A short (?) introduction to phylogenetic networks

CÉline Scornavacca

ISE-M, Equipe Phylogénie \& Evolution Moléculaires
Montpellier, France

Rooted species trees

... are oriented connected and acyclic graphs, where terminal nodes are associated to a set of species:

- the leaves or taxa represent extant organisms
- internal nodes represent hypothetical ancestors
- each internal node represents the lowest common ancestor of all taxa below it (clade)
- the only node without ancestor is called root

Gene trees

- Gene trees are built by analyzing a gene family, i.e., homologous molecular sequences appearing in the genome of different organisms.

Gene trees

- Gene trees are built by analyzing a gene family.

- Used, among other things, to estimate species trees.

Gene trees

- Gene trees are built by analyzing a gene family.

- Used, among other things, to estimate species trees.

Gene trees

- Gene trees are built by analyzing a gene family.

- Used, among other things, to estimate species trees.

Gene trees can significantly differ from the species tree for:

- methodological reasons
- biological reasons

Gene trees

- Gene trees are built by analyzing a gene family.

- Used, among other things, to estimate species trees.

Gene trees can significantly differ from the species tree for:

- methodological reasons
- biological reasons
- We usually use several gene families...

Gene trees

- Gene trees are built by analyzing a gene family.

- Used, among o

Gene trees can sig

- methodological।

Cumulative sequenced genomes

ee for:

- biological reasons
- We usually use several gene families...

Reconstruction of phylogenies for multiple datasets

The two main classic approaches:

- Supermatrix approach: assembling primary data

Reconstruction of phylogenies for multiple datasets

The two main classic approaches:

- Supermatrix approach: assembling primary data

- Supertree approach: assembling trees

An implicit assumption

The implicit assumption of using trees is that, at a macroevolutionary scale, each (current or extinct) species or gene only descends from one ancestor. Darwin described evolution as "descent with modification", a phrase that does not necessarily imply a tree representation...

A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena (hybridization, recombination, horizontal gene transfer) the evolution of a set of species sometimes cannot be described using phylogenetic trees.

A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena (hybridization, recombination, horizontal gene transfer) the evolution of a set of species sometimes cannot be described using phylogenetic trees.

A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena (hybridization, recombination, horizontal gene transfer) the evolution of a set of species sometimes cannot be described using phylogenetic trees.

A new approach: building phylogenic networks

Why do we need them? Due to reticulate evolutionary phenomena (hybridization, recombination, horizontal gene transfer) the evolution of a set of species sometimes cannot be described using phylogenetic trees.

The network of life

Three different paradigms

We (want to) see only the tree

Three different paradigms

It is a big mess, no chance to retrieve the past

Three different paradigms

There is an underlying tree structure, with some reticulate events

An example - a split network

J. Wagele and C. Mayer. Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology, 7(1):147, 2007

An example - a reduced median network

■ Northeast Asia domestic pig

- Northeast Asia wild boar
- Domestic pig in region UMYR

■ Domestic pig in region DRYR

- Domestic pig in region MDYZ
- Wild boar in region MDYZ
- Domestic pig in the Mekong region
- Wild boar in the Mekong region
- Domestic pig in South China
- Wild boar in South China
- Domestic pig in region URYZ

Wild boar in region URYZ
\square Other

- Feral pigs
- Japanese domestic pig and ancient DNA
* Coalescent root type of haplogroup D1

G.-S. Wu, Y.-G. Yao, K.-X. Qu, Z.-L. Ding, H. Li, M. Palanichamy, Z.-Y. Duan, N. Li, Y.-S. Chen, and Y.-P. Zhang. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology, 8(11):R245, 2007

An example - a minimum spanning network

C. M. Miller-Butterworth, D. S. Jacobs, and E. H. Harley. Strong population sub- structure is correlated with morphology and ecology in a migratory bat. Nature, 424(6945):187-191, 2003

An example - a DTLR network

P.J. Planet, S.C. Kachlany, D.H. Fine, R. DeSalle, and D.H. Figurski. The wide spread colonization island of actinobacillus actinomycetemcomitans. Nature Genetics, 34:193-198, 2003.

An example - a recombination network

Phylogenetic networks

Phylogenetic networks

A phylogenetic network ...

... is any connected graph, where terminal nodes are associated to a set of species.

A rooted phylogenetic network ...

... is any single-rooted directed acyclic graph, where terminal nodes are associated to a set of species.

Phylogenetic networks

Abstract VS explicit phylogenetic networks

Split network:

Shows conflicting placement of taxa

Shows putative
hybridization history

The plan of the survey

(1) combinatorial and distance methods not accounting for ILS

- unrooted networks
- rooted networks (explicit or not)
(2) methods accounting for ILS (always explicit)

Unrooted phylogenetic networks

SplitsTree4

 by Daniel Huson and David Bryantwith contributions from Markus Franz, Migüel Jette', Tobias Kloepper and Michael Schröder
www.splitstree.org

Reconstruction of unrooted phylogenetic networks

- from splits
- from distances (via splits or not)
- from trees (via splits)
- from sequences (via splits or not)

Splits

A split $A \mid B$ on \mathcal{X} is a partition of a taxon set \mathcal{X} into two non-empty sets.

Compatible splits

Two splits are $S_{1}=A_{1} \mid B_{1}$ and $S_{2}=A_{2} \mid B_{2}$ are compatible, if one of the $A_{1} \cap A_{2}, A_{1} \cap B_{2}, B_{1} \cap A_{2}$ or $B_{1} \cap B_{2}$ is empty. A set of splits \mathcal{S} is called compatible if all pairs of splits in \mathcal{S} are compatible.

Example

$$
\begin{aligned}
&\{a\} \mid\{b, c, d, e\} \\
&\{b\} \mid\{a, c, d, e\} \\
&\{c\} \mid\{a, b, d, e\} \\
& \mathcal{S}_{1}=\{a, b, d, e, h\} \mid\{c, f, g\} \\
&\{d\} \mid\{a, b, c, e\} \\
&\{e\} \mid\{a, b, c, d\}\{a, c, d, e, g, h\} \mid\{b, f\} \\
&\{a, b\} \mid\{c, d, e\} \mathcal{S}_{2}=
\end{aligned}
$$

Compatible splits

A set of compatible splits corresponds univocally to a unrooted phylogenetic tree.

(a) Unrooted tree T

$$
\begin{aligned}
& \{a\} \mid\{b, c, d, e\} \\
& \{b\} \mid\{a, c, d, e\} \\
& \{c\} \mid\{a, b, d, e\} \\
& \{d\} \mid\{a, b, c, e\} \\
& \{e\} \mid\{a, b, c, d\} \\
& \{a, b\} \mid\{c, d, e\} \\
& \{a, b, e\}\} \mid\{c, d\}
\end{aligned}
$$

(b) Split encoding of T

Circular splits

A set of splits \mathcal{S} on \mathcal{X} is called circular, if there exists a linear ordering $\pi=\left(x_{1}, \ldots, x_{n}\right)$ of the elements of \mathcal{X} for \mathcal{S} such that each split $S \in \mathcal{S}$ is interval-realizable, that is, has the form

$$
S=\left\{x_{p}, x_{p+1}, \ldots, x_{q}\right\} \mid\left(\mathcal{X} \backslash\left\{x_{p}, x_{p+1}, \ldots, x_{q}\right\}\right)
$$

for appropriately chosen $1<p \leq q \leq n$.

Example

$$
\begin{aligned}
& \{a, b, d, e, h\} \mid\{c, f, g\} \\
& \{a, c, d, e, g, h\} \mid\{b, f\} \\
& \{a, c, e, g\} \mid\{b, d, f, h\} \\
& \{a, c, g\} \mid\{b, d, e, f, h\} \\
& \{a, c, e, f, g\} \mid\{b, d, h\} \\
& \{a, e, h\} \mid\{b, c, d, f, g\}
\end{aligned}
$$

Circular splits

A set of circular splits corresponds to a unrooted network that is outer-labeled planar.

$$
\begin{aligned}
& \{a, b, d, e, h\} \mid\{c, f, g\} \\
& \{a, c, d, e, g, h\} \mid\{b, f\} \\
& \{a, c, e, g\} \mid\{b, d, f, h\} \\
& \{a, c, g\} \mid\{b, d, e, f, h\} \\
& \{a, c, e, f, g\} \mid\{b, d, h\} \\
& \{a, e, h\} \mid\{b, c, d, f, g\}
\end{aligned}
$$

(b) Circular splits

Weakly compatible splits

Three splits $S_{1}=\frac{A_{1}}{B_{1}}, S_{2}=\frac{A_{2}}{B_{2}}$, and $S_{3}=\frac{A_{3}}{B_{3}}$ weakly compatible, if
(1) at least one of the following four intersections is empty:
$A_{1} \cap A_{2} \cap A_{3}, A_{1} \cap B_{2} \cap B_{3}, B_{1} \cap A_{2} \cap B_{3}$ and $B_{1} \cap B_{2} \cap A_{3}$,
(2) at least one of the following four intersections is empty: $B_{1} \cap B_{2} \cap B_{3}, B_{1} \cap A_{2} \cap A_{3}, A_{1} \cap B_{2} \cap A_{3}$ and $A_{1} \cap A_{2} \cap B_{3}$.
A set of splits \mathcal{S} on \mathcal{X} is called weakly compatible, if any three distinct splits in \mathcal{S} are weakly compatible.

Example

$$
\begin{array}{ll}
\{a, b, d, e, h\} \mid\{c, f, g\} & \{a, b, d, e, h\} \mid\{c, f, g\} \\
\{a, c, d, e, g, h\} \mid\{b, f\} & \\
\{a, c, e, g\} \mid\{b, d, f, h\} & \{a, c, d, e, g, h\} \mid\{b, f\} \\
\{a, c, g\} \mid\{b, d, e, f, h\} & \mathcal{S}_{2}= \\
\{a, c, e, f, g\} \mid\{b, d, h\} & \{a, c, d\} \mid\{b, d, f, h\} \\
\{a, e, h\} \mid\{b, c, d, f, g\} & \{a, b\} \mid\{c, d, e, f, g\} \\
\{a, f, f, f\}
\end{array}
$$

Weakly compatible splits

Phylogenetic networks reconstructed from weakly compatible are easier than the ones reconstructed from generic splits

UPN from splits
 or "what to do with the splits?"

PN from splits: the Convex hull algorithm

We start with the start tree and we add a split $S=\frac{A}{B}$ as follows:
(1) Compute the two convex hulls $H(A)$ and $H(B)$ in N and let M be the graph induced by the nodes in $H(A) \cap H(B)$.
(2) Create a copy M^{\prime} of M and denote v^{\prime} and e^{\prime} the copies of a node v and an edge e in M.
(3) Substitute any edge $f=(u, v)$ where u in $H(B) \backslash H(A) \neq \emptyset$ and v in M with edge $f=\left(u, v^{\prime}\right)$.
(4) Connect each pair of nodes v in M and v^{\prime} in M^{\prime} by a new edge.

(a) Network N_{0}

(b) Hulls for S_{1}^{I}

(c) Network N_{1}

$$
S_{2}^{I}=\frac{A_{2}}{B_{2}}=\frac{\{a, b, g, h\}}{\left\{c_{1}, f_{2}, e_{,} f\right\}}
$$

(d) Hulls for S_{2}^{I}
(e) Network N_{2}

(f) Hulls for S_{3}^{I} $S_{3}^{I}=\frac{A_{3}}{B_{3}}=\frac{\left\{a_{a}, c, f\right\}}{\{b, d, e, g, h\}}$

(g) Network N_{3}

PN from splits: the circular network algorithm

We start with the start tree and we add a split $S=\frac{\left\{x_{p}, \ldots, x_{q}\right\}}{\mathcal{X}\left\{x_{p}, \ldots, x_{q}\right\}}$ as follows: (splits have to be considered in a certain order)
(1) Determine the path $M\left(x_{p}, x_{q}\right)$ and let \dot{M} denote the path obtained by removing the first and last (leaf) edges from $M\left(x_{p}, x_{q}\right)$.
(2) Create a copy \dot{M}^{\prime} of \dot{M} and denote v^{\prime} and e^{\prime} the copies of a node v and an edge e in \dot{M}.
(3) Substitute any edge $f=(u, v)$ where $u=\lambda\left(x_{i}\right)$ and v in \dot{M} with edge $f=\left(u, v^{\prime}\right)$, for all $i=p, \ldots, q$.
(4) Connect each pair of nodes v in \dot{M} and v^{\prime} in \dot{M}^{\prime} by a new edge.

(a) Network N_{2}

$$
\frac{A}{B}=\frac{\{a, f, g, h\}}{\{b, c, d, e\}}
$$

PN from splits: attention!!!

All four different split networks shown below represent the same set of splits.

UPN from distances or "how to get the splits from distances"

PN from distances: the split decomposition

Given a distance matrix D on $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ the split decomposition algorithm [Bandelt and Dress, 1992] starts by computing the isolation index for quartets and splits:

- for any four taxa w, x, y and z with $\{w, x\} \cap\{y, z\}=\emptyset$, :

$$
\hat{\alpha}_{D}\left(\frac{\{w, x\}}{\{y, z\}}\right)=\frac{1}{2}(\max \{d(w, x)+d(y, z), d(w, y)+d(x, z), d(w, z)+d(x, y)\}-d(w, x)-d(y, z)) .
$$

- for any (partial) split S: $\quad \alpha_{D}(S)=\min \left\{\left.\hat{\alpha}_{D}\left(\frac{\{w, x\}}{\{y, z\}}\right) \right\rvert\, w, x \in A, y, z \in B\right\} \geq 0$.

Then, we set $X_{0}=\emptyset$ and $\mathcal{S}_{0}=\emptyset$. Given the set of splits \mathcal{S}_{i} on the first i taxa, we obtain \mathcal{S}_{i+1} by, for each split $\frac{A}{B} \in \mathcal{S}_{i}$ doing:
(1) Consider $S=\frac{A \cup\left\{x_{i+1}\right\}}{B}$. If $\alpha_{D}(S)>0$, set $\omega(S)=\alpha_{D}(S)$ and add S to \mathcal{S}_{i+1}.
(2) Do the same with $S=\frac{A}{B \cup\left\{x_{i+1}\right\}}$ and $S=\frac{\mathcal{X}_{i}}{\left\{x_{i+1}\right\}}$

The result is given by \mathcal{S}_{n}.

PN from distances: the split decomposition

- A split S whose isolation index $\alpha_{D}(S)$ is greater than 0 is called a D-split. D-splits are always weakly compatible.
- It follows from this that the split decomposition always computes a set of weakly compatible splits

PN from distances: the split decomposition

- A split S whose isolation index $\alpha_{D}(S)$ is greater than 0 is called a D-split. D-splits are always weakly compatible.
- It follows from this that the split decomposition always computes a set of weakly compatible splits
- The SD is a conservative method
- It can be used for small number of taxa or low divergence

PN from distances: Neighbor-Net

- Given a distance matrix D on \mathcal{X}, the Neighbor-Net algorithm [Bryant and Moulton, 2004] computes a circular ordering π of \mathcal{X} from D and then a set of weighted splits \mathcal{S} that are interval-realizable with respect to π :
- produces circular splits
- uses together with circular network algorithm to get planar networks
- can be used for large number of taxa and high divergence

PN from distances

Other algorithms from distances:

- Minimum spanning network
- T-Rex
- ...

A great source of information:

http://phylnet.univ-mlv.fr/

Who is Who in Phylogenetic Networks

\author{

* Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help is Q
}

Programs and their Input Data ©

How do 1 interact with the graph?
Below, you can find all programs present at least 1 time(s) in Who is who in phylogenetic networks, as well as the links with the data they use as input.

UPN from trees

or "how to get splits from a bunch of trees"

PN from trees: Consensus split networks

Consensus splits [Holland et al, 2004]

- Input: Trees on identical taxon sets
- Determine splits in more than X\% of trees
- For $>50 \%$, the result is compatible

(a) Tree T_{1}

(d) Tree T_{4}

(b) Tree T_{2}

(e) Tree T_{5}

(c) Tree T_{3}

(f) Tree T_{6}

(g) Majority

(h) $d=2$

(i) $d=5$

(j) All splits

PN from trees: Consensus super splits networks

Consensus super splits [Huson et al, 2004, Whitfield et al 2008]. Input: Trees on overlapping taxon sets

- Use the Z-closure to complete partial splits
- Use the "distortion" values to filter splits

(a) Tree T_{1}

(e) Tree T_{5}

(b) Tree T_{2}

(d) Tree T_{4}

(f) Super network N

The Z-closure

- Two partial splits $S_{1}=\frac{A_{1}}{B_{1}} \in \mathcal{S}$ and $S_{2}=\frac{A_{2}}{B_{2}} \in \mathcal{S}$ are said to be in Z-relation to each other, if exactly one of the four intersections $A_{1} \cap A_{2}$, $A_{1} \cap B_{2}, B_{1} \cap A_{2}$ or $B_{1} \cap B_{2}$ is empty. Then we can create of two new splits (the Z-operation)

$$
S_{1}^{\prime}=\frac{A_{1}}{B_{1} \cup B_{2}} \text { and } S_{2}^{\prime}=\frac{A_{1} \cup A_{2}}{B_{2}} .
$$

- If at least one of the two new splits contains more taxa than its predecessor, the pair of splits is called productive.

From a set partial splits \mathcal{S} on \mathcal{X}, Z-closure method infers a set of complete splits on \mathcal{X} as follows: While \mathcal{S} contains a productive pair of splits $\left\{S_{i}, S_{j}\right\}$, apply the Z-operation to obtain two new splits $\left\{S_{i}^{\prime}, S_{j}^{\prime}\right\}$ and then replace the former pair by the latter pair in \mathcal{S}. Finally, add all trivial splits on \mathcal{X}.

UPN from sequences

Median networks

For a multiple alignment M of binary sequences on \mathcal{X}, its median network is a phylogenetic network $N=(V, E, \sigma, \lambda)$ whose node set is given by the median closure $V=\bar{M}$ and in which any two nodes a and b are connected by an edge e of color $\sigma(e)=i \in E$, if any only if they differ in exactly in their i-th position (as haplotypes). An associated taxon labeling $\lambda: X \rightarrow V$ maps each taxon x onto the node $\lambda(x)$ that represents the corresponding sequence.

(a) Alignment M
(b) Median network N

Quasi median networks

a A A A A A
$b \quad B \quad B A A A$
$c \quad \mathrm{~A} B A B B$
d $\mathrm{A} A \mathrm{~B} B C$
e $\mathrm{A} A \subset \mathrm{~B}$ C
(a) Input M

(b) Binary expansion M_{1}
$\begin{array}{llllllll}a & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}b & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllll}c & 0 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllllll}d & 0 & 0 & 1 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{llllllll}e & 0 & 0 & 1 & 0 & 1 & 1 & 0\end{array}$
(c) Condensed M_{1}

0	0	0	0	0	0	
1	1	0	0	0	0	0
0	1	0	0	0	1	1
0	0	1	1	0	1	0
0	0	1	0	1	1	0
0	0	1	0	0	1	0
0	0	0	0	0	1	0
0	1	0	0	0	0	0
0	1	0	0	0	1	0
(d) Median closure	M_{2}					

(d) Median closure M_{2}
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}$
(e) Expanded M_{2}

A A A A A
$A A * B C=\left\{\begin{array}{lllll}A & A & A & B & C \\ A & A & B & B & C \\ A & A & C & B & C\end{array}\right.$
B B A A A
$A B A B B$
A A C B C
A A B B C
A A A B C
A A A B A
A A A B B
A B A A A
A B A B A
A B A B C
(h) Final matrix M_{4}
(g) Expansion of virtual medians

A A A A A
$B B A A A$
A $B \quad A \quad B \quad B$
A A C B C
A A B B C
A $A * B C$
A A A B *
A B A A A
A $B A B$ *
(f) Multi-states M_{3}

(i) Quasi-median network N

How to keep the complexity of the network down...

The number of nodes of the quasi-median network can be very large, even for a small number of short sequences. Thus, the quasi-median network is rarely useful in practice. There exist two alternative methods:

- median-joining algorithm, which aims at computing an UPN that is as informative as a quasi-median network, but usually much smaller. The algorithm has a parameter Δ that is used to control how complex the resulting phylogenetic network will be.
- geodesically-pruned quasi-median networks: a method that aims at computing a pruned version of the full quasi-median network by considering only those sequences that lie on a geodesic between two of the original input sequences.

How to keep the complexity of the network down...

```
UPN from ...
quartets ... QNet
http://www2.cmp.uea.ac.uk/~vlm/qnet/
http://phylnet.univ-mlv.fr/
```


Recombination networks

Daniel H. Huson, Regula Rupp, Celine Scornavacca. Phylogenetic Networks. Cambridge University Press. 2011

Methods for reconstructing rooted phylogenetic networks not accounting for ILS

some slides have been kindly provided by Fabio Pardi

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

The evolution of each part independently inherited is described by a "gene" tree

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

The evolution of each part independently inherited is described by a "gene" tree

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The evolution of each part independently inherited is described by a "gene" tree

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The evolution of each part independently inherited is described by a "gene" tree

In the absence of deep coalescence and allopolyploidy, the gene trees are displayed by the network

Trees displayed by a network

Switch on and off

 reticulated edged
Trees displayed by a network

Delete switched off edges and unlabelled leaves and suppress outdgree-1 indegree-1 nodes

Trees displayed by a network

2^{r} possible trees!!!

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Data:
Trees with 3 taxa:
(inferred from other data)

Goal:

Find the network N with the lower hybridization number such that the triplets are 'consistent' with one of the trees displayed by N
subject to constraints on the complexity of N

Triplets - Software

- LEV1ATHAN: A practical algorithm for reconstructing level-1 phylogenetic networks. Combines any set of phylogenetic trees into a level-1 phylogenetic network that is consistent with a large number of the triplets of the input trees.
- SIMPLISTIC: Returns a phylogenetic network with minimum level consistent with all input triplets
- MARLON: Constructs a level-1 phylogenetic networks with a minimum number of reticulations consistent with a dense set of triplets, if such a network exists
- LEVEL2: Constructs a level-2 phylogenetic network consistent with a dense set of triplets, if such a network exists

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Data:

Clusters of taxa: $\{a, b\},\{d, e\},\{d, e, f\},\{a, b, c, d, e, f\},\{e, f\},\{c, d, e, f\}, \ldots$

Goal:

Find the network N with the lower hybridization number such that the input clusters are `explained' by one of the trees displayed by N
subject to constraints on the complexity of N

Clusters

CASS algorithm : search for the level-k network containing a set of clusters

Dendroscope 3

by Daniel H. Huson
with contributions from Benjamin Albrecht.
Philippe Gambette, Leo van lersel,
Celine Scornavacca and others.
www-ab.informatik.uni-tuebingen.de/software/dendroscope

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Goal:

Find the network N with the lower hybridization number such that the input trees are 'consistent' with one of the trees displayed by N
subject to constraints on the complexity of N

Software

Hybroscale 1.5

Hybrascale

by
Benjamin Ribrecht
www.bio.ifi.Imu.de/softwa

Dendroscope 3

by Daniel H. Huson

with contributions from Benjamin Albrecht.
Philippe Gambette, Leo van lersel,
Celine Scornavacca and others.
www-ab.informatik.uni-tuebingen.de/software/dendroscope

ultraNet

An UltraFast Tool for Minimum Reticulate Networks

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Data:

Any trinets on the same taxa:
(inferred from other data)

Goal:

Find the network N with the lower hybridization number such that the input trees are 'consistent' with the N
subject to constraints on the complexity of N

Trinets

Explicit phylogenetic networks (rDAG)

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)

$A_{1} \quad A_{2}$

$$
\boldsymbol{F}\left(N \mid A_{1}, A_{2}, \ldots, A_{m}\right)=\sum_{i=1}^{m} \min _{T \in \mathcal{T}(N)} F\left(T \mid A_{i}\right)
$$

subject to constraints on the complexity of $N . \boldsymbol{F}()$ is the parsimony score.
Jin et al. Parsimony Score of Phylogenetic Networks: Hardness Results and a Linear-Time Heuristic. TCCB. 2009.

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

NEPAL
 Phylogenetic Networks Parsimony and Likelihood Toolkit

Many possible formulations:

Data:
Sequence alignments: (typically given in blocks)

$A_{1} \quad A_{2}$
A_{m}

Goal:
Find N that minimizes $\boldsymbol{F}\left(N \mid A_{1}, A_{2}, \ldots, A_{m}\right)=\sum_{i=1}^{m} \min _{T \in \mathcal{T}(N)} F\left(T \mid A_{i}\right)$
subject to constraints on the complexity of $N . \boldsymbol{F}_{()}$is the parsimony score.
Jin et al. Parsimony Score of Phylogenetic Networks: Hardness Results and a Linear-Time Heuristic. TCCB. 2009.

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)
(typicaly

Phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it displays fit the data:

NEPAL
 Phylogenetic Networks Parsimony and Likelihood Toolkit

Many possible formulations:

Data:
Sequence alignments: (typically given in blocks)

The strategy

Some issues

- Searching the space of phylogenetic networks

The space of networks with k reticulations is infinite.

- Controlling for Model Complexity

Because any network with k reticulations provides a more complex model than any network with ($k-1$) reticulations, we must handle the model selection problem (AIC, BIC, K-fold cross-validation, ...).

- Identifiability issues

$$
\operatorname{Pr}\left(A_{1}, A_{2}, \ldots, A_{m} \mid N\right)=\prod_{i=1}^{m} \operatorname{Pr}\left(A_{i} \mid N\right)=\prod_{i=1}^{m}\left(\sum_{T \in \mathcal{T}(N)} \operatorname{Pr}\left(A_{i} \mid T\right) \operatorname{Pr}(T \mid N)\right)
$$

- Not accounting for ILS and allopolyploidy

Different networks can display the same trees

Some networks display exactly the same trees:

Different networks can display the same trees

Some networks display exactly the same trees:

Because N_{1} and N_{2} display the same trees, they are equally good to any of the inference methods we saw - no matter the input data

(Recall that a network is evaluated on the basis of how well the trees it displays fit the data)

Different networks can display the same trees

Some networks display exactly the same trees:

Because N_{1} and N_{2} display the same trees, they are equally good to any of the inference methods we saw

- no matter the input data

UNIDENTIFIABILITY

Indistinguishable networks

Branch lengths do not eliminate nonidentifiability...
The same hold for inheritance probabilities

N_{1} and N_{2} display the same trees (i.e. including branch lengths) and are thus indistinguishable even to methods accounting for lengths

What it means for the evolutionary biologist

If N is reconstructed by a "classic" inference method, then even assuming perfect and unlimited data, the best you can hope is that the true phylogenetic network is just one of the many that are indistinguishable from N...

The canonical form of N is a unique representative of the networks indistinguishable from N, that excludes their unrecoverable aspects...

Methods for reconstructing rooted phylogenetic networks not accounting for ILS

Deep coalescence (ILS)

(a) Population view

(b) Reconciliation representation

ILS in phylogentic networks

The true gene tree is not displayed by the network because it needs to use both edges entering the hybrid node

Allopolyploidy

The true gene tree is not displayed by the network because it needs to use both edges entering the hybrid node

The multi-labelled tree $U^{*}(\mathrm{~N})$

- nodes are the directed paths in N starting at $r(N)$
- for each pair of paths p, p^{\prime} in N, there is an edge in $U^{*}(N)$ from p to p^{\prime} if and only if $p=p^{\prime} e$ for some edge e in N
- each node in $U^{*}(N)$ corresponding to a path in N that starts at $r(N)$ and ends at x in X is labelled by x

Parental trees

A phylogenetic tree T on X is a parental tree of N if it is displayed by U* N)
Huber et al. Folding and unfolding phylogenetic trees and networks, 2016 [weakly displayed]
Zhu al. In the light of deep coalescence: revisiting trees within networks, 2016
Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016

Parental trees

Huber et al. Folding and unfolding phylogenetic trees and networks, 2016 [weakly displayed] Zhu al. In the light of deep coalescence: revisiting trees within networks, 2016
Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016

Parental trees

Huber et al. Folding and unfolding phylogenetic trees and networks, 2016 [weakly displayed] Zhu al. In the light of deep coalescence: revisiting trees within networks, 2016
Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016

Parental trees can be multi-labelled

multiple individuals per species are allowed

Scoring schemes based on parental trees (NMSC)

Data:

Sequence alignments:
(typically given in blocks)

Goal:

$$
\left.\begin{array}{cc}
A_{1} & A_{2} \\
\operatorname{Pr}\left(A_{1}, A_{2}, \ldots, A_{m} \mid N\right)=\prod_{i=1}^{m} \operatorname{Pr}\left(A_{i} \mid N\right)=\prod_{i=1}^{m}\left(\sum_{T \in \mathcal{T}(N)} \operatorname{Pr}\left(A_{i} \mid T\right) \operatorname{Pr}(T \mid N)\right.
\end{array}\right)
$$

Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012
Yu et al. Maximum likelihood inference of reticulate evolutionary histories, 2014
Wen el al. PLOS Genetics 2016 (Bayesian method)

Scoring schemes based on parental trees (NMSC)

PhyloNet

Data:

Sequence alignments:
(typically given in blocks)

Goal:

Find N that maximises

Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016

Scoring schemes based on parental trees (NMSC)

$$
\begin{array}{cc}
\operatorname{Pr}\left(T_{1} \mid N_{1}\right)=p_{1} & \operatorname{Pr}\left(T_{2} \mid N_{1}\right)=\left(1-p_{1}\right)\left(1-q_{1}\right) \\
\operatorname{Pr}\left(T_{1} \mid N_{2}\right)=p_{2} q_{2} & \operatorname{Pr}\left(T_{2} \mid N_{2}\right)=1-p_{2}
\end{array}
$$

$$
\begin{gathered}
\mathrm{p}_{1}=1 / 3 \mathrm{p}_{2}=2 / 3 \mathrm{q}_{1}=7 / 9 \text { and } \mathrm{q}_{2}=3 / 7 \\
\mathrm{x}=\mathrm{y}=1 / 2 \text { and } \lambda_{\mathrm{i}}=1, \text { for all } \mathrm{i}
\end{gathered}
$$

Scoring schemes based on parental trees (NMSC)

$$
\begin{gathered}
\mathrm{p}_{1}=1 / 3 \mathrm{p}_{2}=2 / 3 \mathrm{q}_{1}=7 / 9 \text { and } \mathrm{q}_{2}=3 / 7 \\
\mathrm{x}=\mathrm{y}=1 / 2 \text { and } \lambda_{\mathrm{i}}=1, \text { for all } \mathrm{i}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{g}=((((a, d), c), b 1), b 2) \\
& \mathrm{P}\left(\mathrm{~g} \mid \mathrm{N}_{1}\right) \approx 7.7 \times 10^{-6}, \quad \mathrm{P}\left(\mathrm{~g} \mid \mathrm{N}_{1}\right) \approx 7.6 \times 10^{-6}
\end{aligned}
$$

This may solve the identifiability issues for several practical cases but we need more samples per species "well positioned" in the phylogeny

SNaQ(Species Networks applying Quartets) -pseudo-likelihood

Input: quartet CFs
Output: level-1 semidirected networks

- quartet CFs do not depend on the root placement \rightarrow semidirected networks
- if $n=4, k=2,3$ reticulations cannot be detected because equivalent to a tree

Solís-Lemus and Ané. Inferring Phylogenetic Networks with Maximum Pseudolikelihood under Incomplete Lineage Sorting, 2016.

SNaQ (Species Networks applying Quartets) - an example of how to cope with indistinguishability

- quartet CFs do not depend on the root placement \rightarrow semidirected networks
- if $n=4, k=2,3$ reticulations cannot be detected because equivalent to a tree
- if $n=4, k=4$, reticulations can be detected but not the "placement"

SNaQ (Species Networks applying Quartets) - an example of how to cope with indistinguishability

- quartet CFs do not depend on the root placement \rightarrow semidirected networks
- if $n=4, k=2,3$ reticulations cannot be detected because equivalent to a tree
- if $n=4, k=4$, reticulations can be detected but not the "placement"
- for $n \geq 4, k=2$ reticulations are not detectable, $k=3$ sometimes and $k=4$ yes in general if $n \geq 5$, along with the placement

SNaQ (Species Networks applying Quartets) - an example of how to cope with indistinguishability

With only 4 taxa, there are more parameters than equations (3 quartet CFs), so focus on the case $n \geq 5$.

- If $k=3$, parameters are identifiable if $n_{1}, n_{2}, n_{3} \geq 2$, and setting $t_{12}=0$.
- If $k=4$, parameters are identifiable if either $n_{0} \geq 2$ (or n_{2}, symmetrically), or if both n_{1} and $n_{3} \geq 2$. Parameters are not all identifiable in the remaining 2 cases (bad diamonds I \& II)
- If $k=5$, all the parameters are identifiable.

SNaQ (Species Networks applying Quartets) - an example of how to cope with indistinguishability

They search only in the space of identifiable networks:

- $k=2$ not considered
- $k=3$, only $n_{1}, n_{2}, n_{3} \geq 2$, and setting $t_{12}=0$
- For bad diamonds I, they reparametrized the 3 nonidentifable values $\left(\gamma, t_{1}, t_{0}\right)$ into 2 identifiable ones $\gamma\left(1-e^{-t 0}\right)$ and $(1-\gamma)\left(1-e^{-t 1}\right)$. For bad diamonds II, they set $t_{13}=0$ and kept the other 5 parameters $\left(\gamma, t_{0}, t_{1}, t_{2}, t_{3}\right)$.

Thank you for your attention

Another (home made) approach

Another (home made) approach

D species as hybrids between A and B lineages

Hybridization index (γ) along chromosome 3

Another (home made) approach

(1)

Introgression from the Triticum ancestor into the Ae. mutica ancestor
(2)

Origin of the D clade by hybridization between the A clade ancestor and the Ae. mutica ancestorIntrogression of the Sitopsis ancestor by the Ae. speltoides ancestor
(4)

Complex gene flows during the divergence of Ae. caudata and Ae. umbellulata probably involving three events (or more)

Another (home made) approach

