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When the clock breaks
down (runs out of batteries?)

 Almost every population genetic method assumes that mutations
accumulate at a constant rate per year within populations

* This assumption works fine until it doesn’t

* The mutation process has complex features that can trip you up
if you aren’t looking out for them

e and are also interesting phenotypes to study in their own right

* Estimates of the mutation rate per year and generation time are
needed to calibrate output of PSMC and other demographic
inference methods



Molecular clock 101

e Mutagenesis is more clock-like over short timescales
compared to long time scales

e A simple branch length test can reveal whether
mutagenesis is clock-ish in your data:

D(A,0) = D(B,0)

O A B

Data can fail this test due to mutation rate variation, selection, or introgression



Violation of molecular clock over very
long timescales
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The error threshold

A simple model by Eigen & Schuster (1979) justifies Drake’s
rule

Consider a “master” virus with fithess 1+s and genome
length L

All mutant viruses have fithess 1

The master sequence will die out due to Muller’s

rachet/“error catastrophe” if and only if the mutation rate mu
IS below a threshold:

mu < log(s)/L



Stable quasispecies vs
error catastrophe

mu < error threshold mu > error threshold

Lauring and Andino 2010



How can we gather
mutation rate data to test
these theories?



Measuring mutation rates with
mutation accumulation (MA) lines

Keightly and Charlesworth 2005



MA with a reporter gene

Reporter gene
(e.g. encoding GFP or
Inactive/ broken promoter Iuciferase)
DNA
Point mutations i,

can restore

promoter function - mRNA

|

A reporter protein
. Amount is easily measured
(e.g. GFP by fluorescence)




Mutation rate estimates
vary enormously in quality

PSMC results, divergence time estimates, etc. depend
heavily upon a mutation rate estimate. Where does that
number come from?

Calculation from phylogenetic divergence data
(substitutions / estimated divergence time)

MA experiment + whole genome sequencing ($3$-$$$%)

MA experiment + reporter gene sequencing (cheap today,
only reasonable direct estimate 10 years ago)

Whole-genome trio sequencing ($$$$$$$$59)



Drake’s rule driven mostly by
viruses and bacteria

Base-substitution Mutation Rate
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Why should effective
population size affect
mutation rate?

Why is the mutation rate what it is?



1.The Cost-of-Fidelity Model

Biophysics Barrier
Mutation Rate

Lynch Trends in Genetics 2010  Sung, et al. PNAS 2012



2.The Drift-Barrier Hypothesis

Drift Barrier
Mutation Rate

Biophysics Barrier
Mutation Rate

Lynch Trends in Genetics 2010
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Mutators can be favored In
asexual organisms

e EXxpected extra load of deleterious mutations must not
exceed the expected benefit of beneficial mutations

e Robustness to environmental change

e Stress-induced mutagenesis?



Stress-Induced Mutagenesis in Bacteria

lvana Bjedov'”", Olivier Tenaillon®*, Bénédicte Gérard>", Valeria Souza®, Erick Denamur...
+ See all authors and affiliations

Sci 30 May 2003: . .
Vol. 300, lssue 5624, pp. 14041400 Elevated Mutagenesis Does Not Explain the Increased

DOI:10.1126/science. 1082240 Frequency of Antibiotic Resistant Mutants in Starved Aging
Colonies

Sophia Katz, Ruth Hershberg [=]

Published: November 14, 2013 ¢ https://doi.org/10.1371/journal.pgen.1003968
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Selection against mutator alleles
'S weak In sexual organisms

"




Other factors affecting the mutation rate

UVC Rays

Environmental Mutagens Life history



Male mutation bias

Oogenesis Spermatogenesis
T [ @
Timetable No. of cell divisions Timetable . .
5th month of 22 30 Puberty
gestation & [%5)
Sexual maturity 2 23 peryear Adulthood @ e}
Total: 24 150at20yr (1) (1) (1)
380 at 30 yr
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Ovulation Differentiation
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Paternal age effect (the
classical model)

g

£ 2

2 S

- 8

O 3

g = F |

8 5 up Females

n

0 5 10 15 20 25 30
Age at reproduction (years)

A x10~9 B Amster and Sella 2016
S 4 O -
e " Catarrhines @ 1.0 n
S Mammals £ 0.9 -
2 2 2 i
© S 08:
c 1. = E
O i
5 0 - | | | | | é 0'7 ; | | | | |
S 0 5 10 15 20 25X 0 5 10 15 20 25

Average gen. time (Y) Average gen. time (Y)



6 .
chimpanzee

Branch length ~ number of substitutions
Label = Estimate of

2.5
gorilla

- orangutan
- 2.9 rhesus
(male mutation rate) 26
_ marmoset
/(female mutation rate) 3.0 tarsier
— 30 mouse lemur
2.4
bushbaby
3.3 tree shrew
2.2
[ mouse
L't
1.9 kangaroo rat
1.5 guinea pig
2.4 squirrel
3.3 rabbit
3.3
alpaca
39 __ 4olphin
2.8
cow
) 3.5 horse
1.4 cat
2.0 dog
Y microbat
.0 megabat
1.0 hedgehog
1.1 shrew
2.8 elephant
2.7 rock hyrax
- 2.0 tenrec
L armadillo
£0 sloth
opossum

platypus o Wilson Sayres, et al. 2011




Number of de novo mutations called

Two additional de novo mutations
per year of paternal age

+ Proband autistic °
v Proband schizophrenic o

o Proband parent of autistic case

o Other
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A small but significant maternal
age effect (0.5 muts/year)
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Mutation count
H

If spermatocyte replication causes the paternal
age effect, the fraction of paternal mutations
should increase with parental age

Ratio of male to female
cell divisions

Male-to-female ratio
. n

Gao, et al. 2019



Human trio data now
contradict this prediction

~ Fraction of paternal mutations
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Overlooked roles of DNA damage and maternal age in
generating human germline mutations

Ziyue Gao™™", Priya Moorjani“®, Thomas A. Sasani®, Brent S. Pedersen®, Aaron R. Quinlan®, Lynn B. Jorde®,
Guy Amster??, and Molly Przeworski%"1-2



Maternal age causes C>G mutation accumulation
in localized regions of chromosomes 5, 7, and 16

Not significant
Significant for both parents’ ages
| | Significant for father’s age only
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Maternal age causes C>G mutation accumulation
In localized regions of chromosomes 5, 7, and 16
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Large CEPH families reveal variability
In paternal age effect between families
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Other causes of mutation rate
variation along the genome

e Replication timing

e Transcription-associated-mutagenesis (TAM) and
transcription-coupled-repair (TCR)

e Non-B-DNA structures and other DNA repeats

¢ Chromatin state



Replication timing
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Replication and transcription
Induce strand asymmetry

Transcri plion asymmetry Replication asymmetry
I-class R-class

" 1“ Repair Damaqge T,L e

Excess of G+T over A+C on coding strand of most genes Haradhvala, et al. 2016

Green, et al. 2003



Measuring the human mutation rate

:ATCCAGT CG

Al GC ch
Parent-child trios

, ' I 1000 Genomes Consortium 2010 .

o S Chimpanzee
Human
N 2.5e-8 mutations 1.0e-8 mutations
achman and . ,
Crowell 2001 per site pPer gen per site pPer gen

! ‘."\'.J
o\ '
4



http://mgr.com.my

The Human Mutation Rate Meeting
Leipzig, 25th - 27th February 2015

B =

DNA mutation clock proves tough to set

Geneticists meet to work out why the rate of change in the genome is so hard

to pin down.

Ewen Callaway

e \What is the real human mutation rate”

10 March 2015

e Has the mutation rate slowed down
during recent human history?




Relative Nucleotide Substitution Rate

The Hominoid Mutation Rate Slowdown

—
U

—
o

Too large to explain by paternal age
effect alone (Scally and Durbin 2012)

Squirrel Nlnkey | B

Have genetics and environment played a role?

- o 4 ’
—_—

acaque

Adapted from http://www.bio.indiana.edu/graduate/multidisciplinary/GCMS/trainees/thomas_gregg.php

Goodman BioEssays 1985  Moorjani, et al. PNAS 2016



“The” mutation rate encompasses
a menagerie of mutation types
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CpG Mutations

* Many species (incl humans, not incl Drosophila) methylate
C when it’s next to G (C-phosphate-G)

e CpG methylation regulates gene expression
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CpG sites are hypermutable

e On average, CpG sites have a 30-fold higher mutation
rate than other C’s in the human genome

e 70-80% of CpGs are methylated in mammals; most
unmethylated CpGs are part of CpG islands

e Fewer than 1% of dinucleotides in the human genome are
CpGs, although the expected frequency is
0.210.21=4.41%



CpG transitions are somewhat more
clocklike than other mutations
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Limits to clock-like behavior
of CpGs

CpG
mutation
count

/
;
:
;
;
;
;
;
;
;
;
;
/

Bulk sequencing of

tumor samples

Age of patient at diagnosis

Fast renewing Slowly renewing

tissue tissue

Single-cell sequencing
of normal neurons

Number of somatic mutations

1500 |
1000 + m Others
500 ~ mC>T
0

A B C
(15yr, F)  (17yr, M) (42yr, F)

Highly
efficient
repair

Embryonic development

Time between two consecutive cell divisions



‘"Mutational signatures” of types of
DNA damage In cancer

C — A

CC — AA Tobacco exposure
TCT — TAT Error-prone
AAA — ACA Polymerase € activity

TCT — T

TCA — 1T Off-target DNA editing
TCT — T by APOBEC enzymes
TCA — "GA

Alexandrov, et al. Nature 2013




APOBEC / AID deaminases

e APOBEC attacks RNA viruses, mutating TCA and TCT by
deamination

e |ts homologue AID hypermutates T cell receptors for
proper immune function

e Both cause off-target germline mutations, especially In
endogenous retroviral sequences

e APOBEC is erroneously switched on in many cancers
(esp cervical), associated with poorer outcomes
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100% Mutations contributed by the mutational processes over time

| Mutational Process 1
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Mutation signature analysis
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Mutational signatures in the germline®

Image co-artist: Natalie Telis



Hypothesis: different
germline signatures have
different evolutionary histories
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Private European SNPs are enriched for a
mutational signature of unknown origin

Africans Europeans East Asians
Harris PNAS 2015



A signature of elevated mutagenesis
N the European germline

A. Europe v. Africa B. Asia v. Africa
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TCC—TTC Mutation Fraction
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Harris and Pritchard eLife 2017
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Genes mirror geography within Europe

John Novembre'?, Toby Johnson*>®, Katarzyna Bryc’, Zoltan Kutalik®®, Adam R. Boyko’, Adam Auton’,
Amit Indap’, Karen S. King®, Sven Bergmann®®, Matthew R. Nelson®, Matthew Stephens®” & Carlos D. Bustamante’

North-south in PC1-PC2 space

© o ©
o o (]
s N w

1 1 1

-0.01 1

-0.02 -
Spain

-0.03 {Portugal

UK

Italy

0.03-002-001 0 0.01 0.02 0.03
East-west in PC1-PC2 space

0O French-speaking Swiss ,
& German-speaking Swiss
A ltalian-speaking Swiss

French
German
Italian



Hypothetical Signature of a TCC-to-TTC
mutation rate increase

TCC-to-TTC mutation rate
TCC-to-TTC mutation
fraction

Present Past Low High
Time Allele frequency
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Pulse replicates in the UK10K data
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C mutation rate
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A pulse of TCC-to-TTC
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Minor components of the pulse
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—xpected TCC fraction as a function of allele frequency

e Partition time into discrete
iIntervals

* A(k,i) = the total branch length

subtending k lineages e
between times T;and T4 A(2.1)

e i ~the rate of TCC mutations
between Tiand T -

Time t=0 (present)

Expected TCC fraction as a function of allele frequency is

E[AK)]~i Ak, D) ri)] >i A(k, )



TCC-to-TTC mutation fraction

Inference of a mutation pulse lasting from
15,000 to 2,000 years ago
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Similar simultaneous mutation pulses in
Europeans, South Asians, and...a dog STD??

RESEARCH ARTICLE

Somatic evolution and global expansion of an ancient transmissible cancer
lineage

Adrian Baez-Ortega’, Kevin Gori'*, Andrea Strakova'”, Janice L. Allen? Karen M. Allum?®, Leontine Bansse-Issa® Thinlay N. Bhutia®, Jocel...
+ See all authors and affiliations

| “A recent study (37) detected evidence for an excess of C>T mutations at TCC
Science 02 Aug 20109: . . . . .
Vol. 365, Issue 6452, eaau9923 contexts, the mutation type most prevalent in signature A, accumulating in the
DOI:10.1126/science.aau9923 human germ line between 15,000 and 2000 years ago. If this human mutation
pulse is due to signature A, it could indicate a shared environmental exposure
that was once widespread but has now disappeared.”

* Canine transmissible venereal tumors (CTVTs) all
descend from an ancestral tumor in a dog who
lived 4000 to 8500 years ago

* CTVTs experienced a high load of GTCCA>GTTCA
mutations that ceased ~1,000 years ago

* Same timeframe as the European mutation pulse
and similar (though not identical) sequence bias




Future direction: are mutation pulses the
relics of lost mutator alleles?

Fixed differences between
great ape spectra

Mutator Allele frequency

European TCC mutation pulse
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How mutator alleles could promote rapid
mutation spectrum turnover

Mutator

[alleles
I T T Positive
* selection?

Sawyer and Malik PNAS 2006 F



Positive selection in DNA repair
genes and other housekeeping genes

e BRCA1 & BRCAZ2 are under positive selection in primates

5 Nonhomologous end joining genes experienced positive
selection during primate evolution, incl XRCC4 which has
been under selection in Europeans

* |ron-uptake receptor TfR1 evolves under positive

selection to avoid facilitating viral entry
10 -
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O
0 o d o oo a| e & o - e -..d ‘. ® © GbomuEmnn
Demogines, et al. 2010 oEnes_ | _ XRCC4 VCAN
Demogines, et al. 2013 94.2 94.6 95.0 95.4

Position on chromosome 5 (cM)



MuSHI: Mutation Spectrum
History Inference
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MuSHI estimates demographic history jointly
with the mutation spectrum history (mush)
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A simulated example of pulse recovery

96 MUTATION TYPES WITH LATENT PULSE SIGNATURE AFFECTING 5
£ »,-smooth pulse:
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Dewitt, Harris, and Harris, in prep



mutation type fraction

Automatic mutational signature extraction from

Europeans (CEU)
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UMAP 2

UMAP visualization of mutation
spectrum divergence over time
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Dewitt, Harris, and Harris, in prep



Great ape species display greater mutation
spectrum drift than human populations do
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Goldberg and Harris, bioRxiv preprint Michael Goldberg




Ape mutation spectra cluster by
phylogeny, pointing to fixation of genetic
mutators (not environmental mutagens)

Euclidean distances, NCNR compartment, 100x
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A case study of a mutational process
that complicates population genetics

Multinucleotide mutations (MNM) are nearby SNPs that
appear in the same generation

AAAGT TAGCCGACAC

l
AAAGATAACCGACAC

Schrider, et al. 2011 Harris and Nielsen 2014



Effect of MNMs in the distribution
of tracts of identity by state

107

¥ ¥ rF FPrPr Ty L\l L LB AALA LJ L LA AAL Ll Ll LB AAL L L LA RAL Ll LJ LA EA

1079

10"} Ancient demographic

108 | history

=~
w9
o O

(-

<
[
-

Recent

| — Europe .
demographic history

| — Africa
Europe v. Africa
'| — Theoretical prediction

Frequency of L-base IBS tracts

o T o T o T
o - o o
it it s it
w o W N

pd

o
ot
(&)

101 102 10° 10* 10° 10°
IBS tract length (L)

[
o
o



Direct evidence for MNMs

e Most methods assume that all SNPs arise from rare,
iIndependent mutation events

* MA experiments and trio sequences show that de novo
mutations are too clustered for this to be true

Multinucleotide
mutatlon
@ @ “Mutator” yeast strains: Some
abnormal polymerases

Independent m‘utation Observed: Excess correlation generate clustered mutations
hypothesis between de novo mutations at a higher rate



MNMs could accelerate
evolution across fithess valleys




Multinucleotide mutation should create pairs of SNPs in perfect
linkage disequilibrium (LD)
(derived alleles occur in the same set of individuals)

multinucleotide mutation

X A
X A
X X
A X

Perfect LD Not Perfect LD



Independent mutations at neighboring sites can also create SNPs
in perfect LD

b V

Yo VR
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Two independent

One MNM mutations



30000

— 1000 Genomes data
A — Simulated data (standard coalescent)
= 25000} —— Simulated data (realistic demography) |
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Compared to theoretical predictions, the 1000 Genomes Phase |
data (1,092 humans from Africa, Europe, Asia, and the Americas)

has excess close-together SNPs in perfect LD



SNPs in perfect LD are
enriched for transversions

e 66% of human mutations are transitions (A>G, G>A, C>T,
T>0)

 Pairs of SNPs in perfect LD are enriched for transversions,
suggesting a different balance of mutational signatures

0.4}
0.3
0.2

0.1

Adjacent SNPs in LD Non-LD Expectation



Transversion-enrichment as a function
of the distance between linked SNPs
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A candidate mechanism: error-
prone translesion synthesis

Northam et al., Nucleic Acids Res. 2014



Matching mutational signatures between
human variation and laboratory yeast

Environmental and Molecular Mutagenesis 53:777-786 (2012)

Research Article

DNA Polymerase zeta Generates Clustered Mutations
During Bypass of Endogenous DNA Lesions in

Saccharomyces cerevisiae

Jana E. Stone, Scott A. Lujan, and Thomas A. Kunkel”

Laboratory of Molecular Genetics and Laboratory of Structural Biology,
National Institute of Environmental Health Sciences, NIH, DHHS,
North Carolina

e Stone, et al. created yeast deficient in nucleotide excision
repair machinery and observed a high MNM rate

* Mechanism: increased translesion synthesis by Pol Zeta
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GAGCGCGAGATAGCGACCCACGCCAAATACAA Other SNP pairs

L A (not observed in
TTAAATTCCTAGTAATTT TTAAAATT CACACT Stone, et al. 2012)




Further characterization of the
Pol zeta mutational signature

e GC>AA mutations are concentrated in late-replicating
regions of the genome

e Usually occur in GCG context, triggered by CpG
deamination followed by polymerase stalling

e CpG deamination is triggered by transcription; usually
occurs on transcribed strand

e Some genes contain GC>TT mutation hotspots, including
HRAS where the mutation causes the Mendelian disorder
Costello Syndrome

Seplyarskiy, et al. 2015



Costello Syndrome is caused by
selection within the aging testis

A high penetrance Mendelian disease caused by a
nonsynonymous point mutation in the HRAS oncogene

e Causes developmental delay and early childhood tumors

e Most commonly caused by a GC>TT mutation with a
mutation rate of 10-°> per generation (normal mutation rate
is 10-8 per site per generation)

e Biggest risk factor is paternal age



HRAS mutations experience
selfish selection within the testis
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