Genomics Tutorial 2020.

Instructors:

e Josie Paris & Guy Leonard
e Konrad Paszkiewicz in absentia (don’t worry he’s not dead).

Objectives:
Part 1: Short Read Genomics: An Introduction
e Understand how short reads are generated.
e Understand paired-end reads
e See possible sources of errors
e Learn about adaptors
Part 2: QC, Alignment and Variant Calling
e Interpret FASTQ quality metrics
e Remove poor quality data
e Trim adaptor/contaminant sequences from FASTQ data
e Count the number of reads before and after trimming and quality control
e Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using
BWA
e Convert the SAM file to BAM format (Binary AlignMent format)
e |dentify and select high quality SNPs and Indels using SAMtools
e Identify missing or truncated genes with respect to the reference genome
e |dentify SNPs which overlap with known coding regions

Part 3: Assembly of Unmapped Reads

Extract reads which do not map to the reference sequence

Assemble these reads de novo using SPAdes

Generate summary statistics for the assembly

Identify potential genes within the assembly

Search for matches within the NCBI database via BLAST and against the Pfam database
Visualize the taxonomic distribution of BLAST hits

Perform gene prediction and annotation using RAST

1 of 92

Part 4: De-novo Assembly Using Short Reads

Perform QC and adaptor-trim lllumina reads.

Assemble these reads de novo using SPAdes

Generate summary statistics for the assembly

Understand how to incorporate long PacBio reads into the assembly.

Identify open reading frames within the assembly

Search for matches within the NCBI database via BLAST and against the Pfam database
Visualize species distribution of potential matches

2 0f 92

Table of Contents

Instructors: 1
Important Notes 1
Objectives: 1
Part 1: Short Read Genomics: An Introduction 1
Part 2: QC, Alignment and Variant Calling 1
Part 3: Assembly of Unmapped Reads 1
Part 4: De-novo Assembly Using Short Reads 2
Part 1: Short Read Genomics: An Introduction 5
Introduction 5
Principles of lllumina-based Sequencing 6
DNA Library Preparation 7
Sequencing 8
Base-calling 10
What are paired-end reads and why are they necessary? 11
Inherent Sources of Error 13
Frequency Cross-talk and Normalisation Errors 13
Phasing/Pre-phasing 14

Reads Containing Adaptors 14
Part 2: QC, Alignment and Variant Calling 15
Introduction 15
Quality Control 15
Quality scores 15
FASTQ Format 16
Quality control — Evaluating the Quality of lllumina Data 17
Task 1 17
Quality Scores 20

Per tile Sequence Quality 22
Per-base Sequence Content: 22
Sequence Duplication Levels: 23
Overrepresented Sequences 24

Task 2 25
Quality Control — Filtering of lllumina Data 26

Task 3 26
Task 4 28
Task 5 28
Task 6 29
Aligning lllumina Data to a Reference Sequence 29

3 of 92

Sequencing Error 30

PCR Duplication 30
Indexing a Reference Genome 31
Task 7: Generating an index file from the reference sequence 31
Task 8: Aligning Reads to the Indexed Reference Sequence 33
Task 9: Convert SAM to BAM File 36
Task 10: Sort BAM File 38
Task 11: Remove Suspected PCR Duplicates 39
Task 12: Index the BAM File 39
Task 13: Obtain Mapping Statistics 40
Task 15: Cleaning up 40
Task 16: QualiMap 41
Task 17: Load the Integrative Genomics Viewer 43
Task 18a: Import the E.coli UO0096 Reference Genome to IGV 44
Task 18b: Load the BAM File 46
SNPs and Indels 49
Task 19: Read about the Alignment Display Format 49
Task 20a: Manually Identify a Region Without any Reads Mapping. 49
Task 20b: Manually Identify a Region Containing Repetitive Sequences. 52
Task 21: Identify SNPs and Indels Manually 52

Example: Identifying Variants Manually 52

Region U00096.3:2,108,392-2,133,153 53
Region U00096.3:3,662,049-3,663,291 53
Regions U00096.3:4,296,332-4,296,428 56
Region U00096.3:565,965-566,489 57
Recap: SNP/Indel Identification 57
Automated Analyses 57
Automated Variant Calling 57
Task 22: Identify SNPs and Indels using Automated Variant Callers 57
Task 23: Compare the Variants Found using this Method to Those You Found in the Manual
Section 61
Quickly Locating Genes which are Missing Compared to the Reference 61
Part 3: Assembly of Unmapped Reads 62
Introduction 62
Extraction and QC of Unmapped Reads 62

Task 1: Extract the Unmapped Reads 62

Task 2 63

Task 3: Evaluate QC of Unmapped Reads 63
De-novo Assembly 63

Task 4: Learn More About de novo Assemblers 63

4 of 92

Task 5: Generate the Assembly 64

params.txt 65
contigs.fasta 66
scaffolds.fasta 66
assembly_graph.fastg 66

Task 6: Assessment of the Assembly 66
Analysing the de novo Assembled Reads 67
Task 7: Search Contigs against NCBI non-redundant Database 68
Task 8: Obtain Open Reading Frames 70
Task 9: Search Open Reading Frames against NCBI non-redundant Database 71
Task 10: Review the BLAST Format 72
Additional Checks 73
Task 11: Check that the Contigs do not Appear in the Reference Sequence 73
Task 12: Run Open Reading Frames Through pfam_scan 73
Part 4 De novo Assembly Using Short Reads 75
Introduction 75
Task 1: Start the Assembly 76
Assembly Theory 76

Task 2: Checking the Assembly 80
Task 3: Map Reads Back to Assembly 81
Task 4: View Assembly in IGV 84
Annotation of de novo Assembled Contigs 87
Task 5: Obtain Open Reading Frames 87
Task 6: Run Open Reading Frames through Pfam 87
Hybrid de novo Assembly 87
Task 7: QC the Data 88
Task 8: lllumina Only Assembly 90
Task 9: Create Hybrid Assembly 91
Task 10: Align Reads Back to Reference 92
Summary 95
Concluding Remarks 95

Part 1: Short Read Genomics: An Introduction

1. Introduction

Welcome to the genomics tutorial! Generating large amounts of data in biology is easy
these days. In little more than a fortnight we can generate more data than the entire human
genome project generated in over a decade of work. Making biological sense out of that data,
understanding its limitations, and how the analysis algorithms work is now the major challenge for

5 of 92

researchers. The aim of this workshop is to take you through an example project. On the way, you
will learn how to evaluate the quality of data as provided by a sequencing facility, how to align the
data against a known and annotated reference genome and how to perform a de-novo assembly.
In addition you will also learn how to compare results between different samples.

This workshop is broken into 4 parts. You should feel free to take as long as you like on each part.
It is much more important that you have a thorough understanding of each part, rather than try to
race through the entire workshop material.

The four parts are:

Short Read Introduction

Remapping a strain of E.coli to a reference sequence
Assembly of unmapped reads

Complete de-novo assembly of all reads

hwn =

For this tutorial we will assume little background knowledge, except for a basic familiarity with the
Linux operating system and the cloud. We will cover the basics of how genomic DNA libraries are
generated and sequenced, and the principles behind short read paired-end sequencing. We will
look at why data can vary in quality, why adaptor sequences need to be filtered out and how to
quality control data. You may well do similar tasks in other tutorials at this workshop, especially
quality control and assembly techniques, this is good practice!

Then we will take the plunge and align the filtered reads to a reference genome, call variants and
compare them against the published genome to identify missing, truncated or altered genes. This will

involve the use of a publicly available set of bacterial E.coli lllumina reads and reference genome.

In parts 3 and 4 we will look at how one can identify novel sequences which are not present in the
reference genome.

A word on notation. If you see something like this:

cd ~/genomics_tutorial/reference_sequence

It means, type the highlighted text into your terminal. Please type the text, using all the tricks (e.g. tab
completion) that you have learnt in the Unix tutorial. Copying and pasting will often not work with
certain characters resulting in errors, and it is a better way to learn and get used to the commands you
are using. Also, please keep an eye out for underscores!

Principles of lllumina-based Sequencing

There are several sequencers currently on the market. These include PacBio, MinlON and the
various lllumina platforms (HiSeq, NextSeq, NovaSeq, MiSeq etc). Other (now obsolete) platforms
included Life Tech SoLID and Roche 454 and many more are likely to appear in the future!
Regardless of the sequencer, all of these rely on making hundreds of thousands of clonal copies of a

6 of 92

fragment of DNA and sequencing the ensemble of fragments using DNA polymerase or in the case of
the SOLID via ligation. This is simply because the detectors (basically souped-up digital cameras),
cannot detect fluorescence (lllumina, SollD, 454) or pH changes (lon Torrent) from a single molecule.
The 'third-generation' Pacific Biosciences SMRT (Single Molecule Real Time) RSII and Sequel
sequencers are able to detect fluorescence from a single molecule of DNA. However, the machines
are very large (the RSII is almost 2 tons) and produces less than a tenth of the data of an lllumina
MiSeq run and for long reads >10kb error rates are generally around 10-12%. The Oxford Nanopore
MinlON is another ‘third-generation’ single-molecule system which measures changes in electrical
current through a Nanopore as a single molecule is ratcheted through it. Although error rates are
higher (5-10%), and per-base costs are higher, the technology has improved rapidly and will probably
replace second generation systems over the next few years.

We will mainly look at the lllumina sequencing pipeline here, but the basic principles apply to other
second-generation sequencers. If you would like further details on other platforms then we
recommend reading:

Goodwin et al. 2016, Nature Reviews Genetics Coming of age: ten years of next-generation
sequencing technologies

A typical sequencing run would begin with the user supplying 1ng-1ug of genomic DNA to a
sequencing facility along with quality control information in the form of an automated electrophoresis
output (e.g. Agilent Bioanalyser/Tapestation trace) or gel image and quantification information.

DNA Library Preparation

For most sequencing applications, paired-end libraries are generated. Genomic DNA is
sheared into 300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are
repaired and an overhanging adenine base is added, after which oligonucleotide adaptors are ligated.
In many cases the adaptors contain unique DNA sequences of 6-12bp which can be used to identify
the sample if they are 'multiplexed' together for sequencing. This type of sequencing is used
extensively when sequencing small genomes such as those of bacteria because it lowers the overall
per-genome cost.

7 of 92

https://www.nature.com/articles/nrg.2016.49
https://www.nature.com/articles/nrg.2016.49

A) Workflow of the automated library preparation B) Automated size selection

){I]]MMM a) Genomic DNA -
] —
TMM b) Fragmentation ONA precpatin
oD badds
DA, procipilat CP"I'
DD Eelads
c) End Repair -
> ooe
DA mlmlatm‘ T
onko beads
DA pracsiiabon
Dha ﬁmﬁ-pml-cr‘
cnio bedds N
M]M[W e) Adapter Ligation

A) Steps a through e explain the main steps in lllumina sample preparation: a) the initial genomic
DNA, b) fragmentation of genomic DNA into 500bp fragments, c) end repair, d) addition of A bases to
the fragment ends and e) ligation of the adaptors to the fragments.

B) Overview of the automated size selection protocol: The first precipitation discards fragments larger
than the desired interval. The second precipitation selects all fragments larger than the lower boundary
of the desired interval.

Borgstréom E, Lundin S, Lundeberg J, 2011 Large Scale Library Generation for High Throughput
Sequencing. PLoS ONE 6: e19119. doi:10.1371/journal.pone.0019119

Sequencing

(adapted from Margulis, E.R., reference below)

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to form
monoclonal clusters. The single molecule amplification step for the lllumina HiSeq starts with an
lllumina-specific adapter library and takes place on the oligo-derivatized surface of a flow cell, and is
performed by an automated device called a cBot Cluster Station. The flow cell is either a 2 or
8-channel sealed glass microfabricated device that allows bridge amplification of fragments on its
surface, and uses DNA polymerase to produce multiple DNA copies, or clusters, such that each
represent the single molecule that initiated the cluster amplification.

Separate or multiple libraries can be added to each of the eight channels, or the same library can be

used in all eight, or combinations thereof. Each cluster contains approximately one million copies of
the original fragment, which is sufficient for reporting incorporated bases at the required signal

8 of 92

intensity for detection during sequencing. The lllumina system utilizes a sequencing-by-synthesis
approach in which all four nucleotides are added simultaneously to the flow cell channels, along with
DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for
details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is
chemically blocked such that each incorporation is a unique event. An imaging step follows each base
incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the
instrument optics at a cluster density of 600,000-800,000 per mm?. After each imaging step, the 3'
blocking group is chemically removed to prepare each strand for the next incorporation by DNA
polymerase. This series of steps continues for a specific number of cycles, as determined by
user-defined instrument settings, which permits discrete read lengths of 40-300 bases. A base-calling
algorithm assigns sequences and associated quality values to each read and a quality checking
pipeline evaluates the lllumina data from each run.

These figures summarise the process:

a Adapter
ol ,
BNE e . / DNA fragment
7 : __
- ; $ \Dense lawn
}—b:‘.’? ; \ &5 of primers
2222 ses - Adapter
ssse Fag
i frowes
sses o C-l: oo
Adapters Lpv Wt
MR v | 1 o
Prepare genomic DNA sample {4 i LiF Attach DNA to surface
Randomly fragment genomic DNA i _L i Bind single-stranded fragments
and ligate adapters to both ends of I " i randomly to the inside surface
the fragments. i of the flow cell channels.
Nucleotides H
/ i
: il
H ﬁ e i H 3
X i g X A
e { Attached

VO ah Y g!gt;_%lzil e
il it Bridge amplification L I Denature the double

B! i Add unlabeled nucleotides i . I stranded molecules
LTT and enzyme to initiate solid- ! it
phase bridge amplification. !

9 of 92

¢ $;l' 111 First chemistry cycle:
i1 3 determine first base
To initiate the first
) sequencing cycle, add
e® / all four labeled reversible G

/ § terminators, primers, and .
I(ﬁ‘ DNA polymerase enzyme
to the flow cell.
. 2 R
AL VAR / Before initiating the
d|' iy : 1 o Image of first chemistry cycle next chemistry cycle
1 After laser excitation, capture the image The blocked 3' terminus
i ! i of emitted fluorescence from each and the fluorophore
1 i i cluster on the flow cell. Record the from each incorporated
1 identity of the first base for each cluster. base are removed.
Laser
® [A G ®
G ->. ->. > 8 +. — GCTGA...
© o ® G ® o ® o G G

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence
of bases in a given fragment a single base at a time.

The lllumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are
primed and all four fluorescently labelled, 3 -OH blocked nucleotides are added to the flow cell with
DNA polymerase. The cluster strands are extended by one nucleotide. Following the incorporation
step, the unused nucleotides and DNA polymerase molecules are washed away, a scan buffer is
added to the flow cell, and the optics system scans each lane of the flow cell by imaging units called
tiles. Once imaging is completed, chemicals that affect cleavage of the fluorescent labels and the 3
-OH blocking groups are added to the flow cell, which prepares the cluster strands for another round of
fluorescent nucleotide incorporation. Next-Generation DNA Sequencing Methods Mardis, E.R. Annu.
Rev. Genomics Hum. Genet. 2008. 9:387-402

A short movie of the lllumina sequencing-by-synthesis approach can be found here:
https://www.youtube.com/watch?v=fCd6B5HRaZ8

Base-calling

Base-calling involves evaluating the raw intensity values for each fluorophore and comparing
them to determine which base is actually present at a given position during a cycle. To call bases on
the lllumina platform, the positions of clusters need to be identified during the first few cycles. This is
because they are formed in random positions on the flowcell as the annealing process is stochastic
(although ordered flowcells now exist!)

If there are too many clusters, the edges of the clusters will begin to merge and the image
analysis algorithms will not be able to distinguish one cluster from another (remember, the software is
dealing with upwards of half a million clusters per square millimeter — that's a lot of dots!).

10 of 92

https://www.youtube.com/watch?v=fCd6B5HRaZ8

6 7 8 9

. - -

: — | T A AT
3 ’O‘. . ‘Q— E
. - . ‘.

The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the
highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle
changes along with the brightness (intensity). This is due to the incorporation of complementary
ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the
colour or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in
the images; these will represent different monoclonal clusters with different sequences. The base
calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a variety of
methods to do this and the one mentioned here is by no means the only one available.

Note that these processes are carried out at the sequencing facility and you will not need to
perform any of these tasks under normal circumstances. They are explained here as useful
background information.

What are paired-end reads and why are they necessary?

Paired-end sequencing is a remarkably simple and powerful modification to the standard
sequencing protocol. It is nearly always worth obtaining paired-end reads if performing genomic
sequencing. Typically, sequencers of any type are only able to sequence a portion of DNA before the
fidelity of the enzyme and dephasing of clusters (see later) increase the error rate beyond tolerable
levels. As a result, on the lllumina system, a fragment which is 500bp long will only have the first
100bp sequenced.

If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,
you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads
for each DNA fragment separated by a known distance. In the figure below the dashed regions
represent the complete DNA fragment and the solid lines the regions we are able to sequence:

Single-end read

Read 1
100bp

Known distance (~300bp)

o

N N N m— Paimd-end I'Evad

Read 1 Read 2
100bp 100bp 11 of 92

The added information gained by knowing the distance between the two reads can be invaluable for
spanning repetitive regions. Repetitive regions are also dealt with better in long-read sequencing. In
the figure below, the light coloured regions indicate repetitive sections of DNA. If a read contains only
repetitive DNA, an alignment algorithm will be able to map the read to many locations in a reference
genome. However, with paired-end reads, there is a greater chance that at least one of the two reads
will map to a unique region of DNA. In this way, one of the reads can be used to anchor the other read
in the pair and help resolve the repetitive region. Paired-end reads are often used when performing
de-novo genome sequencing (i.e. when a reference is not available to align against) because they
enable contiguous regions of DNA to be ordered, or when characterizing variants such as large
insertions or deletions.

Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so
called 'mate-pair' libraries. These are usually used in specific projects to help order contigs in de-novo
sequencing projects. We will not cover them here, but the principles behind them are similar.

Repetitive DNA
Unique DNA
] I ————

Paired read maps uniquely

—_\ N —

—

Single read maps to
multiple positions

Inherent Sources of Error

No measurement is without a certain degree of error. This is true in sequencing. As such, there
is a finite probability that a base will not be called correctly. There are several possible sources of
error:

Frequency Cross-talk and Normalisation Errors

When reading an A base, a small amount of C will also be measured due to frequency overlap and
vice-versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the

12 of 92

extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This
normalisation process can also introduce errors.

Frequency response curve for A and C dyes
(Intensity y-axis and frequency on the x-axis)

Phasing/Pre-phasing

This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This
introduces additional background noise into the signal and reduces the intensity of the true base. In
the example below we have a cluster with 7 strands of DNA (very small, but this is just an example).
Five strands are on a C-base, whilst 1 is lagging behind (called phasing) on a G base and the
remaining strand is running ahead of the pack (confusingly called pre-phasing) on an A base. As such,
the C signal will be reduced and A and G boosted for the rest of the sequencing run. Too much
phasing or pre-phasing (i.e. > 15-20%) usually causes problems for the base calling algorithm and

result in clusters being filtered out.

*
+
+
+
pe
+
+
+

o

Other issues:

e Biases introduced by sample preparation — your sequencing is only as good as your
experimental design and DNA extraction. Also, remember that sometimes samples will be
put through several cycles of PCR before sequencing (unless they are PCR-free libraries).
This also introduces a potential source of bias.

e High AT or GC content sequences — this reduces the complexity of the sequence and
can result in higher error rates.

e Homopolymeric sequences — long stretches of a single base can make it difficult to
determine phasing and pre-phasing rates. This can introduce errors in determining the
precise length of a hompolymeric stretch of sequence. (This much more of a problem on

13 of 92

the old 454 and lon Torrent than lllumina platforms, but is still worth bearing in mind).
Especially if you encounter indels which have been called in homopolymeric tracts.
e Some motifs can cause loops and other steric clashes.

See Nakamura et al, Sequence-specific error profile of lllumina sequencers Nuc. Acid Res. first
published online May 16, 2011 doi:10.1093/nar/gkr344

Reads Containing Adaptors

Some reads will contain adaptor sequences after sequencing, usually at the end of the read.
This is usually because of short sample DNA fragments, which result in the polymerase reading into
the adaptor region. Occasionally this can also happen because of mis-priming. It is important to
remove or trim sequences containing these reads as the adaptor sequences can prevent reads
mapping to a reference sequence and will adversely affect de-novo assembly.

Part 2. QC, Alignment and Variant Calling

Introduction

In this section of the workshop we will be analysing a strain of E.coli which was sequenced at
the Exeter Sequencing Service. It is closely related to the K-12 substrain MG1655
(http://www.ncbi.nlm.nih.gov/nuccore/U00096). We want to obtain a list of single nucleotide
polymorphisms (SNPs), insertions/deletions (indels) and any genes which have been deleted.

Quality Control

In this section of the workshop we will be learning about evaluating the quality of an lllumina
MiSeq sequencing run. The process described here can be used with any FASTQ formatted file from
any platform (e.g. lllumina, PacBio etc).

Sequencers produce vast quantities of data. A single lllumina MiSeq lane can produce up to 15
Gigabases (Gbp) of data. However, the error rates of these platforms are 10-100x higher than Sanger
sequencing. They also have very different error profiles. Unlike Sanger sequencing, where the most
reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near the
beginning of each read.

Quality control usually involves:

e Calculating the number of reads before quality control
Calculating GC content, identifying overrepresented sequences
Remove or trim reads containing adaptor sequences
Remove or trim reads containing low quality bases
Calculating the number of reads after quality control
Rechecking GC content, identifying overrepresented sequences

14 of 92

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141275/
http://www.ncbi.nlm.nih.gov/nuccore/U00096

Quality control is necessary because:
e CPU time required for alignment and assembly is reduced
e Data storage requirements are reduced
e Reduce potential for bias in variant calling and/or de-novo assembly

Quality scores

To account for the possible errors and provide an estimate of confidence in a given base-call,
the lllumina sequencing pipeline assigns a quality score to each base called. All quality scores are
calculated using the Phred scale (Ewing B, Green P:_Basecalling of automated sequencer traces using
phred. Il. Error probabilities. Genome Research 8:186-194 (1998)). Each base call has an associated base
call quality which estimates the chance that the base call is incorrect.

Q10 =1 in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
Q30 =1 in 1000 chance of incorrect base call
Q40 =1 in 10,000 chance of incorrect base call

For most lllumina runs you should see quality scores between Q20 and Q40.

Note that these as only estimates of base-quality based on calibration runs performed by the
manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme

GC biases and/or particular motifs or homopolymers can cause the quality scores to become
unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a
rough and ready rule we generally assume that with lllumina data anything less than Q20 is not useful
data and should be excluded.

Once you understand the FASTQ format try to work out what is happening to the quality scores here
and why:

FASTQ Format
A FASTQ entry consists of 4 lines

@D3P26HQ1:110:dBehlacxx:8:11081:1116:2122 1:N:0:
AGGTGTCTCCTACAACCAAAGCTACAACAGAGCAATGGGCTATCTGGTGGGATTTAAAGGGGTGAAAATGCATCCCCCTTAAAATNAAAGTGGTTTT
+

ADDADCFHHHDHGHIII<GIICH4FGCIHIEGFHGHGIIIGDHFDFG?DEHH>FGIG=E@GGADDDCCCCC@A>ABB>BBC: A=A#,228(4>:77B

1. A header line beginning with '@' containing information about the name of the sequencer, and
the position at which the originating cluster was located and whether it passed purity filters.

2. The DNA sequence of the read

3. A header line or line beginning with just '+'

15 of 92

http://genome.cshlp.org/content/8/3/186.long
http://genome.cshlp.org/content/8/3/186.long

4. Quality scores for each base encoded in ASCII format

To reduce storage requirements, the FASTQ quality scores are stored as single characters and
converted to numbers by obtaining the ASCII quality score and subtracting either 33 or 64 (nowadays,
nearly all ASCII quality scores are Phred 33!). For example, the above FASTQ file is Sanger formatted
and the character ‘I’ has an ASCII value of 33. Therefore the corresponding base would have a Phred
quality score of 33-33=Q0 (i.e. totally unreliable). On the other hand, a base with a quality score
denoted by ‘@’ which has an ASCII value of 64 would have a Phred quality score of 64-33=Q31 (i.e.
less than 1/1000 chance of being incorrect).

Just to confuse matters, there are several different methods of encoding quality scores in the ASCII

format. Although as of 2011, lllumina 1.8+/Phred+33 is used universally (and most likely, this will not
change in the future).

33 59 64 73 104 126
Ot e e 26...31...... 40
5. . .00 D e 40
@®coocoo000 ®0co00000000000000000000000000a 40
0.2 it 2BcoodLlcoocooocooa 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Note that the latest lllumina CASAVA 1.8 pipeline (released June 2011), outputs in fastq-sanger rather
than Illumina 1.3+. Thus lllumina 1.3+ and other lllumina scoring metrics are unlikely to be
encountered if you are using lllumina sequencing data generated after July 2011.

Quality control — Evaluating the Quality of Illumina Data

The first task when one receives sequencing data is to evaluate its quality and determine
whether all the cash you have handed over was well-spent! To do this we will use the FastQC toolkit

16 of 92

(https://www.biocinformatics.babraham.ac.uk/projects/fastqc/). FastQC offers a graphical visualisation
of QC metrics, but does not have the ability to filter data.

Task 1

Open a terminal window. From your home directory change into:
workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory and list the directory
contents, e.g.

cd ~/workshop materials/genomics tutorial/data/sequencing/ecoli exeter/

ec2-user@ip-10-169-87-62:~/genomics_tutorial/data’sequencing/ecoli_exeter

File Edit View Search Terminal Help

[ec2-user@ip-10-169-87-62 ~]5 cd gencmics_tutorial/data/sequencing/ecoli exeter/
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ 1ls -1

total 832220

-rw-r——r——. 1 ecZ-user ec2-user 426091067 Dec 1 10:46 E_Coli CGATGT LOO1_R1l_001.fastq
-rw-r——r——-. 1 ecZ-user ec2-user 426091067 Dec 1 11:21 E Coli CGATGT LOO01_R2 001.fastq
[ec2-user@ip—10-169-87-62 ecoli_exeter]$ I

***Note that you may also see two other directories here as well: blast_precompute and
denovo_assembly. Don’t worry about these directories for now as we will come back to them later in
the tutorial.

These are paired-end data and so reads from the same pair can be identified because they will have
the same header. Many programs require that the read 1 and read 2 files have the reads in the same
order. We will look at the raw reads. To view the first few headers we can use the head and grep
commands:

head E Coli CGATGT L@0@1 R1 001.fastq | grep MISEQ
head E_Coli CGATGT_L@@1 R2 @01.fastq | grep MISEQ

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ he=ad E_Coli CGATGT_LO01_R1l 00l.fastqg | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:14839:1482 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:18239:1496 1:N:0:CGATGT
@MISEQ:8:000000000-A7VC1:1:1101:13371:1512 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_ exeter]$ head E_Coli CGATGT L0001 R2 001.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:14839:1482 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:18239:1496 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:13371:1512 2:N:0:CGATGT

The only difference in the headers for the two reads is the read number. Of course this is no guarantee
that all the headers in the file are consistent. To get some more confidence repeat the above
commands using 'tail' instead of 'head' to compare reads at the end of the files.

17 of 92

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

You can also check that there is an identical number of reads in each file using cat, grep and wc —I:

cat E Coli CGATGT L@@1 R1 001.fastq | grep MISEQ | wc -1
cat E_Coli_ CGATGT_L@@1 R2 001.fastq | grep MISEQ | wc -1

Now, let's run the fastqc program on the data. Unlike the QC lab, we will open up a Graphical User
Interface (GUI) and load the data this way. To do this, run:

fastqc &

Load the E_Coli_CGATGT_L@@1_R1_001.fastq file from the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory.

The fastqc program performs a number of tests which determines whether a green tick (pass),
exclamation mark (warning), or red cross (fail) is displayed. However, it is important to realise that
fastqc has no knowledge of what your library is or should look like. All of its tests are based on a
completely random library with 50% GC content. Therefore if you have a sample which does not
match these assumptions, it may 'fail' the library. For example, if you have a high AT or high GC
organism it may fail the per sequence GC content. If you have any barcodes or low complexity
libraries (e.g. small RNA libraries) they may also fail some of the sequence complexity tests.

The bottom line is that you need to be aware of what your library is and whether what fastqc is
reporting makes sense for that type of library.

18 of 92

FastQC
File Help

|[E_Goli GGATGT Loot A1 001 fsid)

Basic sequence stats

@ Basic Statistics

[|Measure |[Va|ue

@ Per base sequence quality {Filename |E_Coli_CGATGT_Lo01_R1_001 fastq
R . : {File type Conventional base calls

_L‘____;' Per tile sequence quality |Encoding Sanger / lllumina 1.9

:@ Per sequence quality scores :'.Total Breh i e

[|Sequences flagged as poor quality 0

@ Per base sequence content {Sequence length 301

| 1%GC 50

i@ Per sequence GC content

@ Per base N content

@ Sequence Length Distribution

@ Sequence Duplication Levels

0 | Overrepresented sequences

In this case we have a number of errors and warnings which at first sight suggest there has been a
problem - but don't worry too much yet. Let's go through them in turn.

Quality Scores

This is one of the most important metrics. If the quality scores are poor, either the wrong
FASTQ encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor
quality. This view shows an overview of the range of quality values across all bases at each position in

the FASTQ file.

Generally anything with a median quality score greater than Q20 is regarded as

acceptable; anything above Q30 is regarded as 'good'. For more details, see the help documentation

in fastqc.

19 of 92

FastQC - O X
File Help

l E_Coli_ CGATGT_L0D1_R1_001 fastg |

@ Faslo Silisins | Quality scores across all bases (Sanger £ llumina 1.9 encoding)
@ Per base sequence quality

W) Pertile sequence quality

@ Per sequence quality scores
@ Per base seguence content

@ Per sequence GC content

2 L
@ Per base N content 04 i |

@ Sequence Length Distribution 22

@ Sequence Duplication Levels =2

Y
. Overrepresented sequences

1 3 5 7 © 2024 4548 70-74 56585 120124 150154 180184 210-214 240-244 270-274 300-3M
Position in read (bg)

In this case this check is red - and it is true that the quality drops off at the end of the reads. It is
normal for read quality to get worse towards the end of the read. You can see that at 250 bases the
quality is still very good.

20 of 92

Per tile Sequence Quality

This is a purely technical view on the sequencing run, it is more important for the team running
the sequencer. The sequencing flowcell is divided up into areas called cells. The colour of the tiles
indicate the read quality and you can see that the quality drops off in some cells faster than others.
This maybe because of the way the sample flowed over the flowcell or a mark or smear on the lens of
the optics.

| E_Coli_ CGATGT_L001_R1_001.fastq |

@ Basic Statistics Qualty per tile
@ Per base sequence quality

Per tile sequence quality

2118
2117

- 2115
@ Per sequence quality scores S5
12112

@ Per base sequence content |
2110

@ Per sequence GC content |2100

2107
@ Per base N content
12105

@ Sequence Length Distribution nq n

2102
@ Sequence Duplication Levels i

(1) Overrepresented sequences |1117
= 11116

@ Adapter Content 11114

@ Kmer Content 11z
1111

1108

1107
1106

1104
11103

11
1 3 5 7 92024 4549 70-74 0599 120124 150154 180184 210-214 240-244 270-274 300-301

Paosition in read (b

Per-base Sequence Content:

For a completely randomly generated library with a GC content of 50% one expects that at any
given position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can
see that our library satisfies these criteria, although there appears to be some minor bias at the
beginning of the read. This may be due to PCR duplicates during amplification or during library
preparation. It is unlikely that one will ever see a perfectly uniform distribution. See
http://sequencing.exeter.ac.uk/quide-to-your-data/quality-control/ for examples of good vs bad runs as
well as the fastqc help for more details.

21 of 92

http://sequencing.exeter.ac.uk/guide-to-your-data/quality-control/

File Help

[E_Coli_CGATGT_L001_R1_001 fastg |

@ Basic Statistics
Sequence content across all bases
3 100
Per base sequence quality T
| Pertile sequence quality %6
wr a0 awp
@ Per sequence quality scores 2005

@ Per base sequence content
@ Per sequence GC content |-
@ Per base N content

o 0w |8
@ Seguence Length Distribution

@ Sequence Duplication Levels| 5

5 i
!_) Overrepresented sequences

40
@ Adapter Content

S —_

20

1 3 5 7 92024 4545 7074 9599 120124 150154 180154 210-244 240-244 2F0-274 300-304
Position in read (b

Sequence Duplication Levels:

In a library that covers a whole genome uniformly most sequences will occur only once in the
final set. A low level of duplication may indicate a very high level of coverage of the target sequence,
but a high level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR
over-amplification).

This module counts the degree of duplication for every sequence in the set and creates a plot showing
the relative number of sequences with different degrees of duplication.

22 of 92

FastQC e[|
File Help

[E_Coli_CGATGT_L0O01_R1_001.fastq |

@ Faroaisos Percent of seqs remaining if deduplicated 85 08%

: 100
@ Per base sequence quality % Deduplic ated sequences

GR : ; % Total sequences
T Per tile sequence quality £ =2

@ Per sequence quality scores
@ Per base seguence content
@ Per sequence GC content |4
@ Per base N content

&0
@ Sequence Length Distribution

@ Sequence Duplication Levels 5q

£ =
¢) Overrepresented sequences

40
@ Adapter Content

a0

20

1 2 3 4] [+ 7 g g =10 =50 =100 =500 =1k =5k =10k
Sequence Duplication Level

Overrepresented Sequences

This checks for sequences that occur more frequently than expected in your data. It also
checks any sequences it finds against a small database of known sequences. In this case it has found
that a small number of reads 4000 out of 600000 appear to contain a sequence used in the
preparation for the library. A typical cause is that the original DNA was shorter than the length of the
read - so the sequencing overruns the actual DNA and runs into the adaptors used to bind it to the
flow-cell.

23 of 92

File Help

f E_Coli_CGATGT_L001_R1_001.fastq |

@ Basic Statistics | 5 Overrepresented Isequences .
| Sequence ||Count ||Percentage | Possible Source |

@ Per base sequence quality |GATCGGAAGAGCACACGTCTGAAC... | 4113 0.639[TruSeq Adapter, Index 2 (100... |

—
¢) Pertile sequence quality

@ Per sequence quality scores
@ Per base sequence content

@ Per sequence GC content

@ Per base N content

@ Sequence Length Distribution|

@ Sequence Duplication Levels|

| Overrepresented sequences

There are other reports available:

Have a look at them and at what the author of FastQC has to say here:
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/ or check
out their youtube tutorial video: https://www.youtube.com/watch?v=bz93ReOv87Y.

Remember the error and warning flags are his (albeit experienced) judgement of what typical data
should look like. It is up to you to use some initiative and understand whether what you are seeing is
typical for your dataset and how that might affect any analysis you are performing.

Task 2

Do the same for the raw read 2 as we have for raw read 1. Open fastqc and analyse the read 2 file.
Look at the various plots and metrics which are generated. How similar are they?

Also look at the cleaned reads. How do they differ? You should notice very little change (since
comparatively few reads were filtered). However, you should notice a significant improvement in
quality and the absence of adaptor sequences.

Note that the number of reads reported in both files is identical. This is because if one read fails to
pass the lllumina chastity filter, its partner is automatically excluded too.

Overall, both read 1 and read 2 can be regarded as 'good' data-sets.

24 of 92

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
https://www.youtube.com/watch?v=bz93ReOv87Y

Note: Typically when submitting raw lllumina data to NCBI or EBI you would submit unfiltered data, so
don't delete your original fastq files!

A note on checking for contaminants:

A number of tools are available now which also enable to you to quickly search reads and assign them
to particular species or taxonomic groups. These can serve as a quick check to make sure your
samples or libraries are not contaminated with DNA from other sources. If you are performing a
de-novo assembly for example and unwittingly have DNA sequence present from multiple organisms,
you will risk poor results and chimeric contigs.

Some ‘contaminants’ can turn out to be inevitable by-products of sampling and DNA extraction. This is
often the case with algae or other symbionts. In addition, some groups have made some amazing
discoveries such as the discovery of a third symbiont (which turned out to be a yeast) in lichen.
http://science.sciencemag.org/content/353/6298/488.full

Some tools you can use to check the taxonomic classification of reads include:

Kraken

Centrifuge

Blobology

Kaiju

Blast (in conjunction with subsampling your reads) and Krona to plot results.

We won't do this today but they may be useful to you in the future.

Task 3

Make sure you are in the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory. We will
run the fastqg-mcf program which performs both adaptor sequence and low quality base trimming. To
remove adaptor sequences, we need to supply the adaptor sequences to the program. A list of the
most common adaptors used is given in the file:

~/workshop_materials/genomics_tutorial/data/reference/adaptors/adaptors.fasta

View it by typing:

more ~/workshop materials/genomics tutorial/data/reference/adaptors/adaptors.fasta

25 of 92

http://science.sciencemag.org/content/353/6298/488.full
https://ccb.jhu.edu/software/kraken/
https://ccb.jhu.edu/software/centrifuge/manual.shtml
https://github.com/blaxterlab/blobology
http://kaiju.binf.ku.dk/
https://github.com/marbl/Krona/wiki

genomics 2016 [~/workshop_data/gencmics_tutorial/data/sequencing/ecoli_exeter] more ~/werkshop_data/genomics_tutorial/data/reference/adaptors/adaptors.fasta
=Nextera_enrichment
CTGTCTCTTATACACATCT
>TruSeq_Readl
AGAT CGGAAGAGCACACGT CTGAACT CCAGTCA
>TruSeq_Read2
AGAT CGGAAGAGCGT CGT GT AGGGAAAGAGTGT
=Nextera mate_palr_Readl
CTGTCTCTTATACACATCT
>Nextera mate_palr_Read2
AGATGTGT ATAAGAGACAG
=PolyA
AMAAARAAAMARAAARAARAAAAARAL

To run the fastq-mcf program, type the following (all on one line):

fastg-mcf ../../reference/adaptors/adaptors.fasta E Coli CGATGT LO®O1 R1 0©01.fastg

E Coli CGATGT LO@1 R2 001.fastq -o E Coli CGATGT LO01 R1 001.filtered.fastg -0

E Coli CGATGT L@@l R2 001.filtered.fastg -C 1000000 20 -p 10 -u -x 0.01

While this is running enter the command in another terminal and try to understand what all
the options do. We have found that these parameters generally work well for lllumina data.

If you would like to learn more about these options, you can look at the manual here
https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastgMcf.md. In short we are using 1 million
reads to form a model of the sequence quality and then applying the filters which remove bases with
g-score less than 20, trims adaptors allowing up to 10% mismatch in the adaptor sequence, allowing
only pass-filter reads (virtually all sequencing data is pass-filter these days, so this is just included to
be safe) and trims back reads which contain more than 1% Ns until they contain 1% or less Ns.

In case you jumped here from the Task 1, you can go back now. FastQC should be done by now.

After about six minutes the filtering should be complete and you should see something similar to
below:

[ec2-user@ip-10-169-87-62 ecoli exeter]$ fastg-mef ../../reference/adaptors/adaptors.fasta E_Coli CGATGT L001 _R1 0
0l.fastq E Coli CGATGT L001 R2 00l1l.fastq —-o E Coli CGATGT LO01 R1 00l.filtered.fastq -o E Coli CGATGT LO0OO1 R2 001.
filtered.fastq —-C 1000000 —-q 20 —-p 10 —u -x 0.01

Command Line: ../../reference/adaptors/adaptors.fasta E Coli CGATGT L001 R1 00l1.fastq E Coli CGATGT LO0O1 R2 001.fa

stq —o E_Coli CGATGT L0O01 Rl 00l.filtered.fastq —o E_Coli CGATGT LO01 R2 00l.filtered.fastq -C 1000000 -q 20 -p 10
-u -x 0.01

Scale used: 2.2

Filtering Illumina reads on purity field

Phred: 33

Threshold used: 1603 out of 643253

Adapter Truseq Readl (AGATCGGAAGAGCACACGTCTGAACTCCAGTCA): counted 8548 at the 'end' of 'E_Coli CGATGT LO01_R1_001.

fastqg', clip set to 5

Adapter TrusSeq Read2 (AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT): counted 6204 at the 'end' of 'E_Coli CGATGT LO01_R2_001.

fastq', clip set to 5

Adapter Short Nextera fragment of adaptor (TCGGAAGAGCACACGT): counted 12634 at the 'end' of 'E_Coli CGATGT LOO1_R1

_00l.fastg', clip set to 4

Adapter Nextera_ read 1 external adapter (ATCGGAAGAGCACACGTCTGAACTCCAGTCAC): counted 12786 at the 'end' of 'E_Coli

CGATGT_LOO1_R1l_001.fastq', clip set to 4

Adapter Nextera read 2 external adapter (GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT): counted 6254 at the 'end' of 'E Coli C

GATGT_LO01_R2_001.fastqg', clip set to 5

Too short after clip: 8895

Clipped 'end' reads (E_Coli_ CGATGT_LOO1l_R1l_001l.fastq): Count 18042, Mean: 34.11, sd: 40.08

Trimmed 505652 reads (E_Coli_ CGATGT _LOO1_R1l_00l.fastq) by an average of 16.89 bases on quality < 20
Clipped 'end' reads (E_Coli_ CGATGT_LO01_R2 00l.fastq): Count 9426, Mean: 52.99, sSd: 40.18

Trimmed 621151 reads (E_Coli_ CGATGT LO01_R2 00l1.fastq) by an average of 60.69 bases on quality < 20

26 of 92

https://github.com/ExpressionAnalysis/ea-utils/blob/wiki/FastqMcf.md

You can see that the trimming has been harsher on the R2 reads than on the R1 - this is generally to
be expected in lllumina paired end runs.
If we look at the sizes of the files produced:

1s -1

[ec2—user@ip-10-169-87-62 ecoli_exeter]$ 1ls -1

total 1568644

-rW-r—-r——. 1 ecZ-user ec2-user 426091067 Dec 1 10:46 E Coli CGATGT LOO1_R1_00l.fastqg
-rWw-rw-r——. 1 ecZ-user ec2-user 405632367 Dec 1 13:33 E Coli CGATGT LOO01_R1 00l.filtered.fastqg
-rW-r——r——. 1 ecZ-user ec2-user 426091067 Dec 1 11l:21 E Coli CGATGT LO01_R2 00l.fastg
-rW-rw-r——. 1 ec2-user ec2-user 348453609-Dec 1l 13:33 E_Coli CGATGT LO01l R2 00l.filtered.fastq

You can see that the original files are exactly the same size, but the R2 filtered file is smaller than R1.
Now count the lines in all the files

wc -1 *.filtered.fastq

[ec2—user@ip—-10-169-87-62 ecoli_exeter]$ wc -1 *.filtered.fastq
2537432 E_Coli_ CGATGT_LO01 Rl 00l.filtered.fastq
2537432 E_Coli_ CGATGT_LO01_R2 00l1l.filtered.fastq

- om e s -

Although the reads have been trimmed differently - the number of reads in the R1 and R2 files are
identical. This is required for all the tools we will use to analyse paired end data.

Task 4

Check the quality scores and sequence distribution in the fastqc program for the two filtered
fastq files. You should notice very little change (since comparatively few reads were filtered). However,
you should notice a significant improvement in quality and the absence of adaptor sequences.

Task 5

We can perform a quick check (although this is by no means guaranteed) that the sequences
in read 1 and read 2 are in the same order by checking the ends of the two files and making sure that
the headers are the same.

head E_Coli CGATGT_L@@1 R1 @01.filtered.fastq | grep MISEQ
head E_Coli CGATGT_L@@1 R2 @@1.filtered.fastq | grep MISE

tail E Coli CGATGT L@@l R1 @01.filtered.fastq | grep MISE
tail E Coli CGATGT L@@1 R2 @0l1.filtered.fastq | grep MISEQ

27 of 92

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli_ CGATGT LO01_R1_001.filtered.fastq | grep MISEQ
EMISEQ:8:000000000-A7vC1:1:1101:17200:1633 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:10456:1673 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:16582:1688 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli_ CGATGT_LO001_R2 001.filtered.fastqg | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:17200:1633 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:10456:1673 2:N:0:CGATGT
EMISEQ:8:000000000-A7vC1:1:1101:16582:1688 2:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ tail E_Coli_ CGATGT_L001_R1l 001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7VC1:1:2119:19669:25236 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:2119:10145:25237 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ tail E Coli_ CGATGT L001_R2_001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7VC1:1:2119:19669:25236 2:N:0:CGATGT
@MISEQ:8:000000000-A7VC1:1:2119:10145:25237 2:N:0:CGATGT

Task 6

Check the number of reads in each filtered file. They should be the same. To do this use the
grep command to search for the number of times the header appears, e.g.

grep -c “MISEQ” E Coli CGATGT _LOO1 R1 @0l1l.filtered.fastq

Do the same for the E_Coli_ CGATGT_L@@1_R2_©01.filtered.fastqfile.

Aligning Illumina Data to a Reference Sequence

Now that we have checked the quality of our raw data, we can begin to align the reads against
a reference sequence. In this way we can compare how the reference sequence and the strain we
have sequenced compare.

To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)
Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.). This
uses an algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference
genome. BWA also allows for a certain number of mismatches to account for variants which may be
present in strain 1 vs the reference genome. Unlike other alignment packages such as Bowtie (version
1) BWA allows for insertions or deletions as well. (Note, there is now a Bowtie2 tool that allows for insertions and
deletions, but we'll continue to use BWA here). There are also a host of newer aligners such as minimap2 that
allow for long-read sequencing and employ different algorithms.

By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing
lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it
maps against the reference genome. The figure below illustrates what we are trying to achieve here.
Along the top in grey is the reference sequence. The coloured sequences below indicate individual
sequences and how they map to the reference. If there is a real variant in a bacterial genome we
would expect that (nearly) all the reads would contain the variant at the relevant position rather than
the same base as the reference genome. Remember that error rates for any single read on second
generation platforms tend to be around 0.5-1%. Therefore a 300bp read is on average likely to contain
about 2-3 errors.

28 of 92

http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Let's look at 2 potential sources of artefacts.

Sequencing Error

The region highlighted in green on the right shows that most reads agree with the reference
sequence (i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can
safely assume that the A-bases are due to a sequencing error rather than a genuine variant since the
‘variant’ has only one read supporting it. If this occurred at a higher frequency however, we would
struggle to determine whether it was a genuine variant or an error.

PCR Duplication

The highlighted region in red on the left shows where there appears to be a variant. A C-base
is present in the reference and half the reads, whilst an A-base is present in a set of reads which all
start at the same position.

- q
; F M ¥ ¥} il | FE]

/ b Il |] Lh E77 ¥,
A AT TGN, TGAGLAT T TN A T AT TG TIC TCT T ACAMGAC TG TG GG TG TAAL TG TTTETCAGDUACAACATCT

Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a
real sample, would you expect all the reads containing an A to start at the same location?

The answer is probably not. This 'SNP"' is in fact probably an artefact of PCR duplication. l.e. the same
fragment of DNA has been replicated many times more than the average and happens to contain an
error at the first position. We can filter out such reads during after alignment to the reference (see
later).

Note that the entire region above seems to contain lots of PCR duplicates with reads starting at the
same location. In the case of the region highlighted in red, this will likely cause a false SNP call. The

29 of 92

area in green also contains PCR duplicates — the As at these positions are probably either sequencing
errors or errors introduced during PCR.

It's always important to think critically about any finding - don't assume that whatever bioinformatic
tools you are using are perfect. Or that you have used them perfectly.

Indexing a Reference Genome

Before we can start aligning reads to a reference genome, the genome sequence needs to be
indexed. This means sorting the genome into easily searched chunks, a bit like an index in a book.

Task 7: Generating an index file from the reference sequence

Change directory to the reference directory:

cd ~/workshop materials/genomics tutorial/data/reference/U00096/

List the files:
1s -1

[ec2-user@ip-10-169-87-62 U00096]5 1ls -1

total 6760

=rw=r—--r--—. 1 ec2-user ec2-user 4708048 Dec 1 10:43 U00096.fna
-rw-r—-r——. 1 ec2-user ec2-user 2208485 Dec 1 10:43 U00096.gff

In this directory we have 2 files. U00096.fna is a FASTA file which contains the reference genome
sequence. The U00096.gff file contains the annotation for this genome. We will use this later.

First, let's look at the bwa command itself. Type:

bwa

This should yield something like:

30 of 92

Program: bwa (alignment via Burrows-Wheeler transformation)
Version: 8.7.15-r1142-dirty
Contact: Heng L1 =Llh3@sanger.ac.uk=

Usage: bwa <command> [options]

Command: index index sequences in the FASTA format
mem BWA-MEM algorithm
fastmap identify super-maximal exact matches
pemerge merge overlapping palred ends (EXPERIMENTAL)
aln gapped/ungapped alignment
samse generate alignment (single ended)
sampe generate alignment (paired ended)

bwasw BwA-SW for long gqueries

shm manage indices in shared memory

fazpac convert FASTA to PAC format

pac2bwt generate BWT from PAC

pac2bwtgen alternative algorithm for generating BWT
bwtupdate update .bwt to the new format

bwt2sa generate SA from BWT and Occ

Note: To use BwWA, you need to first index the genome with “bwa index'.
There are three alignment algorithms in BWA: “mem', “bwasw', and
“aln/samse/sampe’'. IT you are not sure which to use, try “bwa mem'
first. Please "man ./bwa.l' for the manual.

BWA is actually a suite of programs which all perform different functions. We are only going to use two
during this workshop, bwa index, bwa mem

If we type:

bwa index

We can see more options for the bwa index command:

bwa index [options] <in.fasta=

s: -a 5TR BWT construction algorithm: bwtsw, 1s or rb2 [auto]
-p STR prefix of the index [same as fasta namel
-b INT block size for the bwtsw algorithm (effective with -a bwtsw) [100680800]
-6 index files named as =in.fasta=.64.%* instead of <in.fasta=.*

larning: "“-a bwtsw' does not work for short genomes, while “-a 1s' and
“-a div' do not work not for long genomes.

By default bwa index will use the IS algorithm to produce the index. This works well for most
genomes, but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes
the default algorithm will work fine.

Now we will create a reference index for the genome using BWA:

bwa index UB0OO96.fna

31 of 92

9096% bwa index UGEA9E.fTna

sequence. ..

[bwa_ index]
[bwa_index] upd

[bwa_index] Pack forward-only FASTA... 8.82 sec
[bwa_index] struct SA from BWT and Occ... 8.44 sec
[main] ve 0.7.15-r1142-dirty

[main] CMD: bwa 1nde\ 1] a

[main] Real time: 1.720 sec; CPU: 1.352 sec

If you now list the directory contents using the 'ls' command, you will notice that
program has created a set of new files. These are the index files BWA needs.

genomics@ge

the BWA index

@0096.fna UGGEY6.fna.amb UBOOY6.fna.ann UOBEIE.fna.bwt fna.sa UOOBYG.gf

genomics

Task 8: Aligning Reads to the Indexed Reference Sequence

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back
into the ~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory

and create a subdirectory to contain our remapping results.

cd ~/workshop materials/genomics tutorial/data/sequencing/ecoli

mkdir remapping to reference
cd remapping to reference

mkdir remapping_to_reference
2l =r] cd remapping_to_reference
an oli_exeter/remapping_te_reference] pwd
fhomefgenomlcsfworkshop datafgemom1cs tutorlalfdatafsequenc1ngjecoll exeterfremapplng to_reference
16 [~/workshop_data/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_reference] JJ

exeter/

We’'ll use the ‘bwa mem’ alignment algorithm to map the reads to the target genome.
alignment options BWA MEM has to offer. Type:

Let's explore the

32 of 92

Jsage: bwa mem [options] <idxbase> <inl.fg> [in2Z.Tq]
Algorithm options:

-t number of threads [1]
-k minimum seed length [19]
-W band width for banded alignment [100]
-d off-diagonal X-dropoff [100]
look for internal seeds inside a seed longer than {-k} * FLOAT [1.5]
seed occurrence for the 3rd round seeding [20]
skip seeds with more than INT occurrences [500]
drop chains shorter than FLOAT fraction of the longest overlapping chain [0.50]
discard a chain if seeded bases shorter than INT [0]
perform at most INT rounds of mate rescues for each read [50]
skip mate rescue
skip pairing; mate rescue performed unless -5 also in use

scoring options:

INT score for a sequence match, which scales options -TdBOELU unless overridden [1]
INT penalty for a mismatch [4]

INT[,INT] gap open penalties for deletions and insertions [6,6]

INT[,INT] gap extension penalty; a gap of size k cost '{-0} + {-E}*k' [1,1]

INT[,INT] penalty for 5'- and 3'-end clipping [5,5]

INT penalty for an unpaired read pair [17]

STR read type. Setting -x changes multiple parameters unless overriden [null]
pacbio: -k17 -W40 -rl0 -Al -Bl -01 -El1 -LO (PacBio reads to ref)
ont2d: -kl14 -W20 -rl0 -Al -Bl -01 -E1 -L@ (Oxford Nanopore 2D-reads to ref)
intractg: -B9 -016 -L5 (intra-species contigs to ref)

Input/output options:

smart pairing (ignoring in2.fq)
STR roup header line such as '@RG\tl1D:foo\tSM:bar' [null]
STR/FILE insert STR to header if it starts with @; or insert lines in FILE [null]
j treat ALT contigs as part of the primary assembly (i.e. ignore <idxbase>.alt file)
always take the leftmost alignment on a read as primary
verbose level: l=error, 2=warning, 3=message, 4+=debugging [3]
minimum score to output [30]
[,INT] if there are <INT hits with score =8)T the max score, output all in XA [5,200]
output all alignments for SE or unpaired PE
append FASTA/FAST(Q comment to SAM output
output the reference FASTA header in the XR tag
use soft clipping for supplementary alignments
mark shorter split hits as secondary

FLOAT[,FLOAT[,INT[,INT]1]
specify the mean, standard deviation (10% of the mean if absent), max
(4 sigma from the mean if absent) and min of the insert size distribution.
FR orientation only. [inferred]

The basic format of the command is:

Usage: bwa mem [options] <idxbase> <inl.fqg> <in2.fqg>

We can see that we need to provide BWA with a FASTQ files containing the raw reads (denoted by
<in.fg> and <in2.fg>) to align to a reference file (listed as <idxbase>). There are also a number of
options. The most important are the maximum number of differences in the seed (-k i.e. the first 32 bp
of the sequence vs. the reference), the number of processors the program should use (your machine
has 2 processors).

Our reference sequence is in
~/workshop_materials/genomics tutorial/data/reference/U00096/U00096.fna

Ouir filtered reads in

33 of 92

~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_
LOO1 R1 ©01.filtered.fastq
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_
LOO1 R2 001.filtered.fastq

So to align our paired reads using processors and output to file
E Coli CGATGT L@@l filtered.sam:

type, all on one line:

bwa mem -t 2

~/workshop materials/genomics tutorial/data/reference/U00096/U00096.fna

~/workshop materials/genomics_ tutorial/data/sequencing/ecoli exeter/E Coli
CGATGT _LO@1 R1 @01.filtered.fastq

~/workshop _materials/genomics tutorial/data/sequencing/ecoli exeter/E_Coli
CGATGT LOO1 R2 @0l1.filtered.fastq > E Coli CGATGT LOO1 filtered.sam

This will take about 5 minutes to complete.
There will be quite a lot of output but the end should look like:

::process] read 70094 sequences (18721937 bp)...
pestat] # candidate unique pairs for (FF, FR, RF, RR): (1, 26431, 0, 3)
pestat] skip orientation FF as there are not enough pairs
pestat] analyzing insert size distribution fnr orientation FR...
m pestat] (25, 50, 75) percentile: 2.
pestat] low and high boundaries r g mean and std.dev: (270, 890)
a mean and std.dev: (577.
tat] low and gh boundaries er pairs: (146, 1014)
pestat] skip orientation RF as there are not enough pairs
pestat] skip orientation RR as there are not enough pai
5_seqs] Processed 75290 reads in 7.280 CPU sec, 3
pestat] # candidate unique pairs for (FF, FR, RF, RR):
m pestat] skip orientation FF as there are not enough pairs
pe%tit] analyzing insert size distribution for orientation FR...
(25, 50, 75) percentile: (519, 581, 641)
low and high boundaries for computing mean and std.dev: (275, 885)
pectit] mean and std.dev: (577.10, 100.85)
pestat] low and high boundaries for proper pairs: (153, 1007)
pestat] skip orientation RF as there are not enough paqu
em_pestat] ip orientation RR as there are not enough p
em_process_seqs] Processed 70094 reads in 6.572 CPU sec, 3.306 real sec
main] Version: 0.7.15-rl1142 dlrtv
main] CMD: bwa mem -t 2 .. /refelen(e/UO@Oﬂﬁ/U@@ﬂﬂﬁ fna E_Coli_CGATGT_LO@1_R1_001.filtered.fastq E_Coli_CGATGT_LOO1_R2_001.filtered.fastq
main] Real time: 63.015 sec; CPU: 12

o
3

oo
1]
]
~+
I
—~+

e o \ e e oo i \ (ot
o =]
5
H o ¢
A
o
]
o

DRDD
3333

34 of 92

Viewing the alignment

The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain text
format and you can view it if you wish using the 'less' command. Do not try to open the whole file in a
text editor as you will likely run out of memory!

less E_Coli CGATGT _LO@1 filtered.sam

MISEQ:8:000000000-A7vC1:1:1101:17200:1633 83 gi|545778205|gb|U00096.3| 881006 60 137M™ =
880711 -432 GGTAAAGATGCCGGGGCGACGGGARAGCCGEGAACGGCEGTGGTTCATCGGTAATGTTCCGCARACCGGGCCGATCAGCGTTTCGGTGGCAGACT

TGAACAAAGGTGTGATTATCCAGTCCGGTAATGACGCCTGTATTGE @9, @D>@8+8+++>@>+?A+AE?A86+++B:+8++>+B,B:,,, 8, ,EA, AC, 8++++, ,B

@8++CRE, C:, ,CCB++++EC, CC, CR<, , , CCC, CCCRC, C, CC, 9E8CCFEEDGGGEGEEGEGEEGEEGECCCCY NM:i:5 MD:Z:12T13T4C2T23T78

AS:i:112 Xs:1:0

MISEQ:8:000000000-A7vCc1:1:1101:17200:1633 163 gi|545778205|gb|U00096.3| 880711 60 84M =
881006 432 TACTCGGGTGGCCTTTCTCCCGCACTACTCCTCTCTCCTTCGTGCTCTTCCAGCGGETTCTGCATTTTTCTTCCTTTTTTCCCC 8,A

6C, ,+;++;,;CC, <, , ; +8++7, ; 6CC<CRC<CECCC, ; , , 9CCC, <, , ; +++88BC, <, <99@B, 9: BEBRRA=+: 2?3 NM:i:9 MD:Z:12A3A1G0A4A19G4G

19A9G4 AS:i:39 Xs:i:0

MISEQ:8:000000000-A7vC1:1:1101:10456:1673 83 gi|545778205|gb|U00096.3| 1864278 60 42M =
1863862 -458 GGGTAAAACTTGTGARATCGATCTTGAATCACATGGCGAATT CC; , @C<<, , 9EAFFFCTGGECF GGGGEGEGEGEEGECCCCY

NM:i:0 MD:Z:42 AS:i:42 XS:i:0

Each alignment line has 11 mandatory fields for essential alignment information such as mapping
position, and a variable number of optional fields for flexible or aligner specific information. For further
details as to what each field means see http://samtools.sourceforge.net/SAM1.pdf

Task 9: Convert SAM to BAM File

Before we can visualise the alignment however, we need to convert the SAM file to a BAM
(Binary AlignMent format) which can be read by most software analysis packages. To do this we will
use another suite of programs called samtools. Type:

samtools view

35 of 92

http://samtools.sourceforge.net/SAM1.pdf

Usage: samtools view [options] <in.bam=|<in.sam=|<in.cram= [region

Options:
-b output BAM
-C output CRAM (requires -T)
-1 use fast BAM compression (implies -b)
-u uncompressed BAM output (implies -b)
-h include header in SAM output
-H print SAM header only (no alignments)
-C print only the count of matching records
-0 FILE output file name [stdout]
-U FILE output reads not selected by filters to FILE [null]
-t FILE FILE listing reference names and lengths (see long help) [null]
-L FILE only include reads overlapping this BED FILE [null]
-r STR only include reads in read group 5TR [null]
-R FILE only include reads with read group listed in FILE [null]
-q INT only include reads with mapping quality == INT [0]
-1 STR only include reads in library STR [null]
-m INT only include reads with number of CIGAR operations consuming
query sequence >= INT [0]
-T INT only include reads with all bits set in INT set in FLAG [0]
-F INT only include reads with none of the bits set in INT set in FLAG [0]
-x STR read tag to strip (repeatable) [null]
-B collapse the backward CIGAR operation
-5 FLOAT integer part sets seed of random number generator [0];
rest sets fraction of templates to subsample [no subsampling]
--threads INT
number of BAM/CRAM compression threads [0]
print long help, including note about region specification
ignored (input format is auto-detected)
--input-fmt-option OPT[=VAL]
Specify a single input file format option in the form
of OPTION or OPTION=VALUE
-0, --output-fmt FORMAT([,OPT[=VAL]]...
Specify output format (SAM, BAM, CRAM)
--output-fmt-option OPT[=VAL]
Specify a single output file format option in the form
of OPTION or OPTION=VALUE
-T, --reference FILE
Reference sequence FASTA FILE [null]

We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),
the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the
alignment file.

Remember our reference sequence is in:
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna

Type (all on one line):

samtools view -bS -T

~/workshop materials/genomics tutorial/data/reference/U00096/U00096.fna

E Coli CGATGT LO@1 filtered.sam > E Coli CGATGT LOO1 filtered.bam

36 of 92

This should take around 2 minutes. Note that for larger datasets you may wish to set multiple threads
as well with the --threads option.

ls -1h

It's always good to check that your files have been processed correctly, if something goes wrong it's
better to catch it immediately.

Note that the bam file is smaller than the sam file - this is to be expected as the binary format is more
efficient.

Task 10: Sort BAM File

Once this is complete we then need to sort the BAM file so that the reads are stored in the
order they appear along the chromosomes (don't ask me why this isn't done automatically....). We can
do this using the samtools sort command.

samtools sort E _Coli CGATGT_LO©@1 filtered.bam -o

E Coli CGATGT_LOO1 filtered.sorted.bam

This will take another minute or so.

r-- 1 genomics workshop 254M Jan 2 15:42 E Coli CGATGT _L001 filtered.bam
r-- 1 genomics workshop 780M Jan 2 15:37 E Coli CGATGT _L001 filtered.sam
- 1 genomics workshop 185M Jan 2 15:50 E Coli CGATGT L1001 filtered.sorted.bam

A note on piping BWA and samtools commands:

In tasks 8-10 we aligned reads to the reference genome, converted SAM to BAM and then sorted the
resulting BAM file. For clarity we have shown these as individual steps. However, in real-life, it is faster
and easier to do these simultaneously using Unix pipes!

E.g. (there is no need to do this for this workshop)

bwa mem -t 2

~/workshop meterials/genomics tutorial/data/reference/U00096/U00096.fna
~/workshop meterials/genomics tutorial/data/sequencing/ecoli exeter/E Col
i CGATGT LOO1 R1 00l.filtered.fastg

~/workshop meterials/genomics tutorial/data/sequencing/ecoli exeter/E Col
i CGATGT LOO1 R2 00l.filtered.fastqg | samtools sort -O bam -o

E Coli CGATGT LOO1 filtered.sorted.bam

37 of 92

Task 11: Remove Suspected PCR Duplicates

Especially when using paired-end reads, samtools can do a reasonably good job of removing
potential PCR duplicates (see the first part of this workshop if you are unsure what this means).

Again, samtools has a great little command to do this called rmdup.

On the command-line type:

samtools rmdup E _Coli CGATGT LO@1 filtered.sorted.bam

E Coli CGATGT LOO1 filtered.sorted.rmdup.bam

[bam rmdup core] processing reference UBB896.3...
[bam_rmdup_core] inconsistent BAM file for pair 'MISEQ:8:000000000-A7VC1:1:2117: 1'. Continue anyway.
[bam_rmdup_core] inconsistent BAM file for pair 'MISE(Q:8:000000000-A7YC1:1:2117:25993:223 Continue anyway.
[bam rmdup core] inconsistent BAM file for pair 'MISE(Q:8:000000000-A7YC1:1:1113:11936: 5'. Continue anyway.
[bam_rmdup_core] 31 unmatched pairs

rmdup_core 80 / 458450 = 0.0211 in librar

genomics workshop 254M 15: E Coli CGATGT L8081 filtered.bam

genomics workshop 780M 2 15: _Col GATGT_Le81 _filtered.sam

genomics workshop 185M 2 15: E_Coli_CGATGT_LO01_filtered.sorted.bam
genomics workshop 183M 15: E Coli CGATGT L8081 filtered.sorted.rmdup.bam

You will notice some warnings about inconsistent BAM file for pair - this is just a warning that a pair of
reads does not align together on the genome within the expected tolerance - it is normal to expect
some of these, and you can ignore them in this case.

Task 12: Index the BAM File

Most programs used to view BAM formatted data require an index file to locate the reads
mapping to a particular location quickly. You can think of this as an index in a book, telling you where
to go to find particular phrases or words. We'll use the samtools index command to do this.

Type:
samtools index E Coli CGATGT LOO1 filtered.sorted.rmdup.bam

otal 1.4G

genomics workshop 254M . E_Coli CGATGT_LOO1 filtered.

genomics workshop / E_Coli_CGATGT_LOO1 filtered.s

genomics workshop 18! 2 15:50 E_Coli_CGATGT_LGO1_filtered.sorted.bam
genomics workshop 183 2 E_Coli CGATGT_LOO1 filtered.sorted.rmdup.bam
1 _genomics workshop 1! ¢ 2 15:59 F Coli CGATGT LOOL filtered.sorted.rmdup_bam.

1
1
1
1

We should obtain a “.bai’ file (known as a BAM-index file).

38 of 92

Task 13: Obtain Mapping Statistics
Finally we can obtain some summary SElR(eAs amtools flagstat

E Coli CGATGT _LOO1 filtered.sorted.rmdup.bam > mappingstats.txt

This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor
(e.g. gedit or nano) or the 'more' command.

250574 + 0 in total (QC-passed reads + (QC-failed reads)
) + 0 secondary
151 + O supplementary
) + 0 duplicates
398936 + O mapped (71.88% : N/A)
249423 + 0 paired in sequencing
24727 + 0 readl
24696 + 0 read?
893922 + O properly paired (71.55% : N/A)
+ 0 with itself and mate mapped
0 singletons (0.11% : N/A)
) + 0 with mate mapped to a different chr
) + 0 with mate mapped to a different chr (mapQ==5)

So here we can see we have 1250574 reads in total, none of which failed QC.
71.88% of reads mapped to the reference genome and 71.55% mapped with the expected 500-600bp
distance between them. 1414 reads could not have their read-pair mapped.

0 reads have mapped to a different chromosome than their pair (0 has a mapping quality > 5 — this is a
Phred scaled quality score much as we say in the FASTQ files). If there were any such reads they

would likely due to repetitive sequences (e.g phage insertion sites) or an insertion of plasmid or phage
DNA into the main chromosome.

Task 15: Cleaning up

We have a number of leftover intermediate files which we can now remove to save space.

Type (all on one line):

rm E_Coli CGATGT _LOO1 filtered.sam E _Coli CGATGT _LOO1 filtered.bam

E Coli CGATGT_LOO1 filtered.sorted.bam

In case you get asked if you are sure to remove 3 arguments type in “CGyes” and hit enter.

39 of 92

You should now be left with the processed alignment file, the index file and the mapping stats.

total 183M
-rw-r--r-- 1 genomics workshop 183M ? 15:57 E_Coli_CGATGT_LOO1 filtered.sorted.rmdup.bam

-rw-r--r-- 1 genomics workshop 15K 2 15:59 E_Coli_ CGATGT_LOO1 filtered.sorted.rmdup.bam.bai
-rw-r--r-- 1 genomics workshop 422 2 16:00 mappingstats.txt

Well done! You have now mapped, filtered and sorted your first whole genome data-set!
Let's take a look at it!

Task 16: QualiMap

Qualimap (http://qualimap.bicinfo.cipf.es/) is a program that summarises the alignment in much
more detail than the mapping stats file we produced. It's a technical tool which allows you to assess
the sequencing for any problems and biases in the sequencing and the alignment rather than a tool to
deduce biological features.

There are a few options to the program, We want to run bamqc. Type:

qualimap bamqc
to get some help on this command.

To get the report, first make sure you are in the directory:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_r
eference

then run the command:

qualimap bamgc -outdir bamqgc -bam

E Coli CGATGT_LOO1 filtered.sorted.rmdup.bam -gff
~/workshop _materials/genomics tutorial/data/reference/U00096/U00096.gff]

this creates a subfolder called bamqc

total 183M

drwxr-xr-x genomics workshop 4.0K

L5 / :
- 1 genomics workshop 183M 2 35! (1 _CGATGT_L0O1 filtered.sorted.rmdup.bam

1 genomics workshop 15K ? 15:5¢ GATGT_L0OO1 filtered.sorted.rmdup.bam.bai
1 genomics worksho 422 stats.txt

cd to this directory and run
firefox qualimapReport.html

There is a lot in the report so just a few highlights:

40 of 92

http://qualimap.bioinfo.cipf.es/

CD\-’E‘]‘{IgE‘- across reference

Coverage across reference
E_Coli_CGATGT_L0o01_filte red somed il md rmdup bam (inside of regions)

Covsrmge ()
v-
a

L i T T fv\-r‘—ﬁ\ﬂ_{_l—-fh\l_-‘—\‘- M{H%_ﬁ%‘m,w#wwfﬂx”mpﬁ‘ |
J ' iy | ! \
254 '}
[= | —
Position (bp)

This shows the number of reads that 'cover' each section of the genome. The red line shows a rolling
average around 50x - this means that on average every part of the genome was sequenced 50X. It is
important to have sufficient depth of coverage in order to be confident that any features you find in
your data are real and not a result of sequencing errors.

What do you think the regions of low/zero coverage correspond to?

41 of 92

Insert Size Histogram

Insert Size Histogram

E_Coli_CGATGT_L0o0D1_fileredl. g0 med fillmd rmdup.bam (inside of regions)

52000 1|
50,000 ||
48,000 {|
48,000 |
44,000 |
42000 ||
40,000 |
38000
38,000 |
34.000 {|
32,000 | [
30,000 |
28,000 |

215 1000 4

umberol mock:

24,000
22,000

20,000 4
18,000 4|
18,000 |
14,000 {
12000 4
10,000 4|

B 000

"‘1 ______ .;IIH‘H _ ||||l||..l..

300 400 00 800 Ton £00 a0 1000 1100 1.200
Insart sizo | b

The Insert Size Histogram displays the range of sizes of the DNA fragments. It shows how well your
DNA was size selected before sequencing. Note that the 'insert' refers to the DNA that was inserted
between the sequencing adaptors, so equates to the size range of the DNA that was used.

In this case we have 300 base pair paired end reads and our insert size varies around 600 bases - so
there should only be a small gap between the reads that was not sequenced.

Have a look at some of the other graphs produced.

Task 17: Load the Integrative Genomics Viewer

The Integrative Genome Viewer (IGV) is a tool developed by the Broad Institute for browsing
interactively the alignment data you produced. It has a wealth of features and we can only cover some
basics to get you started. Go to http://www.broadinstitute.org/igv/ to get more information.

In your terminal, type

42 of 92

http://www.broadinstitute.org/igv/

Or you can click the icon on the desktop.
IGV viewer should appear:

L IGV EEER
File Genomes Yiew Tracks Regions Tools GenomeSpace Help
Human hg18 ~||an = co| @ [= 3 S =
1 3 5 7 o 11 13 15 17 1
z 4 a g 10 1z 14 18 18 e0 om ¥
| | | | | | | | | | | | | | N o | o
a
FelSeq genas —]
-
1T I[|[408m of 755M

Notice that by default a human genome has been loaded.

Task 18a: Import the E.coli U0O0096 Reference Genome to IGV

By default IGV does not contain our reference genome. We'll need to import it.

Click on 'Genomes ->Create .genome file...'

43 of 92

Unique identifier ‘UOOOQG

Descriptive name ‘E.coli uoooss

Optional

FASTA file "home..fgenomicsMorkshcp_data,’gencmics_tutorialfdatafreferencerOOOQGIUOOOQG.fna| Bro...

Cytoband file ‘

| Bro...

Gene file ‘fhomefgenomics,'workshop_datafgenomics_tutorialjdatajreferencejuoOOQGIUOOOQG.gff| :BFD---

Alias file ‘

| Bro...

OK

|| Cancel |

Enter the information above and click on ‘OK’ .

IGV will ask where it can save the genome file. Your home directory will be fine.

Save .genome file

k4

Save In: | genomics & 885"

] Desktop] Pictures

] Documents J Public

3 Downloads] Templates

igv] Vvideos

] media J workshop_data

] miniconda2 [y evomics_2016.jpg

3 Music

File Name: lUD0096.genome |

Files of Type: |AII Files |v|
Save || Cancel |

Click 'Save' again.
Note that the genome and the annotation have now been imported.

44 of 92

Ecoli U00D0D96 w | |U00096.3 w | |J00D09E.3 Go

*

F___—i
H pd iy BcZ gk ma fold ybjE 10T HUE rbA hpA dep bp md FiD wza dn akA yeZ mHF ascF ygel gss gal fis yiF yhjA yiR mC did nfi cfC yfF mm

Task 18b: Load the BAM File

Load the alignment file. Note that IGV requires the “.bai’ index file to also be in the same directory.

Select File... and Load From File

Select Files {on genomics-build-2) ﬁ
Look In: |CJremapping to reference - | \E9) || (23| =
Jbamqgc

[E_Coli CGATGT L001 filtered.sorted.rmdup.bam |
[y E_Coli_ CGATGT L001 filtered.sorted.rmdup.bam.bai
[mappingstats.txt

File Hame: [E Coli CGATGT LOO1 filtered. sorted.rmdup. barm
Files of Type: |All Files

Open Cancel

Select the bam file and click open

Once loaded your screen should look similar to the following. Note that you can load more BAM files if
you wish to compare different samples or the results of different mapping programs.

45 of 92

m IGV]
File Genomes View Tracks Regions Tools GenomeSpace Help
|E.cnllunnnas v||gi\54571’5205\g...|v ‘ o B @ [= ET
4532 kb
ab 1,000 kb 2,000 kb 3,000 kb 4,000 kb
| | | | | | | | B
-
=
E_Goli GGATGT_LOOT fitersd.s | | ™) I
ed filmd.mdup bam Coverage
E_Goli_ CGATAT_LOOT _fitersd. - g
5 Filmd._mmdup bam Zoom in to see f\l\':llwlﬂrllls
-
e p ; p =
ANONYMOUS id3z4
4 tracks | piis4s778208 9b1U00006 3. | |[p1m of 7541

L

File Genomes Yiew Tracks

RBegions _Tools GenomeSpace Help

gV

Go

|
Ecoli UD00S6 ‘ v| |UDDEEE.3 v\ |L| 00096.3

Select the chromosome U00096.3 if it is not already selected

File Genomes Yiew Tracks Regions Tools GenomeSpace Help

E_Coli_GEATAT_LOM _fitemd
ad fillrd. md up bam Cove mas

Ecoli U00096 |v U00096.3 + | |U00096.3:2,320,053-2,321 599 Go @ [= 2 E=NERRRRRERNER] IRRAN]

=
| |
1544 bp

2,320,200 bp 2,320 400 bp 2,320,600 bp 2,320,800 bp 2,321,000 bp 2,321,200 bp 2,321,400 bp 2,321,
| | | | | | | | =
—
oo - B

Use the +/- keys to zoom in or use the zoom bar at the top right of the screen to zoom into

about 1-2kbases as above

46 of 92

E_Coli CGATGT_L001_fikered sorted fillmd.rmdup.ba

Remame Track..
Copy read details to clipboard

Group alignments by
Sort alignments by
Color alignments by

¥ Shade base by quality
¥ Show mismatched bases
[J Show all bases

[J View as pairs
Go to mate
View mate reglon in split screen

[Set insert size options ...

ﬁ Re-pack alignments

Right click on the main area and select view as pairs

The gray graph at the top of the figure indicates the coverage of the genome:

la-.741

The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured
line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)
present (there are none in the plot). If there are any regions in the genome which are not covered by
the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by
repetitive regions; others are caused by genuine insertions/deletions in your new strain with respect to
the reference.

Below the coverage graph is a representation of each read pair as it is mapped to the genome. One
pair is highlighted.

This pair consists of 2 reads with a gap (there may be no gap if the reads overlap) Any areas of
mismatch either due to inconsistent distances between paired-end reads or due to differences

47 of 92

between the reference and the read are highlighted by a colour. The brighter (or less transparent) the
colour, the higher the base-calling quality is estimated to be. Differences in a single read are likely to
be sequencing errors. Differences consistent in all reads are likely to be mutations.

Hover over a read to get detailed information about the reads' alignment:

Left alignment

Read name = MISECQ:B:000000000-A7VIC1:1:2112:3986:8017
Location = U00096.3:2,319,925
Alignment start = 2,319,293 (+]
Cigar = 270M

Mapped = yes

Mapping quality =60
Secondary = no
Supplementary = no

Duplicate = no

Failed QC = no

Mate is mapped =yes

Mate start = U00096.3:2319858 (-)
Insert size = 753

Firstin pair

Pairorientation =F1R2

i MD =221A10A37
NM =2

AS =260

X5 =0

Right alignment

Read name = MISEQ:8:000000000-A7VG1:1:2112:3986:8017
Location = U00096.3:2, 319,925
Alignment start =2,319,859 (-]
Cigar =187M

Mapped = yes

Mapping quality = 60
Secondary =no
Supplementary = no

Duplicate = no

Failed QC = no

Base =C

Base phred quality = 25

Mate is mapped =yes

Mate start = UD00S8.3:2319292 (+)
Insert size =-753

Second inpair

Pair arigntation = F1R2

MD =12T27T148

NM =2

AS =177

You don't need to understand every value, but compare this to the SAM format to get an idea of what

is there.

SNPs and Indels

The following 3 tasks are open-ended. Please take your time with these. Read the examples

on the following page if you get stuck.

Task 19: Read about the Alignment Display Format

Visit http://www.broadinstitute.org/software/igv/AlignmentData

Task 20a: Manually Identify a Region Without any Reads Mapping.

It can be quite difficult to find even with a very small genome. Zoom out as far as you can and
still see the reads. Use the coverage plot from QualiMap to try to find it. Are there genes associated?

Because of the way IGV handles BAM files, it will not display coverage information if you zoom out too
far. To get coverage information across the entire genome, regardless of how far you are zoomed out,

48 of 92

http://www.broadinstitute.org/software/igv/AlignmentData

Select Tools->Run igvtools:

-

you’ll need to create a TDF file which contains a coverage information across windows of X number of
bases across the genome. You can do this within IGV:

ed.rrndup.barn Coverage

File Genomes ¥Yiew Tracks Regions Tu_ul5| GenomeSpace Help
; Run Ratch Scrint. ..
E.coli U00096 v | |U00096.3 HS e L 333,258 |Go T

Run igqvtools...
Find Motif...
BLAT ...
Combine Data Tracks

= Gitools Heatmaps 4 5
BEDTools b

h 2,31“ kh Cp VL RIF L FIF R :...-.'-.E kh 2,313 kh 2,32“ kl:

I I I I I I I I I I I
| E_coli cGATGT Lo0L fitered s| | | 12232

igvtools (on genomics-build-2)

Now load the BAM alignment file in the Input field and click Run:

Command |C0unt

|v|

Input File fics tutorial/data/sequencingiecoli_exeterirermapping to reference/E Coli CGATGT LOO1 filtered.sorted.rmdup.bam| Browse
Output File|_tutorialidata/sequencing/ecoli exatariremapping to reference/E Coll CGATGT LOO1 filtered. sorted.rmdup.bam.tdf| Browse
Genome Browse
TDF and Count options

Zoom Levels =

Window Functions [Min [IMax Mean [] Median

[2% [110% []90% []o8%

Probe to Loci Mapping ! Browse |
Window Size 25 .

Extension Factor

[] Count as Pairs

Sort Options
Temp Directory
Max Records

i Browse
L - 7" 1

Messages

49 of 92

Once completed, close the igvtools window and then you can load this TDF file as by:

Select File -> Load from file...

Look In: |[[Jremapping to reference

= |

R

] bamqgc

[E_Coli CGATGT L001 filtered.sorted.rmdup.bam
[} E_Coli CGATGT L001 filtered.sorted.rmdup.bam.bai

[E_Coli CGATGT L001 filtered.sorted.rmdup.bam.tdf

[y mappingstats.txt

File Hame:

Files of Type:

E Coli CGATGT LOO1 filtered. sorted, rmdup.barn. tdf

All Files

Open

Cancel

You should then see the extra coverage track which remains visible even after you zoom out.

File Genomes View Tracks Regions Tools GenomeSpace Help

E. coli U00096 w | | U00096.3

-

U00086.3:2,121,899-2,519,753

Go T 2 2 i A v

= REER] ERRR R RNRNARES|

I»

2,200 kb
|

397 kb

2,200 kb
| |

2,500 kb
| |

E_Coli_CBATGT_LO0] fittered of | [© 531

[»]l«]

E_Coli_CBATET_LOOL fitered s
ed.rmdup.bam Coverage

E_Coli_CEATGT_LO0L_fitered s
ed.rrndup.bam

Zoom in to see coverage,

Zoom in to see alignments,

[ofle]

50 of 92

Task 20b: Manually Identify a Region Containing Repetitive
Sequences.

Again try to use the QualiMap report to give you an idea. What is this region? Is there a gene
close-by? What do you think this is? (Think about repetitive sequences, what does BWA do if a region
in the genome has been duplicated)

Task 21: Identify SNPs and Indels Manually

Can you find any SNPs? Which genes (if any) are they in? How reliable do they look? (Hint —
look at the number of reads mapping, their orientation - which strand they are on and how bright the
base-calls are).

Zoom in to maximum magnification at the site of the SNP. Can you determine whether a SNP results
in a synonymous (i.e. silent) or non-synonymous change in the amino acid? Can you use PDB
(http://www.rcsb.org/pdb/home/home.do) or other resources to determine whether or not this occurs in
a catalytic site or other functionally crucial region? (Note this may not always be possible).

What effect do you think this would have on the cell?

Example: Identifying Variants Manually

Here are some regions where there are differences in the organism sequenced and the
reference: Can you interpret what has happened to the genome of our strain? Try to work out what is
going on yourself before looking at the comment

Paste each of the genomic locations in this box and click go
Ecoli Uoo0gs ‘v‘ Uo0096 .3 ‘v
e ;

Ueees6.3:2,108,392-2,133,153
Ueves6.3:3,662,049-3,663,291
Ueves6.3:4,296,249-4,296,510
Ueves6.3:565,965-566,489

!uuuugs.a:2,1 08,392-2,133,153 Go
|

51 of 92

http://www.rcsb.org/pdb/home/home.do

Region U00096.3:2,108,392-2,133,153

24 kb

bl 2,110 kb 211z kb 2114 kb 2,116 kb 2,118 kb 2120 kb 212z kb 2124 kb

2,126 kb

2,128 kb

2,130 kb

c

=
ml-— B N

wealm gmd weaF

wziB bl [li=1v] fbB weahl woahd woal woakl wzC woad cpG cpeB

wial

This area corresponds to the drop in coverage identified by Qualimap. It looks like a fairly large region
of about 17 kbases which was present in the reference and is missing from our sequenced genome. It
looks like about 12 genes from the reference strain are not present in our strain - is this real or an

artefact?

Well it is pretty conclusive we have coverage of about 60X either side of the deletion and nothing at all
within. There are nice clean edges to the start and end of the deletion. We also have paired reads
which span the deletion. This is exactly what you would expect if the two regions of coverage were

actually joined together.

Region U00096.3:3,662,049-3,663,291

52 of 92

a7 bp

bp 3,882 580 bp 1,582 570 bp 4,852,680 bp 3,862,680 bp 3,882,700 bp 4582 710 bp 3,852,720 bp 3,862,730 bp 9,882,740 bp
| | | | | | | | | | | | | | | | | | |

lﬁéﬁ;ﬁ??s_ h
b A0

o o

b
k

s

6 (100%, 18+, 28-)

Z-4mo
=

2
T I T TEE T TS T aaa

T

I |
I

ACAATTTCCACCGCCTTCGGCAGCAGCTACGTGAACGACTTCCTC AACCAGGGOLCGGGTGRAAARAAAGTGTATGTCCAGGCAGGCACGCCOGTTCCGT

mdiF

Zoom right in until you can see the reference sequence and protein sequence at the bottom of the
display.

The first thing to note is that only discrepancies with respect to the reference are shown. If a read is
entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the
presence of an 'abnormal' distance between paired-end reads. Note that unless this is consistent
across most of the reads at a given position, it is not significant.

Here we have a C->T SNP. This changes the codon from CAG->TAG (remember to check what strand
the gene is on this one is on the forward strand, if it was on the reverse strand you would have to take
the reverse complement of the codon to interpret the amino acid it codes for.) and results in a
GIn->Stop mutation in the final protein product which is very likely to change the effect of the protein
product.

Hover over the gene to get some more information from the annotation... Since it is a drug resistance
protein it could be very significant.

53 of 92

bp 4,882,700 bp 3,862 710 bp 1,862,720 bp

-4 +

mcltF
Uo0096.3:3660414-3663527
Type =gene

i =gen=3578

ID: gene3578

Name: mcltF

Dbxref: EcoGene:EG12241

gbkey: Gene

gene: mdtF

gene_synonym: ECK3498 JW3482 yhiV
locus_tag b3514

44 H-44 H-4 H-4+

-

Exon number; 1
U00096.3:3660414-3663527
T |AAC78539.1

rTCcCTCAACCA
B E M 3 ID: cds3450

Name: AACTES39.1

Parent: gene3578

Mote: putative transport system permease protein

Dbxref: ASAP:ABE-0011480,UniProtkB/Swiss-Prot:P37637 NCBI_

GPFAACTES39 1, EooBGeane:EG12241

gbkey: COS

gene: mdtF

preduct: anasmobic multidrug efflux transporter, ArcA-regul

ated

protein_id: AACTES39.1

trans|_table: 11

-1

One additional check is that the SNPs occur when reading the forward strand. We can check this by
looking at the direction of the grey reads,or by hovering over the coverage graph - see previous
diagram. We can see that approximately half of the bases reporting the C->T mutation occur in read 1
(forward arrow), and half in read 2 (reverse arrow). This adds confidence to the base-call as it reduces
the likelihood of this SNP being the result of a PCR duplication error.

Note that sequencing errors in lllumina data are quite common (look at the odd bases showing up in
the screen above. We rely on depth of sequencing to average out these errors. This is why people
often mention that a minimum median coverage of 20-30x across the genome is required for accurate
SNP-calling with lllumina data. This is not necessarily true for simple organisms such as prokaryotes,
but for diploid and polyploid organisms it becomes important because each position may have one,
two or many alleles changed.

54 of 92

Regions U00096.3:4,296,332-4,296,428

5,350 bp 4,285,370 bp 4,266,350 bp 4,286,360 bp az
| | | |

[o- 84

Left ali t Rightali

Insertion: CG Read name = MISEQ:8:000000000-A7VC1:1:2111:27422:1 7596
Location = UD0096,.3:4 296,381
Alignment start = 4,296 626 (-}
Cigar = 226M
Mapped =yes
Mapping quality = 80
Secondary = no
Supplementary = no

Duplicate =no
Failed QC =no
G T A G G TC GGG ATA®AGGTCGCTTTA Mate is mapped = yes
Mate start = U00096.3:4296168 (+)
543 Insert size =-683

Second in pair

Fair orientation = F1 R2
MD =40T185

MM =1

AS =221

X8-=0

096.3:4,296,381 i
.. — -0 |

Much the same guidelines apply for indels as they do for SNPs. Here we have an insertion of two
bases CG in our sample compared to the reference. Again, we can see how much confidence we
have that the insertion is real by checking that the indel is found on both read 1 and read 2 and on
both strands.

The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details
as above

We can hover our mouse over the reference sequence to get details of the gene. We can see that it
occurs in a repeat region and is unlikely to have very significant effects.

One can research the effect that a SNP or Indel may have by finding the relevant gene at
http://www.uniprot.org/ (or google 'mdtF uniprot' in the previous case).

It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually
is a fairly tedious process if there are many mutations. As such, the next section will look at how to
obtain spreadsheet friendly summary details of these.

55 of 92

http://www.uniprot.org/

Region U00096.3:565,965-566,489

This last region is more complex try to understand what genomic mutation could account for this
pattern - discuss with a colleague or an instructor.

Recap: SNP/Indel Identification

Only changes from the reference sequence are displayed in IGV

Genuine SNPs/Indels should be present on both read 1 and read 2

Genuine SNPs/Indels should be present on both strands

Genuine SNPs/Indels should be supported by a good (i.e. 20-30x) depth of coverage
Very important mutations (i.e. ones relied upon in a paper) should be confirmed via
PCR/Sanger sequencing.

abrowbd=

Automated Analyses

Viewing alignments is useful when convincing yourself or others that a particular mutation is
real rather than an artefact and for getting a feel for short read sequencing datasets. However, if we
want to quickly and easily find variants we need to be able to generate lists of variants, in which gene
they occur (if any) and what effect they have. We also need to know which (if any) genes are missing
(i.e. have zero coverage).

Automated Variant Calling

To call variants we can use a number of packages (e.g. VarScan, GATK). However here, we
will show you how to use the bcftools package which comes with samtools. First we need to generate
a pileup file which contains only locations with the variants and pass this to bcftools.

Task 22: Identify SNPs and Indels using Automated Variant Callers

Make sure you are in the directory.

~/workshop_materials/genomics tutorial/data/sequencing/ecoli_exeter/remapping to_r
eference

Type the following:

bcftools mpileup

You should see a screen similar to the following:
SCREEN NEEDS REPLACING

If you are running this on datasets with large numbers of datasets with limited coverage where
recombination is a factor, you can obtain increased sensitivity by passing all the BAM files to the
variant caller simultaneously (hence the multiple BAM file options in bcftools).

56 of 92

Type the following:
bcftools mpileup -0 v -P Illumina -f
~/workshop materials/genomics tutorial/data/reference/U00096/U00096.fna

E Coli CGATGT _LOO1 filtered.sorted.rmdup.bam > var.raw.vcf

This may take 10 minutes or so and will generate a VCF file containing the raw unfiltered variant calls
for each position in the genome. Note that we are asking bcftools mpileup to generate uncompressed
VCF output with the -O v option. -P tells bcftools it is dealing with lllumina data so that it can apply to
the correct model to help account for mis-calls or indels.

This output by itself is not useful to us since it contains information on each position in the genome. So
let's use bcftools again to call what it thinks are the variant sites:

SCREEN NEEDS UPDATING

bcftools call -c -v --ploidy 1 -0 v -0 var.called.vcf var.raw.vcf

Note that we are asking bcftools to call assuming a ploidy of 1 and to output only the variant sites in
VCF format. Using grep we can count how many sites were identified as being variant sites (i.e. sites
with a potential mutation). We ask grep not to count lines beginning with a comment (#).

"A#" var.called.vcH

You should find 320 or so sites.

Now we just need to filter this a bit further to ensure we only retain regions where we have >90% allele
frequency:

vcftools --minDP 10 --min-alleles 2 --max-alleles 2 --non-ref-af 0.9 --vcf

var.called.vcf --recode --recode-INFO-all --out var.called.filt

You can ignore the warnings. This will create a file called var.called.filt.vcf.recode.vcf. Once complete,
view the file using the 'more' command. You should see something similar to: (lines beginning with #
are just comment lines explaining the output)

#cHROM POS ID REF

=]
E

FILTER INFO

AL Q
U00096.3 378700 a c 222 . DP=47;VDB=3.492280e-01; AF1=1; AC1=2;DP4=0, 0, 20, 26; MQ=60;FQ=-165
U00096.3 566173 c G 140 . DP=74; VDB=1.335471e-01; RPB=-1.366788e+00; AF1=0.5; AC1=1;DP4=22, 35,7, 9; MO=60,;F=143; PV4=0.78,0.051,1,1
U00096.3 566205 . T c 152 : DP=70; VDB=3. 660676e-02; RPB=-2. 810193e—-01; AF1=0.5; AC1=1;DP4=22, 31, 6, 9; MQ=60;FQ=155;PV4=1,1,1,1
U00096.3 566245 . G A 133 < DP=67; VDB=1.72648%e-02; RPB=7.739471e—01; AF1=0.5; AC1=1;DP4=22,29, 5, 9; MQ=60; FQ=136;PV4=0.76,1,1,0.35
U00096.3 566277 . [T 55 . DP=63; VDB=3.921215e-03; RPB=2,597793e—01; AF1=0.5; ACL=1;DP4=25, 28, 3, 6; MQ=60; FQ=58; Pv4=0.49,1,1,1
U00096.3 566323 . c T 71 " DP=58; VDB=6.304791e-03; RPB=2 . 418227e+00; AF1=0.5; AC1=1;DP4=25, 23, 3, 6; MQ=60; FQ=74;PV4=0.47,1,1,1
U00096.3 566326 . T c 57 i DP=57; VDB=5. 476300e-03; RPB=2 . 654789e+00; AF1=0.5; AC1=1;DP4=24, 23, 3, 6; MQ=60; FQ=60; PV4=0.47,1,1,1
U00096.3 566332 . L G 26 . DP=57; VDB=3.998488e-03; RPB=2 . 444295e+00; AF1=0.5; AC1=1;DP4=25, 22, 3, 7;MQ=60;FQ=29; PV4=0.3,0.32,1,1
U00096.3 566356 . T c 71 s DP=60; VDB=3.343644e-02; RPB=3 . 626135e+00; AF1=0.5; AC1=1;DP4=25, 21, 3, 7; MQ=60; FQ=74; Pv4=0.3,0.49,1,0.13

57 of 92

You can see the chromosome, position, reference and alternate allele as well as a quality score for the
SNP. This is a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.
The full specification is given at http://samtools.github.io/hts-specs/VCFv4.2.pdf

The lines starting DP and INDEL contain various details concerning the variants. For haploid
organisms, most of these details are not necessary.

This forms our definitive list of variants for this sample.

Take a look at some of the variants we just excluded, was it justified. Remember there is no filter that
can keep all the correct variants and remove all the dubious!

You can load the VCF file to IGV:

ile_Genomes View Tracks Regions Teols Genomespace Help

E.coli U095 ~ U00096.3 ~|UD0098.3 |Go o @O x QA Bl =

1000 kb 2 000 1h roso b
I | I I

Task 23: Compare the Variants Found using this Method to Those
You Found in the Manual Section

Can you see any variants which may have been missed? Often variants within a few bp of
indels are filtered out as they could be spurious SNPs thrown up by a poor alignment. This is
especially the case if you use non-gapped aligners such as Bowtie.

Quickly Locating Genes which are Missing Compared to the Reference

We can use a command from the BEDTools package (http://bedtools.readthedocs.org/en/latest/) to
identify annotated genes which are not covered by reads across their full length.

Type the following on one line:

58 of 92

http://samtools.github.io/hts-specs/VCFv4.2.pdf

coverageBed -a

~/workshop materials/genomics tutorial/data/reference/U00096/U00096.gff -b

E Coli CGATGT LOO1 filtered.sorted.rmdup.bam > gene coverage.txt
This should only take a minute or so. The output contains one row per annotated gene - the 13"
column contains the proportion of the gene that is covered by reads from our sequencing. 1.00 means

the gene is 100% covered and 0.00 means no coverage.

If we sort by this column we can see which genes are missing

sort -t $'\t' -g -k 13 gene_coverage.txt | more

There is another region of about 10kb which is absent from our sequences - can you find it in IGV?

That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and
analysed a whole bacterial genome! Well done!

In the next installment we will be looking at how to extract and assemble unmapped reads. This will

enable us to look at material which may be present in the strain of interest but not in the reference
sequence.

Part 3: Assembly of Unmapped Reads

Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous
section we cleaned our data, checked QC metrics, mapped our data and obtained a list of variants
and an overview of any missing regions.

Now, we will examine those reads which did not map to the reference genome. We want to know what
these sequences represent. Are they novel genes, plasmids or just contamination?

To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,
assemble them using SPAdes, generate assembly statistics and then produce some annotation via
Pfam, BLAST and RAST.

Extraction and QC of Unmapped Reads

Task 1: Extract the Unmapped Reads

59 of 92

First of all make sure you are in the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory (hint: use
the cd command). Then create a directory called unmapped_assembly in which we will do our de novo
assembly and analysis.

mkdir unmapped assembly/
cd unmapped assembly/

Now we will use the bam2fastq program (http://gsl.hudsonalpha.org/information/software/bam2fastq)
to extract from the BAM file just those reads which did NOT map to the reference genome. The
bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one
line):

bam2fastq --no-aligned -o unaligned#.fastq

../remapping to reference/E_Coli CGATGT _LOO1 filtered.sorted.rmdup.bam

The --no-aligned option means only extract reads which did not align. The -o unaligned\# means dump
read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastq. Below we can see
that the program has successfully created the two files.

[ec2-user@ip-10-171-67-183 unmapped_assembly]$ bam2fastq ——-no-aligned -o unaligned#.fastq ../rem
apping_to_reference/E_Coli_ CGATGT_L001_filtered.sorted.fillmd.rmdup.bam

This looks like paired data from lane 8.

Output will be in unaligned 1.fastq and unaligned 2.fastqg

1250574 sequences 1n the BAM file

351638 sequences exported

WARNING: 1414 reads could not be matched to a mate and were not exported

Note that some reads were singletons (i.e. one of the reads mapped to the reference, but the other did
not). These will not be included in this analysis.

Task 2

Check that the number of entries in both fastq files is the same. Also check that the last few
entries in the read 1 and read 2 files have the same header (i.e. that they have been correctly paired).

Task 3: Evaluate QC of Unmapped Reads

Use the fastqc program to look at the statistics and QC for the unaligned_1.fastq and
unaligned 2.fastqfiles.

Do these look reasonably good? Remember, some reads will fail to map to the reference because
they are poor quality, so the average scores will be lower than the initial fastqc report we did in the
remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality
which did not map.

Assuming these reads look ok, we will proceed with preparing them for de novo assembly.

60 of 92

http://gsl.hudsonalpha.org/information/software/bam2fastq

De-novo Assembly

de novo is a Latin expression meaning "from the beginning," "afresh," "anew," "beginning again."
when we perform a de novo assembly we try to reconstruct a genome or part of the genome from our reads
without making any prior assumptions (in contrast to remapping where we compare our reads to what we
think is a close reference sequence).

The advantage is that is that de novo assembly can reveal completely novel results, identify horizontal
gene transfer events for example. The disadvantage is that it is difficult to get a good assembly from short
reads and it can be prone to misleading results due to contamination and mis-assembly.

Task 4: Learn More About de novo Assemblers

To understand more about de-novo assemblers, read the technical note at:
https://www.illumina.com/Documents/products/technotes/technote _denovo_assembly ecoli.pdf

N.B. You will also learn more in the next section, so don’t worry if it doesn’t all make sense
immediately. You should however understand the idea of the k-mer and broadly how the assembly is
built up from them.

Task 5: Generate the Assembly

We will be using an assembler called SPAdes (http:/cab.spbu.ru/software/spades/). It generally
performs pretty well with a variety of genomes. It can also incorporate longer reads produced from
PacBio sequencers that we will use later in the course.

One big advantage is that it is not just a pure assembiler - it is a suite of programs that prepare the
reads you have, assembles them and then refines the assembly.

SPAdes runs the modules that are required for a particular dataset and it produces the assembly with
a minimum of preparation and parameter selection - making it very straightforward to produce a
decent assembly. As with everything in bioinformatics you should try to assess the results critically and
understand the implications for further analysis.

Let's start the assembler because it takes about 10 minutes to run (this might be a nice time to get a
coffee or to stretch your legs ©)

spades.py -k 21,33,55,77,99,127 --careful -o spades assembly -1

unaligned 1.fastq -2 unaligned 2.fastq

We are telling it to run the SPAdes assembly pipeline with a range of k-mer sizes (-k); specifying
--careful tells it to run a mismatch correction algorithm to reduce the number of errors; put the output in
the spades_assembly directory and the reads to assemble.

Just because SPAdes does a lot for you does not mean you should not try to understand the process.

61 of 92

https://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://cab.spbu.ru/software/spades/

Have a read of this:
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

It is a discussion of how SPAdes differs from Velvet another widely used assembler, it explains the
overall process nicely:

Read error correction based on k-mer frequencies using BayesHammer

De Bruijn graph assembly at multiple k-mer sizes, not just a single fixed one.
Merging of different k-mer assemblies (good for varying coverage)
Scaffolding of contigs from paired end/mate pair reads

Repeat resolution from paired end/mate pair data using rectangle graphs

I o

Contig error correction based on aligning the original reads with BVWA back to contigs

Try to understand the steps in the context of the whole picture:

Can you explain why error correction of reads becomes more important as k-mer length increases?
When the assembly is complete:

Mismatch correction finished.

* Corrected reads are in /home/genomics/workshop data/genomics tutorial/data/sequencing/ecol
i _exeter/unmapped_assembly/spades_assembly/correc

* Assembled contigs are in /home/genomics/workshop data/genomics tutorial/data/sequencing/ec
oli_exeter/unmapped assembly/spades assembly/contigs.fasta

* Assembled scaffolds are in /home/genomics/workshop data/genomics tutorial/data/sequencing/
ecoli exeter/unmapped assembly/spades assembly/scaffolds.fasta

* Assembly graph is in /home/genomics/workshop data/genomics tutorial/data/sequencing/ecoli
exeter/unmapped_assembly/spades_assembly/assembly graph.fastg

* Paths in the assembly graph corresponding to the contigs are in /home/genomics/workshop da
ta/genomics tutorial/data/sequencing/ecoli exeter/unmapped assembly/spades assembly/contigs.p
aths

* Paths in the assembly graph corresponding to the scaffolds are in /home/genomics/workshop
data/genomics tutorial/data/sequencing/ecoli exeter/unmapped assembly/spades assembly/scaffol
ds.paths

SPAdes pipeline finished.

SPAdes log can be found here: /home/genomics/workshop data/genomics tutorial/data/sequencing/
ecoli exeter/unmapped assembly/spades assembly/spades.log

Thank you for using SPAdes!

Change to the spades_assembly directory (use cd) and look at the output.

62 of 92

http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html
http://genomebiology.com/1471-2164/14/S1/S7
http://bioinf.spbau.ru/rectangles
http://bio-bwa.sourceforge.net/

genomics@geno

1s -latr
total 2.1M
drwxrwxr-x
-IrwW-rw-r--
-rwW-TW-r--
drwxrwxr-x
-IrW-IW-T--

genomics genomics 4.0K Jan 159 .

genomics genomics 294 Jan :59 input_dataset.yaml
genomics genomics 1.8K Jan :59 par o
genomics genomics 4.0K Jan 11:96 cor

genomics genomics 185 Jan 11:06 dataset.info
genomics genomics 4.0K Jan 11:06

genomics genomics 4.0K Jan 11:07

genomics genomics 4.0K Jan 11:08

genomics genomics 4.0K Jan :

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan]

genomics genomics Jan 10 11:12 before rr.fasta
genomics genomics 3 Jan 10 11:12 scaffolds.paths
genomics genomics 36K Jan 10 11:12 contigs.paths
genomics genomics 708K Jan 11:12 assembly graph.fastg
genomics genomics 354K Jan 11:15 contigs.fasta
genomics genomics 4.0K Jan]

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan

genomics genomics 354K Jan 11:17 scaffolds.fasta
genomics genomics 4.0K Jan

genomics genomics 161K Jan 11:17 spades.log

=W=rw=r--
) 7 e Bl
=W-rw-r--
= W= WP =
d rwxrwxr-x
drwxrwxr-x
drwxrwxr-x
= W= WP =
drwxrwxr-x
=W W=

=

ik
1
1
4
4
_._1_
_._1_
_._1_
5
ik
1
ik
1
ik
4
4
5
i
2
ik

Let's take a look at some of the more important content.

params.txt

This contains a summary of the parameters used for assembly - it is useful so you can repeat
the exact analysis performed, or can remember you setting when you want to publish the genome.

contigs.fasta

This contains the final results of the assembly in fasta format.

scaffolds.fasta

This contains the final results after scaffolding (which means using paired end information to
join contigs together with gaps). In this case the files are identical, probably because the sum of the
lengths of our paired reads is not much smaller than our insert size (there are very few large gaps
between reads).

assembly _graph.fastg

Contains SPAdes assembly graph in FASTG format - this is a slightly different format that
contains more information than fasta - for example it can contain alternative alleles in diploid
assemblies. We don't need it here, but see http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf if you
might be working with diploid organisms. You can use the Bandage (http://rrwick.qgithub.io/Bandage/)
to view this file.

Task 6: Assessment of the Assembly

We will use QUAST (http://quast.sourceforge.net/) to generate some statistics on the assembly
(in the spades_assembly directory).

63 of 92

http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf
http://rrwick.github.io/Bandage/
http://quast.sourceforge.net/

quast.py --output-dir quast contigs.fasta

This will create a directory called quast and create some statistics on the assembly you produced,
don’t worry if the results look a little different to the example.

cat quast/report.txt

contigs
0 bp) 397
= 1000 bp)
S000 bp)
10000 bp)
:EQDD bpl
contigs 00 bp)
Total length ;n 0 bpl
Total length (== 1000 bpl
Total length (=
Total length

Total length

Total length

contigs 7

Largest contig 67492
287109
43,29
795

220
28
145

s per 100 kbp 0,00

Try to interpret the information in the light of what we were trying to do. Because we are assembling
unaligned reads we are not expecting a whole chromosome to pop out. We are expecting bits of our
strain that does not exist in the reference we aligned against; possibly some contamination; various
small contigs made up of reads that didn't quite align to our reference.

The N50 and L50 measures are very important in a normal assembly and we will visit them later, they
are not really relevant to this assembly.

You will notice that we have 1 contig 30-60kb long - what do you think this might be? And ~12 other
contigs longer than 1kb. We need to find out what this is.

Analysing the de novo Assembled Reads

Now that we have assembled the reads and have a feel for how much (or in this case, how
little) data we have, we can set about analysing it. By analysing, we mean identifying which genes are
present, which organism they are from and whether they form part of the main chromosome or are an
independent unit (e.g. plasmid).

64 of 92

We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the
contigs against the NCBI non-redundant database. This will enable us to identify the species to which
a given contig matches best (or most closely). The second will call open reading frames within the
contigs and search those against the Swissprot database of manually curated (i.e. high quality)
annotated protein sequences. Finally, we will search the open reading frames against the Pfam
database of protein families (http://pfam.xfam.ora/).

Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge
is based on homology — if two proteins are similar they probably share an evolutionary history and may
thus share functional characteristics. Metrics to define whether two sequences are homologous are
notoriously difficult to define accurately. If two sequences share 90% sequence identity over their
length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if
they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very
difficult to judge whether two proteins are homologous based on sequence alone.

To help overcome this searching more subtle signatures may help — this is where Pfam comes in.
Pfam is a database which contains protein families identified by particular signatures or patterns in
their protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to
search query sequences. These can provide a high level annotation where BLAST might otherwise
fail. It also has the advantage of being much faster than BLAST.

Task 7: Search Contigs against NCBI non-redundant Database

Firstly we can filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < contigs.fasta > contigs.goodcov.fasta

The following command executes a nucleotide BLAST search (blastn) of the sequences in the
contigs.fa file against the non-redundant database.

As this takes a long time to run the results have been precomputed and are available in
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu
te/unmapped_reads/

There are a lot of options in this command, let’s go through them:
e -db is the prepared blast database to search
e -evalue apply an e-value (expectation value) cutoff
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to

65 of 92

http://pfam.xfam.org/
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this
size by a sequence of this length).

e -num_alignments and -num_descriptions flags tell blastn to only display the top 10 results
for each hit,
-num_threads that it should use 2 CPU cores
-show_gis that it should include general identifier (GI) numbers in the output.
-out file in which to place the output.

There is lots of information on running blast from the command Iline at
http://www.ncbi.nim.nih.gov/books/NBK1763/

N.B. Gl (Genelnfo Identifiers) are being phased out by NCBI so future versions of Blast and NCBI
databases will not support the —show_gis option and may break some down-stream tools such as
KronaTools and other databases.

Open the results file:

nano contigs.fasta.blastn

BLASTN 2.2.30+

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.

Database: Nucleotide collection (nt)
29,442,065 sequences; 84,823,117,434 total letters

Query= NODE 9 length 3631 cov 29.6618 ID 17

Length=3631

Score E

Sequences producing significant alignments: (Bits) Value
gi|549811571|gb|CP006698.1| Escherichia coli C321.deltaA, comple... 6706 0.0
gi|383395315|gb|JQ086376.1] Enterobacteria phage HK630, complete... 6685 0.0
gi]339305107|gb|JF340119.2| Synthetic construct clone HO-HIS phy... 6680 0.0
gi|186702979|gb|EU421722.1| Cloning vector lambdaS2775, complete... 6680 0.0
gil215104|gb|J02459.1|LAMCG Enterobacteria phage lambda, complet... 6680 0.0
0.0

gi|1066312|gb|U39286.1|CVU39286 Cloning vector TLF97-3, phage la... 6674

Search for our largest contig - SPAdes names the contigs by increasing size, so

click on “Search” and then “Find” and enter NODE 1

66 of 92

http://www.ncbi.nlm.nih.gov/books/NBK1763/

B Find X

Search for: [NDDE_i_I

[] Match case
[] Match entire word only

[[] Search backwards

BT Wrap around

|
c} | Close | Find
schg

Query= NODE 1 length 67492 cov 565.407 ID 1
Length=67492

Score E
Sequences producing significant alignments: (Bits) Value
gi| 664682453 |gb|CP008801.1| Escherichia coli KLY, complete genome 79013 0.0
gil8918823|dbj|AP001918.1| Escherichia coli K-12 plasmid F DNA, ... 78976 0.0
gi|619497957|gb|KJ170699.1| Escherichia coli strain K-12 plasmid... 65330 0.0
gi| 665821556 |gb|KJ484626.1| Escherichia coli plasmid pH2332-166,... 65302 0.0
gi|665821958|gb|KJ484628.1| Escherichia coli plasmid pH2291-144,... 65213 0.0
gi|28629230|gb|AF550679.1| Escherichia coli plasmid pl658/97, co... 64591 0.0
gi|4874241|gb|U01159.2| Escherichia coli F sex factor transfer r... 61474 0.0
gi| 665822931 |gb|KJ484636.1| Escherichia coli plasmid pC59-153, c... 41227 0.0
gi|301130432|gb|CP002090.1| Salmonella enterica subsp. enterica ... 41026 0.0
gi|301130304|gb|CP002089.1| Salmonella enterica subsp. enterica ... 41026 0.0

There are a number of good hits; notice from the contig header line that the average coverage is >500
and the coverage of our genome was around 50 - does this give you a clue to what it is?

Task 8: Obtain Open Reading Frames

The first task is to call open reading frames within the contigs. These are designated by
canonical start and stop codons and are usually identified by searching for regions free of stop
codons. We will use the EMBOSS package program getorf to call these.

We will use codon table 11 which defines the bacterial codon usage table
(https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to
just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in
file contigs.orf.fa.

67 of 92

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta

-outseq contigs.orf.fasta

If we look at the output file we can see that it is a FASTA formatted file containing the name of the
contig on which the ORF occurs, followed by an underscore and a number (e.g. _1) to indicate the
number of the ORF on that contig. The numbers in square brackets indicate the start and end position
of the ORF on the contig (i.e. in nucleotide space). So in this example, the first ORF occurs on NODE
9 and is between position 934 and 1494. The third ORF occurs between positions 2400 and 2047 on
the reverse strand. This is a relatively short peptide sequence and is unlikely to be a genuine peptide.

Also note that many ORFs do not start with a Methionine. This is because by default the getorf
program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid
spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are
captured.

>NODE_9 length 3631 cov 29.6618 ID 17 1 [934 - 1494]
TERFEVSEINSQALREAAEQAMHDDWGFDADLFHELVTPSIVLELLDERERNQQYIKRRD
QENEDIALTVGKLRVELETAKSKLNEQREYYEGVISDGSKRIAKLESNEVREDGNQFLVV
RHPGKTPVIKHCTGDLEEFLROLIEQDPLVTIDIITHRYYGVGGQWVQDAGEYLHMMSDA

GIRIKGE

>NODE_9 length 3631 cov 29.6618 ID 17 2 [2450 - 3529]
RGSEMGRRRSHERRDLPPNLYIRNNGYYCYRDPRTGKEFGLGRDRRIAITEAIQANIELF
SGHKHKPLTARINSDNSVTLHSWLDRYEKILASRGIKQKTLINYMSKIKAIRRGLPDAPL
EDITTKEIAAMLNGYIDEGKAASAKLIRSTLSDAFREATAEGHI TTNHVAATRAAKSEVR
RSRLTADEYLKIYQAAESSPCWLRLAMELAVVTGQRVGDLCEMKWSDIVDGYLYVEQSKT
GVKIAIPTALHIDALGISMKETLDKCKEILGGETITIASTRREPLSSGTVSRYFMRARKAS
GLSFEGDPPTFHELRSLSARLYEKQISDKFAQHLLGHKSDTMASQYRDDRGREWDKIEIK

>NODE_9 length 3631 cov 29.6618 ID 17 3 [2400 - 2047] (REVERSE SENSE)
FVEQILSSILNRRWEYPAFPNPSTNCFKASWTSLACVPLLKCQVHRKVSAITRKKKPPSG
GLVFFQFFNSNIGYVCMCYLRPYHPVVVAVVDVLRFDNSVEWLSIPFSCDSEVHLSSP

Task 9: Search Open Reading Frames against NCBI non-redundant Database

The first thing we can do with these open reading frames is to search them against the NCBI
non-redundant database of protein sequences to see what they may match.

Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp
program and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by
a sequence of this length). The —hum_alignments and num_descriptions flags tell blastp to only
display the top 10 results for each hit, the num_threads tells blastp to use 2 CPU cores and —show_gis
tells blastp it should include general identifier (Gl) numbers in the output.

First reduce the number of orfs so that we have a manageable number - this small perl program
selects 10% of the orfs.

reduce_fasta 10x.pl < contigs.orf.fasta > contigs.orf.small.fasta

68 of 92

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

Then you would type (all on one line). HOWEVER this takes several hours therefore the results have
been precomputed for you in:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompu
te/unmapped_reads/

Task 10: Review the BLAST Format

Open the results file with gedit and search for plasmid in the text. You should find a number of
hits to plasmid related proteins - one example is below - can you find any others? (Remember we only
checked 10% of the orfs we found). This evidence is not conclusive, but combined with the high
coverage, it is starting to look like this contig is a plasmid.

Query= NODE_1 length 67492 cov 565.407 ID 1 32 [31455 - 31889]

Length=145
Score E

Sequences producing significant alignments: (Bits) Value
gi|446834068|ref|WP_000911324.1| MULTISPECIES: pirin 275 3e-92
gi|446834058|ref|WP_000911314.1| pirin 273 le-91
gi|446834061|ref|WP_000911317.1| pirin 271 1e-90
gi|446834059 |ref|WP_000911315.1| pirin 269 6e-90
gi|545289568 |ref|WP_021572485.1| hypothetical protein 269 6e-90
gi|446834062|ref|WP_000911318.1| MULTISPECIES: pirin 269 6e-90
gi|585223672|ref|WP _024168023.1| plasmid maintenance protein 268 9e-90
gi|723058272|ref|WP_033552985.1| plasmid maintenance protein 268 9e-90
gi|446834056|ref|WP_000911312.1| plasmid maintenance protein 268 le-89
gi|446834060|ref|WP_000911316.1| pirin 268 le-89

>gi]446834068|ref|WP_000911324.1| MULTISPECIES: pirin [Escherichia]
gi|32470009|ref|NP_862949.1| plasmid maintenance protein [Escherichia coli]
gil689926354|ref|YP 009060131.1| PIN domain protein [Escherichia coli]

gi|691230621|ref|YP 009070585.1| VapC toxin protein [Escherichia coli]
gi|28629266|gb|AA049546.1| hypothetical protein [Escherichia coli]
gi|323184064|gb|EFZ269443.1| PIN domain protein [Escherichia coli OK1357]
gi|325495739|gb|EGC93600.1| plasmid maintenance protein [Escherichia fergusonii ECD227]

gi 385154377 |gb|EIF16391.1| plasmid maintenance protein [Escherichia coli 032:H37 str. P4]

69 of 92

Additional Checks

Task 11: Check that the Contigs do not Appear in the Reference Sequence

In theory, the unmapped reads used to generate the contigs should not assemble into
something which will map against the genome. However, it is always possible (especially with more
complex genomes), that this might happen. To double-check move back to the folder containing the
contigs.goodcov.fasta:

blastn -subject

~/workshop materials/genomics_tutorial/data/reference/U00096/U00096.fna
-query contigs.goodcov.fasta | more

Here we use the BLAST+ package in a different mode to compare two sequences against each other.
Unlike the previous examples where we have searched against a database of sequences, here we are
doing a simple search of the contigs against the reference genome we are using. Scroll down a little...

Query= NODE 17 length 917 cov 10.3076 ID 33
Length=917

Subject= gi|545778205|gb|U00096.3| Escherichia coli str. K-12 substr. MG1l655,
complete genome

Length=4641652

Score = 193 bits (104), Expect = 3e-49
Identities = 186/227 (82%), Gaps = 0/227 (0%)
Strand=Plus/Plus

Query 68 ACGGCATCCACGAAGGCGACAGAGGCTGCGGGAAGTGCGGTATCAGCATCGCAGAGCAAA 127

FEEEEEErrrr e e e e e e e e L b rrrrrrrd
Sbjct 1430285 ACGGCATCCACGAAGGCGACAGAGGCTGCTGGCAGTGCGACGGCGGCAGCTCAGAGCAAA 1430344

You can see that some of the contigs that have been assembled hit the reference sequence. In the
record above the e-value is 3e-49 which is massively significant; however, the e-value is calculated as
the chance of a hit this close against a random sequence of the same size. Since our subject
sequence is now very small and we know it is related to our strain it is not surprising that there are
some hits. We are concerned about whole contigs that map closely to the reference genome.

Task 12: Run Open Reading Frames Through pfam_scan

Pfam is a database of protein families. They are grouped together using a number of criteria
based on their function. For more information read http://en.wikipedia.org/wiki/Pfam. Pfam is grouped
into several databases depending on the level of curation. Pfam-A is high-quality manual curation and
consists of around 12,500 families. Pfam-B is full of automated predictions which may be informative
but should not be relied upon without additional evidence. Pfam will also search for signatures of
active-sites if you specify the correct flag.

70 of 92

http://en.wikipedia.org/wiki/Pfam

Here we want to search the Pfam database of Hidden Markov Models to see which protein families are
contained within this contig. You'll notice that this runs considerably faster than BLAST. Here we
search using the contigs.orf.fasta file against the Pfam databases ~/genomics_tutorial/db/pfam/ and
output the results to contigs.orf.pfam. We'll use 2 CPU cores for the search and state that we want to
search active site residues.

This step might take about 30 minutes. So you can get a coffee in the meantime.

pfam_scan.pl -fasta contigs.orf.fasta -dir

~/workshop materials/genomics tutorial/db/pfam/ -outfile contigs.orf.pfam

View the output using gedit:

Search for NODE_9 (for example).

k <seq id> <alignment start> <alignment end> <envelope start> <envelope end> <hmm acc> <hmm name> <type> <hmm start> <hmm end> <hmm le
<bit score> <E-value> <significance> <clan> <predicted active site residues>

NODE_9_length 3631 cov_29.6618 1D 17 1 7 106 7 106 PF13935.1 Ead Ea22 Family 1 139 139 103.8
30 1l No_clan

NODE_9_length_3631_cov_29.6618_ID_17_1 77 113 77 126 PB009353 pPfam-B_9353 pfam-B 1 37 82 53.4
14 NA NA

NODE_9 length 3631 cov_29.6618_ID_17 2 5 74 5 75 PF09003.5 Phage _integ N Domain 1 75 76 89.5
26 1 CLOO81

NODE_9_length_3631_cov_29.6618_ID_17_2 85 162 84 162 PF02899.12 Phage int SAM 1 Domain 2 84 84 24.1
05 1 CL0469

NODE_9 length 3631 cov_29.6618_ID_17 2 183 349 182 353 PF00589.17 Phage integrase Family 2 169 173 115.1
33 1 CL0382 predicted_active site[239,312,216, 346,337, 315]

NODE_9_length 3631 cov_29.6618 1D 17 3 53 115 48 117 pB009641 Pfam-B_ 9641 pfam-B 50 112 168 23.3

The 8" column shows the type of entry that was hit in the pfam database.

Let's take a look at Pfam domain Phage integ N (accession number PF09003.5). Go to
http://pfam.xfam.org and enter the accession number for this Pfam domain in the search box.

71 of 92

http://pfam.xfam.org/

Family: Phage_integ_N (PF09003)

oL SN Summary: Bacteriophage lambda integrase, N-terminal domain

Domain

organisation pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via
the tabs below.

Clan

Alignments No Wikipedia article | Pfam | InterPro

HMM logo This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source

Traas of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

curation & model| Bacteriophage lambda integrase, N-terminal domain
Species Provide feedback

The amino terminal domain of bacteriophage lambda integrase folds into a three-stranded,

antiparallel beta-sheet that packs against a C-terminal alpha-helix, adopting a fold that is

Structures structurally related to the three-stranded beta-sheet family of DNA-binding domains {which

includes the GCC-box DNA-binding domain and the N-terminal domain of Tn916 integrase).

] t i This domain is responsible for high-affinity binding to each of the five DNA arm-type sites and
ump to... ¥ is also a context-sensitive modulator of DNA cleavage [1].

1Dv; o
e Go Literature references

1. Wojciak JM, Sarkar D, Landy A, Clubb RT; , Proc Natl Acad Sci U S A, 2002;99:3434-
3439.: Arm-site binding by lambda -integrase: solution structure and functional
characterization of its amino-terminal domain. PUBMED:11904406cF EPMC;11904406F | Example structure

PDB entry 1Z1B: Crystal structure of 3

lambda integrase dimer bound to a COC'

External database links core site

View a different structure:

1Z16 r

PANDIT: PE09003cF
Pseudofam: PF09003rF
SYSTERS: Phage integ N&¥

There are a lot of hits to phage domains and domains that manipulate DNA. You might expect this as
these sequences have presumably been incorporated into our strain since it diverged from the
reference.

Also look at domains (the most specific type of hit) from our large contig NODE_1_..... is there any
evidence for it being a plasmid?

Examine one or two more domains from your results file - is there anything interesting?

Part 4 De novo Assembly Using Short Reads

Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous section
we extracted those reads which did not map to the reference genome and assembled them. However,
it is often necessary to be able to perform a de novo assembly of a genome. In this case, rather than
doing any remapping, we will start with the filtered reads we obtained in part 3 of the workshop.

To do this we will use the program SPAdes again to try to get the best possible assembly for a given
genome. We will then generate assembly statistics and then produce some annotation via Pfam and
BLAST.

cTask 1: Start the Assembly

The assembly takes a while so the results have been pre-computed for you and are available
in the directory:

72 of 92

~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembl
y.

If you were to run the command it would be as follows:

This will create a directory called denovo_assembly to hold the results.

Assembly Theory

We are using SPAdes (http://cab.spbu.ru/software/spades/) to perform our assembly. It is a de
Bruijn graph based assembler, similar to other short read assemblers like velvet
(https://www.ebi.ac.uk/~zerbino/velvet/). The advantage of SPAdes is that it does a lot of error
correction and checking before and after the assembly which improves the final result. A downside of
SPAdes is that it was designed for assembling reads from a single cell and although it does a good job
with DNA prepared from a community it can leave in some low coverage sequences which are likely to
be artifacts.

You can read more about the comparison here
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

SPAdes is also very easy to use - apart from telling it where your input files are the only parameter
that you might want to choose is the length of k-mer.

K-mer length. Rather than store all reads individually which would be unfeasible for lllumina type
datasets, de Bruijn assemblers convert each read to a series of k-mers and stores each k-mer once,
along with information about how often it occurs and which other k-mers it links to. A short k-mer
length (e.g. 21) reduces the chance that data will be missed from an assembly (e.g. due to reads
being shorter than the k-mer length or sequencing errors in the k-mer), but can result in shorter contigs
as repeat regions cannot be resolved.

When using the Velvet assembler it is necessary to try a large combination of parameters to ensure
that you obtain the 'best' possible assembly for a given dataset. There is even a program called
VelvetOptimiser which does it for you. However, what 'best' actually means in the context of genome
assembly is ill-defined. For a genomic assembly you want to try to obtain the lowest number of
contigs, with the longest length, with the fewest errors. However, although numbers of contigs and
longest lengths are easy to evaluate, it is extremely difficult to know what is or isn't an error when
sequencing a genome for the first time.

SPAdes allows you to choose more than one k-mer length - it then performs an assembly for each
k-mer and merges the result - trying to get the best of both worlds. It actually has some pre-calculated

k-mer settings based on the length of reads you have, so you don't even have to choose that.

Let's look at the assembly process in more detail:

73 of 92

http://cab.spbu.ru/software/spades/
https://www.ebi.ac.uk/~zerbino/velvet/
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

Description of k-mers:

What are they? Let's say you have a single read:

AACTAACGACGCGCATCAAAA

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained by taking the

first six bases, then moving the window along one base, taking the next 6 bases and so-on until the
end of the read. E.g:

AACTAAC | GACGCGCATCAAAA A [ACTAACG |acGCacATCARAA
AACTAAC AACTAAC |—= ACTAACG
AACTAACGACGCGCATCAAAA

mcri e acmmace e cace e taacen e maciace] arowceic | comecs —— cacecsr] acocsa —{ comar o cosarc \

[escaraa |
[AT :
[CATCAAR]

[monan)

You may well ask, “So what? How does that help”? For a single read, it really doesn't help. However
let's say that you have another read which is identical except for a single base:

74 of 92

AACTAACGAL 6 [GCATCAAAA
ACTAACGAL T [GCATCAAAA

MCTAAC et ACTANCE ot CTAMCEA Joetd TGN l_“‘i MCEAE }—h{ ACEACEE -—-‘ CRALECE ‘»—h-_ CACRERE :—-: MECSEA ‘—-{ CRCETAT :-—bf SEGLATE

1x 2x 2x 2x
/'{ ceOATC |
| TescaTe
et | p f : {)
L —_— \ /'1 oAt | | sowwens | I
‘:m“l.-""“.:m;:i-""ﬂ“‘m' ’ih
[Cooan | 2x

Rather than represent both reads separately, we need only store the k-mers which differ and the
number of times they occur. Note the 'bubble' like structure which occurs when a single base-change
occurs. This kind of representation of reads is called a 'k-mer graph' (sometimes inaccurately referred
to as a de-bruijn graph).

(cmcann]

AACTAAC E CGCA T
ACTAACGAC) T |CGCA T
ACTAACGAC] G CGCA| A

2x 2x 2x 2x

| aacmaac e aTaaE e cTAMCEA e TAMM e wcocs 8 amoacer 8 cowors 8 meser e aoen] cormar —— soeom

/{ cecaTos |
| ToecATe 1

3 N — o]

{_coacrce ’“--..... oo ...--"{ acrcea |

1ix 3Ix 3x 3x

(cmom] 2x
-

Now let's see what happens when we add in a third read. This is identical to the first read except for a
change at another location. This results in an extra dead-end being added to the path.

The job of any k-mer based assembler is to find a path through the k-mer graph which correctly
represents the genome sequence.

Images courtesy of Mario Caccamo

Description of coverage cutoff:

In the figure above, you can see that the coverage of various k-mers varies between 1x and 3x. The
question is which parts of the graph can be trimmed or removed so that we avoid any errors. As the
graph stands, we could output three different contigs as there are three possible paths through the
graph. However, we might wish to apply a coverage cutoff and remove the top right part of the graph
because it has only 1x coverage and is more likely to be an error than a genuine variant.

75 of 92

In a real graph you would have millions of k-mers and thousands of possible paths to deal with. The
best way to estimate the coverage cutoff in such cases is to look at the frequency plot of contig (node)
coverage, weighted by length. In the example below you can see that contigs with a coverage below
7x or 8x occur very infrequently. As such it is probably a good idea to exclude those contigs which
have coverage less than this — they are likely to be errors.

Description of expected coverage:

T 1
0 2 4 & 8 11 14 1T 20 23 26 29 32 35 38 41 44 47 50

Frequency
Oe+00 1e+05 2e+05 3e+D5 de+05 Set05 Be+05

In the example below you can see a stretch of DNA with many reads mapping to it. There are two
repetitive regions A1 and A2 which have identical sequence. If we try to assemble the reads without
any knowledge of the true DNA sequence, we will end up with an assembly that is split into two or
more contigs rather than one.

One contig will contain all the reads which did not fall into A1 and A2. The other will contain reads from
both A1 and A2. As such the coverage of the repetitive contig will be twice as high as that of the
non-repetitive contig.

If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive contig. As such,

provided we know what level of coverage we expect for a given set of data, we can use this
information to try and resolve the number of repeats we expect.

76 of 92

RPT A2

Can try to identify collapsed
repeats by increased relative
coverage

A commonly used metric to describe the effectiveness of the assembly is called N50 - see
http://en.wikipedia.org/wiki/N50_statistic for details.

Task 2: Checking the Assembly

Change into the denovo_assembly directory:

cd denovo assembly

Firstly we can filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < contigs.fasta > contigs.goodcov.fasta

We will use QUAST again (http://quast.sourceforge.net/) to generate some statistics on the assembly.

quast.py --output-dir quast contigs.goodcov.fasta

This will create a directory called quast and create some statistics on the assembly you produced.

cat quast/report.txt

77 of 92

http://en.wikipedia.org/wiki/N50_statistic
http://quast.sourceforge.net/

ssemb Ly contigs.goodcov
contigs (>= @ bp) a1
CﬂﬂtigE == 1000 bp| 3
contigs (= ;
contigs -
Cnﬂtigﬂ = :SDDQ hp|
¢ contigs (== 50000 bp)
otal length (== 0 bp) 4689514
otal length (== 1000 bp) ARTOT94
otal length (== 5000 bp) 4b4ﬂq 1
otal IEﬂgth 1 lﬂﬂﬁﬁ hp|
otal length (: -
otal length
¢ contigs
Largest i,_m]'l'j_g 203215
Ufﬂ1 1eanh 468 qJ14

er 100 kbp

You can see that there are 81 contigs in the assembly - so it is still far from complete. your results may
differ slightly.

The N50 is 136K and the N75 is 95K so most of the assembly is in quite large contigs.
This is fairly normal for a short read assembly - don't expect complete chromosomes.

A good check at this point is to map the original reads back to the contigs.fasta file and check that all
positions are covered by reads. Amazingly it is actually possible for de-novo assemblers to generate
contigs to which the original reads will not map.

Task 3: Map Reads Back to Assembly

Here we will use BWA again to index the contigs.fasta file and remap the reads. This is almost
identical to the procedure we followed during the alignment section, the only difference is that instead
of aligning to the reference genome, we are aligning to our newly created reference.

Make sure you are in the following directory:
~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembl

y/

78 of 92

Let's create a subdirectory to keep our work separate

mkdir remapping to assembly
cd remapping to assembly
cp ../contigs.fasta .

Let's start by indexing the contigs.fasta file. Type:

bwa index contigs.fasta

[ec2-user@ip-10-181-110-211 remapping _to_assembly]$ bwa index contigs.fasta
[bwa_index] Pack FASTA... 0.07 sec

[bwa_index] Construct BWT for the packed sequence...
[bwa_index] 2.04 seconds elapse.

[bwa_index] Update BWT... 0.06 sec

[bwa_index] Pack forward-only FASTA... 0.04 sec
[bwa_index] Construct SA from BWT and Occ... 0.68 sec
[main] Version: 0.7.10-r789

[main] CMD: bwa index contigs.fasta

[main] Real time: 6.961 sec; CPU: 2.901 sec
[ec2—user@ip-10-181-110-211 remapping_to_assembly]$ I

Once complete we can start to align the reads back to the contigs. Type (all on one line):

bwa mem -t 2 contigs.fasta ../../E _Coli CGATGT LOO1 R1 001.filtered.fastq

../../E_Coli CGATGT_LO@1 R2 @0l1l.filtered.fastq >
E Coli CGATGT LOO1 filtered.sam

Once complete we can convert the SAM file to a BAM file:

samtools view -bS E Coli CGATGT L@@l filtered.sam >

E Coli CGATGT_LOO1 filtered.bam

And then we can sort the BAM file:

samtools sort -o E_Coli CGATGT_LOO1 filtered.sorted.bam

E_Coli CGATGT_LOO1 filtered.bam

Once completed, we can index the BAM file:

We can then (at last!) obtain some basic summary statistics using the samtools flagstat command:

79 of 92

genomics@genomics_2016:
$samtools flagstat E _Coli CGATGT LG

01 filtered.sorted. bam

1269338 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates

1266061 + O mapped (99, 74%:

1269338 + 0 paired 1in Lequenrlnq

534685 + 0 readl

634653 + 0 read2

252740 + 0O properly palred (98.5%%:

264970 + 0 with 1tself and m napped
1091 + O singletons (0.0%%: -nan%)
89276 + 0 with mate mapped to a different chr
7977 + 0 with mate mapped to a different chr (mapQ==5]

We can see here that very few of the reads do not map back to the contigs. Importantly ~98% of reads
are properly paired which gives us some indication that there are not too many mis-assemblies.

Run qualimap to get some more detailed information (and some images)

qualimap bamgc -outdir bamgc -bam E_Coli CGATGT LO@1 filtered.sorted.bam

firefox bamqc/qualimapReport.html

In the Chromosome stats section:

Chromosome stats
Mapped Mean Standard
Name Length L.
bases coverage deviation
NODE_1_length_293215_cov_26.7248_ID_1 293215 15962208 54.44 11.39
NODE_2_length_235405_cov_25.9929_ID_3 235405 12493267 53.07 10.9
NODE_3_length_229124_cov_26.8329_ID_5 229124 11966638 52.23 10.41
NODE_4_length_227801_cov_26.3369_ID_7 227801 11934749 52.39 12.45

The larger of our contigs have a mean coverage of around 50 - which is what we would expect from
our original alignment.

80 of 92

NODE_25_length_67492_cov_567.168_ID_49 67492 78055078 1,156.51 225.09

There is one contig which has the size of 67492 - this is exactly the same as the contig we found in the
unmapped reads - that is pretty good indication that it is a separate sequence (remember we
suspected a plasmid) and not integrated into the chromosome.

Let's double check that by blasting these contigs against the unmapped assembly contigs from part 4:

blastn -subject ../contigs.goodcov.fasta -query

../../unmapped assembly/spades assembly/contigs.fasta >
check plasmid.blastn

Open the file in a text editor:

nano check plasmid.blastn

and about 30% of the way down the file you should find something similar: (hint use search/find)
Query= NODE 1 length 67492 cov 601.94 ID 2528

Length=67492

Subject= NODE 25 length 67492 cov 567.168 ID 49

Length=67492

Score = 1.246e+05 bits (67474), Expect = 0.0

Identities = 67486/67492 (99%), Gaps = 0/67492 (0%)
Strand=Plus/Plus

This shows us that this contig exactly almost matches that in the unmapped assembly, strongly
supporting that this is a plasmid sequence and not integrated into the chromosomes.

Task 4: View Assembly in IGV

Load up IGV from the console or desktop

Click Genomes -> Load Genome from File....

We are going to import the contigs we have assembled as the reference. Unlike the reference genome
though, we have no annotation available. Make sure you select the contigs.goodcov.fasta file for
the complete de novo assembly (not the unmapped reads assembily).

Once loaded, click on File->Load From File... select the

81 of 92

E_Coli CGATGT_L@O@1_ filtered.sorted.bam file. Again, make sure you load the file in the
remapping_to_assembly directory.

Select Files
ok 3 [[n-n-ln—
Look In: ||j remapping_to_assembly |V| = Iﬁl |E| oo | o—
ov fasta fai [E_Coli_CGATGT_L001_filteredsorted.bam |
ov.fasta.pac D E_Coli CGATGT_Lo01_fikkered.sorted.bam.bai
ov.fasta.sa

GT_Loo1_filtered.bam
GT_Loo1_filtkered.sam
GT_Loo1_fikered.sorted

4| I Ii [»

File Name: |E_Co|i_CGATGT_L00l_filhsled.soned.bam |

Files of Type: !AII Files |v|

Once loaded, explore some of the contigs in IGV.
See if you can find anything unusual in any of the contigs.

Here is one to get you started.
Select NODE_3...

Eile Genomes View Tracks Regions Tools GenomeSpace Help

contigs.fasta -

NODE 3 length 229124 cou 26.8329 ID 5 ‘-szgua;a@e 8320105113553 Go| B < R = Bl

13kh
& 21 b el 2 kb 12k
L

o]

—
E_Coli_COATST_LODY_filtered | |
<ibam coveae \

I3

!

E_Coli_COATET_LOD_fiterad.
edbam

Iv|[4]

| rr— = T

Why does the contig start and end in repetitive sequence (indicated by the white reads)? You may
need to zoom in to see the details. Think about what an assembler will do if it cannot uniquely assign
reads.

If an assembler cannot resolve these repetitive regions with paired-end reads or coverage information,
it will generally be unable to assemble any further sequence for that contig. Therefore it is quite
common to see contigs which start and end in sequence which is repeated elsewhere.

Here is another:

82 of 92

Select NODE_49.....

Right click on the reads and select view as pairs:

contigs.fasta v‘|NODEidDJengthisslaicnvillES.7EilDiu7 ‘v|‘ﬂgi\emqt}’\iSSlEitu\LllB3.7EJD797‘Gu 1 « 2 I v | = R R
5,505 bp
be 1000 bp 2000 bp 3.000bp amobp 5,000 bp.
1 L 1 L 1 1 -
—_— =
& _Coll_COATAT_Lo0 _fiterad] | [#¥1 [+]
ed.bam Coverage =
L= == |
|

E_Coll_CGATGT_LOD_fitereal

edbam
3 tracks loaded | biopE_29_length 5513 cov.. || || BRI

What do you think is going on here? Try blasting the contig sequence using BlastX at
http://blast.ncbi.nim.nih.gov/Blast.cgi to identify which genes the contig contains. To obtain the
sequence you can right click and select ‘Copy consensus sequence’:

Go HF < @ [= 2 | g1 g

contigs.fasta v‘ ‘NODE}QﬁIength755137(:0\1711BEI.7EJD797 ‘- ‘ |4Bi\er\gth755137m\d71133 78_1D_97

5,505 bp
100080 2000 bR 0006 am0tp 5000 bp
! ‘ . : { E_Coli_CGATGT_L00L filtered.sorted.bam
=] Rename Track...
Copy read details to clipboard

£

—_—
E_Coll_CGATGT_LOO1_filtered

ad.bam Coverage

Group ali s by ¥
-— Sort alignments by >
Color alignments by >

¥ Shade base by quality
IJ Show mismatched bases

|

2 Show all bases

¥ View as pairs

region in
ert size optio

E_Coli_CGATGT_LD01 filtered -
. Coli_ _Lood._f I Set

ed.bam

Re-pack ali s
¥ Show coverage track
[Load coverage data...

© Collapsed
@ Expanded
© Squished

select by name...
Clear selections

LT
|

Blat e
Copy consensus sequence
Sashimi Plot

i [rflel

Remove Track
3 tracks loaded | NoDE 42 length_5513_cov... || save image... 2014 of 3,088M

B Terrminel w16V Export Alignments... C 1 [|

You can also do the same for individual reads, but you need to un-select ‘View as pairs’ before right
clicking on a read. You may lose track of the paired-end reads and find it easier to copy the read name

83 of 92

http://blast.ncbi.nlm.nih.gov/Blast.cgi

before un-selecting ‘View as pairs’ and then and then pasting it into the ‘Select by name...” search
box.

You should find that the contig contains at least two phage genes. There appear to be at least two
phages present, one which seems to be the full contig, the other with the red read-pairs seems to be
missing the sequence in the middle of the contig.

Annotation of de novo Assembled Contigs

We will now annotate the contigs using BLAST and Pfam as with the unmapped contigs.

Task 5: Obtain Open Reading Frames

As before, we’ll call open reading frames within the de-novo assembly. Again, we will use
codon table 11 which defines the bacterial codon usage table
(http://www.ncbi.nIm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular. We will also restrict the ORFs to just those sequences longer than 300
nucleotides (i.e. 100 amino acids). We will store the results in file contigs.orf.fasta.

Make sure you are in the denovo_assembly/ directory:

getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta

-outseq contigs.orf.fasta

Task 6: Run Open Reading Frames through Pfam

As with the unmapped reads we will search the open reading frames against the Pfam HMM
database of protein families. Later on we will be able to use these results to identify Pfam domains
which are unique to a particular strain.

This will take around 5 hours so it is recommended that you don’t run this command during the
workshop as you will not have 5 hours to wait. This is mainly for future reference.

Hybrid de novo Assembly

You will have seen that even with good coverage and a relatively long (300bp) paired end
lllumina dataset - the assembly we get is still fairly fragmented. Our E.coli example assembles into 78
contigs and the largest contig is around 10% of the genome size.

Why is this?
84 of 92

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

One possible reason would be that regions of the original genome were not sequenced, or sequenced
at too low a coverage to assemble correctly. Regions of the genome will occur with different
frequencies in the library that was sequenced - You can see this in the variation of coverage when you
did the alignment. This can be due to inherent biases in the preparation and the random nature of the
process.

However as coverage increases the chances of not sequencing a particular region of the genome
reduces and the most significant factor becomes the resolution of repeats within the assembly
process. If two regions contain the same or very similar sequences the assembler cannot reliably
detect that they are actually two or more distinct sequences and incorrectly 'collapses' the repeat into
a single sequence. The assembler is now effectively missing a sequence and therefore breaks in the
assembly occur.

One resolution to this is to use a sequencing technology like PacBio or Sanger which can produce
longer reads - the reads are then long enough to include the repeated sequence, plus some unique
sequence, and the problem can be resolved. Unfortunately getting enough coverage using Sanger
sequencing is expensive and PacBio - although relatively inexpensive has a high error rate.

An approach becoming more and more popular is to combine technologies. For example: high quality
lllumina sequencing to get the accuracy of reads combined with low quality PacBio sequencing to
enable the repeats to be spanned and correctly resolved.

Our exercise will be to use lllumina and PacBio datasets to assemble a species of pseudomonas.
These are subsets of data used in "Evaluation and validation of de novo and hybrid assembly
techniques to derive high-quality ¥ genome sequences" Utturkar et al., 2014.
(http://www.ncbi.nlm.nih.gov/pubmed/24930142). This paper also contains a good explanation of the
process and different approaches that are available.

Task 7: QC the Data

It is always important to check and understand the quality of the data you are working with:
Change to the directory and run fastqc:

cd ~/workshop meterials/genomics_ tutorial/data/sequencing/pseudomonas_gm4l

Open the files SRR1042836a.fastq SRR491287a_1.fastq SRR491287a_2.fastq and look at the
reports generated.

85 of 92

http://www.ncbi.nlm.nih.gov/pubmed/24930142

File Help
[BRR1042836 fastq | SRR491267a_1filtereddastq | SRR491267a_2 fiteredfastq |

| Basic Statistics
@ | Quality scores across all bases (Sanger/ lllumina 1.9 encoding)
@ Per base sequence quality |54

|32
@ Per sequence quality scores -

Per base sequence content 28
26

@ Per sequence GC content 24

| 22
@ Per base N content 50

Sequence Length Distribution| | ©
|18

@ Sequence Duplication Levels 14

[12
Overrepresented sequences | g IIIIIIIIIIIIIIIIIIIIIIIIII
8 AP
@AdapterContem IIII l 1l
: P
I =]
[P g Lala A LAANR
2
0

123456 769 20002998 7000-7985 135000-13999 12000-19999 25000-25998 31000-31998 37000-37988
Position in read {bp)

Note that the quality of the PacBio reads (SRR1042836a.fastq) is much lower than the Illlumina reads
with a greater than 1 chance in 10 of there being a mistake for most reads.

s om0 - I
File Help

“SRR1012036 asta | SAA191267a 1 fierediasta | SRR 1267a 2.

@ Bask Sitistice. Distribution of sequence lengths over all sequences

Q Per base sequence quality
Q Persequence quality scores

3500
Q Per base sequence content

Q Persequence GC content
3000

@ Perbase N content

|
Sequence Length Distribuiion 500

@ Sequence Duplication Levels

quence Length

@ Overre presented sequences | 2000

@ Adapter Content
Kmer Content jiona

1000

500

0
0999 3000-3999 7000-7999 11000-11999 15000-15999 19000-19999 23000-23999 27000-27999 31000-31999 35000-35999

AP p—

However, importantly, the length of the PacBio reads is much longer.

Trim the Illlumina reads as before (~10 mins):

fastqg-mcf ../../reference/adaptors/adaptors.fasta SRR491287a 1.fastq

SRR491287a 2.fastq -o SRR491287a 1.filtered.fastq -0

SRR491287a 2.filtered.fastq -q 20 -p 10 -u -x 0.01

You can check the number of filtered reads using grep -c and the quality if timmed reads with fastqc
if you want.

86 of 92

For this exercise we want the long reads from PacBio even though they are low quality. We are relying
on the assembler to use them appropriately.

Task 8: lllumina Only Assembly

Firstly let's construct an assembly using only the available lllumina data.
Make sure you are in the directory:
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm41l

The next command will take some time so the data has been precomputed and is available in
illumina_assembly/

Change to the directory:

Filter out low coverage and very short contigs using a perl script:

Let's look at the metrics for the assembily.

87 of 92

contigs.goodcov
; 117
1000 bp: 106
5000 bpl 23
) bp) 78
) bp) 63
; 46
al 1engfh O bpl 66
al length (= IDDD bp) 5
al length (== 5000 bp)
al length (>= 10000 bp)
al length (== Z) bp]
al length (>= 50000 bp)
contigs
Largest contig PSdE?G
length 6630828
) 28.01
11—-,-51—-

N': per 100 kbp ﬁ.gg

(Your results may be slightly different. This is because spades uses a random seed that changes
every time)

Task 9: Create Hybrid Assembly

Now will execute the same command, but this time include the longer PacBio reads to see the
effect it has on our assembly.

Change back into the directory

Run (This may take some time so the data has been precomputed and is available in
hybrid_assembly/ if you are impatient!):

Change to the directory:

cd hybrid assembly

Filter out low coverage and very short contigs using a perl script:

filter low coverage contigs.pl < contigs.fasta > contigs.goodcov.fasta

88 of 92

Let's look at the metrics for the assembly - this time we will compare it with the illumina only assembly:

quast.py --output-dir quast contigs.goodcov.fasta

../illumina only assembly/contigs.goodcov.fasta

cat quast/report.txt

hybrid_assembly_contigs.goodcov 1llumina_only_contigs.goodcov
ag
a0
74

70

al length
Total length
al length
19
t contig
length

78853
16
34
s per 100 kbp 0.00

You can also explore the interactive html report:
firefox quast/report.html

It seems that using the longer reads has improved the completeness of our assembly - reducing the
number of contigs.

Task 10: Align Reads Back to Reference

Let's realign our original reads back to the assembly and see what we have - refer to previous
notes if you are unsure of the steps.

Start in the hybrid assembly directory
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm41l/hybrid_ass
embly

mkdir remapping to assembly|

cd remapping to assembly

cp ../contigs.fasta .

89 of 92

bwa index contigs.fasta

First remap the Illlumina reads. Type all on one line:

bwa mem -t 2 contigs.fasta ../../SRR491287a 1.filtered.fastq

../../SRR491287a 2.filtered.fastq > gm4l.illumina.sam

Process the output so that it is viewable in igv:

samtools view -bS gmd4l.illumina.sam > gm4l.illumina.bam

samtools sort -o gm4l.illumina.sorted.bam gm4l.illumina.bam

samtools index gm4l.illumina.sorted.bam

samtools flagstat gm4l.illumina.sorted.bam

We can also map the PacBio reads, but we need to tell bwa we are using PacBio reads
bwa mem -t 2 -x pacbio contigs.fasta ../../SRR1042836a.fastq >

gm41.pacbio.sam

samtools view -bS gm4l.pacbio.sam > gm4l.pacbio.bam

samtools sort -o gm4l.pacbio.sorted.bam gmdl.pacbio.bam

samtools index gm4l.pacbio.sorted.bam

samtools flagstat gmd4l.pacbio.sorted.bam

23495 + 0 1n total (QC-passed reads + QC-failed reads)
0+ 0 duplicates
19470 + O mapped (B2.87%:-nan%)
0 + 0 paired 1n seguencing
readl
) read2
) properly paired (-nan%:-nan%)
) with 1tself and mate mapped
) singletons (-nan%:-nan%)
wlth mate mapped to a different chr
wlth mate mapped to a different chr (mapQ=>=5)

[4
pie I

A
k]

e B i I i
e [e I

You will notice that not such a high proportion of PacBio reads map back to the assembly.

Now start igv:

90 of 92

Load your assembled genome -

Click on genome - load from file

Make sure you get the assembly from the hybrid_assembly (igv remembers the previous directory

which may contain similar files.)

Now load your 2 alignment files:

click on load from File and then select gm41.pacbio.sorted.bam and gm41.illumina.sorted.bam

On the toolbar select - "Show Details on Click"

b @ 0O = 1

[J] Show Details on Hover
¥ Show Detalls on Click
[J Never Show Details

Find a region that has decent coverage of both reads and zoom in.
(Region shown here: NODE_79 length_15988 cov_20.944 ID_49:7,963-8,084)

‘MODEjsJengiUssas,cnv,zusaa,ln,as ‘vlUssaa,mv,za944,\D,49.7swara‘039‘cp = & = @ =] T T 8
im|
122 bp
20 bp 78M bR 7,080 bp 7,080 bp 2,000 bp 2020 bp X
1 ! I ! I ! 1 1
B
G
m L I
o E——) T § 1 e L b = e —{E ———E o T
H—a—if—i—ai— = — f i I LT 1 ¥ H—1 H —
— 1 e Y s o s Y ——{ee— i ——S——} — IF ¥—i I H¥] ¥
b 1 P P FE i —— Ok FEE 3 P P P
I —i ; ST ¢ 1 _mm i FE i | i ; pE—i— Pt i3
—— i T i - 1 i 1 ¥ B B
— B 3 — 4 F A G N ——— R —
— 1 = - B Fi— P b PR — S E R — 1t E S
ATCGCCCAAGCATCGACCGTGCTATCGGGTTTTGACGTTTTGGTAGGGTTGCTCATTGCATCGCCTCTTGTCGGTTTTATCGGTGATTGCATAAAGACTCGAGCACAGTTAAGACGATGA_

You can see that the PacBio reads are much longer, but the error rate particularly insertions and

deletions is much higher than for the Illlumina reads.

Explore a few other contigs to see if you can find something that looks like an error or mis-assembly.

Remember the assembly process is difficult and far from perfect.

91 of 92

Summary

You have seen that de-novo assembly of short reads is a challenging problem. Even for small
genomes, the resulting assembly is fragmented into contigs and far from complete.

Incorporating longer reads to produce a hybrid assembly can be used to reduce the fragmentation of
the genome. We have only used a single (perhaps the simplest) technique to incorporate long reads.
You can read more about hybrid assembly techniques here:
http://www.ncbi.nlm.nih.gov/pubmed/24930142

Concluding Remarks

Well done! If you have reached this far, you deserve a round of applause. You have completed
some of the most common tasks in genomics. You can use the same machine and the same
scripts to perform an analysis of any dataset!

If you need to transfer data to/from the instance a tutorial can be found at

http://www.siteground.com/tutorials/ssh/ssh_winscp.htm or will be covered in the last session
of this Workshop!

92 of 92

http://www.ncbi.nlm.nih.gov/pubmed/24930142
http://www.siteground.com/tutorials/ssh/ssh_winscp.htm

