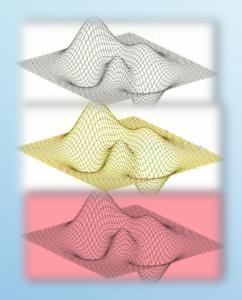
DETECTING SELECTION AND LOCAL ADAPTATION

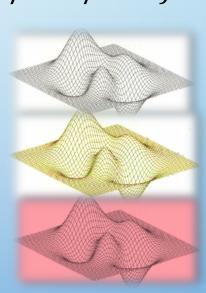


Rachael Dudaniec Macquarie University Sydney, Australia

Workshop on Population and Speciation Genomics, Cesky Krumlov, 2020

PART 1 – THEORY AND METHODS

- Local adaptation what and why?
- Methods of detecting local adaptation
- Differentiation-based analyses (Fst outlier tests)
- Environmental Association Analyses (EAA/GEA/ GxE)
- Parameters and sampling effects



Thomas et al. (2018)

ost-settlement select

LOCAL ADAPTATION: WHAT AND WHY?

- Local adaptation is the response to differential selective
 pressures among populations, acting on genetically controlled
 fitness differences among individuals.
- Important for the generation and maintenance of biodiversity, species range shifts, the dynamics of species interactions.

LOCAL ADAPTATION: WHAT AND WHY?

- Occurs when selection is spatially heterogeneous and strong, relative to other evolutionary forces
- Genetic drift reduces additive genetic variance/causes random fixation of genotypes and reduces local adaptation
- Gene flow is generally thought to inhibit local adaptation (i.e. via 'gene swamping')? But not always...

Adaptive genes may be maintained at intermediate gene flow in temporally variable environments

- selection needs variability to act on

WHY IS LOCAL ADAPTATION IMPORTANT?

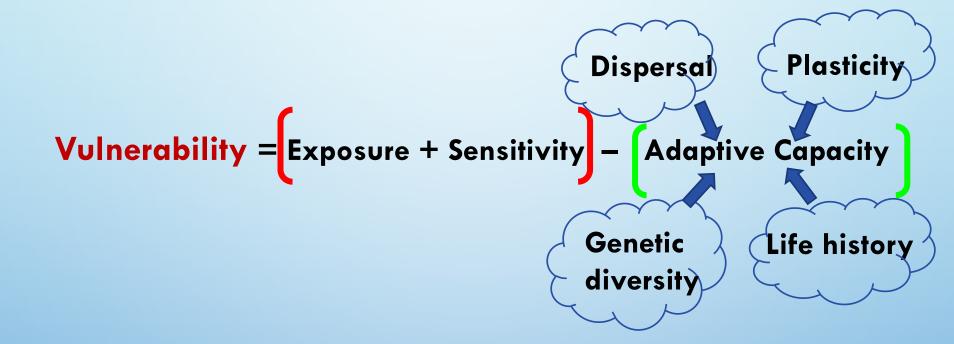
Adaptive variation contributes towards mediating the vulnerability of a species to extinction

A species' vulnerability is a function of its sensitivity and exposure to fitness stressors, and is mediated by the adaptive potential of the species (both ecological and evolutionary), and the capacity for conservation management (Williams et al. 2008)

WHY IS LOCAL ADAPTATION IMPORTANT?

Williams et al. 2008

WHY IS LOCAL ADAPTATION IMPORTANT?



Williams et al. 2008

TYPES OF RESEARCH QUESTIONS

Study-system specific

- Will species X adapt during range expansion/ invasion?
- Are hybrids of X+ X more locally adapted than parents or visa versa?
- Does declining species X have 'enough' adaptive variation to survive climate change?

TYPES OF RESEARCH QUESTIONS

Study-system specific

- Will species X adapt during range expansion/ invasion?
- Are hybrids of X+X more locally adapted than parents or visa versa?
- Does declining species X have 'enough' adaptive variation to survive climate change?

Theoretical

- Does high gene flow limit local adaptation?
- Does local adaptation act in parallel across species or environments?
- Are there common patterns of local adaptation across species with respect to demography, traits, or evolutionary history?

KNOWLEDGE OF ADAPTIVE CAPACITY CAN INFLUENCE SPECIES' MANAGEMENT

Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections

Orly Razgour^{a,b,1}, Brenna Forester^c, John B. Taggart^d, Michaël Bekaert^d, Javier Juste^e, Carlos Ibáñez^e, Sébastien J. Puechmaille^{f.g,b}, Roberto Novella-Fernandez^a, Antton Alberdi¹, and Stéphanie Manel¹

Evolutionary Applications

*Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; *School of Biological Sciences, University of Bristol, Bristol BSB 1TQ, United Kingdor

Evolutionary approaches to environmental, biomedical and socio-economic issues

REVIEW AND SYNTHESES 🕺 Open Access 💿 🕢

Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation

Sarah P. Flanagan 🔿, Brenna R. Forester, Emily K. Latch, Sally N. Aitken, Sean Hoban

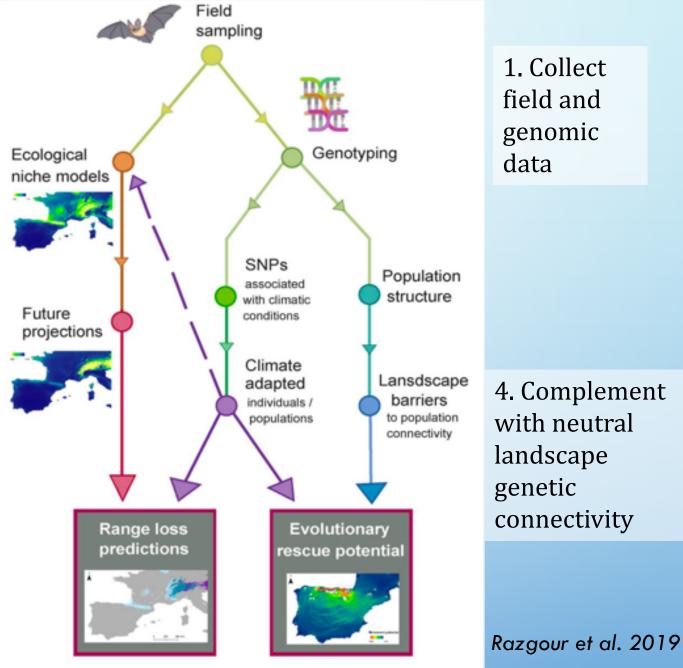
Adaptive introgression as a resource for management and genetic conservation in a changing climate

Jill A. Hamilton 🖾, Joshua M. Miller

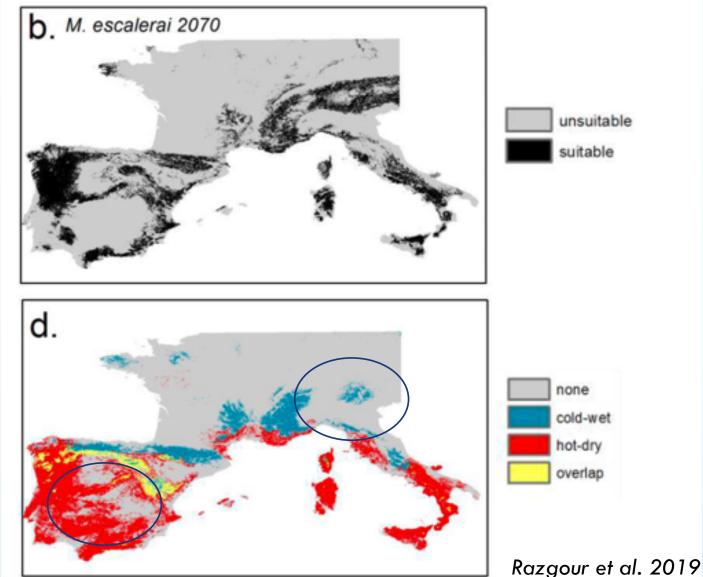
INTEGRATING ADAPTIVE GENETIC VARIATION

2. Use niche models to assess vulnerability and future ranges

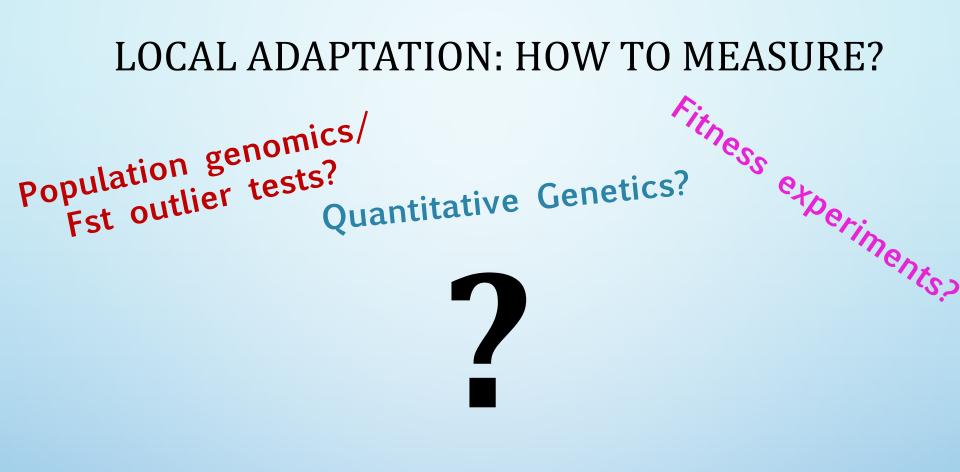
> 3. Use SNP candidates to project species ranges and evolutionary potential



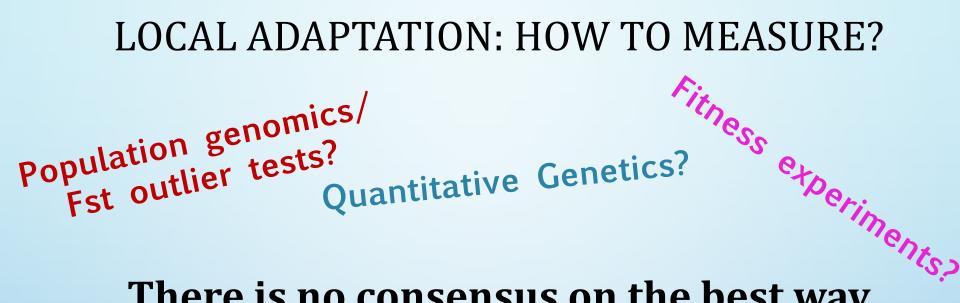
SDM informed by adaptive genetic variation



Future losses were overestimated when adaptive variability was NOT accounted for

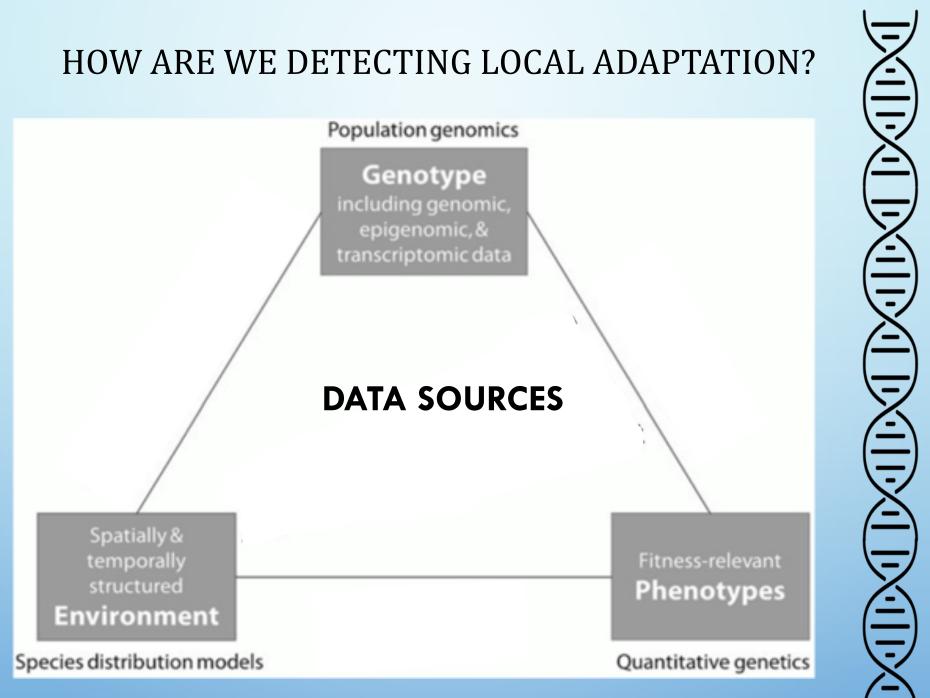


Environmental Association Analysis (EAA)? Genome Wide Association Studies? Common transplants? Reciprocal transplants?

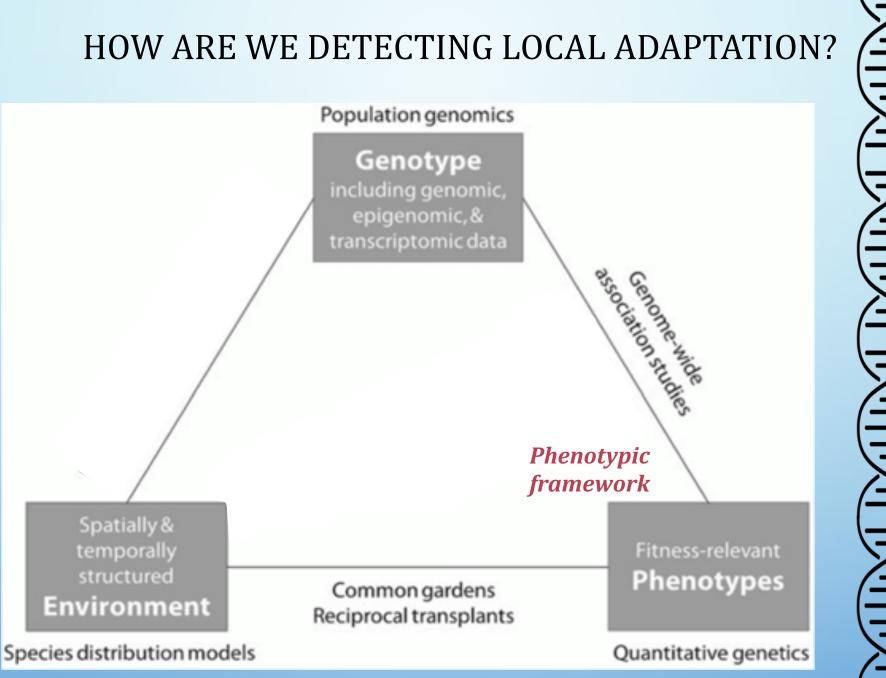


There is no consensus on the best way to measure it! An appropriate combination is recommended©

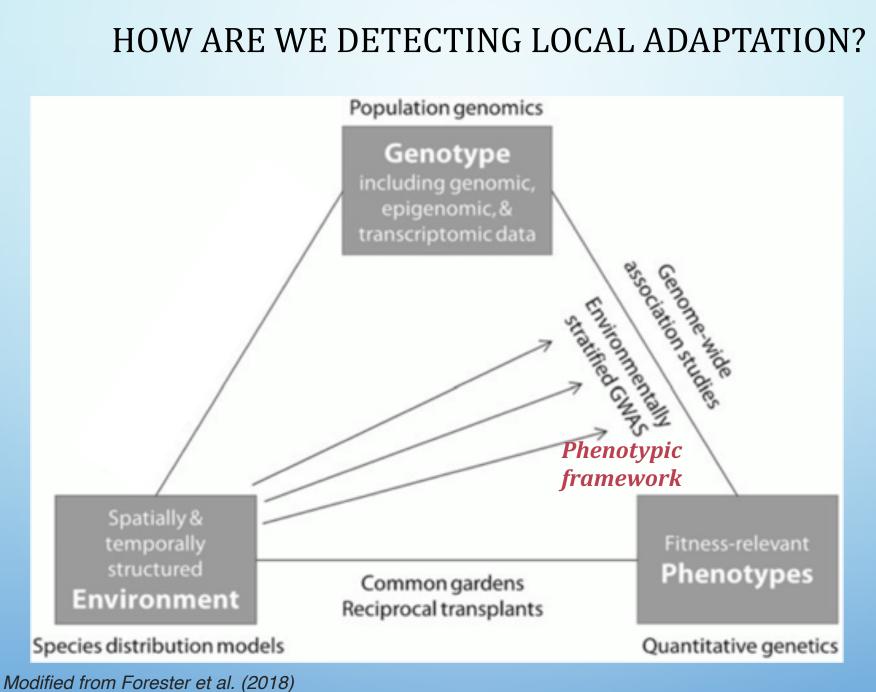
Environmental Association Analysis (EAA)? Genome Wide Association Studies? Common transplants Reciprocal transplants



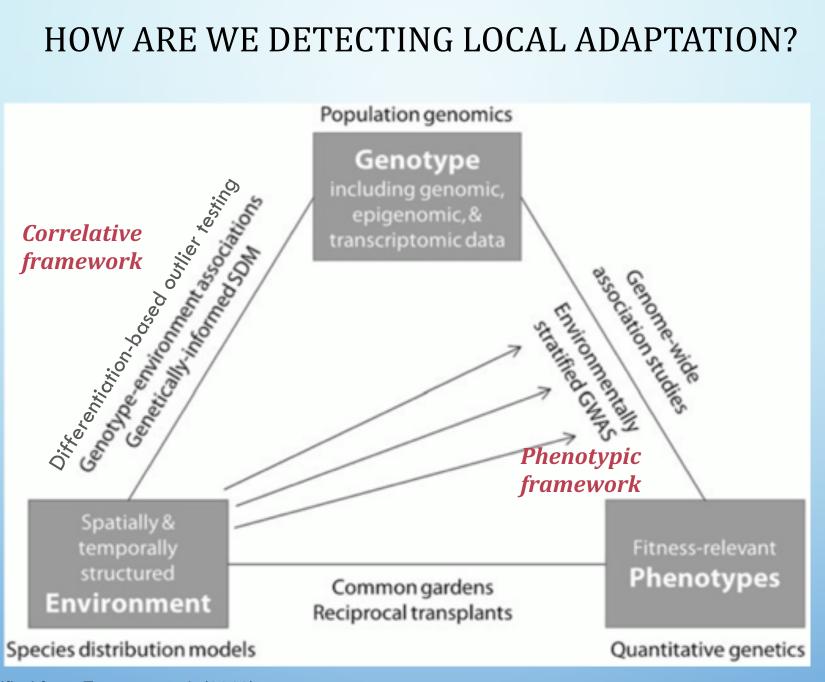
Modified from Forester et al. (2018)



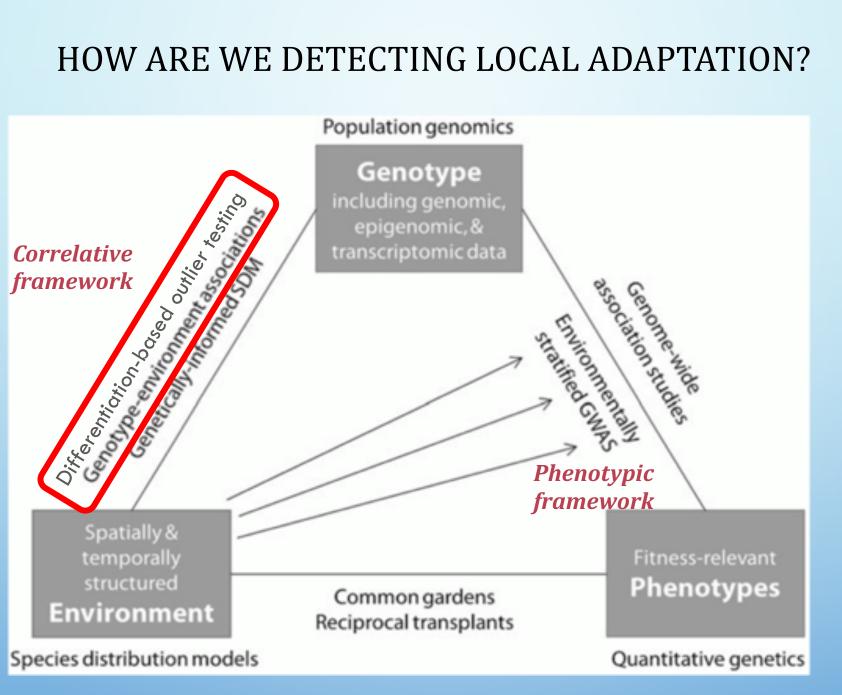
Modified from Forester et al. (2018)



-

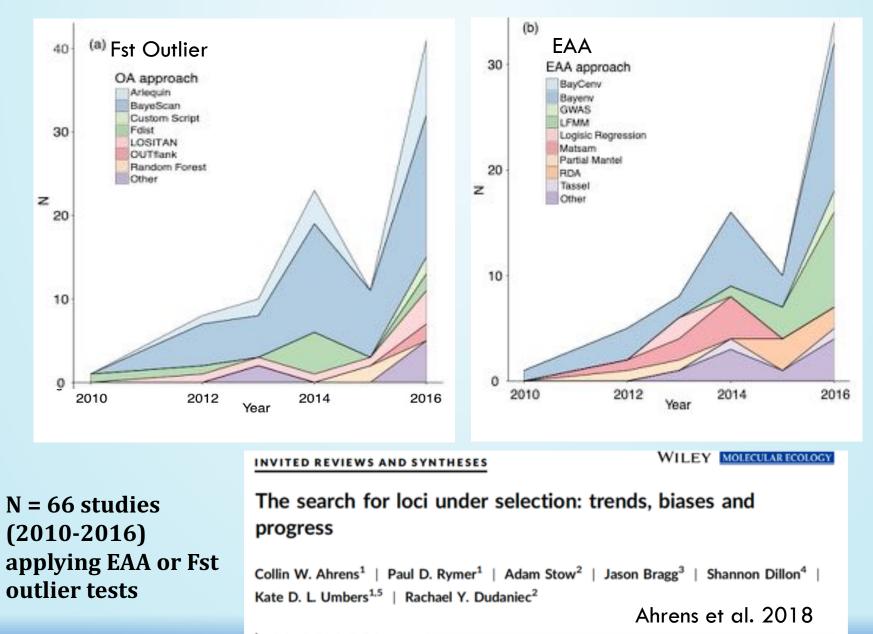


Modified from Forester et al. (2018)



Modified from Forester et al. (2018)

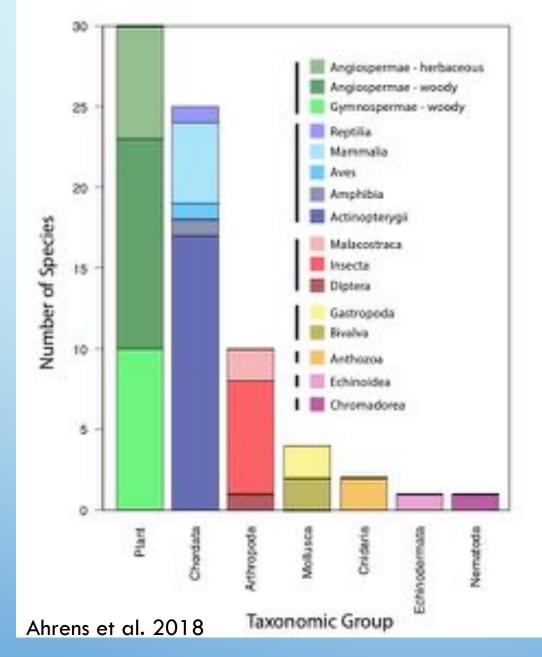
USE OF FST OUTLIER TESTS AND EAA IS INCREASING



¹Maukerbury Institute for the Environment

•

MANY TAXONOMIC GROUPS REPRESENTED

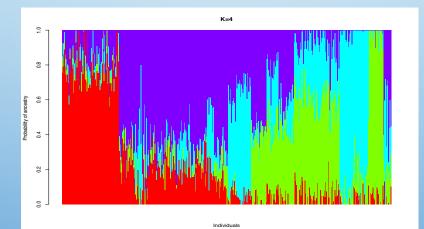


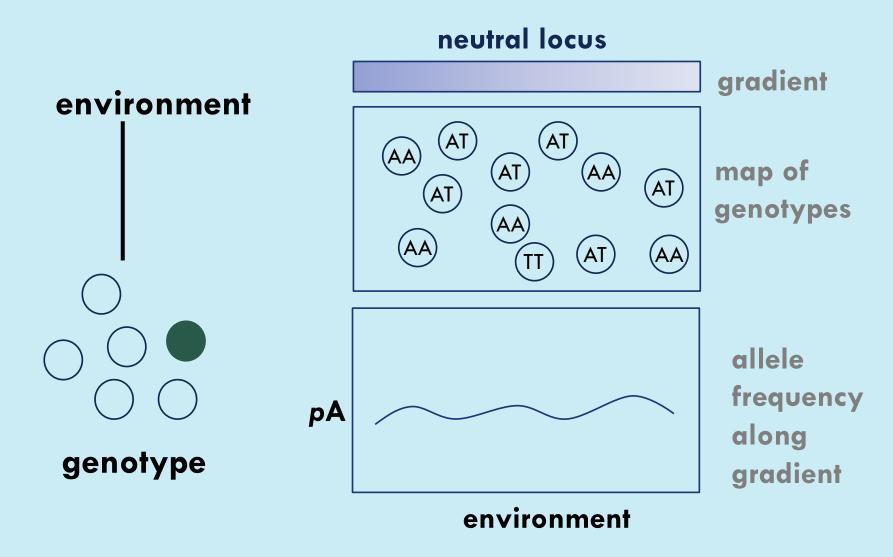
 N = 66 studies (2010-2016) applying EAA or Fst outlier tests

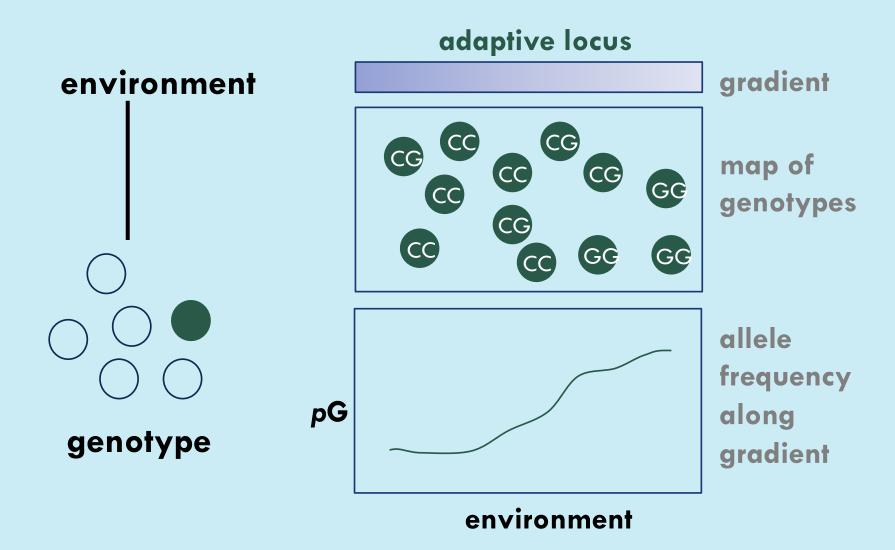
 Mostly trees, plants, then fish, mammals and insects

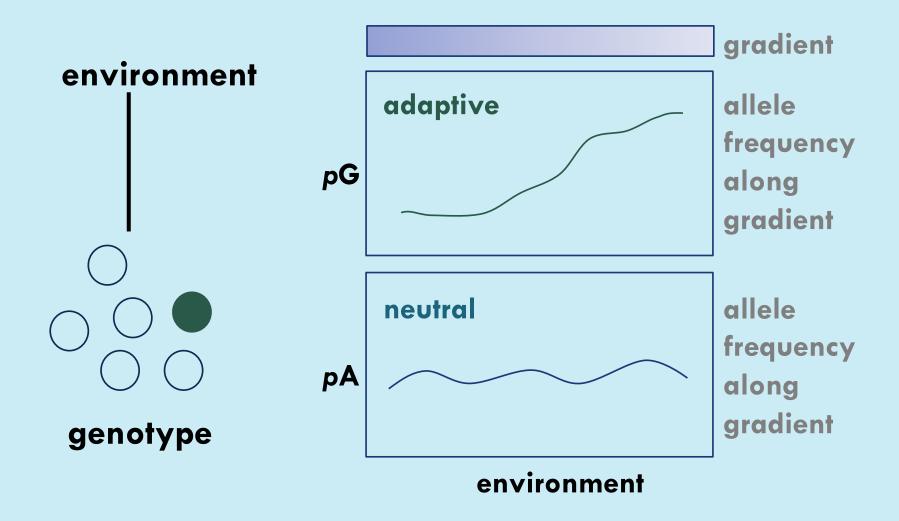
When pairwise Fst is not identical between populations we can get an excess of false positives

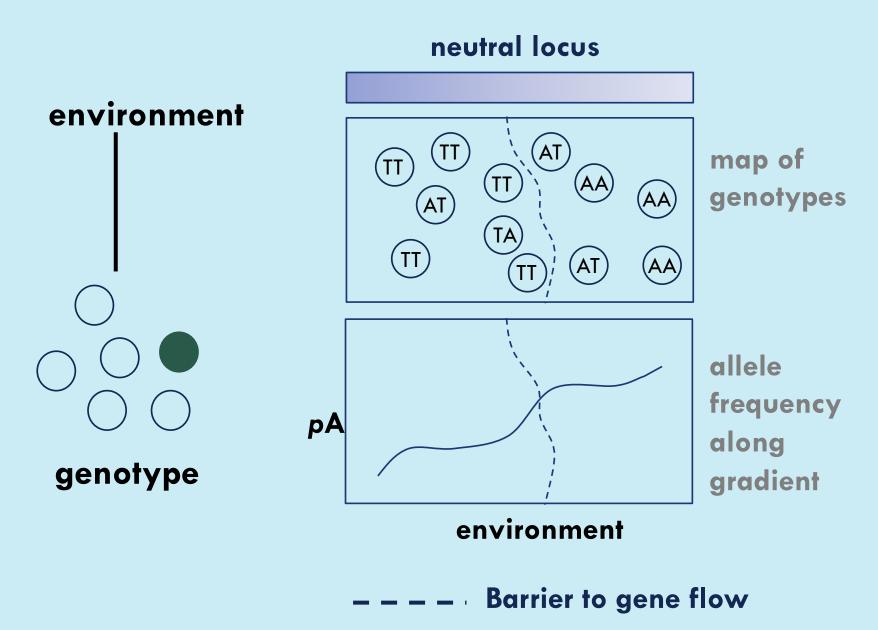
- Genetic drift in small, patchy populations = false positives
- When environment tracks genetic structure = false negatives
- Introgression, hybridization = false positives

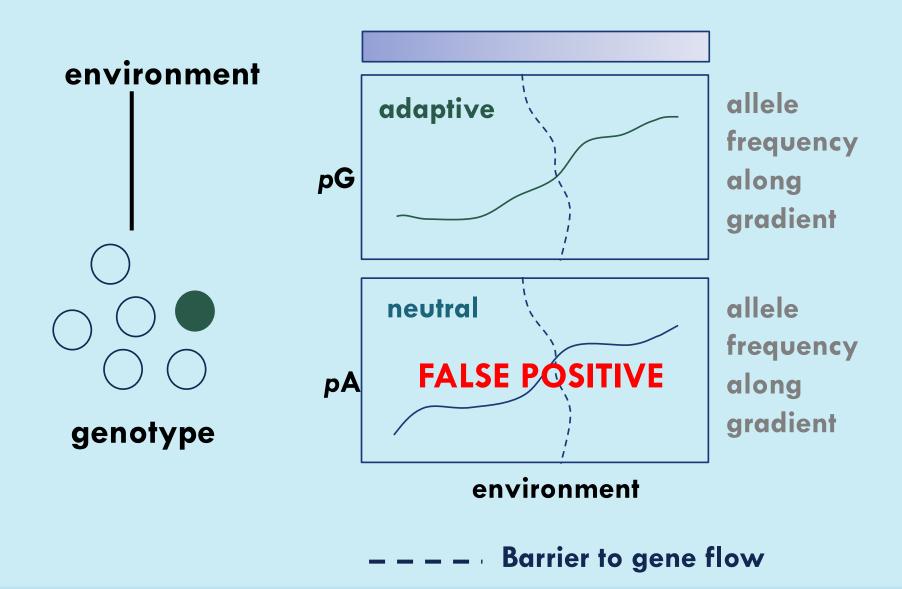




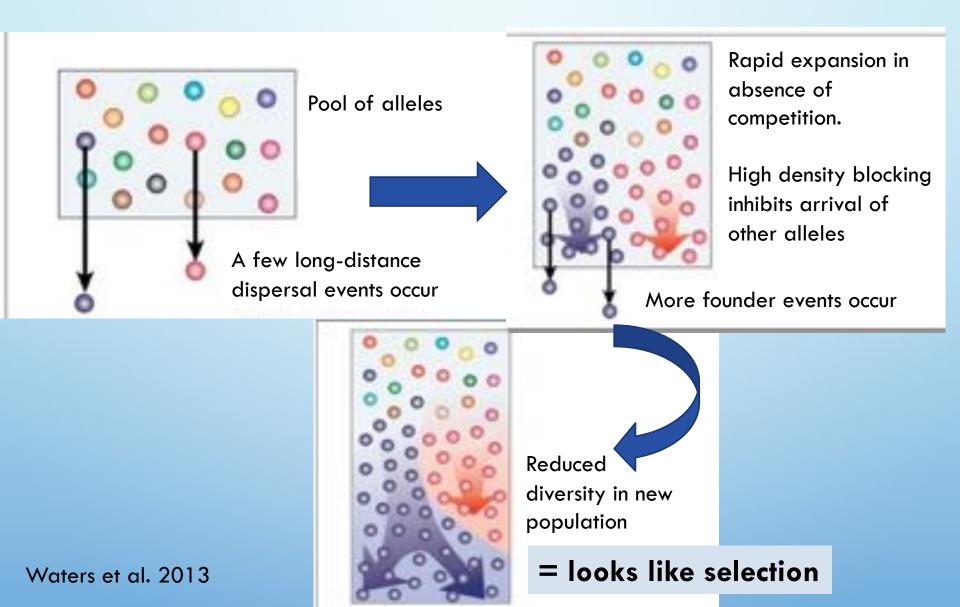








EFFECTS OF RANGE EXPANSION: ALLELE SURFING/ FALSE POSITIVES



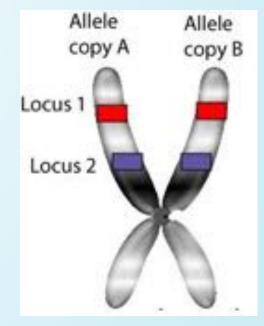
HOW DO WE ACCOUNT FOR GENETIC STRUCTURE?

- Genetic clustering (LFMM, OutFlank)
- Kinship matrix (BayeEnv)
- Spatial predictors (spatial autocorrelation, GWR)
- PCA (RDA, pcadapt- principal coordinates)
- Generalised Dissimilarity Modelling
- Simulation of neutral data under demographic model (Harris & Munshi-South 2016)

Accounting for neutral population structure can reduce false positive rates...but also reduce power.

DEALING WITH LINKAGE DISEQUILIBRIUM The nonrandom association of alleles at two or more loci

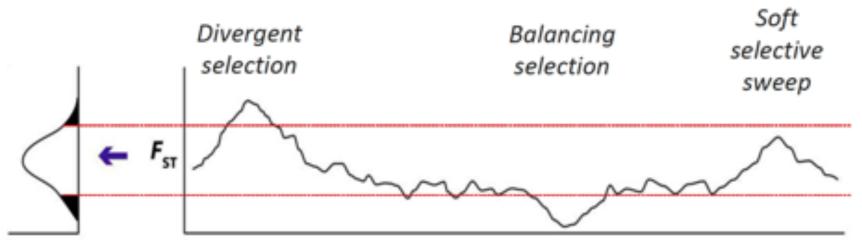
- LD can inform collinearity between SNPs, or create inflated numbers of correlated outliers
- You may filter SNP data sets based on LD summary statistics, and/or using a single SNP per RAD tag



 Use unlinked dataset for calculating neutral population structure to avoid bias

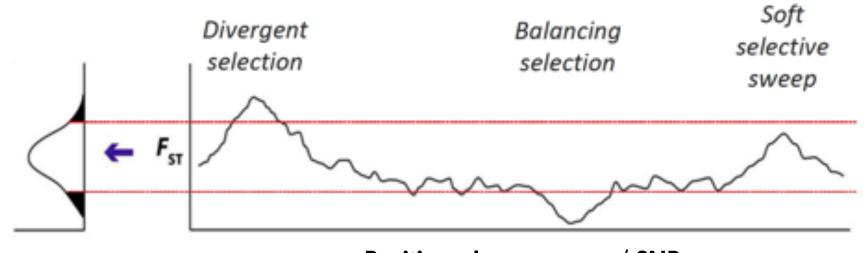
	SNP 1a	SNP 1b	SNP 1c	
AEM			TTCCATGGCATGTACATACACGGATGCGTGCAGTYTCTGCACC	
AWL	AGACATCA	GTTGGGACGCAAA	TTCCATGGCGTGTACATACACGGATGCGTGCAGTCTCTGCACO	GTGCAGAT
YEM	AGGCATCA	GTTGAGACGCAAA	-TCCATGGCGTGTACATACACGGATGCGTGCAGTCTCTGCACC	GTGCAGAT
YWL	AGGCATCA	GTTGAGACGCAAA	-TCCATGGCGTGTACATACACGGATGCGTGCAGTCTCTGCACC	GTGCAGAT

- Identifies loci with higher or lower Fst than expected from the Fst distribution expected under neutrality – usually based on X² approximations of Fst
- Fst values on the tail ends are identified as outliers
- No environmental or geographic data needed but need hypotheses!



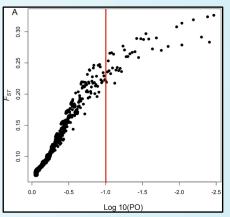
Position along genome/ SNP

- Good when environmental effects are unknown, or data deficient
- Risk missing important environmental drivers of selection
- Best for detecting large effect loci (less sensitive to small effect)
- Best for divergent, positive selection negative less clear
- Works well under IBD (Lotterhos & Whitlock 2015)

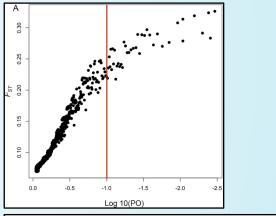


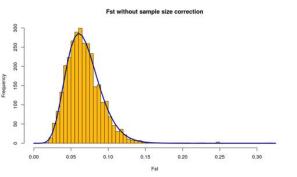
Position along genome/ SNP

 Bayescan – Bayesian method to estimate the relative probability that each locus is under selection (Foll and Gaggiotti 2008) – *high false positive rate*



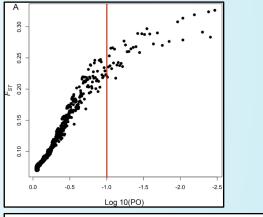
- Bayescan Bayesian method to estimate the relative probability that each locus is under selection (Foll and Gaggiotti 2008) – *high false positive rate*
- **OutFLANK** calculates null Fst distribution to separate diversifying SNPs with high Fst from neutral SNPs (Whitlock & Lotterhos 2015) *conservative*

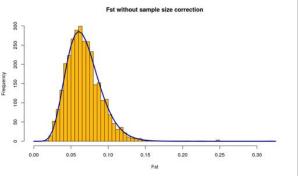


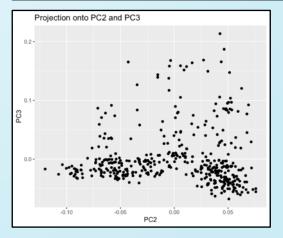


- Bayescan Bayesian method to estimate the relative probability that each locus is under selection (Foll and Gaggiotti 2008) – *high false positive rate*
- **OutFLANK** calculates null Fst distribution to separate diversifying SNPs with high Fst from neutral SNPs (Whitlock & Lotterhos 2015) *conservative*
- pcadapt –principal components analysis. Tests correlation between genetic variation and principal components. (Luu et al. 2017)performs well with admixture

See Hoban et al. 2016 for more



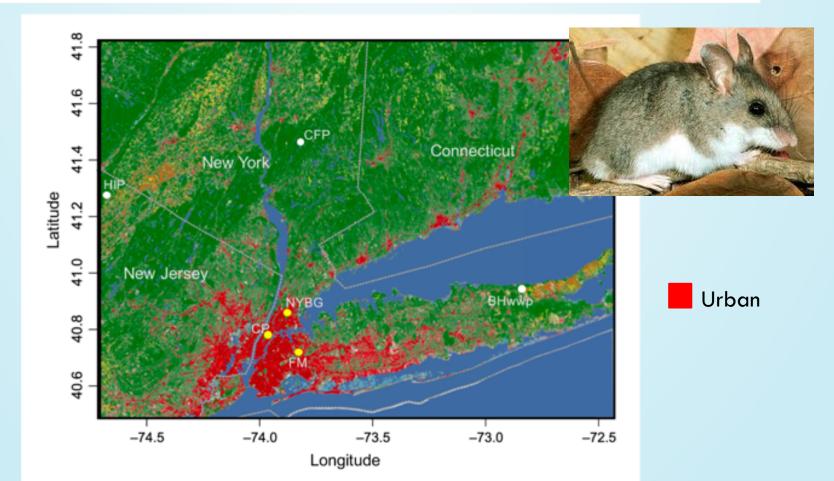




CASE STUDY– FST OUTLIER TESTS

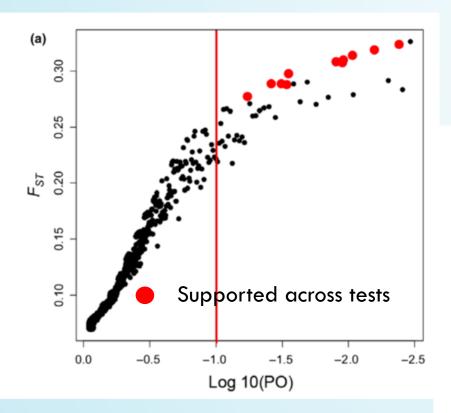
Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus)

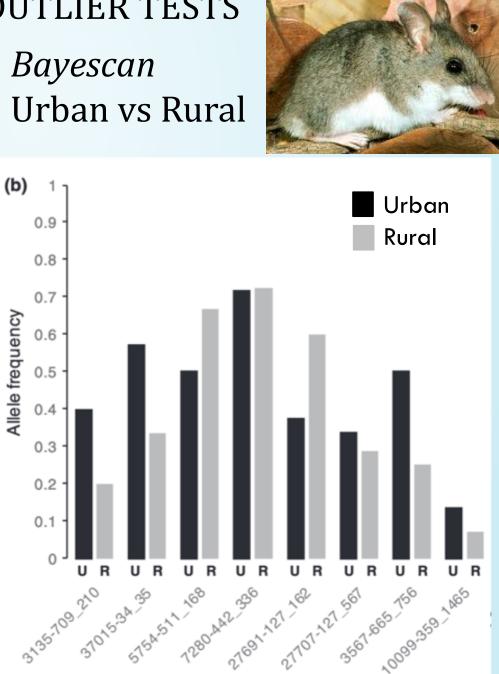
Stephen E. Harris¹* | Jason Munshi-South² 2017- Molecular Ecology



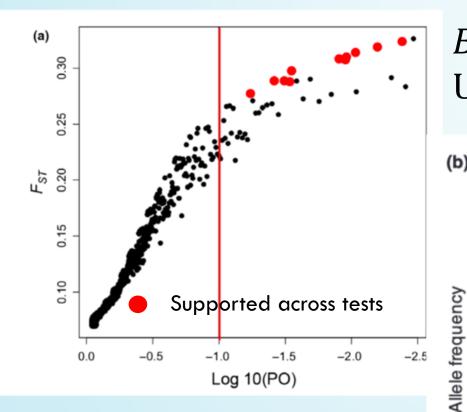
CASE STUDY- FST OUTLIER TESTS

Allele frequency

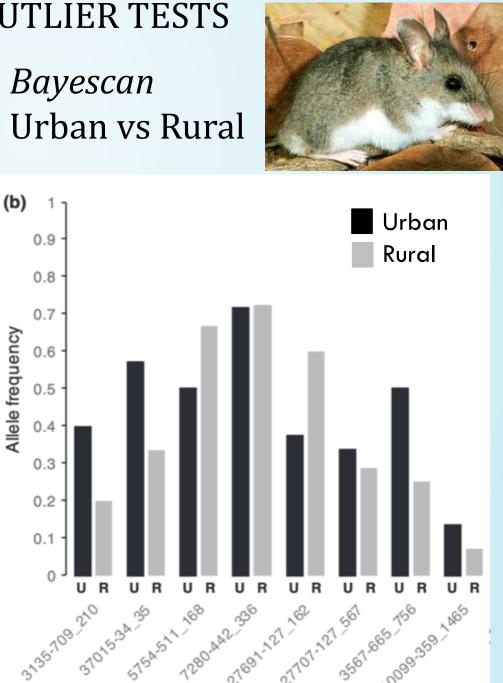




CASE STUDY– FST OUTLIER TESTS



- Gene annotations associated with dietary metabolism
- Urban vs rural energy budgets, physiological stressors or diets ?



ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA) (or genotype x environment, GEA)

Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

For e.g. in the white-mice study, an EAA study might test explicit hypotheses with data on:

- % urban cover for each sample
- Composition of food types in each habitat
- Other abiotic or biotic variables

ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA) (or genotype x environment, GEA)

Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

Tools for EAA differ by:

- the type of model (e.g. logistic regression, matrix correlation,, mixed-effect models)
- the statistical procedure used (e.g. FDR, p-values, GIF)
- Univariate vs. Multivariate
- the way population structure is dealt with

ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA) (or genotype x environment, GEA)

Seeks a correlative indication of evolutionary responses

to spatial heterogeneity

Tools for EAA differ by:

- the type of model (e.g. logistic regression, matrix correlation,, mixed-effect models)
- the statistical procedure used (e.g. FDR, p-values, GIF)
- Univariate vs. Multivariate
- the way population structure is dealt with

Since 1977! Single locus correlation with slope aspect Mitton et al. (1977)

Theoretical and Applied Genetics

January 1977, Volume 51, Issue 1, pp 5–13 | Cite as

Observations on the genetic structure and mating system of ponderosa pine in the Colorado front range

Authors

Authors and affiliations

J. B. Mitton, Y. B. Linhart, J. L. Hamrick, J. S. Beckman

Ν	fol	ecul	lar l	Ecol	ogy	(201)	(5)	

doi: 10.1111/mec.13322

A practical guide to environmental association analysis in landscape genomics

CHRISTIAN RELLSTAB,* FELIX GUGERLI,* ANDREW J. ECKERT,† ANGELA M. HANCOCK‡ and ROLF HOLDEREGGER*§

Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations

Niko Balkenhol, Rachael Y. Dudaniec, Konstantin V. Krutovsky, Jeremy S. Johnson, David M. Cairns, Gernot Segelbacher, Kimberly A. Selkoe, Sophie von der Heyden, Ian J. Wang, Oliver Selm and Stéphane Joost

INVITED REVIEWS AND SYNTHESES

MOLECULAR ECOLOGY

ORIGINAL ARTICLE

Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations

Brenna R. Forester 🕿, Jesse R. Lasky, Helene H. Wagner, Dean L. Urban

WILEY MOLECULAR ECOLOGY

The search for loci under selection: trends	, biases and
progress	VOL. 188, NO. 4 TH
	VOL. 188, NO. 4 TI

Collin W. Ahrens¹ | Paul D. Rymer¹ | Adam Stow² | Jason Bra Synthesis Kate D. L. Umbers^{1,5} | Rachael Y. Dudaniec²

OL. 188, NO. 4 THE AMERICAN NATURALIST OCTOBER 2016

Finding the Genomic Basis of Local Adaptation:

Pitfalls, Practical Solutions, and

Future Directions

Sean Hoban,^{1,†} Joanna L. Kelley,^{2,*,†} Katie E. Lotterhos,^{3,†} Michael F. Antolin,⁴ Gideon Bradburd,⁵ David B. Lowry,⁶ Mary L. Poss,⁷ Laura K. Reed,⁸ Andrew Storfer,² and Michael C. Whitlock⁹

SAMPLING PRINCIPLES for EAA

Environmental variables

- Choose variables hypothesized to drive selection
- Capture the range of environmental variables and values occupied by your study species.

SAMPLING PRINCIPLES for EAA

Environmental variables

- Choose variables hypothesized to drive selection
- Capture the range of environmental variables and values occupied by your study species.

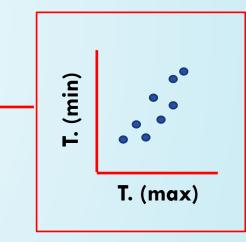
Match spatial and temporal scales with genetic data (EAA)

- Cell size resolution be relevant to study species' gene flow sampling at a 2.5 km scale would be inappropriate for a slug!
- Timing of data (daily, monthly, annual, seasonal)
- Treatment of data (total? average? variability?)

Data format - EAA

Environmental data

Sample	Lat	Lon	Precip	T. (max)	T. (min)	
S1	-15.1	132.3	328.4	29.6	23.6	
S2	-15.2	132.5	329.2	29.3	23.4	
S3	-15.4	132.1	326.3	30.0	25.5	┢
S4	-15.4	132.7	324.4	28.4	22.4	
S5	-15.5	133.6	318.6	28.6	24.1	
S6	-15.7	134.2	314.8	27.8	20.6	
S7	-15.7	135.4	312.8	27.2	22.1	



Data format - EAA

Environmental data

	Sample	Lat	Lon	Precip	T. (mc	ıx) T. (mi	n)		
	S1	-15.1	132.3	328.4	29.6	23.6	,		1
	S2	-15.2	132.5	329.2	29.3	23.4			c •
	S3	-15.4	132.1	326.3	30.0	25.5			T. (min)
	S4	-15.4	132.7	324.4	28.4	22.4			⊢ • •
	S5	-15.5	133.6	318.6	28.6	24.1			
	S6	-15.7	134.2	314.8	27.8	20.6			T. (max)
	S7	-15.7	135.4	312.8	27.2	22.1			
				Ľ,	PCA				
				Sample	Lat	Lon	PC1	PC2]
0	r excluc	le high	ly	Sample S1	Lat -15.1	Lon 132.3	PC1 0.84	PC2 0.76	
	r exclud	•	•	-					
co	orrelated	d varia	ibles	S1	-15.1	132.3	0.84	0.76	
co		d varia	ibles	\$1 \$2	-15.1 -15.2	132.3 132.5	0.84 0.92	0.76 0.83	
co <(orrelated	d varia	ibles	S1 S2 S3	-15.1 -15.2 -15.4	132.3 132.5 132.1	0.84 0.92 0.63	0.76 0.83 0.85	
co <(orrelated 0.70 ge	d varia	ibles	S1 S2 S3 S4	-15.1 -15.2 -15.4 -15.4	132.3 132.5 132.1 132.7	0.84 0.92 0.63 0.44	0.76 0.83 0.85 0.64	

Data format- EAA

population sampling

Sample	Рор	Lat	Lon	Precip	Temp
S1	P1	-15.1	132.3	328.4	23.6
S2	P1	-15.1	132.3	328.4	23.6
S3	P1	-15.1	132.3	328.4	23.6
S4	P1	-15.1	132.3	328.4	23.6
S5	Ρ2	-15.7	135.4	312.8	21.2
S6	P2	-15.7	135.4	312.8	21.2
S7	Ρ2	-15.7	135.4	312.8	21.2

individual sampling

Sample	Lat	Lon	Precip	Temp
S1	-15.1	132.3	328.4	23.6
S2	-15.2	132.5	329.2	23.3
S3	-15.4	132.1	326.3	24.0
S4	-15.4	132.7	324.4	22.4
S5	-15.5	133.6	318.6	22.6
S6	-15.7	134.2	314.8	21.8
S7	-15.7	135.4	312.8	21.2

Genetic data – SNP

	LI	L2	L3	L5
S1	0	0	0	2
S2	2	1	0	0
S3	1	0	0	1
S4	0	1	0	0
S5	1	0	0	0
S6	0	1	1	1
S7	2	0	0	0

SAMPLING PRINCIPLES for EAA

Individual-based analyses work best when:

- you have many coordinates
- environmental data has high variation across sampling area
- Local Ne is low (e.g. mammals)

Population-based analyses work best when:

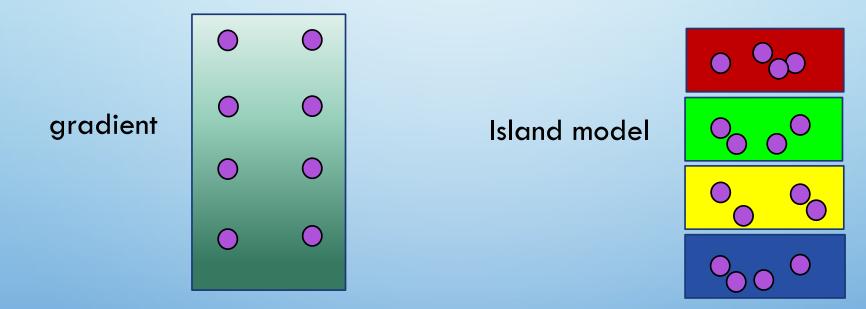
- You have clusters of sampled individuals per site
- Environmental variables change across broader spatial scales
- Local Ne is higher (e.g. insects)

SAMPLING PRINCIPLES for EAA

Paired-gradient sampling is best to detect weaker selection.

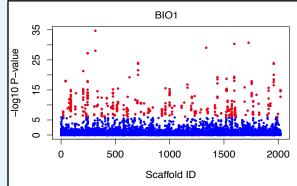
'Clustered' sampling ok for stronger selection

- *= maximise environmental differences*
- = minimize differences in evolutionary history



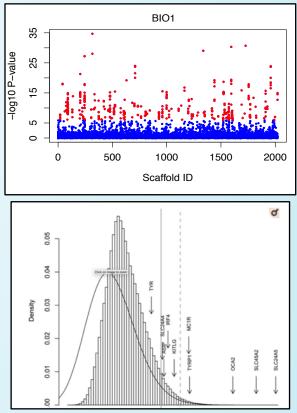
ENVIRONMENTAL ASSOCIATION ANALYSIS

 LFMM2 -Univariate: LMM that uses K as latent factors (representing random effects);the environment is used as a fixed effect - very fast (Caye et al. 2019).



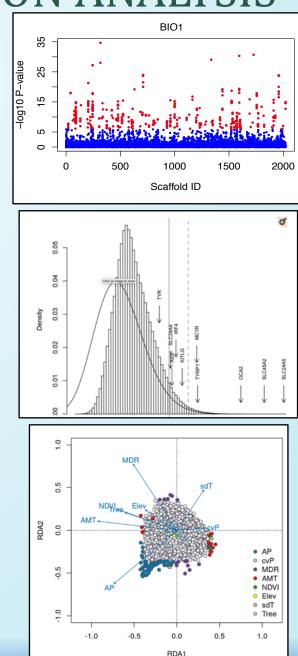
ENVIRONMENTAL ASSOCIATION ANALYSIS

- LFMM2 -Univariate: LMM that uses K as latent factors (representing random effects);the environment is used as a fixed effect - very fast (Caye et al. 2019).
- BAYENV2- Univariate: Bayesian method, generates a kinship matrix from allelic data, to estimate a null model of the demographic structure to test each SNP (Gunther & Coop 2013)- often similar to LFMM



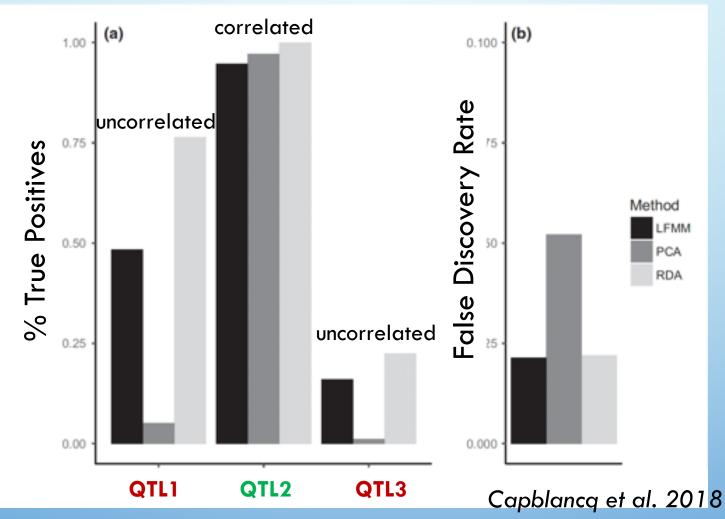
ENVIRONMENTAL ASSOCIATION ANALYSIS

- LFMM2 Univariate: LMM that uses K as latent factors (representing random effects);the environment is used as a fixed effect - very fast (Caye et al. 2019).
- BAYENV2- Univariate: Bayesian method, generates a kinship matrix from allelic data, to estimate a null model of the demographic structure to test each SNP (Gunther & Coop 2013)- often similar to LFMM
- RDA -Multivariate: Redundancy Analysis (+ pRDA) uses ordination to to identify environmental gradients most correlated with adaptive variation (Capblancq et al. 2018), high true positive rate (Forester et al. 2018)



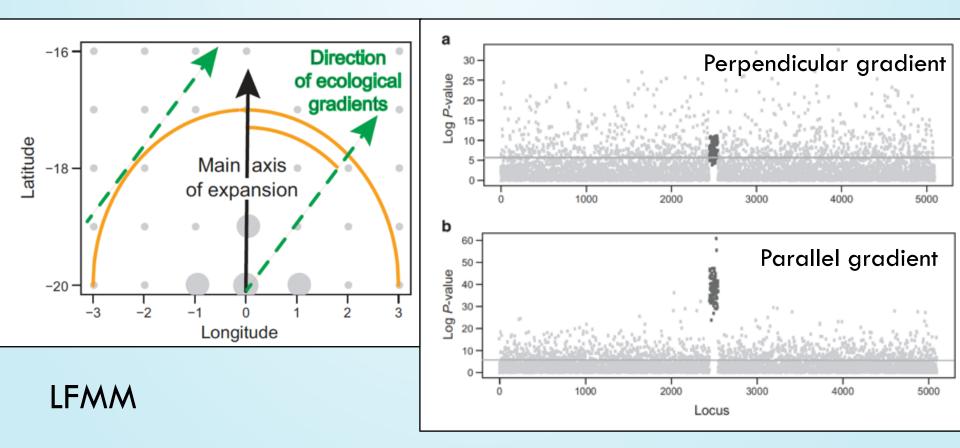
RDA + LFMM + pcadapt comparison

LFMM +RDA have similar detection power – *pcadapt* fails when the environmental gradient is **not** correlated with population structure (a) and has a higher FDR (b)



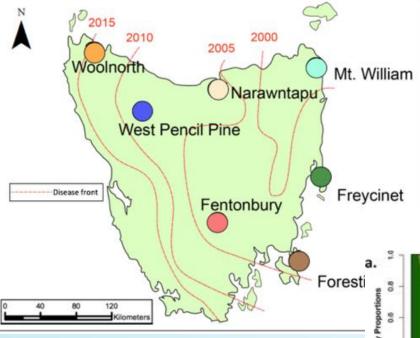
ORIGINAL ARTICLE Frichot et al. 2015, Heredity Detecting adaptive evolution based on association with ecological gradients: Orientation matters!

E Frichot¹, SD Schoville², P de Villemereuil³, OE Gaggiotti^{3,4} and O François¹



Fewer false positives when expansion axis is parallel!

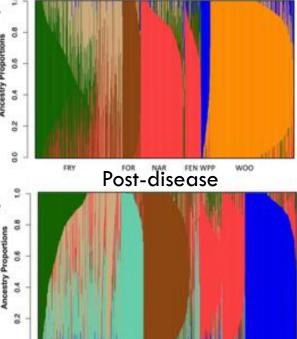
DISEASE VS ABIOTIC SELECTION IN TASMANIAN DEVILS WITH DFTD



- Sampled pre-and post disease
- Shifts in genetic structure
- LFMM and BAYENV2: RADCapture of immune response + random SNPs
- 3,568 individuals

Fraik et al. 2019 BioRxiv

Pre-disease

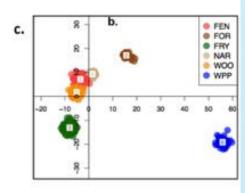


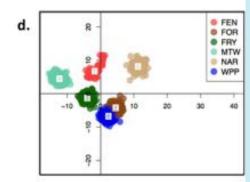
DOV.

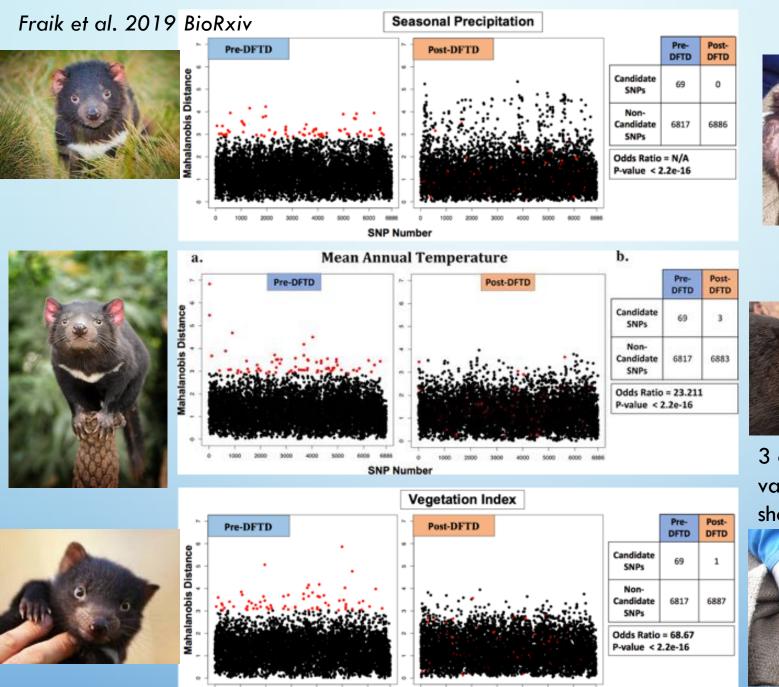
MTW

FOR

NAR FEN





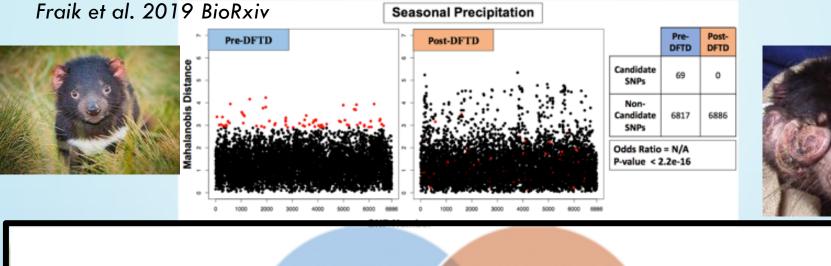


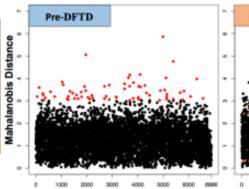
3 of 8 variables shown

SNP Number

6000

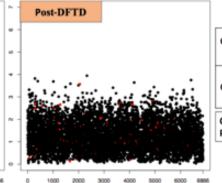
1000 2000 3000 4000 5000





Vegetation Index

SNP Number



	Pre- DFTD	Post- DFTD			
Candidate SNPs	69	1			
Non- Candidate SNPs	6817	6887			
Odds Ratio = 68.67 P-value < 2.2e-16					

の見読を

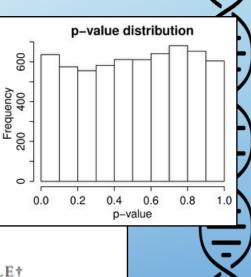
FALSE DISCOVERY RATES

- The expected proportion of false positives among the list of positive tests.
- So, an FDR = 0.05 means that the list of candidates is expected to contain up to 5% false positives
- The underlying principle of FDR control relies on significance values corresponding to the null hypothesis.

(i.e. that P-values are uniformly distributed)

INVITED REVIEWS AND SYNTHESES Controlling false discoveries in genome scans for selection

OLIVIER FRANÇOIS,* HELENA MARTINS,* KEVIN CAYE* and SEAN D. SCHOVILLE†



GENOMIC INFLATION FACTOR (GIF)

Used to recalibrate z-scores and incorrect P-values to control FDR in GWAS, LFMM, RDA.

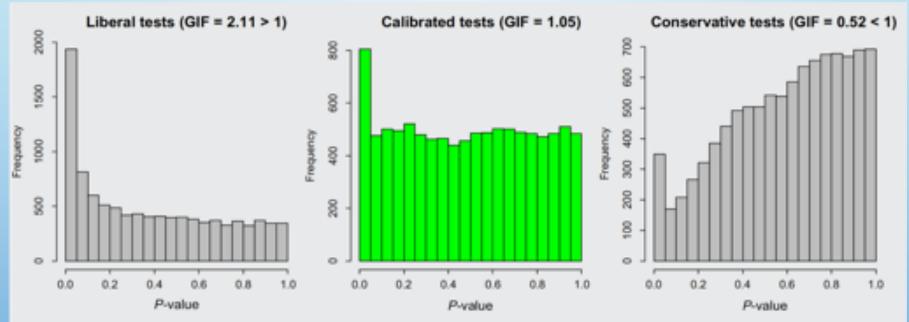
GIF = median of squared z-scores median of the chi-squared distribution

Expresses the **deviation** of the distribution of the observed test statistic from the distribution of the expected test statistic, **i.e. inflation of scores**

GIF magnitude depends on sample size, relatedness, LD, population substructure, and the number of causal variants.

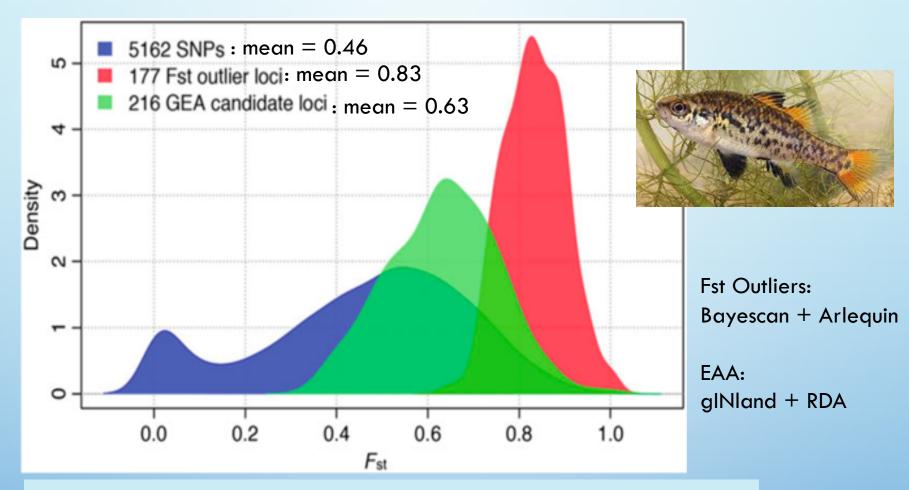
MODIFYING THE GIF

- Calibrating P-values using GIF attempts to flatten the histogram of P-values when the null hypothesis is true.
- FDR cut-offs only makes sense if your data fit this underlying null model (a uniform P-value distribution)
- Some data sets do not, no matter how much you modify GIF!



Box Fig. 1. Histograms of test significance values (P-values) prior to the application of FDR control algorithms (artificial data). GIF is the genomic inflation factor for each data set.

Fst Outlier vs EAA tests – strong vs weak selection



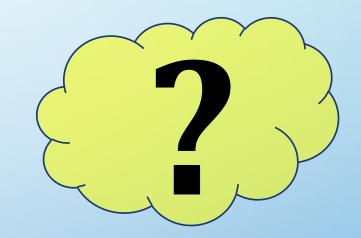
EAA candidates can cover a lower, broader Fst range – loci of smaller effect

Brauer et al. 2016, Mol Ecol

COMPARING Fst outlier TESTS WITH EAA

How is the number of outliers detected affected by:

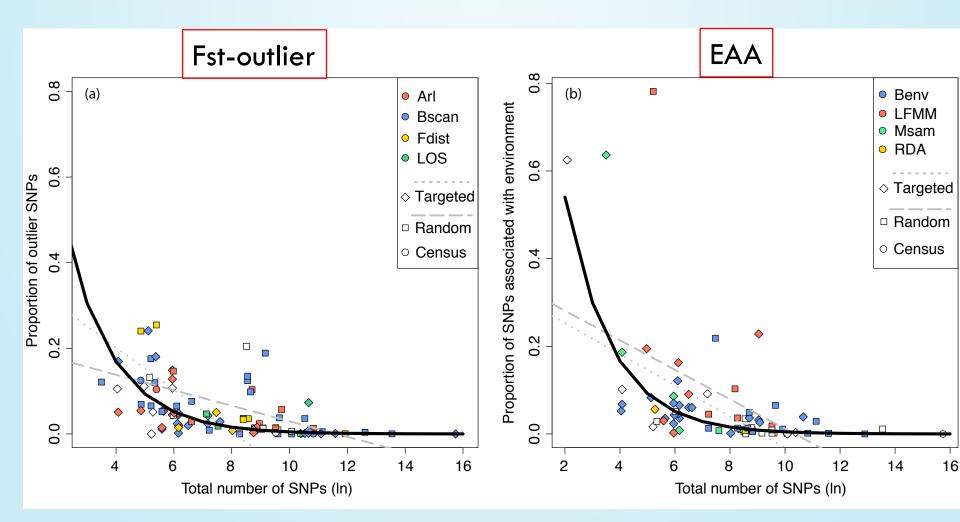
- N SNPs
- N individuals
- N genetic clusters
- global Fst



environmental gradient steepness

EAA versus FST OUTLIER TESTS

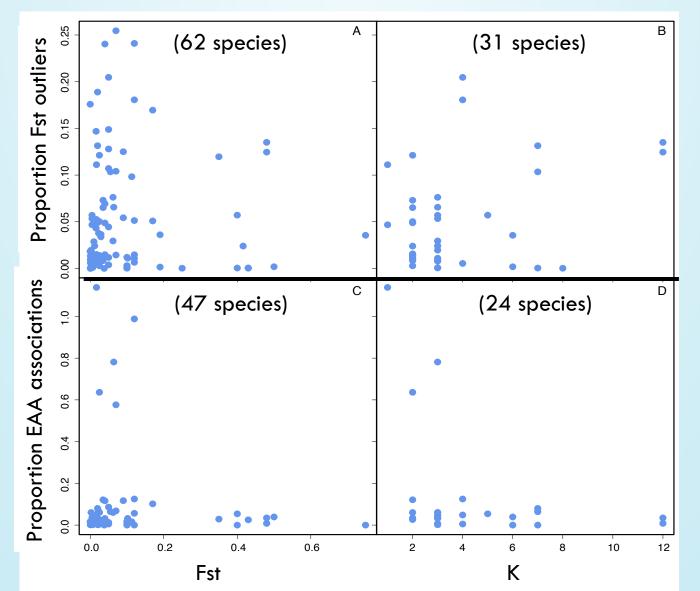
More SNPs does not equal more outliers Detection of outliers level out at ~3K SNPS



N = 66 studies – Ahrens et al. 2018

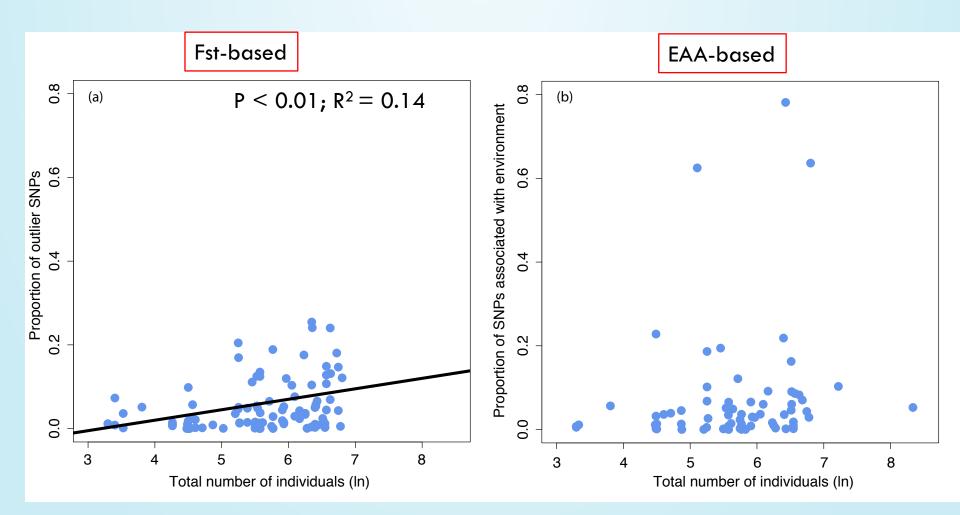
EAA versus FST OUTLIER TESTS

No change in # outliers with global Fst or N genetic clusters (K)



EAA versus FST OUTLIER TESTS

Number of individuals genotyped

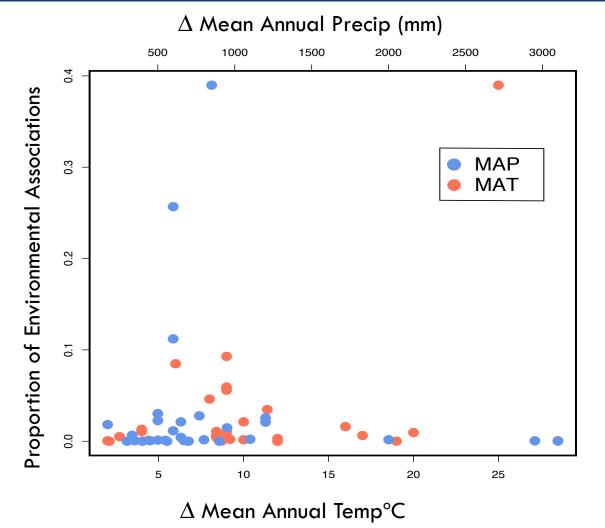


N = 66 studies – Ahrens et al. 2018

ENVIRONMENTAL STEEPNESS DOES NOT AFFECT OUTLIER DETECTION

Environmental steepness – maximum change in temperature and

precipitation between sampling sites (for 52 EAA papers)



Questions?

PART 2: EXAMPLES + DOWNSTREAM ANALYSIS

- Case Study 1 Grasshoppers
 - morphological associations, annotation
- Case Study 2 Damselflies
 - Identifying strong vs weak outliers, GDM
- Stages of analysis overview
- Improving inference
- Combining approaches and the future

DETECTING SELECTION TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

1. Grasshoppers

(Phaulacridium vittatum)

Agricultural pest in Australia

UNIVERSITY of TASMANIA

> Sonu Yadav (PhD graduate)

DETECTING SELECTION TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

1. Grasshoppers

(*Phaulacridium vittatum*)

Agricultural pest in Australia

2. Damselflies

(Ischnura elegans)

Range expanding in Sweden

Sonu Yadav (PhD graduate)

CJ Yong (Masters)

Alex Carey (Masters)

DETECTING SELECTION TWO INSECTS. TWO ENVIRONMENTAL GRADIENTS.

Two environmental gradients: 500-900km (5.0-8.0° latitude)

- 1. Are patterns of selection associated with environmental and morphological gradients?
- 2. Are environmental drivers of neutral genetic connectivity and adaptive genetic variation similar?

Yadav et al. 2019, Mol Ecol

Dudaniec et al. 2018, Mol Ecol

(1) The Wingless Grasshopper (Phaulacridium vittatum)

- Endemic agricultural pest of pasture/herbaceous crops
- Outbreaks every 4-5 years + local annual outbreaks
- Economic costs from crop/pasture loss

ORIGINAL ARTICLE

Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (*Phaulacridium vittatum*)

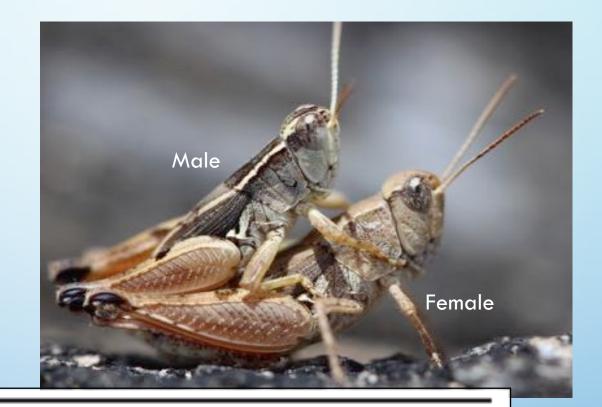
Sonu Yadav 😳 | Adam J. Stow | Rachael Y. Dudaniec 😳

MOLECULAR ECOLOGY WILEY

Morphological variation in P. vittatum

Body size (femur length) varies 6-13mm between sexes and individuals

Positively associated with solar radiation (Yadav et al. 2018)

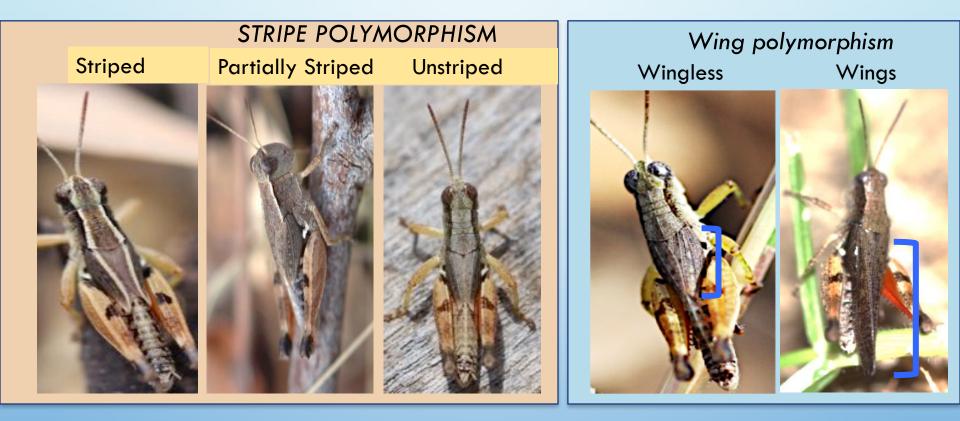


Morphological Variation Tracks Environmental Gradients in an Agricultural Pest, *Phaulacridium vittatum* (Orthoptera: Acrididae) Yadav et al. 2018 – J Insect Sci

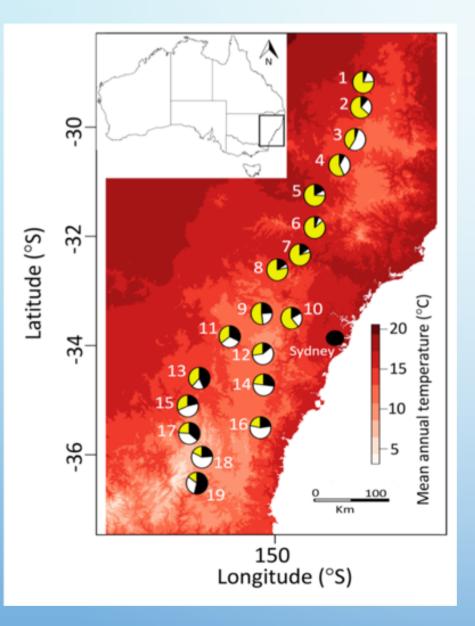
Sonu Yadav,^{1,3,•} Adam J. Stow,¹ Rebecca M. B. Harris,² and Rachael Y. Dudaniec¹

Morphological variation in P. vittatum

- Striped morph increases with solar radiation,
- Winged morph increases with high forest cover (Yadav et al. 2018, J Insect Sci)



Gradient sampling and neutral genetic structure

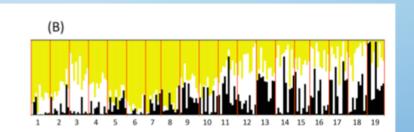


New South Wales, Australia

- 185 P. vittatum (2017)
- ddRADseq = 11,464 SNPs
- 900km, spanning 6.5° latitude
- 6-17°C/130-1600m

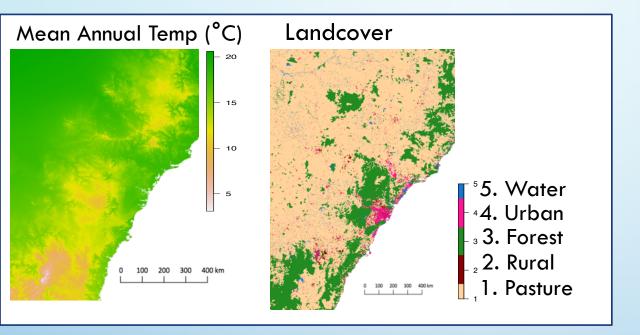
High admixture

Pairwise site Fst = 0.0003-0.08

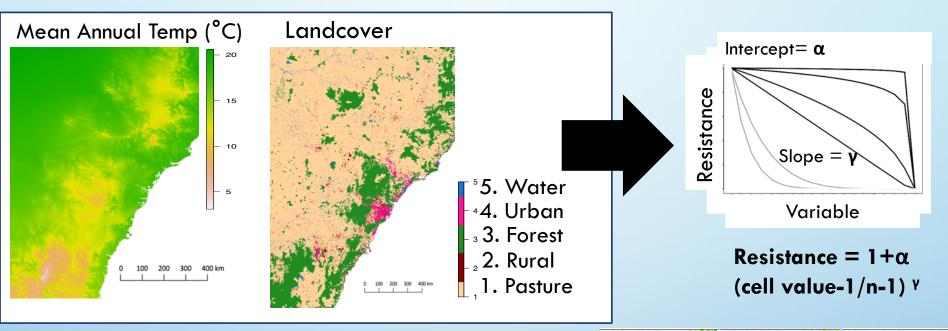


Yadav et al. 2019, Mol Ecol.

Landscape genetic connectivity – resistance surfaces



Landscape genetic connectivity – resistance surfaces

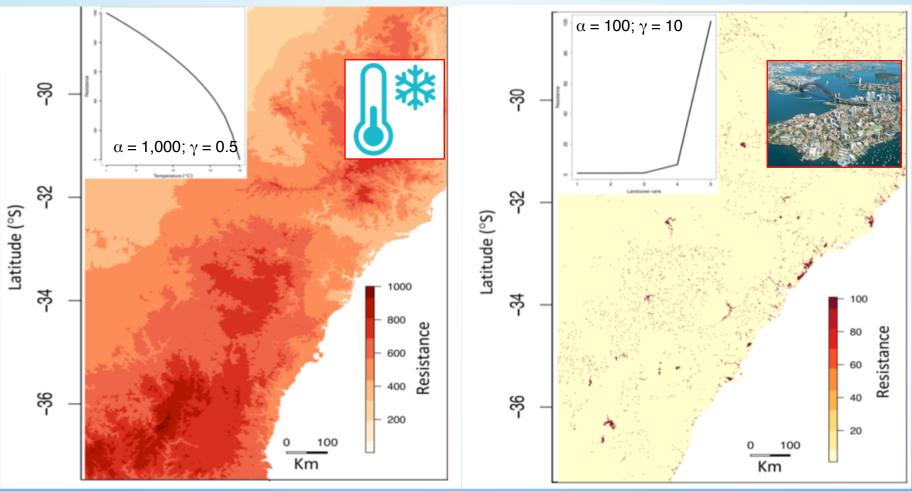


2x 35 resistance distance (Circuitscape) ~genetic distance (AIC model selection)

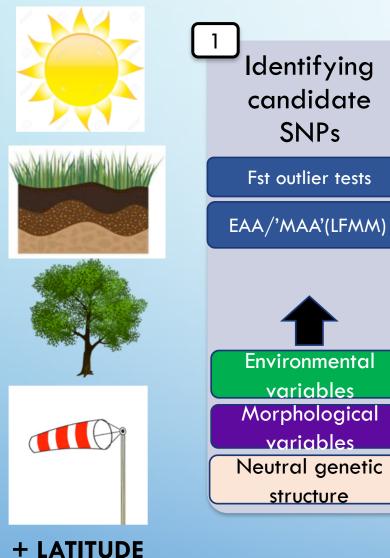
Result: Temperature best predicts genetic distance

Higher resistance = low temperature

Higher resistance = urban + water 10x less resistant than temperature

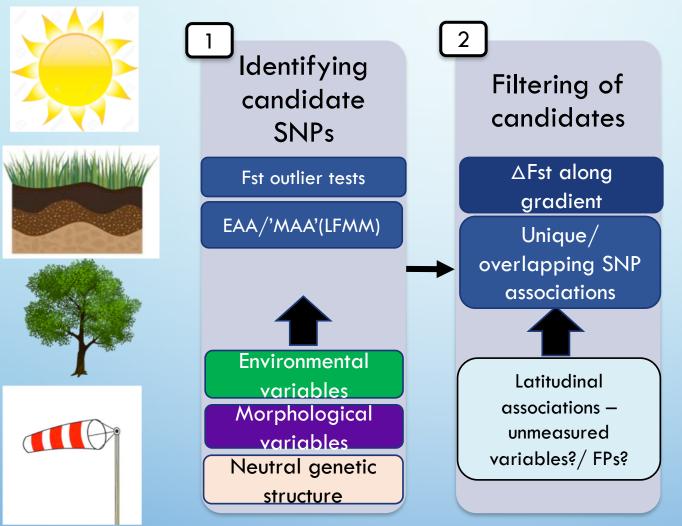


Methods: Detecting env/morph selection



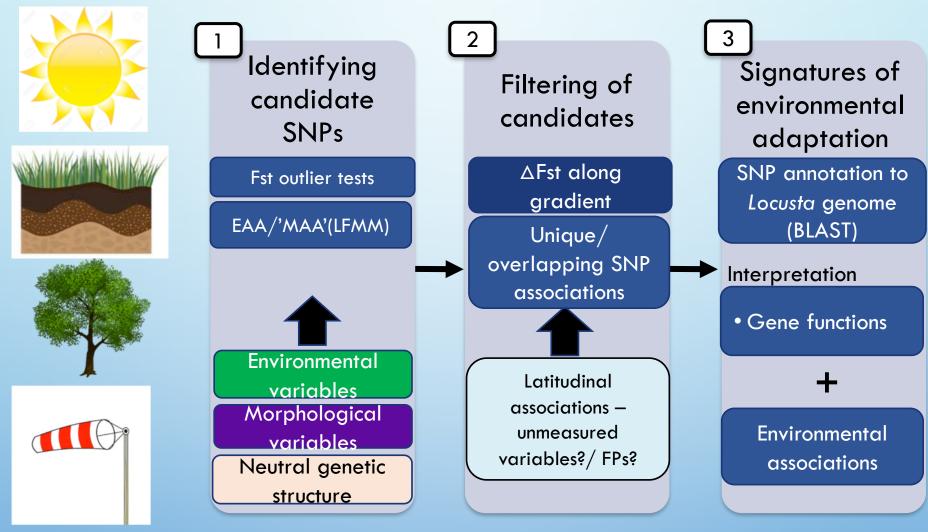
+ LATITUDE

Methods: Detecting env/morph selection



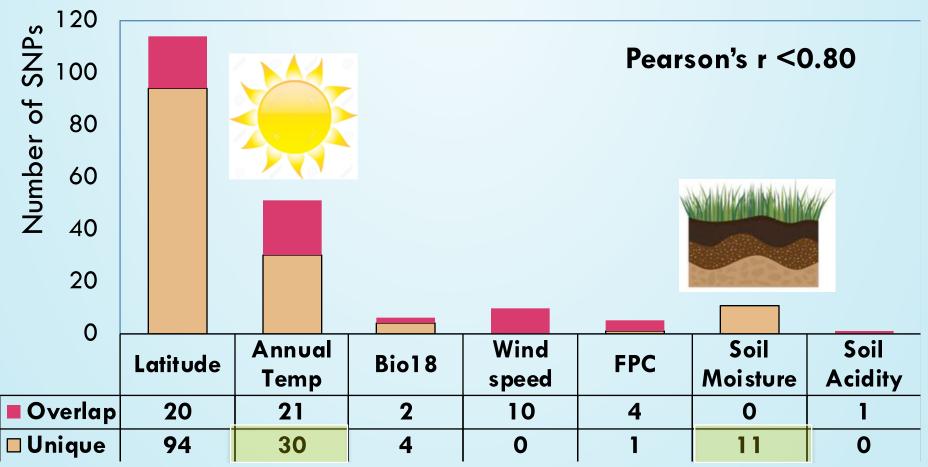
+ LATITUDE

Methods: Detecting env/morph selection

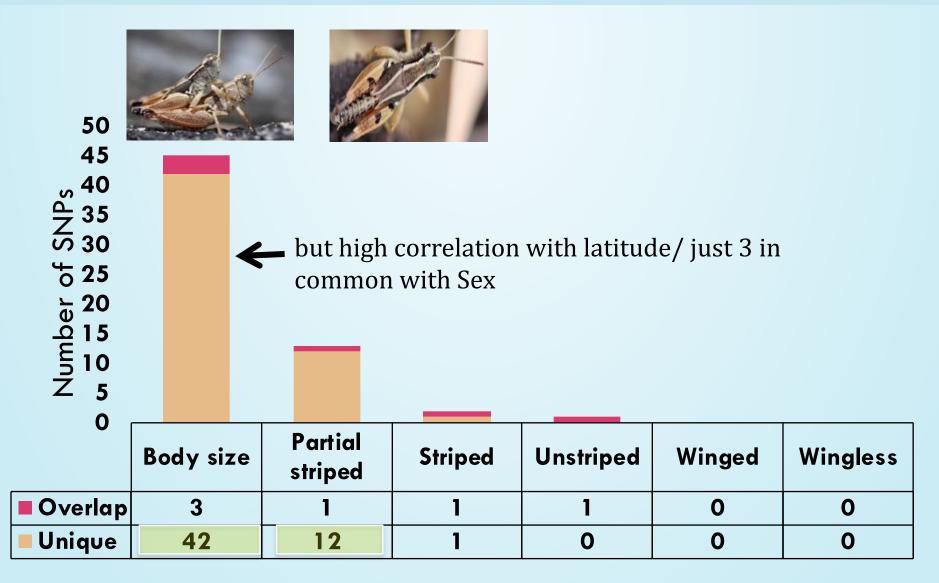


Result: Environmental adaptation signatures

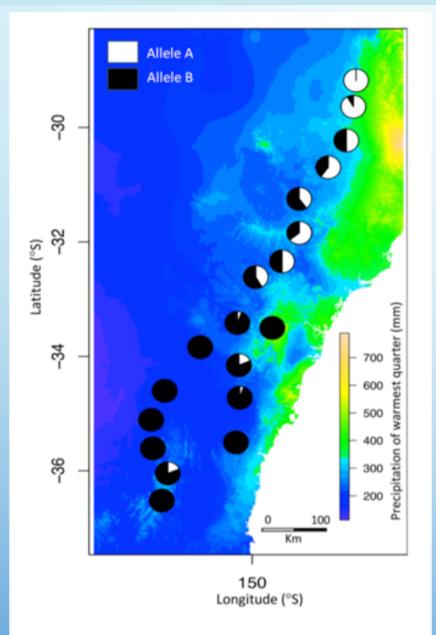
- Plus 17 Fst outliers Bayescan + OutFLANK
- Latitude: other variables? Confounded by structure?

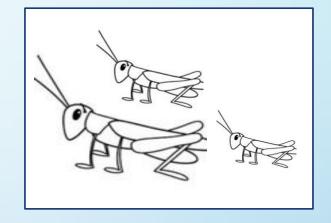


Result: Morphological adaptation signatures



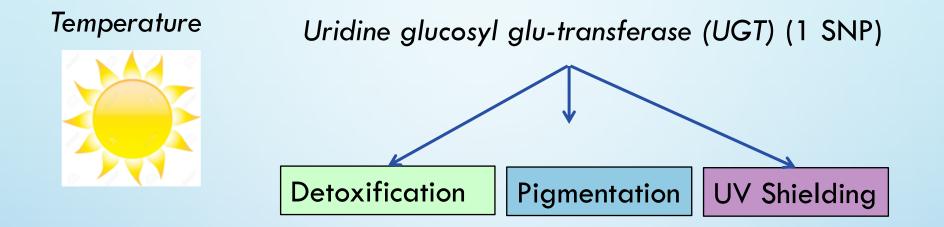
Result: Allele frequency change along gradient

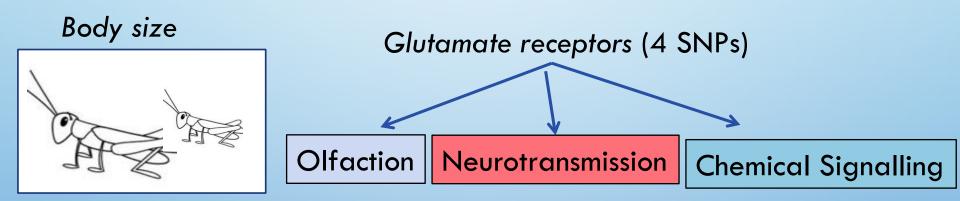




1 SNP with high allelic turnover for **body size**. Detected in both Fst outlier tests + morph EAA

Result: Gene annotation (to locust genome)





Case study 1: Conclusions

- Temperature has greatest effect on both neutral connectivity and local adaptation
- Selection on morphology may facilitate local adaptation
- Warming temperatures and agricultural expansion will facilitate future spread and outbreaks

(2) Range expanding damselflies

ORIGINAL ARTICLE

WILEY MOLECULAR ECOLOGY

Signatures of local adaptation along environmental gradients in a range-expanding damselfly (*Ischnura elegans*)

 Rachael Y. Dudaniec¹
 | Chuan Ji Yong¹
 | Lesley T. Lancaster²
 | Erik I. Svensson³

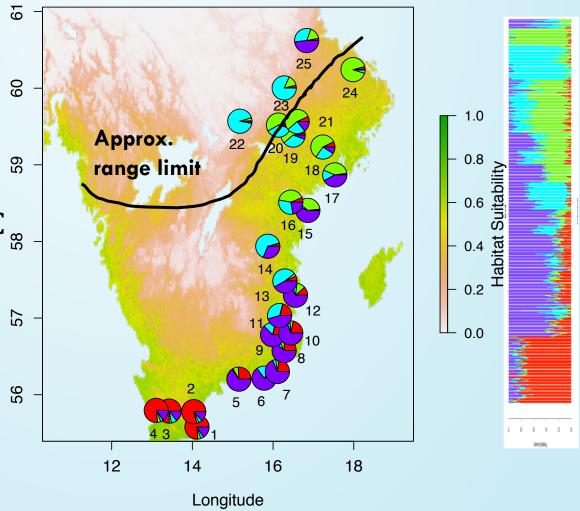
 Bengt Hansson³
 Dudaniec et al. 2018, Mol Ecol

Gradient sampling and neutral genetic structure

Southern Sweden

- 426 I. elegans
 (2013)
- RADseq/13,612
 SNPs
- 500km gradient/3gC g
 change

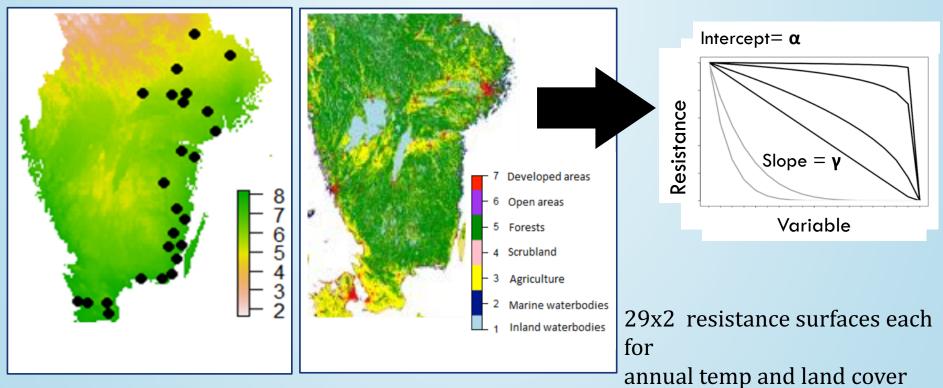
4 admixed clusters



Landscape genetic connectivity – resistance surfaces

Mean annual temperature °C

Landcover



data

Genetic distance~Resistance distance (mixed effects model [MLPE.] +AIC).

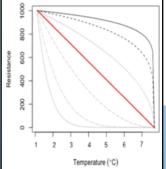
(mixed effects model [Mi

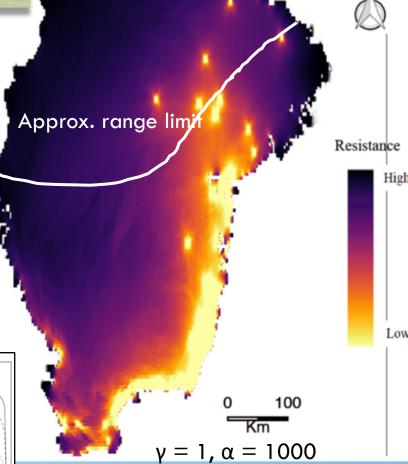
Carey et al. (unpublished)

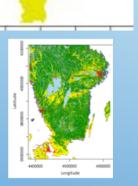
Result: Temperature drives neutral gene flow

IBD outperformed all land cover models

Mean annual temperature affects genetic distance linearly

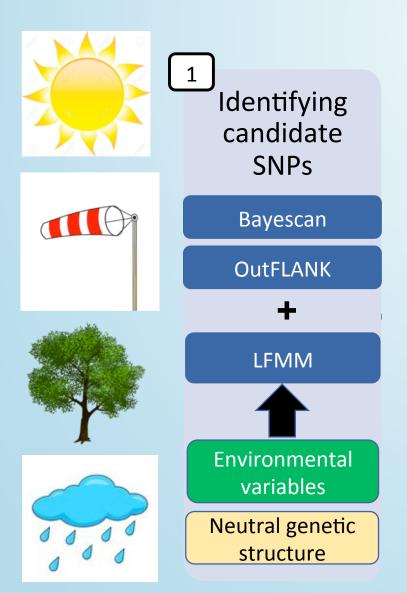




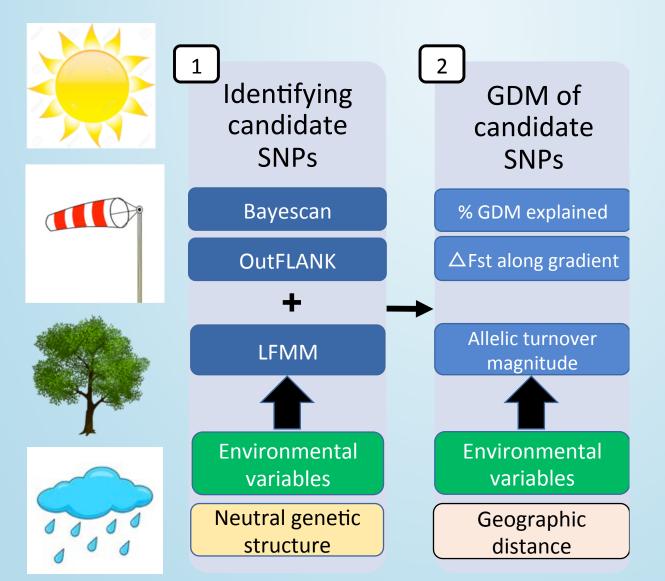


Carey et al. (unpublished)

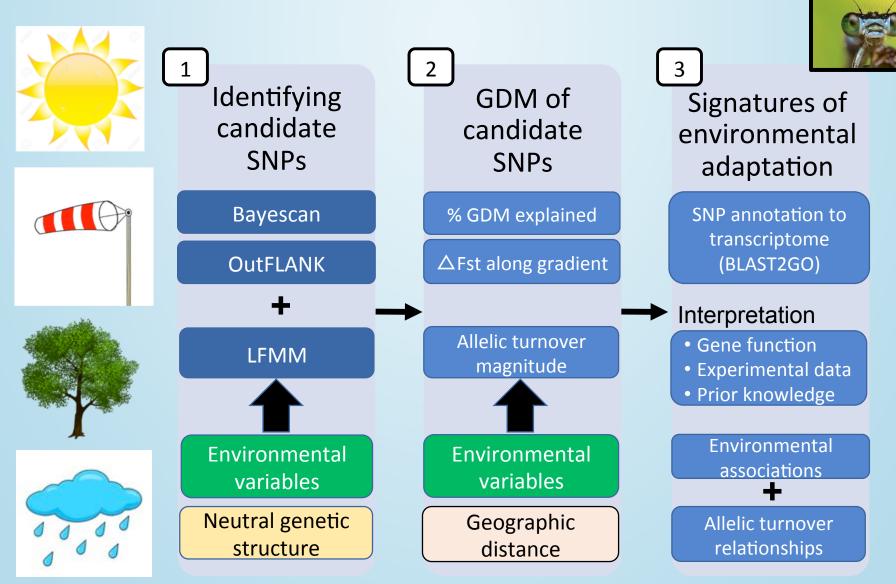
Methods: Detecting adaptive genetic variation



Methods: Detecting adaptive genetic variation

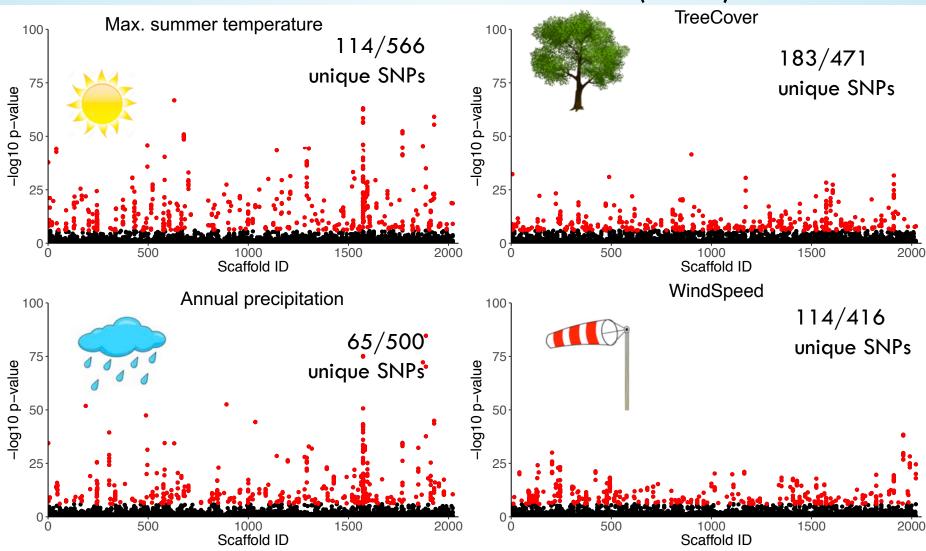


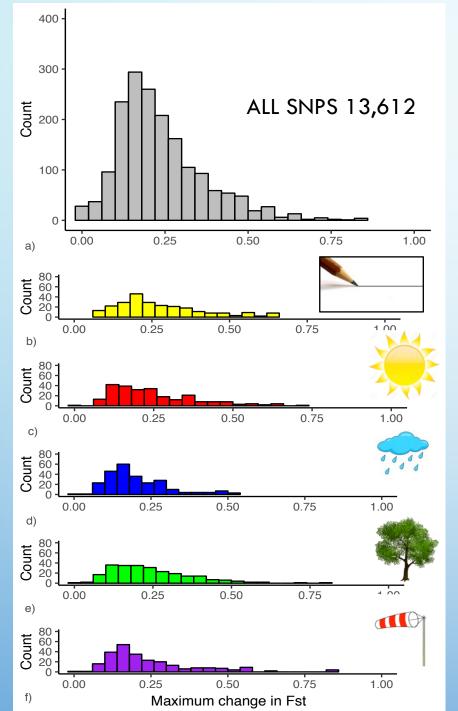
Methods: Detecting adaptive genetic variation



Result: Environmental selection signatures

1251 total SNP associations (LFMM)





F_{ST} DISTRIBUTIONS OF ALL CANDIDATES PER VARIABLE

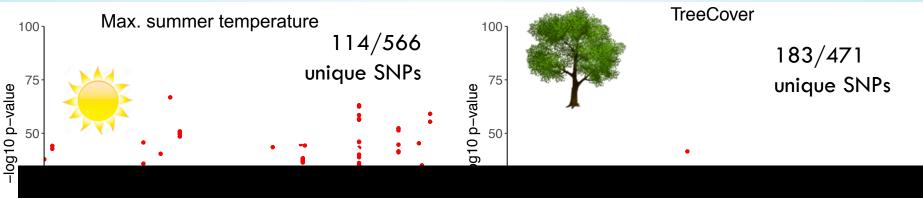
Similar to all SNPs combined, variable, but mostly on lower end of Fst

Weak evidence for higher Fst among candidates

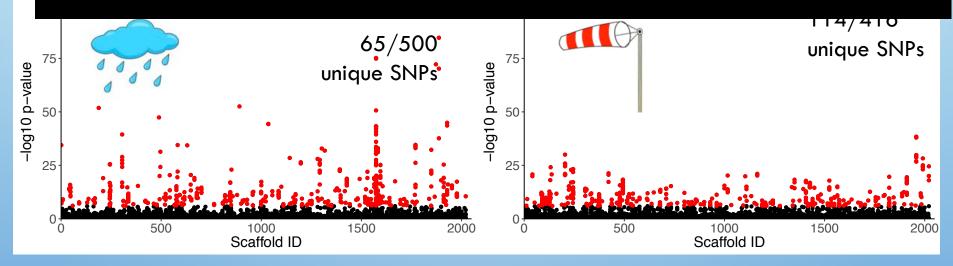
Many loci of smaleer effect?

Result: Environmental selection signatures

1251 total SNP associations (LFMM)



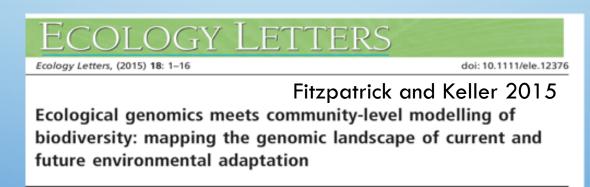
How do allele frequencies of candidate SNPs change along environmental gradients?



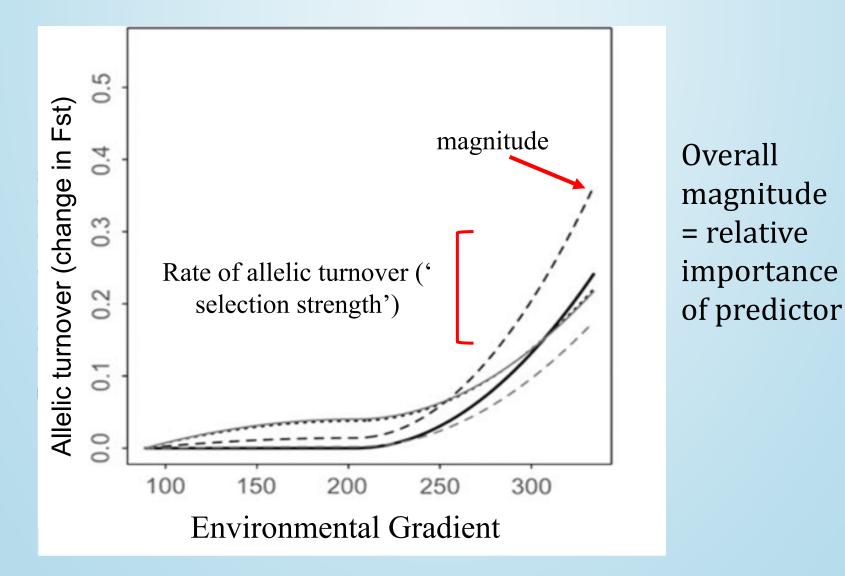
Dudaniec et al. 2018, Mol Ecol

GENERALISED DISSIMILARITY MODELING

- Based on the concept of species community-level compositional turnover functions (Ferrier et al. 2007).
- Non-linear, threshold responses of allele frequencies to environmental gradients – 'allelic turnover'
- Uses distance matrices of env + genetic data, with splines and GLM to account for non-linearity
- Gradient Forest similar outcomes/ turnover functions built differently

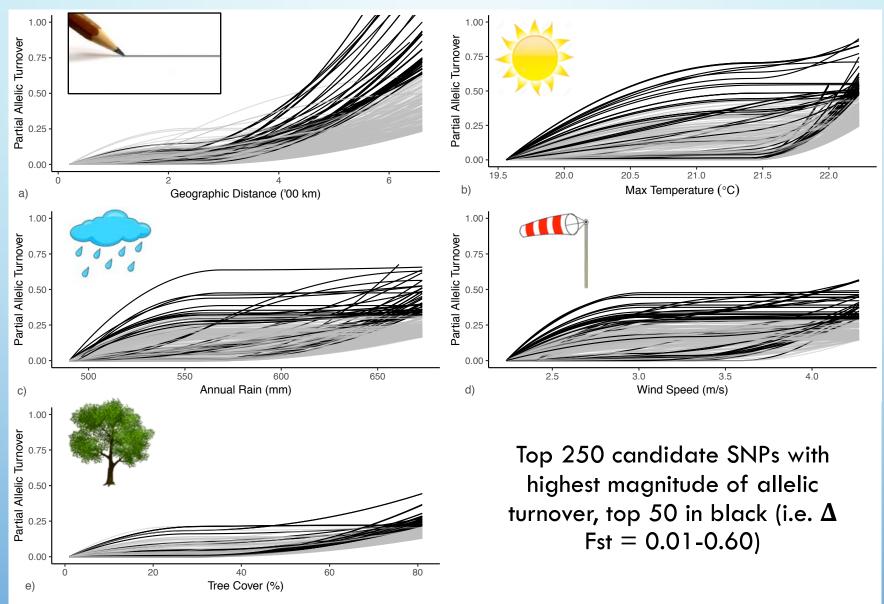


GENERALISED DISSIMILARITY MODELING

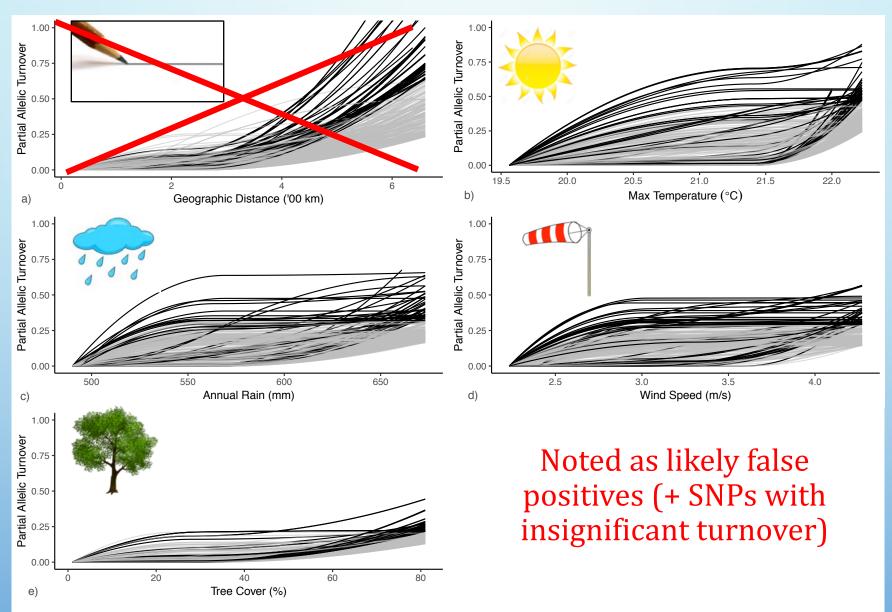


Fitzpatrick and Keller(2015) — Ecology Letters

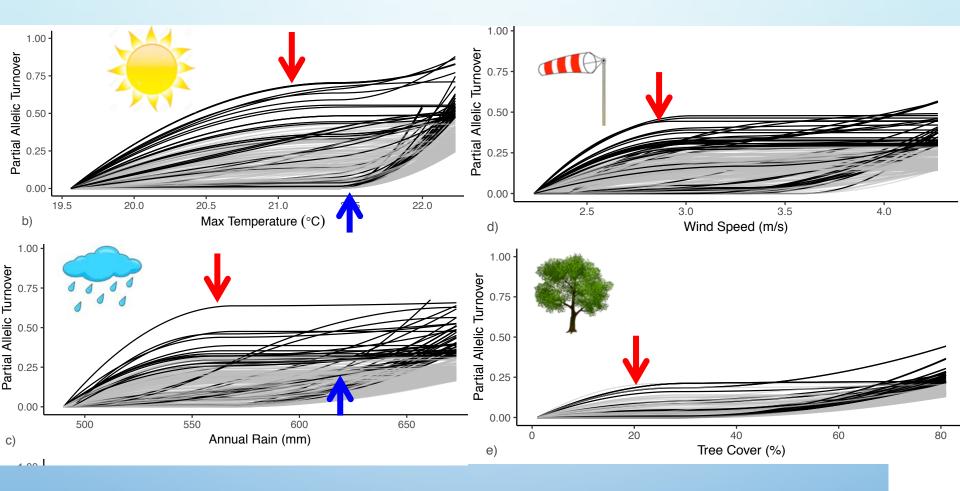
Result: Selection thresholds via allelic turnover (GDM)



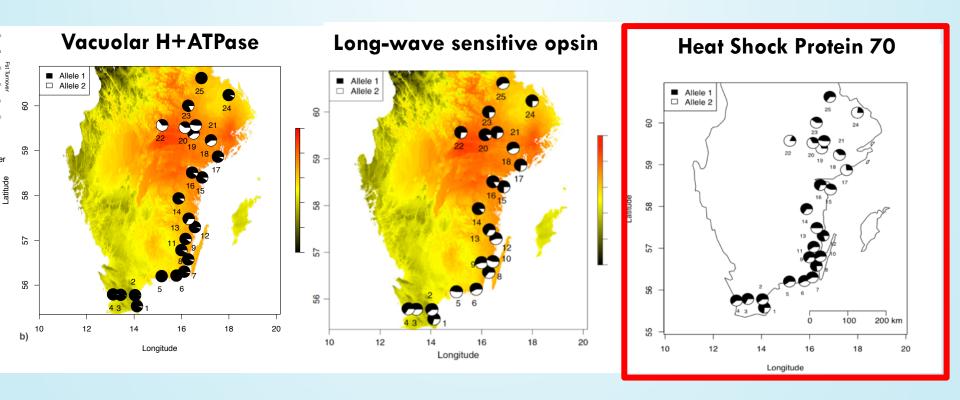
Result: Selection thresholds via allelic turnover (GDM)



Result: Selection thresholds via allelic turnover (GDM)



Result: Allelic turnovers of annotated genes



Proton pump - aids in osmosis + cold tolerance

Visual processing

Thermal tolerance

SUPPORTED BY GENE EXPRESSION DATA

• Heat Shock Protein 70 was differentially expressed in response to heat stress in the core compared with the range edge

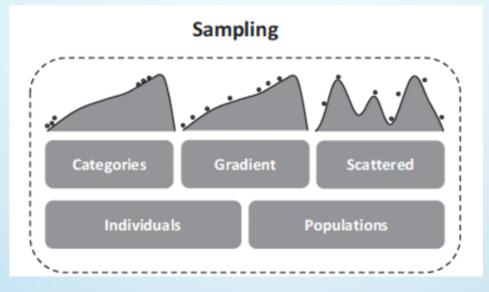
Lancaster et al. 2016 Mol Ecol				Log ₂ Fold Change, Heat vs. Cold treatment		
Mapping description		Function		Core	Edge	Difference
heat shock protein 70 heat shock protein 70 heat shock protein 20 – heat shock protein 20 – heat shock protein 20 – protein lethal essential protein lethal essential	Insect Insect for life – HSP20 Insect	Heat shock protein Heat shock protein Heat shock protein Heat shock protein Heat shock protein Heat shock protein Heat shock protein		4.26 4.15 5.08 6.76 8.35 4.86 6.17	3.80 3.73 4.36 6.66 8.36 3.88 5.35	0.46 0.42 0.72 0.10 0.01 0.98 0.82
Expression levels	Core cold	Edge cold	' Edge heat	C	ore hea	t

+ 50 other differentially expressed genes found among EAA SNPs

Conclusions – Ischnura elegans range expansion

- High adaptive capacity to climate during range expansion,
- Neutral and adaptive variation = temperature key driver
- Functional relevance with respect to environmental variation and stressors
- Evidence for rapid adaptation during ongoing range expansion

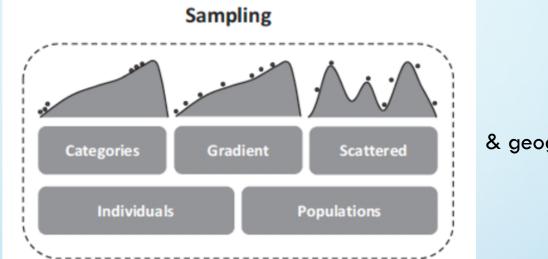
STAGES OF ANALYSIS: (1) SAMPLING



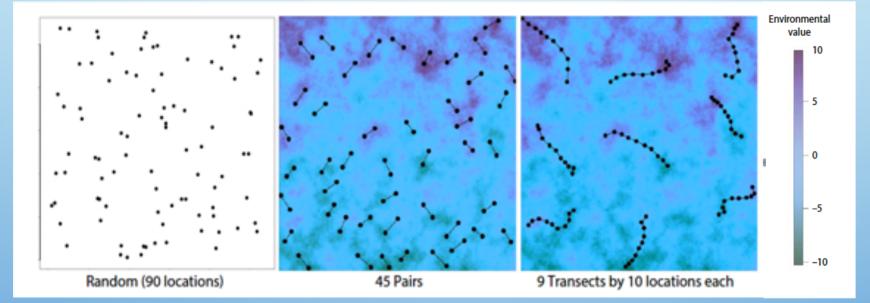
& geographic coordinates!

Rellstab et al. 2015, Lotterhos & Whitlock 2015

STAGES OF ANALYSIS: (1) SAMPLING

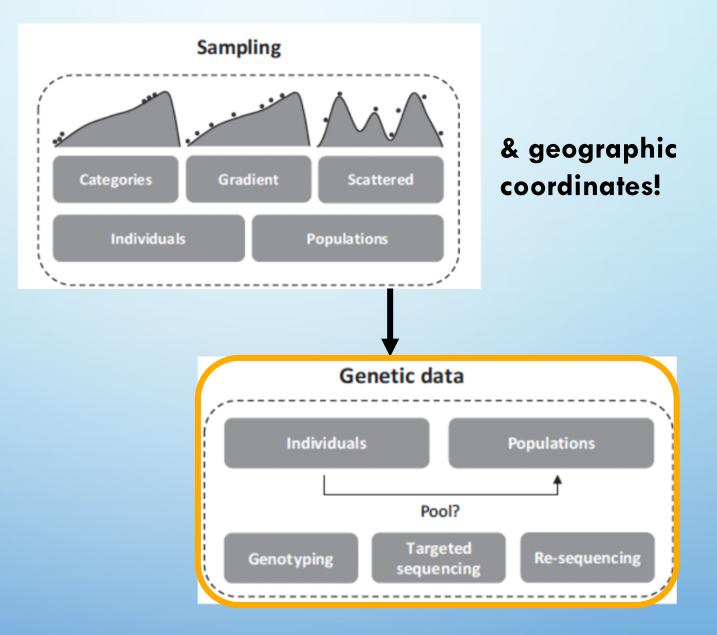


& geographic coordinates!



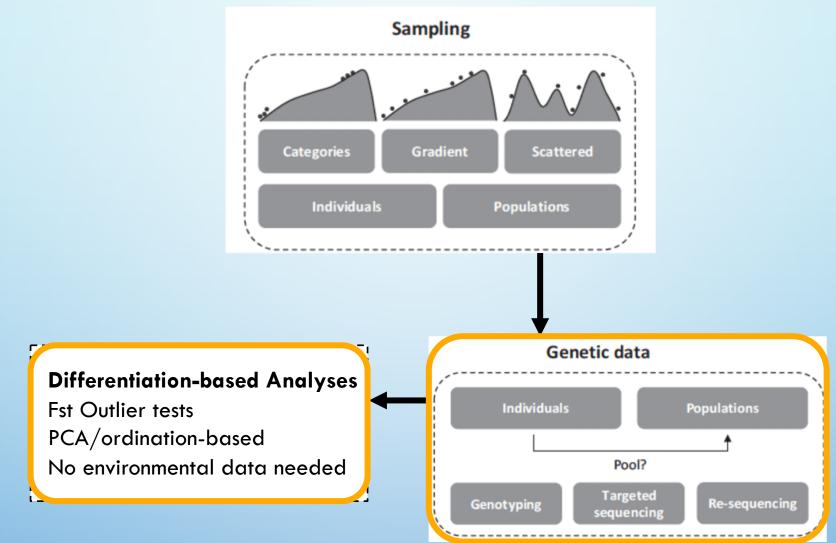
Rellstab et al. 2015, Lotterhos & Whitlock 2015

STAGES OF ANALYSIS: (2) GENETIC DATA



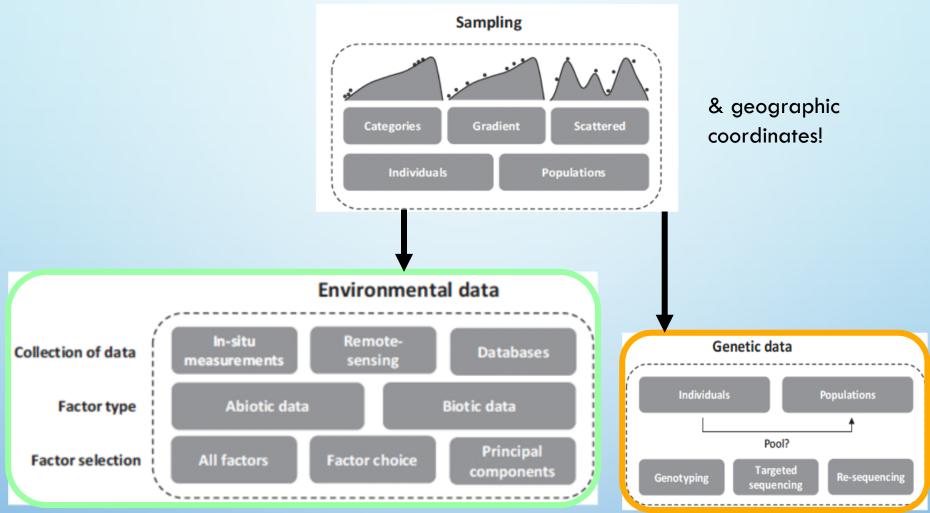
Rellstab et al. 2015

STAGES OF ANALYSIS: (3) OUTLIER DETECTION



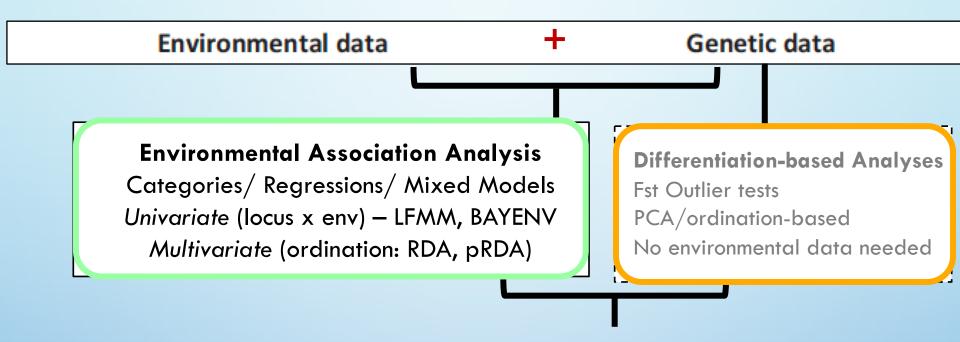
Rellstab et al. 2015

STAGES OF ANALYSIS: (4) ENVIRONMENTAL DATA

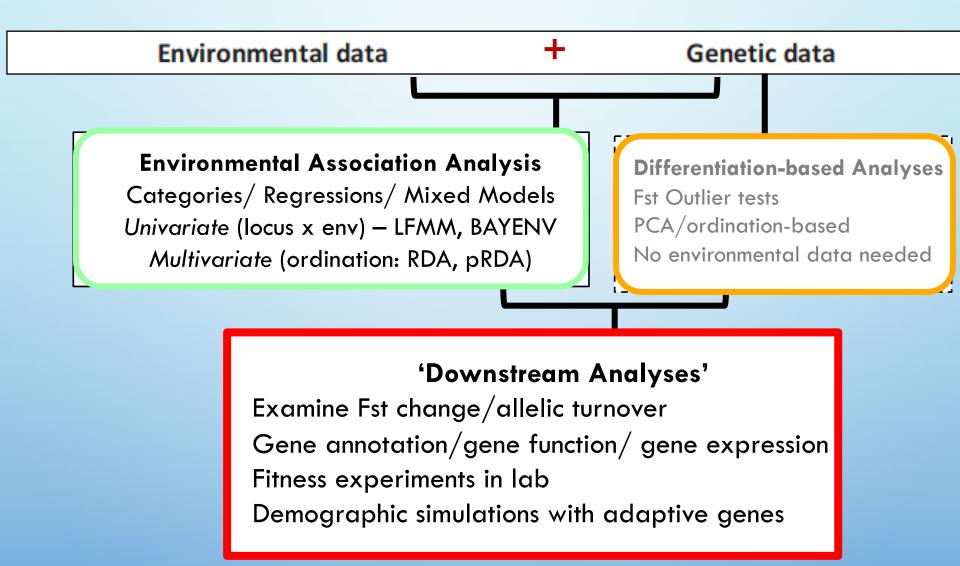


Rellstab et al. 2015

STAGES OF ANALYSIS: (5) EAA/GEA



STAGES OF ANALYSIS: (5) EAA/GEA



A note on combining test results

- Multiple analyses might decrease the likelihood of false positives BUT avoid using every method out there!
- Approaches vary in power due to demographic history, type of selection, and study design.
- Composite measures of selection (combining p-values, multivariate distances) can improve detection....
- BUT: power is limited by the power of the univariate statistics summarized (see MINOTAUR R package)

Composite measures of selection can improve the signal-tonoise ratio in genome scans

Katie E. Lotterhos 🕿, Daren C. Card, Sara M. Schaal, Liuyang Wang, Caitlin Collins, Bob Verity

First published: 08 June 2017 | https://doi.org/10.1111/2041-210X.12774 | Citations: 9

HOW CAN WE IMPROVE INFERENCE FROM EAA/FST OUTLIER TESTS?

Approach	Improvement
REPLICATE	Identify common candidates across replicate gradients, examine for parallel adaptation
SIMULATE	Optimise sampling design, verify empirical findings, forecast adaptive variation
ANNOTATE	Genes with biological/ecological relevance improve interpretation

Modified from Forester et al. (2018)

HOW CAN WE IMPROVE INFERENCE FROM EAA/FST OUTLIER TESTS?

Approach	Improvement			
REPLICATE	Identify common candidates across replicate gradients, examine for parallel adaptation			
SIMULATE	Optimise sampling design, verify empirical findings, forecast adaptive variation			
ANNOTATE	Genes with biological/ecological relevance improve interpretation			
WHOLE GENOME SEQUENCING	All genetic variants identified – large power to detect selection + via structural variants			
GWAS	Overlap in candidate loci with EAA can improve strength of inference			
COMMON GARDEN + RECIP TRANSPLANTS	Link candidate genes with traits relevant for fitness			
TRANSCRIPTOMICS + EPIGENETICS-'EWAS'	Environment-mediated gene expression Plasticity and non-DNA based local adaptation			

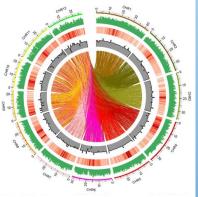
Modified from Forester et al. (2018)

Future directions - whole genome data

• Future analyses will need to integrate genomic architecture in to environmental selection detection

Challenges:

- 'Coding' for copy number variants, chromosome inversions, transposable elements (i.e. can they be considered in the same way as alleles?)
- Constructing hierarchical models to integrate sources of error from different data types (e.g. SNPs, SVs).
- Identifying gene modularity and interactions



discussed in Storfer et al. (2018)

ACKNOWLEDGEMENTS

Sonu Yadav (MQ PhD)

Adam Stow (MQ)

Bengt Hansson (LU) Erik Svensson (LU) Lesley Lancaster (UAB) Maren Wellenreuther (U Auckland) Pallavi Chauhan (LU) Julian Catchen (U Ilinois) Collin Ahrens (WSU)

LANDSCAPE AND EVOLUTIONARY GENETICS LAB

PEOPLE PUBLICATIONS

Wenner-Gren Foundations