discrete read lengths of 40-300 bases. A base-calling
algorithm assigns sequences and associated quality values to each read and a quality checking
pipeline evaluates the lllumina data from each run.

The next figures summarise the process:

8 of 88

a _— @ - Adapter
7 g
’,-" :ﬁ' ¢ - DNA fragment
o \

;_A/ Dense lawn
7 of primers
will

Prepare genomic DNA sample
Randomly fragment genomic DNA
and ligate adapters to both ends of
the fragments.

7 . .." Nucleotides

£ /(\
¢ Il
\ /
Tl y

\ >

Bridge amplification

r Add unlabeled nucleotides

)k 1 i and enzyme to initiate solid-
phase bridge amplification.

Attach DNA to surface

Bind single-stranded fragments
randomly to the inside surface
of the flow cell channels.

Denature the double
stranded molecules

9 of 88

. % ;l' 111 First chemistry cycle:
i1 3 determine first base
To initiate the first
) sequencing cycle, add
e® / all four labeled reversible G

/ § terminators, primers, and . ®
lla‘ DNA polymerase enzyme
to the flow cell.
. 2 R
AL VAR / Before initiating the
L i w : 1 Image of first chemistry cycle next chemistry cycle
[1 After laser excitation, capture the image The blocked 3' terminus
i ! Lt of emitted fluorescence from each and the fluorophore
1 i i cluster on the flow cell. Record the from each incorporated
1 identity of the first base for each cluster. base are removed.
Laser
® [A G ®
> > > > — GCTGA...
G © @ G A
© e ® G ® o ® o G G

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence
of bases in a given fragment a single base at a time.

The lllumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are
primed and all four fluorescently labelled, 3 -OH blocked nucleotides are added to the flow cell with
DNA polymerase. The cluster strands are extended by one nucleotide. Following the incorporation
step, the unused nucleotides and DNA polymerase molecules are washed away, a scan buffer is
added to the flow cell, and the optics system scans each lane of the flow cell by imaging units called
tiles. Once imaging is completed, chemicals that affect cleavage of the fluorescent labels and the 3
-OH blocking groups are added to the flow cell, which prepares the cluster strands for another round of
fluorescent nucleotide incorporation. Next-Generation DNA Sequencing Methods Mardis, E.R. Annu.
Rev. Genomics Hum. Genet. 2008. 9:387-402

A short movie of the lllumina sequencing-by-synthesis approach can be found here:
https://www.youtube.com/watch?v=fCd6B5HRaZ8

Base-calling

Base-calling involves evaluating the raw intensity values for each fluorophore and comparing
them to determine which base is actually present at a given position during a cycle. To call bases on
the lllumina platform, the positions of clusters need to be identified during the first few cycles. This is
because they are formed in random positions on the flowcell as the annealing process is stochastic.

If there are too many clusters, the edges of the clusters will begin to merge and the image
analysis algorithms will not be able to distinguish one cluster from another (remember, the software is
dealing with upwards of half a million clusters per square millimeter — that's a lot of dots!).

10 of 88

https://www.youtube.com/watch?v=fCd6B5HRaZ8

1 2 5 6
TS

The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the
highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle
changes along with the brightness (intensity). This is due to the incorporation of complementary
ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the
colour or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in
the images; these will represent different monoclonal clusters with different sequences.

The base calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a
variety of methods to do this and the one mentioned here is by no means the only one available, but it
is often used as the default method on the lllumina systems. Known as the 'Chastity filter' it will only
call a base if the intensity divided by the sum of the highest and second highest intensity is less than a
given threshold (usually 0.6). Otherwise the base is marked with an N. In addition the standard
lllumina pipeline will reject an entire read if two or more of these failures occur in the first 4 bases of a
read (it uses these cycles to determine the boundary of a cluster).

Note that these processes are carried out at the sequencing facility and you will not need to

perform any of these tasks under normal circumstances. They are explained here as useful
background information.

CHASTITY formula:
IA
_ IA

I+,

What are paired-end reads and why are they necessary?

Paired-end sequencing is a remarkably simple and powerful modification to the standard
sequencing protocol. It is nearly always worth obtaining paired-end reads if performing genomic
sequencing. Typically sequencers of any type are only able to sequence a portion of DNA (e.g. 100bp

11 of 88

in the case of lllumina) before the fidelity of the enzyme and de-phasing of clusters (see later) increase
the error rate beyond tolerable levels. As a result, on the lllumina system, a fragment which is 500bp
long will only have the first 100bp sequenced.

If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,
you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads
for each DNA fragment separated by a known distance. In the figure below the dashed regions
represent the complete DNA fragment and the solid lines the regions we are able to sequence:

Single-end read

Read 1
100bp

Known distance (~300bp)

-

R E m o m — Paimd'end read
Read 1 Read 2
100bp 100bp

In the diagram below you can see a description of the nomenclature used when talking about paired
end reads

N Adapter

L I Insert
Read 1 Adapter Read 1 Read 2 Adapter

‘5 b '3
_ I [——
3 < ‘5

>

: Read 2
Inner distance
< B

Insert size

< >

Fragment length

The added information gained by knowing the distance between the two reads can be invaluable for
spanning repetitive regions. In the figure below, the light coloured regions indicate repetitive sections
of DNA. If a read contains only repetitive DNA, an alignment algorithm will be able to map the read to
many locations in a reference genome. However, with paired-end reads, there is a greater chance that

12 of 88

at least one of the two reads will map to a unique region of DNA. In this way one of the reads can be
used to anchor the other read in the pair and help resolve the repetitive region. Paired-end reads are
often used when performing de-novo genome sequencing (i.e. when a reference is not available to
align against) because they enable contiguous regions of DNA to be ordered, or when characterizing
variants such as large insertions or deletions.

Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so
called 'mate-pair' libraries. These are usually used in specific projects to help order contigs in de-novo
sequencing projects. We will not cover them here, but the principles behind them are similar.

Repetitive DNA
Unique DNA
] I ————

Paired read maps uniquely

—_\ /_—_

Single read maps to
multiple positions

Inherent Sources of Error

No measurement is without a certain degree of error. This is true in sequencing. As such there
is a finite probability that a base will not be called correctly. There are several possible sources:

Frequency Cross-talk and Normalisation Errors

When reading an A base, a small amount of C will also be measured due to frequency overlap and
vice-versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the
extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This
normalisation process can also introduce errors.

13 of 88

Frequency response curve for A and C dyes
(Intensity y-axis and frequency on the x-axis)

Phasing/Pre-phasing

This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This
introduces additional background noise into the signal and reduces the intensity of the true base. In
the example below we have a cluster with 7 strands of DNA (very small, but this is just an example).
Five strands are on a C-base, whilst 1 is lagging behind (called phasing) on a G base and the
remaining strand is running ahead of the pack (confusingly called pre-phasing) on an A base. As such
the C signal will be reduced and A and G boosted for the rest of the sequencing run. Too much
phasing or pre-phasing (i.e. > 15-20%) usually causes problems for the base calling algorithm and

result in clusters being filtered out.

+
+
+
+
pe
+
+
4 A
4 il

Other issues:

e Biases introduced by sample preparation — your sequencing is only as good as your
experimental design and DNA extraction. Also, remember that sometimes samples will be
put through several cycles of PCR before sequencing (unless they are PCR-free libraries).
This also introduces a potential source of bias.

e High AT or GC content sequences — this reduces the complexity of the sequence and
can result in higher error rates.

e Homopolymeric sequences — long stretches of a single base can make it difficult to
determine phasing and pre-phasing rates. This can introduce errors in determining the
precise length of a hompolymeric stretch of sequence. (This much more of a problem on
the old 454 and lon Torrent than lllumina platforms but still worth bearing in mind).
Especially if you encounter indels which have been called in homopolymeric tracts.

e Some motifs can cause loops and other steric clashes.

14 of 88

See Nakamura et al, Sequence-specific error profile of lllumina sequencers Nuc. Acid Res. first
published online May 16, 2011 doi:10.1093/nar/gkr344

Reads Containing Adaptors

Some reads will contain adaptor sequences after sequencing, usually at the end of the read.
This is usually because of short sample DNA fragments, which result in the polymerase reading into
the adaptor region. Occasionally this can also happen because of mis-priming. It is important to
remove or trim sequences containing these reads as the adaptor sequences can prevent reads
mapping to a reference sequence and will adversely affect de-novo assembly.

Part 2. QC, Alignment and Variant Calling

Introduction

In this section of the workshop we will be analysing a strain of E.coli which was sequenced at
the Exeter Sequencing Service. It is closely related to the K-12 substrain MG1655
(http://www.ncbi.nlm.nih.gov/nuccore/U00096). We want to obtain a list of single nucleotide
polymorphisms (SNPs), insertions/deletions (indels) and any genes which have been deleted.

Quality Control

In this section of the workshop we will be learning about evaluating the quality of an lllumina
MiSeq sequencing run. The process described here can be used with any FASTQ formatted file from
any platform (e.g. lllumina, PacBio etc).

Sequencers produce vast quantities of data. A single lllumina MiSeq lane can produce up to 15
Gigabases (Gbp) of data. However, the error rates of these platforms are 10-100x higher than Sanger
sequencing. They also have very different error profiles. Unlike Sanger sequencing, where the most
reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near the
beginning of each read.

Quality control usually involves:

e Calculating the number of reads before quality control
Calculating GC content, identifying overrepresented sequences
Remove or trim reads containing adaptor sequences
Remove or trim reads containing low quality bases
Calculating the number of reads after quality control
Rechecking GC content, identifying overrepresented sequences

Quality control is necessary because:
e CPU time required for alignment and assembly is reduced

15 of 88

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141275/
http://www.ncbi.nlm.nih.gov/nuccore/U00096

e Data storage requirements are reduced
e Reduce potential for bias in variant calling and/or de-novo assembly

Quality scores

To account for the possible errors and provide an estimate of confidence in a given base-call,
the lllumina sequencing pipeline assigns a quality score to each base called. Nowadays, all quality
scores are calculated using the Phred scale (Ewing B, Green P: Basecalling of automated sequencer traces
using phred. Il. Error probabilities. Genome Research 8:186-194 (1998)). Each base call has an associated
base call quality which estimates chance that the base call is incorrect.

Q10 =1 in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
Q30 =1 in 1000 chance of incorrect base call
Q40 =1in 10,000 chance of incorrect base call

For most lllumina runs you should see quality scores between Q20 and Q40.

Note that these as only estimates of base-quality based on calibration runs performed by the
manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme

GC biases and/or particular motifs or homopolymers can cause the quality scores to become
unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a
rough and ready rule we generally assume that with lllumina data anything less than Q20 is not useful
data and should be excluded.

Once you understand the FASTQ format try to work out what is happening to the quality scores here
and why:

FASTQ Format
A FASTQ entry consists of 4 lines

@D3P26HQ1:110:dBehlacxx:8:11081:1116:2122 1:N:0:
AGGTGTCTCCTACAACCAAAGCTACAACAGAGCAATGGOCTATCTGGTGOGATTTAAAGGGGTGAAAATGCATCCCCCTTAAAATNAAAGTGGTTTT
+

ADDADCFHHHDHGHIII<GITCH4FGCIHIEGFHGHGIIIGDHFDFG?DEHH>FGIG=E@GGADDDCCCCC@A>ABB=BBC : A=A# 228 (4>:77B

1. A header line beginning with '@' containing information about the name of the sequencer, and
the position at which the originating cluster was located and whether it passed purity filters.

2. The DNA sequence of the read

3. A header line or line beginning with just '+'

4. Quality scores for each base encoded in ASCII format

16 of 88

http://genome.cshlp.org/content/8/3/186.long
http://genome.cshlp.org/content/8/3/186.long

To reduce storage requirements, the FASTQ quality scores are stored as single characters and
converted to numbers by obtaining the ASCII quality score and subtracting either 33 or 64. For
example, the above FASTQ file is Sanger formatted and the character ‘' has an ASCII value of 33.
Therefore the corresponding base would have a Phred quality score of 33-33=Q0 (i.e. totally
unreliable). On the other hand a base with a quality score denoted by ‘@’ which has an ASCII value
of 64 would have a Phred quality score of 64-33=Q31 (i.e. less than 1/1000 chance of being incorrect).

Just to confuse matters, there are several different methods of encoding quality scores in the ASCII

format. Although as of 2011, lllumina 1.8+/Phred+33 is used universally (and most likely, this will not
change in the future).

33 59 64 73 104 126
0t e e e 26...31....... 40
“5....0.. ... D e 40
Oevvnnn. D e e 40
02ttt et 26...310.uuan... 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Note that the latest lllumina CASAVA 1.8 pipeline (released June 2011), outputs in fastq-sanger rather
than Illumina 1.3+. Thus lllumina 1.3+ and other lllumina scoring metrics are unlikely to be
encountered if you are using lllumina sequencing data generated after July 2011.

Quality control — Evaluating the Quality of Illumina Data

The first task when one receives sequencing data is to evaluate its quality and determine
whether all the cash you have handed over was well-spent! To do this we will use the FastQC toolkit
(https://www.biocinformatics.babraham.ac.uk/projects/fastqgc/). FastQC offers a graphical visualisation
of QC metrics, but does not have the ability to filter data.

17 of 88

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Task 1

Open a terminal window. From your home directory change into:
workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory and list the directory
contents, e.g.

cd ~/workshop materials/genomics_ tutorial/data/sequencing/ecoli_exeter/
ls -1

***Note that you will also see two other directories here as well: blast_precompute and
denovo_assembly. Don’t worry about these directories for now as we will come back to them later in
the tutorial.

For the purposes of this tutorial, we have already cleaned the data so you will see four files
Raw reads:

e read 1 (E_Coli CGATGT_L001_R1_001.fastq)

e read 2 (E_Coli CGATGT_L001_R2_001.fastq)
Cleaned reads:

e read 1 (E_Coli CGATGT_L001_R1_001 filtered.fastq)
e read 2 (E_Coli CGATGT_L001_R2_001.filtered.fastq)

These are paired-end data and so reads from the same pair can be identified because they will have
the same header. Many programs require that the read 1 and read 2 files have the reads in the same
order. We will look at the raw reads. To view the first few headers we can use the head and grep
commands:

head E Coli CGATGT L@@1 R1 @01.fastq | grep MISEQ
head E Coli CGATGT L@0@1 R2 001.fastq | grep MISEQ

[ec2-user@ip-10-169-87-62 ecocli_exeter]$ head E_Coli CGATGT L0001 Rl 001l.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:14839:1482 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:18239:1496 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:13371:1512 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli CGATGT_LO01_R2 00l.fastqg | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:14839:1482 2:N:0:CGATGT
@MISEQ:8:000000000-A7VC1:1:1101:18239:1496 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:13371:1512 2:N:0:CGATGT

The only difference in the headers for the two reads is the read number. Of course this is no guarantee
that all the headers in the file are consistent. To get some more confidence repeat the above
commands using 'tail' instead of 'head' to compare reads at the end of the files.

You can also check that there is an identical number of reads in each file using cat, grep and wc —I:

cat E Coli CGATGT L@@1 R1 001.fastq | grep MISEQ | wc -1

18 of 88

cat E_Coli CGATGT_L@@1 R2 001.fastq | grep MISEQ | wc -1

Now, let's run the fastqc program on the data. Unlike the QC lab, we will open up a Graphical User
Interface (GUI) and load the data this way. To do this, run:

fastqc &

Load the E_Coli_ CGATGT_L@@1 R1 001.fastq file from the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory.

The fastqc program performs a number of tests which determines whether a green tick (pass),
exclamation mark (warning), or red cross (fail) is displayed. However, it is important to realise that
fastqc has no knowledge of what your library is or should look like. All of its tests are based on a
completely random library with 50% GC content. Therefore if you have a sample which does not
match these assumptions, it may 'fail' the library. For example, if you have a high AT or high GC
organism it may fail the per sequence GC content. If you have any barcodes or low complexity
libraries (e.g. small RNA libraries) they may also fail some of the sequence complexity tests.

The bottom line is that you need to be aware of what your library is and whether what fastqc is
reporting makes sense for that type of library.

FastQC - 0O X

File Help
|E_Coli_CGATGT_Loo_R1_o fastq

@ Basic Statistics b Bﬂ_._S_F_S_E_qL:I_en?e_St_al_s_

| |Measure |[Value

@ Per base sequence quality {Filename E_Coli_CGATGT_L001_R1_001 fastq

Y) i \File type Conventional base calls

() Pertile sequence quality |Encoding Sanger / lllumina 1.9

@ Per sequence quality scores LAl E e e Bldehd

| \Sequences flagged as poor quality 0

@ Per base sequence content {Sequence length 301

1% GC 50

@ Per sequence GC content

@ Per base N content

@ Sequence Length Distribution

@ Sequence Duplication Levels

| Overrepresented sequences

19 of 88

In this case we have a number of errors and warnings which at first sight suggest there has been a
problem - but don't worry too much yet. Let's go through them in turn.

Quality Scores

This is one of the most important metrics. If the quality scores are poor, either the wrong
FASTQ encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor
quality. This view shows an overview of the range of quality values across all bases at each position in
the FASTQ file. Generally anything with a median quality score greater than Q20 is regarded as
acceptable; anything above Q30 is regarded as 'good'. For more details, see the help documentation
in fastqc.

File Help

I E_Coli_ CGATGT_L0OD1_R1_001 fastg |

@ BedcBidinies Quality scores across all bases (Sanger £ lllumina 1.9 encoding)
@ Per base sequence quality
.. _'1 Per tile sequence quality o B
@ Per sequence quality scores |a2
@ Per base sequence content |30

@ Per sequence GC content

26
@ Per base N content o4
@ Sequence Length Distribution 22

@ Sequence Duplication Levels =2
18

Overrepresented sequences -

1 3 5 7 6 2024 4548 70-74 56585 120124 150154 180184 210-214 240-244 270-274 300-3M
Position in read (bg

In this case this check is red - and it is true that the quality drops off at the end of the reads. It is
normal for read quality to get worse towards the end of the read. You can see that at 250 bases the
quality is still very good.

20 of 88

Per tile Sequence Quality

This is a purely technical view on the sequencing run, it is more important for the team running
the sequencer. The sequencing flowcell is divided up into areas called cells. The colour of the tiles
indicate the read quality and you can see that the quality drops off in some cells faster than others.
This maybe because of the way the sample flowed over the flowcell or a mark or smear on the lens of
the optics.

| E_Coli_ CGATGT_L001_R1_001.fastq |

@ Basic Statistics Qualty per tile
@ Per base sequence quality

Per tile sequence quality

2118
2117

- 2115
@ Per sequence quality scores S5
12112

@ Per base sequence content |
2110

@ Per sequence GC content |2100

2107
@ Per base N content
12105

@ Sequence Length Distribution nq n

2102
@ Sequence Duplication Levels i

(1) Overrepresented sequences |1117
= 11116

@ Adapter Content 11114

@ Kmer Content 11z
1111

1108

1107
1106

1104
11103

11
1 3 5 7 92024 4549 70-74 0599 120124 150154 180184 210-214 240-244 270-274 300-301

Paosition in read (b

Per-base Sequence Content:

For a completely randomly generated library with a GC content of 50% one expects that at any
given position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can
see that our library satisfies these criteria, although there appears to be some minor bias at the
beginning of the read. This may be due to PCR duplicates during amplification or during library
preparation. It is unlikely that one will ever see a perfectly uniform distribution. See
http://sequencing.exeter.ac.uk/quide-to-your-data/quality-control/ for examples of good vs bad runs as
well as the fastqc help for more details.

21 of 88

http://sequencing.exeter.ac.uk/guide-to-your-data/quality-control/

File Help

[E_Coli_CGATGT_L001_R1_001 fastg |

@ Basic Statistics
Sequence content across all bases
3 100
Per base sequence quality T
| Pertile sequence quality %6
wr a0 awp
@ Per sequence quality scores 2005

@ Per base sequence content
@ Per sequence GC content |-
@ Per base N content

o 0w |8
@ Seguence Length Distribution

@ Sequence Duplication Levels| 5

5 i
!_) Overrepresented sequences

40
@ Adapter Content

S —_

20

1 3 5 7 92024 4545 7074 9599 120124 150154 180154 210-244 240-244 2F0-274 300-304
Position in read (b

Sequence Duplication Levels:

In a library that covers a whole genome uniformly most sequences will occur only once in the
final set. A low level of duplication may indicate a very high level of coverage of the target sequence,
but a high level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR
over-amplification).

This module counts the degree of duplication for every sequence in the set and creates a plot showing
the relative number of sequences with different degrees of duplication.

22 of 88

FastQC e[|
File Help

[E_Coli_CGATGT_L0O01_R1_001.fastq |

@ Faroaisos Percent of seqs remaining if deduplicated 85 08%

: 100
@ Per base sequence quality % Deduplic ated sequences

% Total sequences

L

_, Per tile sequence quality oo
@ Per sequence quality scores
@ Per base seguence content
@ Per sequence GC content |4
@ Per base N content

&0
@ Sequence Length Distribution

@ Sequence Duplication Levels 5q

£ =
¢) Overrepresented sequences

40
@ Adapter Content

20

1 2 3 4] [+ 7 g g =10 =50 =100 =500 =1k =5k =10k
Sequence Duplication Level

Overrepresented Sequences

This checks for sequences that occur more frequently than expected in your data. It also
checks any sequences it finds against a small database of known sequences. In this case it has found
that a small number of reads 4000 out of 600000 appear to contain a sequence used in the
preparation for the library. A typical cause is that the original DNA was shorter than the length of the
read - so the sequencing overruns the actual DNA and runs in to the adaptors used to bind it to the
flowcell.

23 of 88

File Help

‘ E_Coli_CGATGT_L001_R1_001.fastq |

@ Basic Statistics | . Overrepresented Isequences :
| Sequence || Count ||Percentage | Possible Source |

@ Per base sequence quality |GATCGGAAGAGCACACGTCTGAAC... | 4113 0.639[TruSeq Adapter, Index 2 (100... |

—
¢) Pertile sequence quality

@ Per sequence quality scores
@ Per base sequence content

@ Per sequence GC content

@ Per base N content

@ Sequence Length Distribution|
@ Sequence Duplication Levels|

:.I Overrepresented sequences

There are other reports available:

Have a look at them and at what the author of FastQC has to say here:
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/ or check
out their youtube tutorial video: https://www.youtube.com/watch?v=bz93ReOv87Y.

Remember the error and warning flags are his (albeit experienced) judgement of what typical data
should look like. It is up to you to use some initiative and understand whether what you are seeing is
typical for your dataset and how that might affect any analysis you are performing.

Task 2

Do the same for the raw read 2 as we have for raw read 1. Open fastqc and analyse the read 2 file.
Look at the various plots and metrics which are generated. How similar are they?

Also look at the cleaned reads. How do they differ? You should notice very little change (since

comparatively few reads were filtered). However, you should notice a significant improvement in
quality and the absence of adaptor sequences.

24 of 88

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
https://www.youtube.com/watch?v=bz93ReOv87Y

We can perform a quick check (although this by no means guarantees) that the sequences in read 1
and read 2 are in the same order by checking the ends of the two files and making sure that the
headers are the same.

head E_Coli CGATGT_L@@1 R1 @01.filtered.fastq | grep MISE
head E Coli CGATGT L0@1 R2 @01.filtered.fastq | grep MISE

tail E Coli CGATGT L@@1 R1 @0l1.filtered.fastq | grep MISE
tail E_Coli CGATGT LO@1 _R2 001.filtered.fastq | grep MISEQ

Check the number of reads in each filtered file. They should be the same. To do this use the grep
command to search for the number of times the header appears, e.g.

grep -c “MISEQ” E Coli CGATGT_LO@1 R1 @0l1l.filtered.fastq

Do the same for the E_Coli CGATGT _L@@1 R2 001.filtered.fastqfile.

Note: Typically when submitting raw lllumina data to NCBI or EBI you would submit unfiltered data, so
don't delete your original fastq files!

A note on quality control using MultiQC

MultiQC (https://multigc.info/) is software which will aggregate reports (such as fastqc) across a whole
experiment. For example, it will aggregate fastqc reports for multiple samples. Say you have 1000
samples in an experiment, you're not going to want to open 1000 tabs on an internet browser! MultiQC
supports many other QC softwares (such as outputs from qualimap, quast, bcftools). At the time of
writing (2019), MultiQC supports 72 commonly-used bioinformatics tools. Take a look!

A note on checking for contaminants:

A number of tools are available now which also enable to you to quickly search reads and assign them
to particular species or taxonomic groups. These can serve as a quick check to make sure your
samples or libraries are not contaminated with DNA from other sources. If you are performing a
de-novo assembly for example and unwittingly have DNA sequence present from multiple organisms,
you will risk poor results and chimeric contigs.

Some ‘contaminants’ can turn out to be inevitable by-products of sampling and DNA extraction. This is
often the case with algae or other symbionts. In addition, some groups have made some amazing
discoveries such as the discovery of a third symbiont (which turned out to be a yeast) in lichen.
http://science.sciencemag.org/content/353/6298/488.full

Some tools you can use to check the taxonomic classification of reads include:
e Kraken

25 of 88

https://multiqc.info/
http://science.sciencemag.org/content/353/6298/488.full
https://ccb.jhu.edu/software/kraken/

Centrifuge

Blobology

Kaiju

Blast (in conjunction with subsampling your reads) and Krona to plot results.

Blobtools is also a useful tool for quality control post assembly. Blobtools visualizes the GC content,
coverage, and taxonomic classification of assembled contigs to enable screening for potential
contaminants. You can read more about Blobtools here , but we won'’t do either of these steps today.

Aligning lllumina Data to a Reference Sequence

Now that we have checked the quality of our raw data, we can begin to align the reads against
a reference sequence. In this way we can compare how the reference sequence and the strain we
have sequenced compare to one another.

To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)
Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.). This
uses an algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference
genome. BWA also allows for a certain number of mismatches to account for variants which may be
present in strain 1 vs the reference genome. Unlike other alignment packages such as Bowtie (version
1) BWA allows for insertions or deletions as well. (Note, there is now a Bowtie2 tool that allows for insertions and
deletions, but we'll continue to use BWA here). There are also a host of newer aligners such as minimap2
(https://github.com/Ih3/minimap2) that allow for long-read sequencing and employ different algorithms.
In fact, Heng Li (creator of both BWA and minimap2) suggests that minimap2 is now superior,
although bwa is still recommended for short read genomic data. For information on this, please see
Heng Li’s post here: http://Ih3.qithub.io/2018/04/02/minimap2-and-the-future-of-bwa

By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing
lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it
maps against the reference genome. The figure below illustrates what we are trying to achieve here.
Along the top in grey is the reference sequence. The coloured sequences below indicate individual
sequences and how they map to the reference. If there is a real variant in a bacterial genome we
would expect that (nearly) all the reads would contain the variant at the relevant position rather than
the same base as the reference genome. Remember that error rates for any single read on second
generation platforms tend to be around 0.5-1%. Therefore a 300bp read is on average likely to contain
at 2-3 errors.

Let's look at 2 potential sources of artefacts.

Sequencing Error

The region highlighted in green on the right shows that most reads agree with the reference
sequence (i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can
safely assume that the A-bases are due to a sequencing error rather than a genuine variant since the

26 of 88

https://ccb.jhu.edu/software/centrifuge/manual.shtml
https://github.com/blaxterlab/blobology
https://github.com/marbl/Krona/wiki
https://f1000researchdata.s3.amazonaws.com/manuscripts/13242/bd7996b3-ffbf-4f8a-b7cc-b20aaa7700aa_12232_-_dom_laetsch.pdf?doi=10.12688/f1000research.12232.1&numberOfBrowsableCollections=15&numberOfBrowsableGateways=23
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/minimap2
http://lh3.github.io/2018/04/02/minimap2-and-the-future-of-bwa

‘variant’ has only one read supporting it. If this occurred at a higher frequency however, we would
struggle to determine whether it was a genuine variant or an error.

PCR Duplication

The highlighted region in red on the left shows where there appears to be a variant. A C-base
is present in the reference and half the reads, whilst an A-base is present in a set of reads which all
start at the same position.

b B

AN AT TRAGAR MM TOAGLIATHATY TCNG

Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a
real sample, would you expect all the reads containing an A to start at the same location?

The answer is probably not. This 'SNP"' is in fact probably an artefact of PCR duplication. l.e. the same
fragment of DNA has been replicated many times more than the average and happens to contain an
error at the first position. We can filter out such reads during alignment to the reference (see later).

Note that the entire region above seems to contain lots of PCR duplicates with reads starting at the
same location. In the case of the region highlighted in red, this will likely cause a false SNP call. The
area in green also contains PCR duplicates — the As at these positions are probably either sequencing
errors or errors introduced during PCR.

It's always important to think critically about any finding - don't assume that whatever bioinformatic
tools you are using are perfect. Or that you have used them perfectly.

27 of 88

Indexing a Reference Genome

Before we can start aligning reads to a reference genome, the genome sequence needs to be
indexed. This means sorting the genome into easily searched chunks, a bit like an index in a book.

Task 3: Genera ting an index file from the reference sequence

Change directory to the reference directory:

cd ~/workshop materials/genomics tutorial/data/reference/U00096/

In this directory we have 2 files. U00096.fna is a FASTA file which contains the reference genome
sequence. The U00096.gff file contains the annotation for this genome. We will use this later.

First, let's looks at the bwa command itself. Type:

bwa
This should yield something like:

Program: bwa (alignment via Burrows-Wheeler transformation)
Version: 0.7.17-r1194-dirty
Contact: Heng Li <lh3@sanger.ac.uk>

Usage: bwa <command> [options]
Command: index index sequences in the FASTA format
mem BWA-MEM algorithm
fastmap identify super-maximal exact matches
pemerge merge overlapping paired ends (EXPERIMENTAL)
aln gapped/ungapped alignment
samse generate alignment (single ended)
sampe generate alignment (paired ended)
bwasw BWA-SW for long queries
shm manage indices in shared memory
fa2pac convert FASTA to PAC format
pac2bwt generate BWT from PAC
pac2bwtgen alternative algorithm for generating BWT
bwtupdate update .bwt to the new format
bwt2sa generate SA from BWT and Occ

Note: To use BWA, you need to first index the genome with “bwa index'.
There are three alignment algorithms in BWA: “mem', “bwasw', and
“aln/samse/sampe'. If you are not sure which to use, try "bwa mem'
first. Please "man ./bwa.l' for the manual.

BWA is actually a suite of programs which all perform different functions. We are only going to use two
during this workshop, bwa index, bwa mem

If we type:

28 of 88

We can see more options for the bwa index command:

Usage: bwa index [options] <in.fasta>

Options: —-a STR BWT construction algorithm: bwtsw, is or rb2 [auto]
-p STR prefix of the index [same as fasta name]
-b INT block size for the bwtsw algorithm (effective with -a bwtsw) [10000000]
-6 index files named as <in.fasta>.64.% instead of <in.fasta>.x

By default bwa index will use the IS algorithm to produce the index. This works well for most
genomes, but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes
the default algorithm will work fine.

Now we will create a reference index for the genome using BWA:

bwa index U©0Q96.fna

If you now list the directory contents, you will notice that the BWA index program has created a set of
new files. These are the index files BWA needs.

Task 4: Aligning Reads to the Indexed Reference Sequence

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back
into the ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory
and create a subdirectory to contain our remapping results.

cd ~/workshop materials/genomics tutorial/data/sequencing/ecoli exeter/

mkdir remapping to reference
cd remapping to reference

We’'ll use the ‘bwa mem’ alignment algorithm to map the reads to the target genome. Let's explore the
alignment options BWA MEM has to offer. Type:

29 of 88

Usage: bwa mem [options] <idxbase> <inl.fq> [in2.fql

Algorithm

i
-k
-w
-d
-r
-y
=C
-D
-W
=m
-5
-p

options:

INT
INT
INT
INT
FLOAT
INT
INT
FLOAT
INT
INT

Scoring options:

-A
-B
-0
-E
-L
-U

=X

Input/output obtions:

INT
INT
INTI, INT]
INTL, INT]
INT[, INT]
INT

STR

number of threads [1]

minimum seed length [19]

band width for banded alignment [100]

off-diagonal X-dropoff [100]

look for internal seeds inside a seed longer than {-k} *x FLOAT [1.5]
seed occurrence for the 3rd round seeding [20]

skip seeds with more than INT occurrences [500]

drop chains shorter than FLOAT fraction of the longest overlapping chain [0.50]
discard a chain if seeded bases shorter than INT [@]

perform at most INT rounds of mate rescues for each read [50]

skip mate rescue

skip pairing; mate rescue performed unless -S also in use

score for a sequence match, which scales options -TdBOELU unless overridden [1]
penalty for a mismatch [4]

gap open penalties for deletions and insertions [6,6]

gap extension penalty; a gap of size k cost '{-0} + {-E}xk' [1,1]

penalty for 5'- and 3'-end clipping [5,5]

penalty for an unpaired read pair [17]

read type. Setting -x changes multiple parameters unless overridden [null]
pacbio: -k17 -W4@ -rl1@ -Al1 -Bl1 -01 -E1 -L® (PacBioc reads to ref)

ont2d: -k14 -W20 -r1@ -Al -B1 -01 -E1 -L@ (Oxford Nanopore 2D-reads to ref)
intractg: -B9 -016 -L5 (intra-species contigs to ref)

The basis format of the command is:

Usage: bwa mem [options] <idxbase> <inl.fqg> <in2.fqg>

We can see that we need to provide BWA with a FASTQ files containing the raw reads (denoted by

<in.fg> and <in2.fg>) to align to a reference file (listed as <idxbase>). There are also a number of

options. The most important are the maximum number of differences in the seed (-k i.e. the first 32 bp
of the sequence vs the reference), the number of processors the program should use (your machine
has 2 processors).

Our reference sequence is in
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna

Ouir filtered reads in

~/workshop_materials/genomics tutorial/data/sequencing/ecoli_ exeter/E_Coli CGATGT_
Leo1_R1_001.filtered.fastq
~/workshop_materials/genomics tutorial/data/sequencing/ecoli_ exeter/E_Coli CGATGT_
Le@1_R2_001.filtered.fastq

So to

align

our paired reads using processors and output to file

E Coli CGATGT_L@@1 filtered.sam:

type, all on one line:

30 of 88

bwa mem -t 2

~/workshop materials/genomics tutorial/data/reference/U00096/U00096.fna

~/workshop materials/genomics_ tutorial/data/sequencing/ecoli exeter/E Coli
CGATGT _LO@1 R1 @01.filtered.fastq

~/workshop _materials/genomics tutorial/data/sequencing/ecoli exeter/E_Coli
CGATGT LOO1 R2 @0l1.filtered.fastq > E Coli CGATGT LOO1 filtered.sam

This will take about 5 minutes to complete.
There will be quite a lot of output but the end should look like:

::process] read 70094 sequences (18721937 bp)...
mem_pestat] # candidate unique pairs for (FF, FR, RF, RR): (1, 26431, 0, 3)
mem_pestat] skip orientation FF as there are not enough pairs
mem pestat] analyzing insert size distribution for orientation FR...
mem_pestat] (25, 50, 75) percenti (518, 580, 642)
mem_pestat] low and high boundaries for computing mean and std.dev: (270, 890)
mem pestat] mean and std.dev: (577.01, 102.93)
mem_pestat] low and high boundaries for proper pairs: (146, 1014)
mem_pestat] skip orientation RF as there are not enough pairs
mem_pestat] skip orientation RR as there are not enough pa
mem_process_seqs] Processed 75290 reads in 7.280 CPU sec, 3.628 real sec
mem_pestat] # candidate unique pairs for (FF, FR, RF, RR): (1, 24724, 0, @)
mem_pestat] skip orientation FF as there are not enough pairs
mem_pestat] analyzing insert size distribution for orientation FR
mem pestat] (25, 50, 75) percentile: (519, 581, 641
mem_pestat] low and high boundaries for computing mean and std.dev: (275, 885)
mem_pestat] mean and std.dev: (577.10, 100.85)
mem pestat] low and high boundaries for proper pairs: (153, 1007)
mem_pestat] skip orientation RF as there are not enough pairs
mem_pestat] skip orientation RR as there are not enough pairs

eqs] Processed 70094 reads in 6.572 CPU sec, 3.306 real sec
0.7.15-r1142-dirty
main] CMD: bwa mem -t 2 ../../refe /U00096/U00096. fna E_Coli_CGATGT_LOO1_R1_001.filtered.fastq E_Coli_CGATGT_LOO1_R2 001.filtered.fastq
main] Real time: 63.015 sec; CPU: .824 sec

31 of 88

Viewing the alignment

Once the alignment is complete, list the directory contents and check that the alignment file is present.

ls -1h

genomics@genomics -bul
total 780M

-rw-r--r-- 1 genomics workshop 780M Jan 2 15:37 E Coli CGATGT LBO1 filtered.sam

Note: Is -lh outputs the size of the file in human readable format (780Mb in this case — yours may be
slightly different depending on the storage options you selected when you started the AMI)

The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain text
format and you can view it if you wish using the 'less' command. Do not try to open the whole file in a
text editor as you will likely run out of memory!

less E Coli CGATGT LOO1 filtered.sam

MISEQ:8:000000000-A7vCl:1:1101:17200:1633 83 gi|545778205|gb|U00096.3| 881006 60 137M =
880711 -432 GGTAAAGATGCCGGGGCEGACGECAAAGCCGEAACGECETGETTCATCGEGTAATGTTCCGCARACCGGGCCATCAGEGTTTCGGTGGCAGACT

TGAACAAAGGTGTGATTATCCAGTCCGGTAATGACGCCTGTATTGC @9, @D>@8+8+++>@>+7?A+AE?A86+++B: +8++>+B,B:,, , 8, ,EA, AC, 8++++, ,B

@8++CEE, C:, ,CCB++++EC, CC, CR<, , ,CCC, CCCRC, C, CC, 9EBCCFEEDGGGGEEEEEEEEEEEECCCCY NM:i:5 MD:Z:12T13T4C2T23T78

As:i:ll12 Xs:i:0

MISEQ:8:000000000-A7vC1l:1:1101:17200:1633 163 gi|545778205|gb|U00096.3| 880711 60 84M =
881006 432 TACTCGGGTGGECCTTTCTCCCGCACTACTCCTCTCTCCTTCGTGCTCTTCCAGCGGETTCTGCATTTTTCTTCCTTTTTTCCCC 8,A

6C, ,+;++;,;CC, <, , ; +8++7, ; 6CC<CRC<CECCC, ; ,, 9CCC, <, , ; +++88BC, <, <99@B, 9: BEBERA=+:??A NM:i:9 MD:Z:12A3A1G0A4A19G4G

19a9G4 AS:i:39 Xs:i:0

MISEQ:8:000000000-A7vCl:1:1101:10456:1673 83 gi|545778205|gb|U00096.3| 1864278 60 42M =
1863862 -458 GGETARRACTTGTGARATCGATCTTGAATCACATGGCGARTT CC; ,@C<<, , JEAFFFC7GGEEFGGGEEEEEEEEEEECCCCY

NM:i:0 MD:Z:42 AS:i:42 Xs:i:0

Each alignment line has 11 mandatory fields for essential alignment information such as mapping
position, and a variable number of optional fields for flexible or aligner specific information. For further
details as to what each field means see https://en.wikipedia.org/wiki/'SAM_(file_format) or
http://samtools.sourceforge.net/SAM1.pdf

Task 9: Convert SAM to BAM File

Before we can visualise the alignment however, we need to convert the SAM file to a BAM
(Binary AlignMent format) which can be read by most software analysis packages. To do this we will
use another suite of programs called samtools. Type:

samtools view

32 of 88

https://en.wikipedia.org/wiki/SAM_(file_format)
http://samtools.sourceforge.net/SAM1.pdf

Usage: samtools view [options] <in.bam=|<in.sam=|<in.cram= [region

Options:
-b output BAM
-C output CRAM (requires -T)
-1 use fast BAM compression (implies -b)
-u uncompressed BAM output (implies -b)
-h include header in SAM output
-H print SAM header only (no alignments)
-C print only the count of matching records
-0 FILE output file name [stdout]
-U FILE output reads not selected by filters to FILE [null]
-t FILE FILE listing reference names and lengths (see long help) [null]
-L FILE only include reads overlapping this BED FILE [null]
-r STR only include reads in read group 5TR [null]
-R FILE only include reads with read group listed in FILE [null]
-q INT only include reads with mapping quality == INT [0]
-1 STR only include reads in library STR [null]
-m INT only include reads with number of CIGAR operations consuming
query sequence >= INT [0]
-T INT only include reads with all bits set in INT set in FLAG [0]
-F INT only include reads with none of the bits set in INT set in FLAG [0]
-x STR read tag to strip (repeatable) [null]
-B collapse the backward CIGAR operation
-5 FLOAT integer part sets seed of random number generator [0];
rest sets fraction of templates to subsample [no subsampling]
--threads INT
number of BAM/CRAM compression threads [0]
print long help, including note about region specification
ignored (input format is auto-detected)
--input-fmt-option OPT[=VAL]
Specify a single input file format option in the form
of OPTION or OPTION=VALUE
-0, --output-fmt FORMAT([,OPT[=VAL]]...
Specify output format (SAM, BAM, CRAM)
--output-fmt-option OPT[=VAL]
Specify a single output file format option in the form
of OPTION or OPTION=VALUE
-T, --reference FILE
Reference sequence FASTA FILE [null]

We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),
the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the
alignment file.

Remember our reference sequence is in:
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna

Type (all on one line):

samtools view -bS -T

~/workshop materials/genomics tutorial/data/reference/U00096/U00096.fna

E Coli CGATGT LO@1 filtered.sam > E Coli CGATGT LOO1 filtered.bam

33 of 88

This should take around 2 minutes. Note that for larger datasets you may wish to set multiple threads
as well with the --threads option.

ls -1h

It's always good to check that your files have processed correctly if something goes wrong it's better to
catch it immediately.

Note that the bam file is smaller than the sam file - this is to be expected as the binary format is more
efficient.

Task 5: Sort BAM File

Once this is complete we then need to sort the BAM file so that the reads are stored in the
order they appear along the chromosomes. We can do this using the samtools sort command. In this
instance, we will sort

samtools sort -n E _Coli CGATGT _LOO1 filtered.bam -0

E Coli CGATGT_LOO1 filtered.sorted.bam

The -n option sorts the sam file by read name (which is needed below for samtools fixmate)
This will take another minute or so.

Task 6: Remove Suspected PCR Duplicates

Especially when using paired-end reads, samtools can do a reasonably good job of removing
potential PCR duplicates (see the first part of this workshop if you are unsure what this means).

Again, samtools has a great little command to do this called markdup. To run this tool, we will have to
generate some intermediate files (see Task 9 for cleaning these up afterwards), using other samtools
programs. At each stage of the process, we will document which tool has been run by appending the
name of the tool on the end of the file.

To run samtools markdup, you’ll first need to run samtools fixmate which fills in various coordinates
and flags from a name-sorted alignment (hence why used the -n option above)

On the command-line type:

samtools fixmate -m E Coli CGATGT LOO1 filtered.sorted.bam

E Coli CGATGT_LOO1 filtered.sorted.fixmate.bam

And then sort the file again (this time without the -n option!), which will sort the file by genomic
coordinates.

34 of 88

samtools sort E Coli CGATGT L0l filtered.sorted.fixmate.bam -o

E Coli CGATGT _LOO1 filtered.sorted.fixmate.position.bam

Now we can run samtools markdup to remove PCR duplicates!

samtools markdup E _Coli CGATGT _LO@1 filtered.sorted.fixmate.position.bam

E Coli CGATGT LOO1 filtered.sorted.fixmate.position.markdup.bam

You may notice some warnings about inconsistent BAM file for pair - this is just a warning that a pair of
reads does not align together on the genome within the expected tolerance - it is normal to expect
some of these, and you can ignore.

Task 7: Index the BAM File

Most programs used to view BAM formatted data require an index file to locate the reads
mapping to a particular location quickly. You can think of this as an index in a book, telling you where
to go to find particular phrases or words. We'll use the samtools index command to do this.

Type:

samtools index

E Coli CGATGT LOO1 filtered.sorted.fixmate.position.markdup.bam

We should obtain a .bai file (known as a BAM-index file).

Task 8: Obtain Mapping Statistics

Finally we can obtain some summary statistics.

samtools flagstat

E Coli CGATGT LOO1 filtered.sorted.fixmate.position.markdup.bam >

mappingstats.txt

This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor
(e.g. gedit or nano) or the 'more' command.

35 of 88

genomics@ip-172-30-3-215% more mappingstats.txt
1269900 + @ in total (QC-passed reads + QC-failed reads)
@ + @ secondary

1184 + @ supplementary

18402 + @ duplicates

918262 + @ mapped (72.31% : N/A)

1268716 + @ paired in sequencing

634358 + 0 readl

634358 + 0 read2

913166 + @ properly paired (71.98% : N/A)

915664 + @ with itself and mate mapped

1414 + @ singletons (0.11% : N/A)

Q@ + @ with mate mapped to a different chr

@ + @ with mate mapped to a different chr (mapQ>=5)
genomics@ip-172-30-3-215%

So here we can see we have 1269900 reads in total, none of which failed QC.
72.31% of reads mapped to the reference genome and 71.98% mapped with the expected 500-600bp
distance between them. 1414 reads could not have their read-pair mapped.

0 reads have mapped to a different chromosome than their pair (0 has a mapping quality > 5 — this is a

Phred scaled quality score much as we say in the FASTQ files). If there were any such reads they
would likely due to repetitive sequences

Task 9: Cleaning up

We have a number of leftover intermediate files which we can now remove to save space.

Type (all on one line):

rm E_Coli CGATGT_LOO1 filtered.sam E_Coli CGATGT_LOO1 filtered.sorted.bam

E Coli CGATGT_LOO1 filtered.sorted.fixmate.bam

E Coli CGATGT LOO1 filtered.sorted.fixmate.position.bam

In case you get asked if you are sure to remove 4 arguments type in “yes” and hit enter.
You should now be left with the processed alignment file, the index file and the mapping stats.

Well done! You have now mapped, filtered and sorted your first whole genome data-set!
Let's take a look at it!

36 of 88

Task 10: QualiMap

Qualimap (http://qualimap.bioinfo.cipf.es/) is a program that summarises the alignment in much
more detail than the mapping stats file we produced. It's a technical tool which allows you to assess
the sequencing for any problems and biases in the sequencing and the alignment rather than a tool to
deduce biological features.

There are a few options to the program, We want to run bamqc. Type:

qualimap bamqc
to get some help on this command.

To get the report, first make sure you are in the directory:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_r
eference

then run the command:

qualimap bamgc -outdir bamqgc -bam

E Coli CGATGT LOO1 filtered.sorted.fixmate.position.markdup.bam -gff
~/workshop materials/genomics_tutorial/data/reference/U00096/U00096 .gf|

this creates a subfolder called bamqc

move into this directory and run

firefox qualimapReport.html

There is a lot in the report so just a few highlights:

37 of 88

http://qualimap.bioinfo.cipf.es/

CD\-’E‘]‘{IgE‘- across reference

Coverage across reference
E_Coli_CGATGT_L0o01_filte red somed il md rmdup bam (inside of regions)

Covsrmge ()
v-
a

L i T T fv\-r‘—ﬁ\ﬂ_{_l—-fh\l_-‘—\‘- M{H%_ﬁ%‘m,w#wwfﬂx”mpﬁ‘ |
J ' iy | ! \
254 '}
[= | —
Position (bp)

This shows the number of reads that 'cover' each section of the genome. The red line shows a rolling
average around 50x - this means that on average every part of the genome was sequenced 50X. It is
important to have sufficient depth of coverage in order to be confident that any features you find in
your data are real and not a result of sequencing errors.

What do you think the regions of low/zero coverage correspond to?

38 of 88

Insert Size Histogram

Insert Size Histogram

E_Coli_CGATGT_L0o0D1_fileredl. g0 med fillmd rmdup.bam (inside of regions)

52000 1|
50,000 ||
48,000 {|
48,000 |
44,000 |
42000 ||
40,000 |
38000
38,000 |
34.000 {|
32,000 | [
30,000 |
28,000 |

215 1000 4

umberol mock:

24,000
22,000

20,000 4
18,000 4|
18,000 |
14,000 {
12000 4
10,000 4|

B 000

"‘1 ______ .;IIH‘H _ ||||l||..l..

300 400 00 800 Ton £00 a0 1000 1100 1.200
Insart sizo | b

The Insert Size Histogram displays the range of sizes of the DNA fragments. It shows how well your
DNA was size selected before sequencing. Note that the 'insert' refers to the DNA that was inserted
between the sequencing adaptors, so equates to the size range of the DNA that was used.

In this case we have 300 base pair paired end reads and our insert size varies around 600 bases - so
there should only be a small gap between the reads that was not sequenced.

Have a look at some of the other graphs produced.

Task 11: Load the Integrative Genomics Viewer

The Integrative Genome Viewer (IGV) is a tool developed by the Broad Institute for browsing
interactively the alignment data you produced. It has a wealth of features and we can only cover some
basics to get you started. Go to http://www.broadinstitute.org/igv/ to get more information.

In your terminal, type

39 of 88

http://www.broadinstitute.org/igv/

Or you can click the icon on the desktop.
IGV viewer should appear:

L IGV EEER
File Genomes Yiew Tracks Regions Tools GenomeSpace Help
Human hg18 ~||an = co| @ [= 3 S =
1 3 5 7 o 11 13 15 17 1
z 4 a g 10 1z 14 18 18 e0 om ¥
| | | | | | | | | | | | | | N o | o
a
FelSeq genas —]
-
1T I[|[408m of 755M

Notice that by default a human genome has been loaded.

Task 12a: Import the E.coli U0O0096 Reference Genome to IGV

By default IGV does not contain our reference genome. We'll need to import it.

Click on 'Genomes ->Create .genome file...'

40 of 88

Unique identifier ‘UOOOQG

Descriptive name ‘E.coli uoooss

Optional

FASTA file "home..fgenomicsMorkshcp_data,’gencmics_tutorialfdatafreferencerOOOQGIUOOOQG.fna| Bro...

Cytoband file ‘

| Bro...

Gene file ‘fhomefgenomics,'workshop_datafgenomics_tutorialjdatajreferencejuoOOQGIUOOOQG.gff| :BFD---

Alias file ‘

| Bro...

OK

|| Cancel |

Enter the information above and click on ‘OK’ .

IGV will ask where it can save the genome file. Your home directory will be fine.

Save .genome file

k4

Save In: | genomics & 885"

] Desktop] Pictures

] Documents J Public

3 Downloads] Templates

igv] Vvideos

] media J workshop_data

] miniconda2 [y evomics_2016.jpg

3 Music

File Name: lUD0096.genome |

Files of Type: |AII Files |v|
Save || Cancel |

Click 'Save' again.
Note that the genome and the annotation have now been imported.

41 of 88

Ecoli U00D0D96 w | |U00096.3 w | |J00D09E.3 Go

*

-
asns F___ =
H pd iy BcZ gk ma fold ybjE 10T HUE rbA hpA dep bp md FiD wza dn akA yeZ mHF ascF ygel gss gal fis yiF yhjA yiR mC did nfi cfC yfF mm

Task 12b: Load the BAM File

Load the alignment file. Note that IGV requires the .bai index file to also be in the same directory.

Select File... and Load From File
Select the bam file and click open

Once loaded your screen should look similar to the following. Note that you can load more BAM files if
you wish to compare different samples or the results of different mapping programs.

L IGV R I=I

File Genomes View Tracks Regions Tools GenomeSpace Help
E.coli UD009S v||gi\545775205\g...|v G Y @ [= =N IR
4,532 kb
b 1,000 kb 2,000 kb 3,000 kb 2,000 kb

| | | | | | | | =

-

=

E_Goli GAATGT_LOOT _fiterad g | | 17!

ad filmd.mdup bam Covamgs

E_Col_CAATAT_LODT fitersd

&d filmd.mmdup bam Zoom in to see alignments.

[e [l

Gana R S 5 N YT
ANONYMOUS H3z4

4 tracks | pils4s778208/gbjU00096.3)... |[p1m of 7541

L gV

File Genomes VYiew Tracks Regions Tools GenomeSpace Help

|
Ecoli UD00S6 ‘ v| |UDDEEE.3 v\ |L| 00096.3

Go

42 of 88

Select the chromosome U00096.3 if it is not already selected

File Genomes View Tracks Regions Tools GenomeSpace Help

Ecoli U00096 ~ | |Uoo09E 3 - ‘U00096.3:2,320,053-2,321,599 Go T @ 0O = = E=RRERNERRERERT IRNEN!

1544 bp

2,320,200 bp 2,320 400 bp 2,320 500 bp 2,320,800 bp 2,321,000 bp 2,321,200 bp 2,321 400 bp 2,321
| | | | | | | | | 1

L]

E_Coli_ GEATAT_LOM fitermd of | (1254
sdl Hilmd mdup bam Gove mgs

Use the +/- keys to zoom in or use the zoom bar at the top right of the screen to zoom into
about 1-2kbases as above

I | 1
| |
| |

E_Coli CGATGT_Loo1i_fikeredsortedfillmd.rmdup.ba

Rename Track...

Ceopy read details to clipboard

Group alignments by
Sort alignments by
Color alignments by

¥ Shade base by quality
¥ Show mismatched bases
[J Show all bases

3 View as pairs
Go to mate
View mate region in split screen

[J Set insert size options ...

ﬁ Re-pack alignments

Right click on the main area and select view as pairs

The gray graph at the top of the figure indicates the coverage of the genome:

lo-71

The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured
line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)
present (there are none in the plot). If there are any regions in the genome which are not covered by
the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by

43 of 88

repetitive regions; others are caused by genuine insertions/deletions in your new strain with respect to
the reference.

Below the coverage graph is a representation of each read pair as it is mapped to the genome. One
pair is highlighted.

This pair consists of 2 reads with a gap (there may be no gap if the reads overlap) Any areas of
mismatch either due to inconsistent distances between paired-end reads or due to differences
between the reference and the read are highlighted by a colour. The brighter (or less transparent) the
colour, the higher the base-calling quality is estimated to be. Differences in a single read are likely to

be sequencing errors. Differences consistent in all reads are likely to be mutations.

Hover over a read to get detailed information about the reads' alignment:

Left alignment

Read name = MISEQ:B:000000000-A7VC1,1:2112:3986:8017

Location = U00096.3:2,319,925
Alignment start =2 319,293 (+)
Cigar = 270M

Mapped = yes

Mapping quality =60
Secondary = no
Supplementary = no

Duplicate = no

Failed QC = no

Mate is mapped =yes

Mate start = U00096.3:2319858 (-)
Insert size = 753

Firstin pair

Pairorientation = F1R2

MD =221 A10A37

MM =2

AS =260

X5 =0

Right alignment

Read name = MISEQ:8;:000000000-A7VC1:1:2112:3986:8017

Location =J00096.3:2,319,925
Alignment start =2,319,853 (-}
Cigar =187M

Mapped = yes

Mapping quality = 60
Secondary =no
Supplementary = no

Duplicate = no

Failed QC = no

Base =C

Base phred quality =25

Mate is mapped =yes

Mate start = UD0D096.3:2319292 (+)
Insert size. =-753

Second in pair

Pair origntation = F1R2

MD =12T27T146

NM =2

AS =177

You don't need to understand every value, but compare this to the SAM format to get an idea of what

is there.

44 of 88

SNPs and Indels

The following 3 tasks are open-ended. Please take your time with these. Read the examples
on the following page if you get stuck.

Task 13: Read about the Alignment Display Format

Visit http://www.broadinstitute.org/software/igv/AlignmentData

Task 14: Manually Identify a Region Without any Reads Mapping.

It can be quite difficult to find even with a very small genome. Zoom out as far as you can and
still see the reads. Use the coverage plot from QualiMap to try to find it. Are there genes associated?

Because of the way IGV handles BAM files, it will not display coverage information if you zoom out too
far. To get coverage information across the entire genome, regardless of how far you are zoomed out,
you’ll need to create a TDF file which contains a coverage information across windows of X number of
bases across the genome. You can do this within IGV:

Select Tools->Run igvtools:

File Genomes ¥Yiew Tracks Regions Tuuls|GenumeSpace Help

5 Run Batch Scrint ...
E.coli U00096 ‘v Uogosees [333258 |Go T
un igvioolis...

Find Motif...
BLAT ...
Combine Data Tracks

o Gitools Heatmaps J 5
BEDTools 3
b 230kh oo —— e =+16 kb 2,312 kb 2,320 ki

E_Coli_ CGATGT_LO0L fitered.s

ed.rrndup.barn Coverage

Now load the BAM alignment file in the Input field and click Run:

45 of 88

http://www.broadinstitute.org/software/igv/AlignmentData

igvtools (on genomics-build-2)

Command |C0unt

em— S
-

Input File ics_tutorial/data/sequencingiecoli_exeterirernapping_to_reference/E_Coli CGATGT L001 filtered.sorted.rmdup.bam| Browse

Output File|_tutorialidata/sequencing/ecoli exeteriremapping to reference/E Coli CGATGT LO01 filtered. sorted.rmdup.bamn.tdf| Browse

Genome

Zoom Levels
Window Functions

Probe to Loci Mapping
Window Size
Extension Factor

[] Count as Pairs

Sort Options
Temp Directory
Max Records

TDF and Count options

Browse

[Min [Max Mean [Median
[]2% []10% []90% []9g%

Browse
25

Browse

Messages

Once completed, close the igvtools window and then you can load this TDF file as by:

Select File -> Load from file...

Load the newly created tdf file

You should then see the extra coverage track which remains visible even after you zoom out.

46 of 88

File Genomes View Tracks Regions Tools GenomeSpace Help

E.coli U00096 | |U00096.3 - ||UD0086.3:2,121,889-2,510,753 Go Fr @ A = 2 | [=RAR] ARRANRRRNARAT

397 kb

2,200 kb 2,300 kb 2,200 kb 2,500 kb
1 1 1 1 1 | | |

[|4l

- 51]

E_Coli CGATGT_LO01_fitered s

E_Col_CEATGT_LO0L_fitered.s
ed.rrndup.bam Coverage

[»][4

Zoom in to see coverage.

E_Coli CEATGT_LO0L fitered s

Zool to see a3 ents.
ed.rmdup.barn Zoom in to see alignments

Task 15: Identify SNPs and Indels Manually

Can you find any SNPs? Which genes (if any) are they in? How reliable do they look? (Hint —
look at the number of reads mapping, their orientation - which strand they are on and how bright the
base-calls are).

Example: Identifying Variants Manually

Here are some regions where there are differences in the organism sequenced and the
reference: Can you interpret what has happened to the genome of our strain? Try to work out what is
going on yourself before looking at the comment

Paste each of the genomic locations in this box and click go
Ecoli Uooogs | |U00096.3 | |UDD096.3:2,108,392-2,133,153 Go
*

Uevo096.3:2,108,392-2,133,153
Ueves6.3:3,662,049-3,663,291
U00096.3:4,296,249-4,296,510
Ueves6.3:565,965-566,489

47 of 88

Region U00096.3:2,108,392-2,133,153

24 kb

bl 2,110 kb 211z kb 2114 kb 2,116 kb 2,118 kb 2120 kb 212z kb 2124 kb

2,126 kb

2,128 kb

2,130 kb

c

=
ml-— B N

wealm gmd weaF

wziB bl [li=1v] fbB weahl woahd woal woakl wzC woad cpG cpeB

wial

This area corresponds to the drop in coverage identified by Qualimap. It looks like a fairly large region
of about 17 kbases which was present in the reference and is missing from our sequenced genome. It
looks like about 12 genes from the reference strain are not present in our strain - is this real or an

artefact?

Well it is pretty conclusive we have coverage of about 60X either side of the deletion and nothing at all
within. There are nice clean edges to the start and end of the deletion. We also have paired reads
which span the deletion. This is exactly what you would expect if the two regions of coverage were

actually joined together.

Region U00096.3:3,662,049-3,663,291

48 of 88

a7 bp

bp 3,882 580 bp 1,582 570 bp 4,852,680 bp 3,862,680 bp 3,882,700 bp 4582 710 bp 3,852,720 bp 3,862,730 bp 9,882,740 bp
| | | | | | | | | | | | | | | | | | |

lﬁéﬁ;ﬁ??s_ h
b A0

o o

b
k

s

6 (100%, 18+, 28-)

Z-4mo
=

2
T I T TEE T TS T aaa

T

I |
I

ACAATTTCCACCGCCTTCGGCAGCAGCTACGTGAACGACTTCCTC AACCAGGGOLCGGGTGRAAARAAAGTGTATGTCCAGGCAGGCACGCCOGTTCCGT

mdiF

Zoom right in until you can see the reference sequence and protein sequence at the bottom of the
display.

The first thing to note is that only discrepancies with respect to the reference are shown. If a read is
entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the
presence of an 'abnormal' distance between paired-end reads. Note that unless this is consistent
across most of the reads at a given position, it is not significant.

Here we have a C->T SNP. This changes the codon from CAG->TAG (remember to check what strand
the gene is on this one is on the forward strand, if it was on the reverse strand you would have to take
the reverse complement of the codon to interpret the amino acid it codes for) and results in a
GIn->Stop mutation in the final protein product which is very likely to change the effect of the protein
product.

Hover over the gene to get some more information from the annotation... Since it is a drug resistance
protein it could be very significant.

49 of 88

bp 4,882,700 bp 3,862 710 bp 1,862,720 bp

-4 +

mcltF
Uo0096.3:3660414-3663527
Type =gene

i =gen=3578

ID: gene3578

Name: mcltF

Dbxref: EcoGene:EG12241

gbkey: Gene

gene: mdtF

gene_synonym: ECK3498 JW3482 yhiV
locus_tag b3514

44 H-44 H-4 H-4+

-

Exon number: 1
LU00096.3:3660414-3663527
T |AAC78539.1

rTCcCTCAACCA
B E M 3 ID: cds3450

Name: AACTES39.1

Parent: gene3578

Mote: putative transport system permease protein

Dbxref: ASAP:ABE-0011480,UniProtkB/Swiss-Prot:P37637 NCBI_

GPFAACTES39 1, EooBGeane:EG12241

gbkey: COS

gene: mdtF

preduct: anasmobic multidrug efflux transporter, ArcA-regul

ated

-1

protein_id: AACTES39.1
trans|_table: 11

One additional check is that the SNPs occur when reading the forward strand. We can check this by
looking at the direction of the grey reads, or by hovering over the coverage graph - see previous
diagram. We can see that approximately half of the bases reporting the C->T mutation occur in read 1
(forward arrow), and half in read 2 (reverse arrow). This adds confidence to the base-call as it reduces
the likelihood of this SNP being the result of a PCR duplication error.

Note that sequencing errors in lllumina data are quite common (look at the odd bases showing up in
the screen above). We rely on depth of sequencing to average out these errors. This is why people
often mention that a minimum median coverage of 10-20x across the genome is required for accurate
SNP-calling with lllumina data. This is not necessarily true for simple organisms such as prokaryotes,
but for diploid and polyploid organisms it becomes important because each position may have one,
two or many alleles changed.

50 of 88

Regions U00096.3:4,296,332-4,296,428

5,350 bp 4,285,370 bp 4,266,350 bp 4,286,360 bp az
| | | |

[o- 84

Left ali t Rightali

Insertion: CG Read name = MISEQ:8:000000000-A7VC1:1:2111:27422:1 7596
Location = UD0096,.3:4 296,381
Alignment start = 4,296 626 (-}
Cigar = 226M
Mapped =yes
Mapping quality = 80
Secondary = no
Supplementary = no

Duplicate =no
Failed QC =no
G T A G G TC GGG ATA®AGGTCGCTTTA Mate is mapped = yes
Mate start = U00096.3:4296168 (+)
543 Insert size =-683

Second in pair

Fair orientation = F1 R2
MD =40T185

MM =1

AS =221

” X8 =0

056,34, 256,381
... -

Much the same guidelines apply for indels as they do for SNPs. Here we have an insertion of two
bases CG in our sample compared to the reference. Again, we can see how much confidence we
have that the insertion is real by checking that the indel is found on both read 1 and read 2 and on
both strands.

The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details
as above

We can hover our mouse over the reference sequence to get details of the gene. We can see that it
occurs in a repeat region.

One can research the effect that a SNP or Indel may have by finding the relevant gene at
http://www.uniprot.org/ (or google 'mdtF uniprot' in the previous case).

It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually
is a fairly tedious process if there are many mutations. As such, the next section will look at how to
obtain spreadsheet friendly summary details of these.

51 of 88

http://www.uniprot.org/

Region U00096.3:565,965-566,489

This last region is more complex try to understand what genomic mutation could account for this
pattern - discuss with a colleague or an instructor.

Recap: SNP/Indel Identification

Only changes from the reference sequence are displayed in IGV

Genuine SNPs/Indels should be present on both read 1 and read 2

Genuine SNPs/Indels should be present on both strands

Genuine SNPs/Indels should be supported by a good (i.e. 20-30x) depth of coverage
Very important mutations (i.e. ones relied upon in a paper) should be confirmed via
PCR/Sanger sequencing.

abrowbd=

Automated Analyses

Viewing alignments is useful when convincing yourself or others that a particular mutation is
real rather than an artefact and for getting a feel for short read sequencing datasets. However, if we
want to quickly and easily find variants we need to be able to generate lists of variants, in which gene
they occur (if any) and what effect they have. We also need to know which (if any) genes are missing
(i.e. have zero coverage).

Automated Variant Calling

To call variants we can use a number of packages (e.g. VarScan, GATK). However here, we
will show you how to use the bcftools package which comes with samtools. First, we need to generate
a pileup file which contains only locations with the variants and pass this to bcftools.

Task 16: Identify SNPs and Indels using Automated Variant Callers

Make sure you are in the directory.
~/workshop_materials/genomics tutorial/data/sequencing/ecoli_exeter/remapping to_r
eference

Lets use samtools’ sister software bcftools to perform SNP/indel variant calling
(https://samtools.qgithub.io/bcftools/beftools.html)

Type bcftools in your terminal:

52 of 88

https://samtools.github.io/bcftools/bcftools.html

Program: bcftools (Tools for variant calling and manipulating VCFs and BCFs)
Version: 1.9 (using htslib 1.9)

Usage: bcftools [-—version|--version-only] [-—help] <command> <argument>
Commands:

—— Indexing
index index VCF/BCF files

--— VCF/BCF manipulation

annotate annotate and edit VCF/BCF files

concat concatenate VCF/BCF files from the same set of samples
convert convert VCF/BCF files to different formats and back

isec intersections of VCF/BCF files

merge merge VCF/BCF files files from non-overlapping sample sets
norm left-align and normalize indels

plugin user—defined plugins

query transform VCF/BCF into user-defined formats

reheader modify VCF/BCF header, change sample names

sort sort VCF/BCF file

view VCF/BCF conversion, view, subset and filter VCF/BCF files

-— VCF/BCF analysis

call SNP/indel calling

consensus create consensus sequence by applying VCF variants

cnv HMM CNV calling

csq call variation consequences

filter filter VCF/BCF files using fixed thresholds

gtcheck check sample concordance, detect sample swaps and contamination
mpileup multi-way pileup producing genotype likelihoods

roh identify runs of autozygosity (HMM)

stats produce VCF/BCF stats

Most commands accept VCF, bgzipped VCF, and BCF with the file type detected
automatically even when streaming from a pipe. Indexed VCF and BCF will work
in all situations. Un-indexed VCF and BCF and streams will work in most but
not all situations.

We will use bcftools mpileup to call SNPs/indels:

53 of 88

Usage: bcftools mpileup [options] inl.bam [in2.bam [...]]

Input options:

-6, ——illuminal.3+ quality is in the Illumina-1.3+ encoding
-A, ——count-orphans do not discard anomalous read pairs
-b, ——bam-list FILE list of input BAM filenames, one per line
-B, -—-no-BAQ disable BAQ (per-Base Alignment Quality)
-C, ——adjust-MQ INT adjust mapping quality; recommended:50, disable:o [0]
-d, ——max—depth INT max per-file depth; avoids excessive memory usage [250]
-E, ——redo-BAQ recalculate BAQ on the fly, ignore existing BQs
-f, ——fasta-ref FILE faidx indexed reference sequence file
——no-reference do not require fasta reference file
-G, ——read-groups FILE select or exclude read groups listed in the file
-q, —--min-MQ INT skip alignments with mapQ smaller than INT [0]
-Q, ——min-BQ INT skip bases with baseQ/BAQ smaller than INT [13]
-r, ——regions REG[,...] comma separated list of regions in which pileup is generated
—R, ——regions-file FILE restrict to regions listed in a file
—-—ignore-RG ignore RG tags (one BAM = one sample)

--rf, ——incl-flags STR|INT required flags: skip reads with mask bits unset []

--ff, ——excl-flags STR|INT filter flags: skip reads with mask bits set
[UNMAP, SECONDARY , QCFAIL,DUP]

-5, ——samples LIST comma separated list of samples to include

-S, ——samples-file FILE file of samples to include

-t, ——targets REG[,...] similar to -r but streams rather than index-jumps

-T, ——targets-file FILE similar to -R but streams rather than index—jumps

-x, ——ignore-overlaps disable read-pair overlap detection

Qutput options:

-a, -——annotate LIST optional tags to output; '?' to list []
-g, ——gvcf INT[,...] group non-variant sites into gVCF blocks according
to minimum per—sample DP
——no-version do not append version and command line to the header
-0, ——output FILE write output to FILE [standard output]

-0, ——output-type TYPE 'b' compressed BCF; 'u' uncompressed BCF;
'z' compressed VCF; 'v' uncompressed VCF [v]
——threads INT number of extra output compression threads [0]

SNP/INDEL genotype likelihoods options:

-e, ——ext-prob INT Phred-scaled gap extension seq error probability [20]
-F, ——gap-frac FLOAT minimum fraction of gapped reads [0.002]

-h, —--tandem—-qual INT coefficient for homopolymer errors [100]

-I, —-—skip-indels do not perform indel calling

-L, ——max-idepth INT maximum per-file depth for INDEL calling [250]

-m, ——min-ireads INT minimum number gapped reads for indel candidates [1]

-0, ——open—prob INT Phred-scaled gap open seq error probability [40]

-p, ——per—sample-mF apply —-m and -F per-sample for increased sensitivity

-P, —platforms STR comma separated list of platforms for indels [all]

If you are running this on datasets with large numbers of samples with limited coverage where
recombination is a factor, you can obtain increased sensitivity by passing all the BAM files to the
variant caller simultaneously (hence the multiple BAM file options in bcftools). There are also many
other options here for variant calling, which you might adjust for variant calling in real life!

Now let’s use bcftools mpileup to perform variant calling.

First, let's generate a Variant Call Format (VCF) file
(https://samtools.github.io/bcftools/bceftools. html#mpileup)

Type the following:

bcftools mpileup -f

~/workshop _materials/genomics tutorial/data/reference/U00096/U00096.fna

E Coli CGATGT_L@O1 filtered.sorted.fixmate.position.markdup.bam >

var.raw.vcf

54 of 88

https://samtools.github.io/bcftools/bcftools.html#mpileup

This may take 10 minutes or so and will generate a Variant Call Format (VCF) file containing the raw
unfiltered variant calls for each position in the genome.

Now let’'s use bcftools call to call variants:

bcftools call -c -v --ploidy 1 -0 v -0 var.called.vcf var.raw.vcf

Note that we are asking bcftools to call assuming a ploidy of 1 and to output only the variant sites in
VCF format. Using grep we can count how many sites were identified as being variant sites (i.e. sites
with a potential mutation). We ask grep not to count lines beginning with a comment (#).

"A" var.called.vcf

You should find 320 or so sites.

Now we just need to filter this a bit further to ensure we only retain regions where we have >90% allele
frequency

We can do this using vcftools (http://vcftools.sourceforge.net/man_latest.html)

vcftools --minDP 10 --min-alleles 2 --max-alleles 2 --non-ref-af 0.9 --vcf

var.called.vcf --recode --recode-INFO-all --out var.called.filt

This will create a file called var.called.filt.vcf.recode.vcf. Once complete, view the file using the 'more’
command. You should see something similar to: (lines beginning with # are just comment lines
explaining the output)

#CHROM POS D REF
U00096.3 378700
U00096.3 566173

-]
B

FILTER INFO
222 . DP=47; VDB=3.492280e-01; AF1=1; AC1=2;DP4=0, 0, 20, 26; MO=60; FQ=-165
140 . DP=74;VDB=1.335471e-01;RPB=-1.366788e+00; AF1=0.5; AC1=1;DP4=22, 35,7, 9; Mp=60;FQ=143; PV4=0.78,0.051,1,1

U00096.3 566205 . 152 : DP=70; VDB=3. 660676e-02; RPB=-2. 810193e-01; AF1=0.5; AC1=1;DP4=22, 31, 6, 9; MO=60,;FQ=155,Pv4=1,1,1,1
U00096.3 566245 . 133 . DP=67;VDB=1.726489e-02;RPB=7.739471e-01;AF1=0.5; AC1=1;DP4=22,29, 5, 9; MQ=60; FQ=136,;PV4=0.76,1,1,0.35
U00096.3 566277 . 55 3 DP=63; VDB=3. 921215e-03; RPB=2.597793e-01; AF1=0.5; AC1=1;DP4=25, 28, 3, 6; MQ=60; FQ=58,; PV4=0.49,1,1,1
U00096.3 566323 . 71 . DP=58; VDB=6.304791e-03; RPB=2.418227e+00; AF1=0.5; ACL=1;DP4=25, 23, 3, 6; MQ=60; FQ=74;PV4=0.47,1,1,1

U00096.3 566326 .
U00096.3 566332 .
U00096.3 566356 .

57 g DP=57; VDB=5.476300e-03; RPB=2 . 654789e+00; AF1=0.5; AC1=1;DP4=24, 23, 3, 6; MQ=60;FQ=60; PV4=0.47,1,1,1
26 " DP=57; VDB=3.998488e-03; RPB=2 . 444295e+00; AF1=0. 5; AC1=1;DP4=25, 22, 3, 7; M)=60; FQ=29; PV4=0.3,0.32,1,1
71 5 DP=60; VDB=3.343644e-02; RPB=3 . 626135e+00; AF1=0.5; AC1=1;DP4=25, 21, 3, 7; MQ=60; FQ=74; PV4=0.3,0.49,1,0.13

HHHOQ@HAYE
NAaOHHAYOQNG

You can see the chromosome, position, reference and alternate allele as well as a quality score for the
SNP. This is a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.
The full specification is given at http://samtools.github.io/hts-specs/VCFv4.2.pdf

The lines starting DP and INDEL contain various details concerning the variants. For haploid
organisms, most of these details are not necessary.

This forms our definitive list of variants for this sample.

Take a look at some of the variants we just excluded, was it justified? Remember there is no filter that
can keep all the correct variants and remove all the dubious!

55 of 88

http://vcftools.sourceforge.net/man_latest.html
http://samtools.github.io/hts-specs/VCFv4.2.pdf

You can load the VCF file to IGV:

ile_Genomes View Tracks Regions Teals Genemespace Help
E.<oli U009 ~ |U00096.3 ~ | [uncoss.a Go L | Bl =

| 1 | (L [l [11 (L [(AL | []

Task 17: Compare the Variants Found using this Method to Those
You Found in the Manual Section

Can you see any variants which may have been missed? Often variants within a few bp of
indels are filtered out as they could be spurious SNPs thrown up by a poor alignment. This is
especially the case if you use non-gapped aligners such as Bowtie.

Quickly Locating Genes which are Missing Compared to the Reference

We can use a command from the BEDTools package (http://bedtools.readthedocs.org/en/latest/) to
identify annotated genes which are not covered by reads across their full length.

Type the following on one line:

coverageBed -a

E Coli CGATGT _LOO1 filtered.sorted.fixmate.position.markdup.bam

~/workshop _materials/genomics tutorial/data/reference/U00096/U00096.gff -b
> gene_coverage.txt

This should only take a minute or so. The output contains one row per annotated gene - the 13"
column contains the proportion of the gene that is covered by reads from our sequencing. 1.00 means
the gene is 100% covered and 0.00 means no coverage.

We can use the unix program sort to see which genes are missing. In this case, we are sorting by the
13 column (-k)

56 of 88

If we sort by this column we can see which genes are missing

sort -k 13 gene coverage.txt | more

That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and
analysed a whole bacterial genome! Well done!

In the next part, we will be looking at how to extract and assemble unmapped reads. This will enable
us to look at material which may be present in the strain of interest but not in the reference sequence.

57 of 88

Part 3. Assembly of Unmapped Reads

Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous
section we cleaned our data, checked QC metrics, mapped our data and obtained a list of variants
and an overview of any missing regions.

Now, we will examine those reads which did not map to the reference genome. We want to know what
these sequences represent. Are they novel genes, plasmids or just contamination?

To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,
assemble them using SPAdes, generate assembly statistics and then produce some annotation via
BLAST and RAST.

Extraction and QC of Unmapped Reads
Task 1: Extract the Unmapped Reads

First of all make sure you are in the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory
Then create a directory called unmapped_assembly in which we will do our de novo assembly and
analysis. Move into the unmapped_assembly directory.

Now we will use the bam2fastq program (http://gsl.hudsonalpha.org/information/software/bam2fastq)
to extract from the BAM file just those reads which did NOT map to the reference genome. The
bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one
line):

bam2fastq --no-aligned -o unaligned#.fastq

../remapping to_reference/E_Coli CGATGT_LOO1 filtered.sorted.fixmate.positi

on.markdup.bam

The --no-aligned option means only extract reads which did not align. The -o unaligned\# means dump
read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastq. The program should
successfully create two files.

Note that some reads were singletons (i.e. one read mapped to the reference, but the other did not).
These will not be included in this analysis.

58 of 88

http://gsl.hudsonalpha.org/information/software/bam2fastq

Task 2

Check that the number of entries in both fastq files is the same. Also check that the last few
entries in the read 1 and read 2 files have the same header (i.e. that they have been correctly paired).

Task 3: Evaluate QC of Unmapped Reads

Use the fastqc program to look at the statistics and QC for the unaligned_1.fastq and
unaligned 2.fastqfiles.

Do these look reasonably good? Remember, some reads will fail to map to the reference because
they are poor quality, so the average scores will be lower than the initial fastqc report we did in the
remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality
which did not map.

Assuming these reads look ok, we will proceed with preparing them for de novo assembly.

De-novo Assembly

de novo is a Latin expression meaning "from the beginning," "afresh," "anew," "beginning again".
When we perform a de novo assembly we try to reconstruct a genome or part of the genome from our
reads without making any prior assumptions (in contrast to remapping where we compare our reads to
what we think is a close reference sequence).

The advantage is that is that de novo assembly can reveal completely novel results, identify horizontal
gene transfer events for example. The disadvantage is that it is difficult to get a good assembly from short
reads and it can be prone to misleading results due to contamination and mis-assembly.

Task 4: Learn More About de novo Assemblers

To understand more about de-novo assemblers, read the technical note at:
https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly ecoli.pdf

N.B. You will also learn more in the next section so don’t worry if it doesn't all make sense
immediately. You should however understand the idea of the k-mer and broadly how the assembly is
built up from them.

Task 5: Generate the Assembly

We will be using an assembler called SPAdes (http://cab.spbu.ru/software/spades/). It generally
performs pretty well with a variety of genomes. It can also incorporate longer reads produced from
PacBio sequencers that we will use later.

One big advantage is that it is not just a pure assembiler - it is a suite of programs that prepare the
reads you have, assembles them and then refines the assembly.

59 of 88

https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://cab.spbu.ru/software/spades/

SPAdes runs the modules that are required for a particular dataset and it produces the assembly with
a minimum of preparation and parameter selection - making it very straightforward to produce a
decent assembly. As with everything in bioinformatics you should try to assess the results critically and
understand the implications for further analysis.

Let's start the assembler because it takes about 20 minutes to run (this might be a nice time to get tea
©)

spades.py -k 21,33,55,77,99,127 --careful -o spades assembly -1

unaligned 1.fastq -2 unaligned 2.fastq

We are telling it to run the SPAdes assembly pipeline with a range of k-mer sizes (-k); specifying
--careful tells it to run a mismatch correction algorithm to reduce the number of errors; put the output in
the spades_assembly directory and the reads to assemble.

Just because SPAdes does a lot for you does not mean you should not try to understand the process.

Have a read of this:
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

It is a discussion of how SPAdes differs from Velvet another widely used assembler, it explains the
overall process nicely:

Read error correction based on k-mer frequencies using BayesHammer

De Bruijn graph assembly at multiple k-mer sizes, not just a single fixed one.
Merging of different k-mer assemblies (good for varying coverage)
Scaffolding of contigs from paired end/mate pair reads

Repeat resolution from paired end/mate pair data using rectangle graphs

o gk w b=

Contig error correction based on aligning the original reads with BWA back to contigs

Try to understand the steps in the context of the whole picture:

Can you explain why error correction of reads becomes more important as k-mer length increases?
When the assembly is complete change to the spades_assembly directory and look at the output.

Let's take a look at some of the more important content.

params.txt

This contains a summary of the parameters used for assembly - it is useful so you can repeat
the exact analysis performed, or can remember you setting when you want to publish the genome.

60 of 88

http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html
http://genomebiology.com/1471-2164/14/S1/S7
http://bioinf.spbau.ru/rectangles
http://bio-bwa.sourceforge.net/

contigs.fasta

This contains the final results of the assembly in fasta format.

scaffolds.fasta

This contains the final results after scaffolding (which means using paired end information to
join contigs together with gaps). In this case the files are identical, probably because the sum of the
lengths of our paired reads is not much smaller than our insert size (there are very few large gaps
between reads).

assembly_graph.fastg

Contains SPAdes assembly graph in FASTG format - this is a slightly different format that
contains more information than fasta - for example it can contain alternative alleles in diploid
assemblies. We don't need it here, but see http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf if you
might be working with diploid organisms. You can use the Bandage (http://rrwick.github.io/Bandage/)
to view this file.

Task 6: Assessment of the Assembly

We will use QUAST (http://quast.sourceforge.net/) to generate some statistics on the assembly

(in the spades_assembly directory).

This will create a directory called quast and create some statistics on the assembly you produced.

cat quast/report.txt

61 of 88

http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf
http://rrwick.github.io/Bandage/
http://quast.sourceforge.net/

Assembly scaffolds

contigs (>= @ bp) 403

contigs (>= 1000 bp) 14

contigs (>= 5000 bp) 7

contigs (>= 10000 bp) 2

contigs (>= 25000 bp) 1

contigs (>= 50000 bp) 1
Total length (>= @ bp) 339986

Total length (>= 1000 bp) 131641
Total length (>= 5000 bp) 116582
Total length (>= 10000 bp) 85899
Total length (>= 25000 bp) 67361
Total length (>= 50000 bp) 67361

contigs 279
Largest contig 67361
Total length 286141
GC (%) 43.27
N50 816
N75 550
L50 27
L75 143
N's per 100 kbp 34.25

N.B. Your results might differ from the picture here, don’t panic!

Try to interpret the information in the light of what we were trying to do. Because we are assembling
unaligned reads we are not expecting a whole chromosome to pop out. We are expecting bits of our
strain that does not exist in the reference we aligned against; possibly some contamination; various
small contigs made up of reads that didn't quite align to our reference like repetitive or highly
recombinant regions.

The N50 and L50 measures are very important in a normal assembly and we will visit them later, they
are not really relevant to this assembly.

You will notice that we have 1 contig 30-60kb long - what do you think this might be? And 12 other
contigs longer than 1kb. We need to find out what this is!

Analysing the de novo Assembled Reads

Now that we have assembled the reads and have a feel for how much (or in this case, how
little) data we have, we can set about analysing it. By analysing, we mean identifying which genes are
present, which organism they are from and whether they form part of the main chromosome or are an
independent unit (e.g. plasmid).

62 of 88

We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the
contigs against the NCBI non-redundant database. This will enable us to identify the species to which
a given contig matches best (or most closely). The second will call open reading frames within the
contigs and search those against the Swissprot database of manually curated (i.e. high quality)
annotated protein sequences.

Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge
is based on homology — if two proteins are similar they probably share an evolutionary history and may
thus share functional characteristics. Metrics to define whether two sequences are homologous are
notoriously difficult to define accurately. If two sequences share 90% sequence identity over their
length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if
they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very
difficult to judge whether two proteins are homologous based on sequence alone.

To help overcome this searching more subtle signatures may help — this is where Pfam comes in.
Pfam is a database which contains protein families identified by particular signatures or patterns in
their protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to
search query sequences. These can provide a high level annotation where BLAST might otherwise
fail. It also has the advantage of being much faster than BLAST.

Task 7: Search Contigs against NCBI non-redundant Database

Firstly we can filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < contigs.fasta > contigs.goodcov.fasta

The following command executes a nucleotide BLAST search (blastn) of the sequences in the
contigs.fa file against the non-redundant database.

As this takes a long time to run the results have been precomputed and are available in
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu
te/unmapped_reads/

There are a lot of options in this command, let’'s go through them:
e -db is the prepared blast database to search
e -evalue apply an e-value (expectation value) cutoff
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this
size by a sequence of this length).

63 of 88

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

e -num_alignments and -num_descriptions flags tell blastn to only display the top 10 results
for each hit,
-num_threads that it should use 2 CPU cores
-show_gis that it should include general identifier (GI) numbers in the output.
-out file in which to place the output.

There is lots of information on running blast from the command Iline at
http://www.ncbi.nim.nih.gov/books/NBK1763/

N.B. Gl (Genelnfo Identifiers) are being phased out by NCBI so future versions of Blast and NCBI
databases will not support the —show_gis option and may break some downstream tools such as
KronaTools and other databases.

Open the results file:

nano contigs.fasta.blastn

BLASTN 2.2.30+

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.

Database: Nucleotide collection (nt)
29,442,065 sequences; 84,823,117,434 total letters

Query= NODE 9 length 3631 cov 29.6618 ID 17

Length=3631

Score E
Sequences producing significant alignments: (Bits) Value
gi|549811571|gb|CP006698.1| Escherichia coli C321.deltaA, comple... 6706 0.0
gi|383395315|gb|JQ086376.1| Enterobacteria phage HK630, complete... 6685 0.0
gi]339305107|gb|JF340119.2| Synthetic construct clone HO-HIS phy... 6680 0.0
gi|186702979|gb|EU421722.1| Cloning vector lambdaS2775, complete... 6680 0.0
gil215104|gb|J02459.1|LAMCG Enterobacteria phage lambda, complet... 6680 0.0
gi|1066312|gb|U39286.1|CVU39286 Cloning vector TLF97-3, phage la... 6674 0.0

Search for our largest contig - SPAdes names the contigs by increasing size.

To do this in nano, do ctrl + w then search for NODE_1_ and press enter

Query= NODE 1 length 67492 cov 565.407 ID 1

Length=67492

Score E
Sequences producing significant alignments: (Bits) Value
gi| 664682453 |gb|CP008801.1| Escherichia coli KLY, complete genome 79013 0.0
gi]8918823|dbj|AP001918.1| Escherichia coli K-12 plasmid F DNA, ... 78976 0.0
gi|619497957|gb|KJ170699.1| Escherichia coli strain K-12 plasmid... 65330 0.0

64 of 88

http://www.ncbi.nlm.nih.gov/books/NBK1763/

gi| 665821556 |gb|KJ484626.1| Escherichia coli plasmid pH2332-166,... 65302 0.0
gi| 665821958 |gb|KJ484628.1| Escherichia coli plasmid pH2291-144, ... 65213 0.0
gi|28629230|gb|AF550679.1| Escherichia coli plasmid pl658/97, co... 64591 0.0
gi|4874241|gb|U01159.2| Escherichia coli F sex factor transfer r... 61474 0.0
gi| 665822931 |gb|KJ484636.1| Escherichia coli plasmid pC59-153, c... 41227 0.0
gi|301130432|gb|CP002090.1| Salmonella enterica subsp. enterica ... 41026 0.0
gi]301130304|gb|CP002089.1| Salmonella enterica subsp. enterica ... 41026 0.0

There are a number of good hits; notice from the contig header line that the average coverage is >500
and the coverage of our genome was around 50 - does this give you a clue to what it is?

Task 8: Obtain Open Reading Frames

The first task is to call open reading frames within the contigs. These are designated by
canonical start and stop codons and are usually identified by searching for regions free of stop
codons. We will use the EMBOSS package program getorf to call these.

We will use codon table 11 which defines the bacterial codon usage table
(https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to
just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in
file contigs.orf.fa.

getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta

-outseq contigs.orf.fasta

If we look at the output file we can see that it is a FASTA formatted file containing the name of the
contig on which the ORF occurs, followed by an underscore and a number (e.g. _1) to indicate the
number of the ORF on that contig. The numbers in square brackets indicate the start and end position
of the ORF on the contig (i.e. in nucleotide space). So in this example, the first ORF occurs on NODE
9 and is between position 934 and 1494. The third ORF occurs between positions 2400 and 2047 on
the reverse strand. This is a relatively short peptide sequence and is unlikely to be a genuine peptide.

Also note that many ORFs do not start with a Methionine. This is because by default the getorf
program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid
spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are
captured.

>NODE_9 length 3631 cov_29.6618 ID 17 1 [934 - 1494]
TERFEVSEINSQALREAAEQAMHDDWGFDADLFHELVTPSIVLELLDERERNQQYIKRRD
QENEDIALTVGKLRVELETAKSKLNEQREYYEGVISDGSKRIAKLESNEVREDGNQFLVV
RHPGKTPVIKHCTGDLEEFLRQLIEQDPLVTIDIITHRYYGVGGQWVQDAGEYLHMMSDA
GIRIKGE

>NODE_9_length 3631 cov_29.6618 ID 17 2 [2450 - 3529]
RGSEMGRRRSHERRDLPPNLYIRNNGYYCYRDPRTGKEFGLGRDRRIAITEAIQANIELF
SGHKHKPLTARINSDNSVTLHSWLDRYEKILASRGIKQKTLINYMSKIKAIRRGLPDAPL
EDITTKEIAAMLNGYIDEGKAASAKLIRSTLSDAFREATIAEGHITTNHVAATRAAKSEVR
RSRLTADEYLKIYQAAESSPCWLRLAMELAVVTGQRVGDLCEMKWSDIVDGYLYVEQSKT

65 of 88

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

GVKIAIPTALHIDALGISMKETLDKCKEILGGETIIASTRREPLSSGTVSRYFMRARKAS
GLSFEGDPPTFHELRSLSARLYEKQISDKFAQHLLGHKSDTMASQYRDDRGREWDKIEIK

>NODE 9 length 3631 cov 29.6618 ID 17 3 [2400 - 2047] (REVERSE SENSE)
FVEQILSSILNRRWEYPAFPNPSTNCFKASWTSLACVPLLKCQVHRKVSAITRKKKPPSG
GLVFFQFFNSNIGYVCMCYLRPYHPVVVAVVDVLRFDNSVEWLSTPFSCDSEVHLSSP

Task 9: Search Open Reading Frames against NCBI non-redundant Database

The first thing we can do with these open reading frames is to search them against the NCBI
non-redundant database of protein sequences to see what they may match.

Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp
program and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by
a sequence of this length). The num_alignments and num_descriptions flags tell blastp to only display
the top 10 results for each hit, the num_threads tells blastp to use 2 CPU cores and show_gis tells
blastp it should include general identifier (GI) numbers in the output.

First reduce the number of orfs so that we have a manageable number - this small perl program that
selects 10% of the orfs.

Then you would type (all on one line). HOWEVER this takes several hours therefore the results have
been precomputed for you in:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu
te/unmapped_reads/

Task 10: Review the BLAST Format

Open the results file with nano and search for plasmid in the text. You should find a number of
hits to plasmid related proteins - one example is below - can you find any others? (Remember we only
checked 10% of the orfs we found). This evidence is not conclusive, but combined with the high
coverage, it is starting to look like this contig is a plasmid.

Query= NODE 1 length 67492 cov 565.407 ID 1 32 [31455 - 31889]

Length=145

Score E
Sequences producing significant alignments: (Bits) Value
gi|446834068|ref|WP_000911324.1| MULTISPECIES: pirin 275 3e-92
gi|446834058|ref|WP_000911314.1| pirin 273 le-91
gi|446834061|ref|WP _000911317.1| pirin 271 le-90
gi|446834059 |ref|WP_000911315.1| pirin 269 6e-90

66 of 88

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

gi|545289568 | ref |WP 021572485
gi|446834062|ref|WP 000911318
gi|585223672|ref|WP 024168023
gi|723058272|ref|WP 033552985
gi|446834056|ref|WP_ 000911312
gi|446834060|ref|WP 000911316

>gi]446834068|ref|WP_00091132
gi[32470009|ref|NP_862949.1|
gil689926354|ref|YP 00906013

gi|323184064 |gb|EFZ69443.1]|
9i 1325495739 |gb |EGC93600.1 |
911385154377 |gb|EIF16391.1]

.1| hypothetical protein

.1 MULTISPECIES: pirin

.1| plasmid maintenance protein
.1| plasmid maintenance protein
.1] plasmid maintenance protein
.1 pirin

4.1| MULTISPECIES: pirin [Escherichia]

plasmid maintenance protein [Escherichia coli]
1.1| PIN domain protein [Escherichia coli]
gil691230621|ref|YP 009070585.1| VapC toxin protein [Escherichia coli]
gi|28629266|gb|AA049546.1| hypothetical protein [Escherichia coli]

269
269
268
268
268
268

PIN domain protein [Escherichia coli OK1357]
plasmid maintenance protein [Escherichia fergusonii ECD227]
plasmid maintenance protein [Escherichia coli 032:H37 str. P4]

6e-90
6e-90
9e-90
9e-90
le-89
le-89

67 of 88

Additional Checks

Task 11: Check that the Contigs do not Appear in the Reference Sequence

In theory, the unmapped reads used to generate the contigs should not assemble into
something which will map against the genome. However, it is always possible (especially with more
complex genomes), that this might happen. To double-check move back to the folder containing the
contigs.goodcov.fasta:

blastn -subject

~/workshop materials/genomics_tutorial/data/reference/U00096/U00096.fna
-query contigs.goodcov.fasta | more

Here we use the BLAST+ package in a different mode to compare two sequences against each other.
Unlike the previous examples where we have searched against a database of sequences, here we are
doing a simple search of the contigs against the reference genome we are using. Scroll down a little...

Query= NODE 17 length 917 cov 10.3076 ID 33
Length=917

Subject= gi|545778205|gb|U00096.3| Escherichia coli str. K-12 substr. MG1l655,
complete genome

Length=4641652

Score = 193 bits (104), Expect = 3e-49
Identities = 186/227 (82%), Gaps = 0/227 (0%)
Strand=Plus/Plus

Query 68 ACGGCATCCACGAAGGCGACAGAGGCTGCGGGAAGTGCGGTATCAGCATCGCAGAGCAAA 127

FEEEEEErrrr e e e e e e e e L b rrrrrrrd
Sbjct 1430285 ACGGCATCCACGAAGGCGACAGAGGCTGCTGGCAGTGCGACGGCGGCAGCTCAGAGCAAA 1430344

You can see that some of the contigs that have been assembled hit the reference sequence. In the
record above the e-value is 3e-49 which is massively significant; however, the e-value is calculated as
the chance of a hit this close against a random sequence of the same size. Since our subject
sequence is now very small and we know it is related to our strain it is not surprising that there are
some hits. We are concerned about whole contigs that map closely to the reference genome.

68 of 88

Part 4 De novo Assembly Using Short Reads

Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous
section we extracted those reads which did not map to the reference genome and assembled them.
However, it is often necessary to be able to perform a de novo assembly of a genome. In this case,
rather than doing any remapping, we will start with the filtered reads we obtained in part 3 of the
workshop.

To do this, we will use the program SPAdes again to try to get the best possible assembly for a given
genome. We will then generate assembly statistics and then produce some annotation via Pfam and
BLAST.

Task 1: Start the Assembly

The assembly takes a while so the results have been pre-computed for you and are available
in the directory:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembl

y

If you were to run the command it would be as follows:

This will create a directory called denovo_assembly rerun to hold the results.

Assembly Theory

We are using SPAdes (http://cab.spbu.ru/software/spades/) to perform our assembly. It is a de
Bruijn graph based assembler, similar to other short read assemblers like velvet
(https://www.ebi.ac.uk/~zerbino/velvet/). The advantage of SPAdes is that it does a lot of error
correction and checking before and after the assembly which improves the final result. A downside of
SPAdes is that it was designed for assembling reads from a single cell and although it does a good job
with DNA prepared from a community it can leave in some low coverage sequences which are likely to
be artifacts.

You can read more about the comparison here
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

SPAdes is also very easy to use - apart from telling it where your input files are the only parameter
that you might want to choose is the length of k-mer.

69 of 88

http://cab.spbu.ru/software/spades/
https://www.ebi.ac.uk/~zerbino/velvet/
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

K-mer length. Rather than store all reads individually which would be unfeasible for lllumina type
datasets, de Bruijn assemblers convert each read to a series of k-mers and store each k-mer once,
along with information about how often it occurs and which other k-mers it links to. A short k-mer
length (e.g. 21) reduces the chance that data will be missed from an assembly (e.g. due to reads
being shorter than the k-mer length or sequencing errors in the k-mer), but can result in shorter contigs
as repeat regions cannot be resolved.

When using the Velvet assembler it is necessary to try a large combination of parameters to ensure
that you obtain the 'best' possible assembly for a given dataset. There is even a program called
VelvetOptimiser which does it for you. However, what 'best' actually means in the context of genome
assembly is ill-defined. For a genomic assembly you want to try to obtain the lowest number of
contigs, with the longest length, with the fewest errors. However, although numbers of contigs and
longest lengths are easy to evaluate, it is extremely difficult to know what is or isn't an error when
sequencing a genome for the first time.

SPAdes allows you to choose more than one k-mer length - it then performs an assembly for each
k-mer and merges the result - trying to get the best of both worlds. It actually has some pre-calculated
k-mer settings based on the length of reads you have, so you don't even have to choose that.

Let's look at the assembly process in more detail:

Description of k-mers:

What are they? Let's say you have a single read:

AACTAACGACGCGCATCAAAA

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained by taking the
first six bases, then moving the window along one base, taking the next 6 bases and so-on until the
end of the read. E.g:

AACTAAC | GACGCGCATCAAMA A JACTAACG |ACGCECATCAAAA

e | AACTAAC [—+ ACTAACG

70 of 88

AACTAACGACGCGCATCAAAA

et || actincs b AT] 'm]——bmu‘ﬁ]—b[ﬂuﬁt-—hmiﬂ]—hmu:—t{um——b’mm‘——.—\m\

[scareas
b
[wIm.
(oo

You may well ask, “So what? How does that help”? For a single read, it really doesn't help. However
let's say that you have another read which is identical except for a single base:

AACTAACGAL G [GCATCAAAA
ACTAACGAL T [GCATCAAAA

mm,‘—-{xm{»—.-m\.\(u]—muuu:i—.-'mm]——b{mg}—w»::ﬁ.au}—b{m‘—-{“m‘—-{mmj—ﬂkm\

1x 2x x 2x
sl coearcn |
[vescare :
CTCRLAT ,)

[acoar — [[somran] 2x
\& 3 a8, [_;}ur
e

Rather than represent both reads separately, we need only store the k-mers which differ and the
number of times they occur. Note the 'bubble’ like structure which occurs when a single base-change
occurs. This kind of representation of reads is called a 'k-mer graph' (sometimes inaccurately referred

to as a de-bruijn graph).

AACTAAC 6 |CGCA|T
ACTAAC T |CGCA|T
ACTAAC G |CGCA|A [CAAAA

71 of 88

Now let's see what happens when we add in a third read. This is identical to the first read except for a
change at another location. This results in an extra dead-end being added to the path.

The job of any k-mer based assembler is to find a path through the k-mer graph which correctly

represents the genome sequence.
Images courtesy of Mario Caccamo

Description of coverage cutoff:

In the figure above, you can see that the coverage of various k-mers varies between 1x and 3x. The
question is which parts of the graph can be trimmed or removed so that we avoid any errors. As the
graph stands, we could output three different contigs as there are three possible paths through the
graph. However, we might wish to apply a coverage cutoff and remove the top right part of the graph
because it has only 1x coverage and is more likely to be an error than a genuine variant.

In a real graph you would have millions of k-mers and thousands of possible paths to deal with. The
best way to estimate the coverage cutoff in such cases is to look at the frequency plot of contig (node)
coverage, weighted by length. In the example below you can see that contigs with a coverage below
7x or 8x occur very infrequently. As such it is probably a good idea to exclude those contigs which
have coverage less than this — they are likely to be errors.

Description of expected coverage:

Fraquancy
Jet0s 4e+05 bet05 Ge+0S
| | 1 |
]

2e+05
|

1e+05
|

0o 2 4 & 8 11 14 17 20 23 26 29 32 35 38 41 44 4T 50

Oa+00

=] L
1 TT

72 of 88

In the example below you can see a stretch of DNA with many reads mapping to it. There are two
repetitive regions (A1 and A2) which have identical sequence. If we try to assemble the reads without
any knowledge of the true DNA sequence, we will end up with an assembly that is split into two or
more contigs rather than one.

One contig will contain all the reads which did not fall into A1 and A2. The other will contain reads from
both A1 and A2. As such the coverage of the repetitive contig will be twice as high as that of the
non-repetitive contig.

If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive contig. As such,
provided we know what level of coverage we expect for a given set of data, we can use this
information to try and resolve the number of repeats we expect.

RPT A1 RPT A2
= e
Ve

Can try to identify collapsed
repeats by increased relative
coverage

A commonly used metric to describe the effectiveness of the assembly is called N50 - see
http://en.wikipedia.org/wiki/N50_statistic for details.

Task 2: Checking the Assembly

Change into the denovo_assembly directory:

cd denovo_assembly

Firstly we can filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta

73 of 88

http://en.wikipedia.org/wiki/N50_statistic

We will use QUAST again (http://quast.sourceforge.net/) to generate some statistics on the assembly.

quast.py --output-dir quast scaffolds.goodcov.fasta

This will create a directory called quast and create some statistics on the assembly you produced.

cat quast/report.txt

ALl statistics are based on configs of size >= 5

Assembly scaffolds.goodcov
contigs (>= @ bp) 81

contigs (>= 1000 bp) 67

contigs (>= 5000 bp) 49

contigs (>= 10000 bp) 46

contigs (>= 25000 bp) 42

contigs (>= 50000 bp) 29

Total length (>= @ bp) 4689514

Total length (>= 1000 bp) 4679794
Total length (>= 5000 bp) 4642981
Total length (>= 10000 bp) 4623085
Total length (>= 25000 bp) 4560613
Total length (>= 50000 bp) 4090836

contigs 81
Largest contig 293215
Total length 4689514
GC (%) 50.72
N50 136627
N75 95318
L50 12

L75 21

N's per 100 kbp 0.00

You can see that there are 81 contigs in the assembly - so it is still far from complete.
The N50 is 136K and the N75 is 95K so most of the assembly is in quite large contigs.

This is fairly normal for a short read assembly - don't expect complete chromosomes.

A good check at this point is to map the original reads back to the contigs.fasta file and check that all
positions are covered by reads. Amazingly it is actually possible for de-novo assemblers to generate
contigs to which the original reads will not map.

Task 3: Map Reads Back to Assembly

Here we will use BWA again to index the scaffolds.fasta file and remap the reads. This is
almost identical to the procedure we followed during the alignment section, the only difference is that
instead of aligning to the reference genome, we are aligning to our newly created reference.

74 of 88

http://quast.sourceforge.net/

Make sure you are in the following directory:
~/workshop_materials/genomics tutorial/data/sequencing/ecoli exeter/denovo_assembl

y/

Let's create a subdirectory to keep our work separate

mkdir remapping to assembly

cd remapping to assembly

cp ../scaffolds.fasta .
Let's start by indexing the contigs.fasta file. Type:

bwa index scaffolds.fasta

Once complete we can start to align the reads back to the contigs. Type (all on one line):

bwa mem -t 2 scaffolds.fasta ../../E Coli CGATGT LOO1 R1 @0l1l.filtered.fastq

../../E_Coli CGATGT L@@1 R2 001.filtered.fastq >
E Coli CGATGT LOO1 filtered.sam

Once complete we can convert the SAM file to a BAM file:

samtools view -bS E Coli CGATGT L@@l filtered.sam >

E Coli CGATGT LOO1 filtered.bam

And then we can sort the BAM file:

samtools sort -o E Coli CGATGT LOO1 filtered.sorted.bam

E Coli CGATGT LO@1 filtered.bam

Once completed, we can index the BAM file:

samtools index E_Coli CGATGT LO@1 filtered.sorted.bam

We can then (at last!) obtain some basic summary statistics using the samtools flagstat command:

samtools flagstat E Coli CGATGT _LO@1 filtered.sorted.bam

75 of 88

1269338 + 0 in total (QC-passed reads + QC-failed reads)
@ + 0 secondary

622 + @ supplementary

@ + 0 duplicates

1266061 + @ mapped (99.74% : N/A)

1268716 + @ paired in sequencing

634358 + @ readl

634358 + @ read2

1252446 + 0 properly paired (98.72% : N/A)

1264352 + 0 with itself and mate mapped

1087 + @ singletons (0.09% : N/A)

8962 + @ with mate mapped to a different chr

7791 + @ with mate mapped to a different chr (mapQ>=5)

We can see here that very few of the reads do not map back to the contigs. Importantly 99% of reads
are properly paired which gives us some indication that there are not too many mis-assemblies.

Run qualimap to get some more detailed information (and some images)

qualimap bamgc -outdir bamqc -bam E _Coli CGATGT LOO1 filtered.sorted.bam

firefox bamgc/qualimapReport.html

In the Chromosome stats section:

Chromosome stats

Name Length Mapped bases Mean coverage Standard deviation
NODE_1_length 293215 cov_26.7248 ID_1 293215 | 15962208 54.4386 11.386
NODE_2_length_235405_cov_25.9929_ID_3 235405 | 12493267 53.0714 10.9025
NODE_3_length_229124_cov_26.8329_ID_5 229124 | 11966638 52.2278 10.4106
NODE_4_length_227801_cov_26.3369_ID_7 227801 | 11934749 52.3911 12.4527
NODE_5_length_207566_cov_25.5821_ID_9 207566 | 10796431 52.0144 16.3361

NODE_6 length 203932 cov 24.002_ID_11 203932 = 10099128 49.522 9.0934
NODE_7_length 194067 cov_27.4679 ID_13 194067 & 10435540 53.7729 11.2855
NODE_8_length_185369 cov_26.5954 ID_15 | 185369 A 9974734 53.8102 10.7684

NODE_9 length_ 184921 cov_26.3007 ID_17 | 184921 9891106 53.4883 10.9106

76 of 88

The larger of our contigs have a mean coverage of around 50 - which is what we would expect from
our original alignment.

NODE_25 length_67492 cov_567.168_ID_49 67492 78055078 1,156.51 225.09

There is one contig which has the size of 67492 - this is exactly the same as the contig we found in the
unmapped reads - that is pretty good indication that it is a separate sequence (remember we
suspected a plasmid) and not integrated into the chromosome. Also, look at its coverage!

Let's double check that by blasting these contigs against the unmapped assembly contigs from part 4:

blastn -subject ../scaffolds.goodcov.fasta -query
../../unmapped assembly/spades assembly/scaffolds.fasta >
check plasmid.blastn

View the file using more or a text editor:

more check plasmid.blastn

and about 30% of the way down the file you should find: (hint you can use nano Ctrl + w)

Query= NODE 1 length 67492 cov 601.94 ID 2528
Length=67492

Subject= NODE 25 length 67492 cov 567.168 ID 49
Length=67492

Score = 1.246e+05 bits (67474), Expect = 0.0

Identities = 67486/67492 (99%), Gaps = 0/67492 (0%)
Strand=Plus/Plus

This shows us that this contig exactly almost matches that in the unmapped assembly, strongly
supporting that this is a plasmid sequence and not integrated into the chromosomes.

Task 4: View Assembly in IGV

Load up IGV from the console or desktop

Click Genomes -> Load Genome from File....
We are going to import the contigs we have assembled as the reference. Unlike the reference genome

though, we have no annotation available. Make sure you select the scaffolds.goodcov.fasta file
for the complete de novo assembly (not the unmapped reads assembly).

77 of 88

Once loaded, click on File->Load From File... select the
E_Coli CGATGT_L@@1_filtered.sorted.bam file. Again, make sure you load the file in the
remapping_to_assembly directory.

Select Files
] s [==|[—] fea]o—
Look In: ||j remapping_to_assembly |V| @ Iﬁl |E| n.n.ln_
ov fasta fai [E_Coli_CGATGT_L001_filteredsorted.bam |
ov.fasta.pac D E_Coli CGATGT_Lo01_fiktered sorted.bam bai
ov.fasta.sa

GT_Loo1_filtered.bam
GT_Loo1_filtkered.sam
GT_Lo01_fikered.sorted

] [Il [»

File Name: |E_Co|i_CGATGT_L001_fi|h3|ed.sorhed.bam |

Files of Type: !AII Files |v|

Once loaded, explore some of the contigs in IGV.
See if you can find anything unusual in any of the contigs.

Here is one to get you started.
Select NODE_3...

File Genomes View Tracks Regions Tools Genomespace Help

contigs.fasta -

NODE_3_length_229124_cov_26.8329_ID_5 ‘vHZZleA_cov_zﬁ 9329_|D_5‘1—13‘553‘Gu T « L 0 s = | SRR EARERERN

13kh
o 21 aun G 210 S 12k
L

[4

8
[v

!

E_Coll_COATGT_LOD_filtered.
edbam

v |[«]

TRAnE = o 2928 e T T

Why does the contig start and end in repetitive sequence (indicated by the white reads)? You may
need to zoom in to see the details. Think about what an assembler will do if it cannot uniquely assign
reads.

If an assembler cannot resolve these repetitive regions with paired-end reads or coverage information,
it will generally be unable to assemble any further sequence for that contig. Therefore, it is quite
common to see contigs which start and end in sequence which is repeated elsewhere.

78 of 88

Here is another:
Select NODE_49.....

Right click on the reads and select view as pairs:

contigs.fasta v‘|NODEidDJengthisslaicnvillES.7EilDiu7 ‘v|‘ﬂgi\emqt}’\iSSl3}5\471183.7EJD797‘Gu 1 « 2 I v | = R R
5,505 bp
be 1000 bp 2000 bp 3.000bp amobp 5,000 bp.
1 L 1 L 1 1 -
—_— =
& _Coll_COATAT_Lo0 _fiterad] | [#¥1 [+]
ed.bam Coverage =
L= == |
|

E_Coll_CGATGT_LOD_fitereal

edbam
3 tracks loaded | biopE_29_length 5513 cov.. || || BRI

What do you think is going on here? Try blasting the contig sequence using BlastX at
http://blast.ncbi.nim.nih.gov/Blast.cgi to identify which genes the contig contains. To obtain the
sequence you can right click and select ‘Copy consensus sequence’:

contigs.fasta v‘ ‘NODEiagilengthisslaicnviuBa.milniw ‘v ‘ |497\er\gth755137m\471183 78.D_97|Go, FYf < @O o= = | =N R
5,505 bp
e 1,000 b 2000 bR 0006 4000 tp 5000 bp
1 I 1 I ; - : I
E_Coli_CGATGT_L00L filtered.sorted.bam E:
e ——
E_Coll_GOATGT_L001 fitered] | | © 20 BT - [<]
e Copy read details to dlipboard I=
Group ali s by ¥
-— Sort alignments by »
Color alignments by »
¥ Shade base by quality
11 show mismatched bases
[Show all bases [—
o ¥ View as pairs
E_Coli_ESATGT_LOO1_fitered .
edbam
Re-pack ali s
Show coverage track
[Load coverage data...
O Collapsed
® Expanded
© squished
select by name...
Clear selections =
Bl - =]
Copy consensus sequence
Sashimi Plot
Remove Track ~|
3 tracks loaded | NoDE 42 length_5513_cov... || save image... 2014 of 3,088M
&) Terminal i eV Export Alignments... [T T 1

79 of 88

http://blast.ncbi.nlm.nih.gov/Blast.cgi

You can also do the same for individual reads, but you need to un-select ‘View as pairs’ before right
clicking on a read. You may lose track of the paired-end reads and find it easier to copy the read name
before un-selecting ‘View as pairs’ and then pasting it into the ‘Select by name...” search box.

You should find that the contig contains at least two phage genes. There appear to be at least two
phages present, one which seems to be the full contig, the other with the red read-pairs seems to be
missing the sequence in the middle of the contig.

Annotation of de novo Assembled Contigs

We will now annotate the contigs using BLAST and Pfam as with the unmapped contigs.

Task 5: Obtain Open Reading Frames

As before, we’ll call open reading frames within the de-novo assembly. Again, we will use
codon table 11 which defines the bacterial codon usage table
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular. We will also restrict the ORFs to just those sequences longer than 300
nucleotides (i.e. 100 amino acids). We will store the results in file contigs.orf.fasta.

Make sure you are in the denovo_assembly/ directory:

getorf -table 11 -circular N -minsize 300 -sequence

scaffolds.goodcov.fasta -outseq scaffolds.orf.fasta

Hybrid de novo Assembly

You will have seen that even with good coverage and a relatively long (300bp) paired end
lllumina dataset - the assembly we get is still fairly fragmented. Our E.coli example assembles into 78
contigs and the largest contig is around 10% of the genome size.

Why is this?

One possible reason would be that regions of the original genome were not sequenced, or sequenced
at too low coverage to assemble correctly. Regions of the genome will occur with different frequencies
in the library that was sequenced - You can see this in the variation of coverage when you did the
alignment. This can be due to inherent biases in the preparation and the random nature of the
process.

However, as coverage increases, the chances of not sequencing a particular region of the genome
reduces, and the most significant factor becomes the resolution of repeats within the assembly
process. If two regions contain the same or very similar sequences the assembler cannot reliably
detect that they are actually two or more distinct sequences and incorrectly 'collapses' the repeat into

80 of 88

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

a single sequence. The assembler is now effectively missing a sequence and therefore breaks in the
assembly occur.

One resolution to this is to use a sequencing technology like PacBio which can produce longer reads -
the reads are then long enough to include the repeated sequence, plus some unique sequence, and
the problem can then be resolved.

An approach becoming more and more popular (now, a standard for genome assembly) is to combine
technologies. For example: high quality lllumina sequencing to get the accuracy of reads combined
with low quality PacBio sequencing to enable the repeats to be spanned and correctly resolved.

Our exercise will be to use lllumina and PacBio datasets to assemble a species of pseudomonas.
These are subsets of data used in "Evaluation and validation of de novo and hybrid assembly
techniques to derive high-quality ¥ genome sequences" Utturkar et al., 2014.
(http://www.ncbi.nlm.nih.gov/pubmed/24930142). This paper also contains a good explanation of the
process and different approaches that are available.

Task 6: QC the Data

It is always important to check and understand the quality of the data you are working with:
Change to the directory and run fastqc:

cd ~/workshop materials/genomics_ tutorial/data/sequencing/pseudomonas_gm4l

Open the files SRR1042836a.fastq SRR491287a_1.fastq SRR491287a_2.fastq and look at the
reports generated.

File Help

[SRR 1042836 fastq | SRR491287a_1filkered fastq | SRR491287a_2 filtered fastq |

i Basic Statistics

|@ Quality scores across all bases (Sangsr/ lllumina 1.2 encoding)
:@ Per base sequence quality |54
|) 3

| Per sequence quality scores -
!

@ Per base sequence content 28
|

@ Persequence GC content 24

22
@ Per base N content a0

) Jent—"
- Jum—" iR
P I

| Kmer Content
123458789 20002099 7000-7989 13000-13999 19000-19999 25000-25999 31000-31999 37000-37292
Position in read (bp)

o B @ oo

81 of 88

http://www.ncbi.nlm.nih.gov/pubmed/24930142

Note that the quality of the PacBio reads (SRR1042836a.fastq) is much lower than the Illlumina reads
with a greater than 1 chance in 10 of there being a mistake for most reads.

I (on 016565 - - [E=REENT X |

File Help
SRR1042836.fastq | SRR491267a_1.il | SRR491287a_2.i]

3500

(4) Sequence Length Distribution

@ Sequence Duplication Level

@ Overrepresented sequences | 2000

@ Adapier Content

(01) Kmer Cortent
=

2500

1000

0
0999 30003999 7000-7999 11000-11999 15000-15999 19000-19999 23000-23999 27000-27999 31000-31999 35000-35099

However, importantly, the length of the PacBio reads is much longer.

Trim the lllumina reads using the program fastg-mcf:

You can check the number of filtered reads using grep -c and the quality if timmed reads with fastqc
if you want.

For this exercise we want the long reads from PacBio even though they are low quality. We are relying
on the assembler to use them appropriately.

Task 7: lllumina Only Assembly

Firstly let's construct an assembly using only the available lllumina data.
Make sure you are in the directory:
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm4l

The next command will take some time so the data has been precomputed and is available in
illumina_assembly/

Change to the directory illumina_only _assembly

82 of 88

Filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta

Let's look at the metrics for the assembily.

quast.py --output-dir quast scaffolds.goodcov.fasta

cat quast/report.txt

Assembly scaffolds.goodcov
contigs (>= 0 bp) 149

contigs (>= 1000 bp) 134

contigs (>= 5000 bp) 113

contigs (>= 10000 bp) 103

contigs (>= 25000 bp) 74

contigs (>= 50000 bp) 46

Total length (>= @ bp) 6632341

Total length (>= 1000 bp) 6621581
Total length (>= 5000 bp) 6569639
Total length (>= 10000 bp) 6499338
Total length (>= 25000 bp) 6001845
Total length (>= 50000 bp) 4940758

contigs 149
Largest contig 241647
Total length 6632341
GC (%) 59.00
N50 87433
N75 49685
L50 24

L75 47

N's per 100 kbp 12.14

(Your results may be slightly different. This is because spades uses a random seed that changes
every time)

Task 8: Create Hybrid Assembly

Now will execute the same command, but this time include the longer PacBio reads to see the
effect it has on our assembly.

Change back into the directory

Run (This may take some time so the data has been precomputed and is available in
hybrid_assembly/ if you are impatient!):

Change to the directory hybrid_assembly
Filter out low coverage and very short contigs using a perl script:

83 of 88

filter low coverage contigs.pl < scaffolds.fasta > scaffolds.goodcov.fasta

Let's look at the metrics for the assembly - this time we will compare it with the illumina only assembly:

quast.py --output-dir quast scaffolds.goodcov.fasta

../illumina _only assembly/scaffolds.goodcov.fasta

cat quast/report.txt

Assembly hybrid_assembly_scaffolds.goodcov illumina_only_assembly_scaffolds.goodcov
contigs (>= 0@ bp) 85 149

contigs (>= 1000 bp) 75 134

contigs (>= 5000 bp) 69 113

contigs (>= 10000 bp) 65 103

contigs (>= 25000 bp) 53 74

contigs (>= 50000 bp) 47 46
Total length (>= @ bp) 6667288 6632341
Total length (>= 1000 bp) 6660729 6621581
Total length (>= 5000 bp) 6642787 6569639
Total length (>= 10000 bp) 6614698 6499338
Total length (>= 25000 bp) 6425214 6001845
Total length (>= 50000 bp) 6178935 4940758
contigs 85 149
Largest contig 536255 241647
Total length 6667288 6632341
GC (%) 59.00 59.00
N50 151622 87433
N75 89848 49685
L50 15 24

L75 30 47

N's per 100 kbp 4.29 12.14

You can also explore the interactive html report:
firefox quast/report.html

It seems that using the longer reads has improved the completeness of our assembly - reducing the
number of contigs.

Task 9: Align Reads Back to Reference

Let's realign our original reads back to the assembly and see what we have - refer to previous
notes if you are unsure of the steps.

Start in the hybrid assembly directory

~/workshop_materials/genomics_ tutorial/data/sequencing/pseudomonas_gm41l/hybrid_ass
embly

mkdir remapping to assembly|
cd remapping to_assembly

84 of 88

cp ../scaffolds.fasta .
bwa index scaffolds.fasta

First remap the Illlumina reads. Type all on one line:

bwa mem -t 2 scaffolds.fasta ../../SRR491287a 1.filtered.fastq

../../SRR491287a 2.filtered.fastq > gm4l.illumina.sam

Convert the sam to bam:

samtools view -bS gmd4l.illumina.sam > gm4l.illumina.bam

Sort the bam file by genomic coordinate:

samtools sort -o gm4l.illumina.sorted.bam gm41l.illumina.bam

Index the bam file:

samtools index gm4l.illumina.sorted.bam

Collect mapping stats:

samtools flagstat gmd4l.illumina.sorted.bam > mappingstats.illumina.txt

We can also map the PacBio reads, but for this we will use Heng Li’'s new and improved aligner
minimap2 (https://github.com/Ih3/minimap2#map-long-genomic). At the moment, this aligner is better
for long reads, but for short genomic data (lllumina), Heng Li still recommends bwa. See this post by
Heng Li for more information (http://Ih3.github.io/2018/04/02/minimap2-and-the-future-of-bwa).

minimap2 -ax map-pb scaffolds.fasta ../../SRR1042836a.fastq >

gm41.pacbio.sam

And then the same as before (convert to bam, sort, index, mapping stats)
samtools view -bS gm4l.pacbio.sam > gm4l.pacbio.bam

samtools sort -o gm4l.pacbio.sorted.bam gmd4l.pacbio.bam

samtools index gmdl.pacbio.sorted.bam

samtools flagstat gmd4l.pacbio.sorted.bam > mappingstats.pacbio.txt

85 of 88

https://github.com/lh3/minimap2#map-long-genomic
http://lh3.github.io/2018/04/02/minimap2-and-the-future-of-bwa

21903

+ @ in total (QC-passed reads + QC-failed reads)

308 + @ secondary
9095 + @ supplementary

0+ 0
17777
+

[IS BT S B B S B o
+ 4+ + + + + +
00000000 ®

You will notice that not such a high proportion of PacBio reads map back to the assembly.

Now start igv:

duplicates

+ @ mapped (81.16% : N/A)

paired in sequencing

readl

read2

properly paired (N/A : N/A)

with itself and mate mapped

singletons (N/A : N/A)

with mate mapped to a different chr

with mate mapped to a different chr (mapQ>=5)

Load your assembled genome -

Click on genome - load from file

Make sure you get the assembly from the hybrid_assembly (igv remembers the previous directory
which may contain similar files.)

Now load your 2 alignment files:
click on load from File and then select gm41.pacbio.sorted.bam and gm41.illumina.sorted.bam

On the toolbar select - "Show Details on Click"

o @& 0O = i1

[J] Show Details on Hover

¥ Show Details onClick | —

[Never Show Details

Find a region that has decent coverage of both reads and zoom in.
(Region shown here: NODE_79 length_15988 cov_20.944 ID_49:7,963-8,084)

86 of 88

|NODE_79_length_15988_cov_20.844_ID_4g ‘vi‘|7\59557m:v7209447@749T‘EWEVE‘[‘SQ‘GD = @ o= 3 Hrrririrriphi 3

20 bp 7810 bp 7880 bp 7680 bp 8,000 bp 8020 bp

| n
[— - {E H *l—:H H H — - - —— H]

3 i I
P i i3
T i i —i =) 1] 1 ¥ 3 4

4 i i —
R — i} FERGFE—EF

ATCGCCCAAGCATCGACCGTIGCTATCGGGTTTIGACGTTTTGGTAGGGTITGCTICATIGCATCGCCTICTIGICGGTITTTATCGGIGATIGCATAAAGACTICGAGCACAGT TAAGACGATGA|.

You can see that the PacBio reads are much longer, but the error rate particularly insertions and
deletions is much higher than for the lllumina reads.

Explore a few other contigs to see if you can find something that looks like an error or mis-assembly.
Remember the assembly process is difficult and far from perfect.

Summary

You have seen that de-novo assembly of short reads is a challenging problem. Even for small
genomes, the resulting assembly is fragmented into contigs and far from complete.

Incorporating longer reads to produce a hybrid assembly can be used to reduce the fragmentation of
the genome. We have only used a single (perhaps the simplest) technique to incorporate long reads.
You can read more about hybrid assembly techniques here:
http://www.ncbi.nlm.nih.gov/pubmed/24930142

Concluding Remarks

Well done! If you have reached this far, you deserve a good pat on the back and a cup of tea (or
a whisky). You have completed some of the most common tasks in genomics. You can use the
same machine and the same scripts to perform an analysis of any dataset!

87 of 88

http://www.ncbi.nlm.nih.gov/pubmed/24930142

If you need to transfer data to/from the instance a tutorial can be found at
http://www.siteground.com/tutorials/ssh/ssh_winscp.htm or will be covered in the last session
of this Workshop!

88 of 88

http://www.siteground.com/tutorials/ssh/ssh_winscp.htm

