

#### Detecting Selection with EAA and Fst outlier tests

| 17 M |  |
|------|--|

Rachael Dudaniec Macquarie University



Workshop on Population and Speciation Genomics 2020

# Practical learning goals:

- Become familiar with running differentiation-based and environmental association analyses (EAA)
- Apply different parameter sets and evaluate how different settings impact outlier detection.
- Plot and interpret results of different tests

#### Data for the practical come from:

Dudaniec RY, Yong CJ, Lancaster LT, Svensson EI, Hansson B (2018) Signatures of local adaptation along environmental gradients in a range-expanding damselfly (*Ischnura elegans*). *Molecular Ecology*. 27(11): 2576-2593

#### THE GENETIC DATA

#### *Ischnura elegans* – Blue tailed damselfly

- 426 *I. elegans* (2013)
- RADseq/13,612 SNPs
- 500km gradient

4 admixed clusters



Dudaniec et al. 2018, Mol Ecol

#### THE ENVIRONMENTAL DATA



Percentage tree cover



Mean Annual Temperature Mean Maximum Temp Warmest Quarter (Summer)



Wind Speed



Mean Annual Precipitation



# What we'll cover

#### Each Part has a separate R script file:

Part 1.0 The Data:

Load and examine genetic data, plot and correlate environmental variables

Part 2.0 Outliers:

Differentiation-based (Fst) outlier detection with *pcadapt* and *OutFLANK* 

Part 3.0 Multivariate EAA:

Ordination approach using Redundancy Analysis (RDA)

Part 4.0 Univariate EAA:

Single locus tests with Latent Factor Mixed Models (LFMM)

### PART 1.0 The Data

- 1) Visualise and examine the dataset
- 2) Plot and examine environmental variables
- 3) Check for correlations in environmental variables





## PART 2.0. Outliers

- 1) Run OutFLANK (Whitlock and Lotterhos 2015)
- Modify parameters, fill in Table 1 compare N outliers with different parameters:
  - Left and Right Trim Fraction
  - q- threshold (FDR rate)

## Left and Right Trim Fraction

Tells OutFLANK what fraction of extreme Fst values to remove from the left and right tails before estimating the **null Fst distribution** 

If you trim too few off the tails, it will result in a much wider chisquare distribution (smaller df) and fewer outliers called.



### False discovery rate:'q threshold'

- q sets the % threshold for determining an 'outlier'
   a measure of the false discovery rate
- The *q-value* is calculated based on the right tail (+) *p-values* for each locus
- If a locus is below the threshold then it may be included as a candidate



## PART 2.0. Outliers

- 1) Run OutFLANK (Whitlock and Lotterhos 2015)
- 2) Modify parameters, fill in Table 1 compare N outliers with different parameters:
  - Left and Right Trim Fraction
  - q- threshold (FDR rate)
- 3) Run *pcadapt* 
  - -Modify GIF compare to original GIF
  - -Define FDR (q-value cut off)
  - Examine N outliers



## Genomic Inflation Factor (GIF)

Used to recalibrate test scores (pvalues) to control FDR

Expresses the **deviation** of the distribution of the <u>observed</u> test statistic from the distribution of the <u>expected</u> test statistic, **i.e. inflation of scores** 



*GIF can vary depending on sample size, relatedness, LD, population substructure, and N causal variants.* 

## Calibrating P-values with GIF



**Box Fig. 1.** Histograms of test significance values (*P*-values) prior to the application of FDR control algorithms (artificial data). GIF is the genomic inflation factor for each data set.

```
GIF ~ 1= well calibrated
GIF > 1= liberal (too many small p-values)
GIF < 1= conservative (too many large p-values)</pre>
```

## PART 3.0. Multivariate EAA

#### RDA – Redundancy Analysis (R package **vegan**)



Recover loci loadings on K number of axes

Capblancq et al. 2018



= a multi-dimensional measure of how many SDs each locus is from the mean distribution

# PART 3.0. Multivariate EAA

RDA – Redundancy Analysis (R package **vegan**)

- 1) Identify outliers using *Mahalanobis distance* approach (Capblancq et al. 2018)
- 2) Compare default and modified GIFs
- Identify outliers using a P-value (SD) cut-off approach
- 4) Correlate SD outliers with environmental predictors and plot

# PART 4.0. Univariate EAA

Latent factor mixed modelling LFMM2

- Linear mixed model that uses 'K' genetic groups as latent factors (representing random effects)
- The environmental variables are the fixed effects
- Each SNP x ENV association is tested separately



# PART 4.0. Univariate EAA

Latent factor mixed modelling LFMM

- 1. Run LFMM
- 2. Examine GIF for each environmental predictor
- 3. Outlier detection 1 variable at a time
- 4. Modify GIF and apply FDR cut-offs
- 5. Optional: Run a PCA on environmental predictors and re-run LFMM identify PC outliers



## What we'll cover

Each Part has a separate R script file:

Part 1.0 The Data:

Feel free to work with others. Parts 2-4 are independent so can be done in any order. Feel free to pick and choose, or do it all ③

Ordination approach using Redundancy analysis (RDA)

Part 4.0 Univariate EAA:

Single locus tests with Latent Factor Mixed Models (LFMM)