
Variant Calling Workshop

Cesky Krumlov
January 8, 2020



Find the Data
We’re going to start with the same data we had from the alignment 
exercises. We will perform structural variant calling on the PacBio data and 
small variant calling on the Illumina data.



Mark Duplicates
Once you’ve merged all your bams together and indexed them, we’re going 
to mark duplicates. We do this because sometimes you get exactly the same
read or read pair more than once for technical reasons, but they’re not 
unique looks at your underlying sample, so we only want to use one of the 
duplicate copies for analysis. Samtools has a duplicate marker, but even the 
samtools developers say that GATK’s is better, so we’re going to use that

gatk MarkDuplicates -I MERGEDBAM –O DEDUPBAM –M DUPMETRICS --
CREATE_INDEX true

This should take about 2 minutes to run.

Note that it will write a new bam with no changes other than that the 
duplicates are marked (in the bit flag). We also need to provide a second file, 
because Picard will give us a text file detailing some metrics about the 
duplicate marking.



Base Quality Recalibration
We’re going to skip base quality recalibration for this exercise.

The reason is that recalibrating base quality assumes that bases that don’t 
match the reference are errors. When we do this for human sequencing, we 
generally have a long list (such as dbSNP) of known variant sites, and we 
don’t count disagreements at those sites as errors. We don’t have that for 
this yeast strain.

In practice, in a situation like this, the suggested practice is to run a full
round of variant calling without recalibrating, then use the list of variant 
sites as known sites, then recalibrate quality score based on other sites, then 
cycle around and call variants again.

There is some debate in the field about whether recalibrating base quality 
even really matters for this depth of sequencing, and this process will take a 
long time, so we will skip it.



Adding Read Group Information
Before calling variants, GATK wants to know which reads came from the 
same library and the same machine run so that it can group those together 
for purposes of calling (and base quality recalibration, if we had done that).

This can be done as an argument to bwa when you run alignment, but if you
get your data back from a sequencing core already aligned, you may need to
do it yourself on the bam file, so we’re going to see how to do that with 
GATK.

gatk AddOrReplaceReadGroups –I DEDUPBAM –O READGROUPBAM –LB 
SK1-1 –SM SK1 –PL Illumina –PU 1 –CREATE-INDEX true

This is the minimal information for haplotype caller to work, library, sample, 
platform, and platform unit (run). In reality, you might have multiple read 
groups in a data set and would need to have each run or library aligned 
separately to add the appropriate information.

This should take a few minutes to run and will write a new bam.



Sequence Dictionary
GATK requires one more thing we haven’t done. We need a “sequence
dictionary” for our reference that says how big all the chromosomes are and 
how they’re ordered without having to read the whole fasta file. We make 
this with GATK:

gatk CreateSequenceDictionary –R reference/S288C.fa

This should create a small text file call S288C.dict in the reference directory 
(if this file is already there, you can skip this step).



Haplotype Caller
The following is the command for haplotype caller, where BAMFILE is your 
bam file with read groups added and GVCFFILE is the name of your gvcf file. 
It is important that your vcf file end in .g.vcf.

gatk HaplotypeCaller -R reference/S288C.fa -I BAMFILE -O GVCFFILE –ERC 
GVCF

This is going to take about 20-30 minutes. Feel free to take a break once you 
know it’s running.



Variant Genotyping
Haplotype Caller made a first pass at calling variants, creating the gvcf file. If 
we had multiple samples that were from the same population, we could 
merge multiple gvcfs together to jointly genotype them, but since we only 
have one, we’re just going to run the genotyper on our one vcf to get a set 
of alternate calls only. Note that VCFFILE should end in .vcf.

gatk GenotypeGVCFs -R reference/S288C.fa -V GVCFFILE –O VCFFILE

This runs in a few minutes.



Variant Filtering
We have one last step to do, which is to filter the variants. As we discussed, 
one way to do this is by variant quality recalibration (VQSR), but we don’t 
have enough variants in this data set to run that (plus it takes a really long
time), so we’re instead going to use a set of standard parameters that are 
considered “best practices” for human genomes (in other words, if you 
actually ran VQSR, chances are good you would get something very much 
like this). Because this cammand is so long, it’s on the next slide, and I've 
spread it across several lines, but it should be run on a single line.



Variant Filtering
gatk4 VariantFiltration -R human_g1k_v37.fa \
-V VCFFILE \
-O FILTEREDVCF \
-filter “QD < 2.0” --filter-name “QDfilter” \
-filter “MQ < 30.0” --filter-name “MQfilter” \
-filter “FS > 60.0” --filter-name “FSfilter” \
-filter “SOR > 3.0” --filter-name “SORfilter” \
-filter “ReadPosRankSum < -8.0” --filter-name “RPRSfilter” \
-filter “MQRankSum < -12.5” --filter-name “MQRSfilter” \
--verbosity ERROR

Note:
The backslash (”\”) character when typed at the end of a unix line will tell 
the shell to treat the next line as part of that line. If you type this all on a 
single command line, don’t put that in.

You can leave out the verbosity option, but the homozygous variants
generate warnings because they don’t have the rank sum metrics, so I 
recommend leaving it there.



Variant Filtering
You may get a lot of warnings, but you should get out a new vcf. To see if 
anything happened, you can try:

grep filter FILTEREDVCF | less

You should see a large number of filtered out variants. 



Calling SVs on the PacBio Reads
We’re going to use a program called sniffles2 to call structure variants on the 
long read data.

sniffles PBBAM -v PBSVVCF

This should run pretty quickly and produce a VCF with large insertions and 
deletions in it.



Looking at Your Calls
Now we can launch IGV again and load in the variant calls and see how they 
look compared to the read data we aligned. For this, you can follow the 
instructions from the alignment workshop to reload the genome 
annotations and your bams. IGV should remember you used the yeast 
genome last time and load that for you automatically. You also don’t need to 
run igvtools again, as your read depth data files should still be there. (Don’t 
worry about loading the new deduped and read group bams, as the 
underlying data are still the same, but you can if you want to; you will need 
to run igvtools Count feature on that file since we didn’t do that before.)

Then you can go to File->Load from file and load your 2 VCF files, and you 
should be able to see marks where the variant callers called variants and see 
what they look like in the reads. It might be particularly interesting to see 
the difference between PacBio and Illumina in the regions where sniffles 
made SV calls.


