Genomic studies of speciation and gene flow

Why study speciation genomics?

Long-standing questions (role of geography/gene flow)

How do genomes diverge?

Find speciation genes

Genomic divergence during speciation

1. Speciation as a bi-product of physical isolation

2. Speciation due to selection - without isolation

Genomic divergence during speciation

1. Speciation as a bi-product of physical isolation

Cline theory - e.g. Barton and Gale 1993
2. Speciation due to selection - without isolation

Genomic divergence during speciation

1．Speciation as a bi－product of physical isolation

Original species

Daughter specics with hybrids

[^0]2．Speciation due to selection－without isolation

Stage 1 - one or few loci under disruptive selection

Gene
under
selection

Genome

Feder, Egan and Nosil TiG

Stage 2 - Divergence hitchhiking

Genome

Feder, Egan and Nosil TiG

Stage 2b - Inversion

Inversion links co-adapted alleles

III
Genome

Feder, Egan and Nosil TiG

Stage 3 - Genome hitchhiking

Genome

Feder, Egan and Nosil TiG

Stage 4 - Genome wide isolation

Genome

F_{ST}

Feder, Egan and Nosil TiG

Some clear examples of 'speciation islands'

Wing pattern "races" of Heliconius melpomene

Heliconius melpomene

H. melpomene amaryllis

H. melpomene aglaope

Some clear examples of 'speciation islands'

Wing pattern "races" of Heliconius melpomene

S. H. Martin et al. Genome Res. 23, 1817-1828 (2013).
O. Seehausen et al. Nat. Rev. Genet. 15, 176-92 (2014).

Some clear examples of 'speciation islands'

Carrion and hooded Crows

Poelstra, J. W. et al. Science 344, 1410-4 (2014).

Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. \& Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat Ecol Evol 3, 657-667 (2019).

Malinsky et al., Science 350, 1493 (2015).

Aa Parapatric races: H. m. amaryllis (Per) versus H. m. aglaope (Per)

Ab Allopatric races: H. m. rosina (Pan) versus H. m. melpomene (FG)

Ac Sympatric species: H. cydno (Pan) versus H.m. rosina (Pan)

Ad Allopatric species: H. cydno (Pan) versus H. m. melpomene (FG)

Seehausen et al., Nature Reviews Genetics, 2014

Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species

MAF Noor and SM Bennett
Biology Department, Duke Universily, Durham, NC, USA

INVITED REVIEWS AND SYNTHESES
Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow

TAMI E. CRUICKSHANK* and MATTHEW W. HAHN* \dagger
*Depariment of Biology, Indiana University, Bloomington. IN 47405, USA, +School of Informatics and Computing, Indiana University, Blcomington, IN 47405, USA

What do patterns of $F_{\text {st }}$ really mean?

- Fst $_{\text {st }}$ measures relative divergence $\quad F_{\mathrm{ST}}=\frac{H_{\mathrm{T}}-H_{\mathrm{S}}}{H_{\mathrm{T}}}$,
- Peaks indicate regions of higher than expected between population divergence, given the within population divergence
- Peaks can therefore result from reduced diversity within species
- This could be due to lower Ne within species (selective sweeps, background selection)
- So peaks NOT NECESSARILY due to reduced gene flow

No evidence for higher Dxy in wing pattern loci

Wing pat Heliconia

One further issue with interpreting the data from these two races is whether this comparison relates to speciation at all. There is strong geographic structure involving the wing colour patterns that define these morphs as races, largely due to selection determined by colour morphs in the Müllerian mimic, H. erato (Mallet et al. 1990). But the races are not separate species: they do not show evidence of hybrid sterility or inviability and appear to be randomly mating in the narrow zone where the colour morphs overlap (Mallet et al. 1990). This raises the possibility that the colour-
 patterning loci contain locally adapted alleles within a largely panmictic (or at least continuously distributed) population and that gene flow outside of these regions represents nothing more than the normal movement of alleles within a species. In this case, there should be

Suggestion that we use absolute measures of divergence?

Ravinet, M. et al. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30, 1450-1477 (2017).
' Selective Sweeps

Note that sometimes sweeps within species = speciation genes

Sweeps across the species barrier can also lead to Fst peaks

Nicolas Bierne, Daniel Berner and others

Sweeps within and between species

Anopheles gambiae and A. coluzzi
Formerly M and S forms of A. gambiae

M-wt vs. S

Clarkson et al. 2014 Nature Communications

Sweeps within and between species

M-kdr vs. S

21
M-wt vs. M-kdr
kdr
3R

' Background selection

Sequenced 20 individuals per population at 20x coverage

Collared and Pied Flycatchers

Fixed differences
Ellegren, et al. Nature 491, 756- (2012).

c
Cryomosome 4A

$\pi^{+}+0^{3}$

$\pi_{i} * 30$

Supplemental Table S4. ABBA-BABA tests for gene flow. Populations/species among which the test indicates gene flow are highlighted in bold.

1. Inner	2. Inner	1. Outgroup	Mean(D)	SE(D)	p-value
collared Italy	collared CZ	pied CZ	0.0010	0.0010	0.3344
pied Spain	pied CZ	collared CZ	0.0004	0.0005	0.4186
pied Spain	Atlas	collared Italy	-0.1648	0.0027	$<10^{-4}$
pied Spain	Atlas	semicollared	-0.0108	0.0016	$<10^{-4}$
pied Spain	collared Italy	semicollared	0.1162	0.0018	$<10^{-4}$
Atlas	collared Italy	semicollared	0.1242	0.0016	$<10^{-4}$

Background selection - theory

MOLECULAR ECOLOGY

ORIGINAL ARTICLE 自 full Acress
Background selection and $F_{5 \mathrm{~T}}$: Consequences for detecting local adaptation

Remi Mathey-Dorets Michael C. Whitlock
First published: $\mathbf{2 6}$ July 2019 | https'//dol.org/10.1111/mec. 15197 | Clations: 33
Simulate diverging populations and calculate Fst
Demonstrate little effect of BGS on between-locus variation in Fst even with no recombination

Selfing, asexuals etc not simulated. Mainly focused on local adaptation - early stages of divergence

- Genetic architecture

Lake Nicaragua cichlids

Lip size - single locus
Body size and pharyngeal jaws polygenic

Contrasting signatures of genomic divergence during sympatric speciation

Ravinet, M. et al. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J. Evol. Biol. 30, 1450-1477 (2017).

Better to test specific hypotheses: e.g is there gene flow?

Need to design sampling so the expectations in the absence of gene flow are clear and testable

Not always possible, but 'control' populations that are not influenced by admixture

Explicit tests for gene flow: Neanderthal genome

- Isolated DNA from bones 38,000 yrs old in Croatia
-We diverged from Neanderthals around $270-440,000 \mathrm{yrs}$ ago
-Evidence for gene exchange with humans (1-4\% of genome?)

Explicit tests for gene flow: ABBABABA test

African European Neanderthal Chimp human human

African human

European Neanderthal Chimp human

$$
\begin{equation*}
D\left(P_{1}, P_{2}, P_{3}, 0\right)=\frac{\sum C_{A B B A}(i)-C_{B A B A}(i)}{\sum C_{A B B A}(i)+C_{B A B A}(i)} \tag{1}
\end{equation*}
$$

Explicit tests for gene flow: ABBABABA test

Denisovans
Modern humans
Neanderthals

Explicit tests for gene flow: Heliconius butterflies

Martin et al., Genome Research 2013

Explicit tests for gene flow: Heliconius butterflies

Whole-genome phylogeny supports grouping by species

Many sources of reproductive isolation:

Female hybrids are sterile
Different host plant use
Different habitat preference
Strong assortative mating

Explicit tests for gene flow: Heliconius butterflies

- 100 kb trees
- Only 53\% group by species
- 42\% group by geography!

Explicit tests for gene flow: Heliconius butterflies

- Much larger proportion of genome is flowing as compared to Neanderthals
- Similarly strong effect on sex chromosome

Recombination rate strongly correlated with admixture proportion

Recombination Rate (cM/MB)

Short chromosomes have more admixture:

And chromosome ends have more admixture:

All of these patterns are consistent with a highly polygenic architecture.

Experimental design for speciation genomics

- Use allopatric 'control' populations
- Use replicate comparisons - e.g hybridising species in different localities
- Use systems with well understood natural history
- Think about readily accessible traits if you want to go beyond genomic patterns
- Choose a system that allows you to address specific hypotheses

Conclusions so far

- Genomics has great power to detect patterns of divergence and identify genes underlying speciation
- But patterns of differentiation are complex and influenced by many factors
- These include intrinsic properties of the genome of little direct relevance to speciation
- Need clear hypotheses
- Combine multiple signals
- Model background selection, recombination, positive selection?

Adaptive introgression

- G-test: $G=7.25$, d.f. $=1, p=0.007$

Merrill et al., Proc. Roy. Soc 2012

Peaks of divergence correspond to wing pattern genes

Colour pattern differences between species are controlled by large effect loci

Ac - band shape

D - red patterns

Yb - yellow patterns

K - white/yellow colour

Optix - the red locus

D - red patterns

Linlin Zhang, Anyi Mazo-Vargas, and Robert D. Reed PNAS 2017

Transcription factor, paints red in pupal wing (Richard Wallbank)

Richard Wallbank

The first evidence for combinatorial evolution in

 Heliconius

NNbb

NNBB

Heliconius heurippa

The first evidence for combinatorial evolution in Heliconius

Salazar et al., PLoS Genetics 2010

Generate dated trees using this node as a reference point

Diverse history of adjacent enhancers

b

Supergenes and mimicry

Supergenes in mimicry

- Batesian mimics suffer if they become too common - so negative frequency dependent selection favours rare forms
- Muellerian mimics NOT expected to be polymorphic; where they are, this is probably due to spatial or temporal heterogeneity in selection

A spatial mosaic of mimicry maintains polymorphism in Heliconius numata

All inherited at a single locus

There is a dominance hierarchy of alleles controlling the polymorphism

The supergene locus is associated with two alternative inversion rearrangements

One of the inversion haplotypes has arisen through introgression from a related species

Signatures of selection at wing pattern genes

Selective sweeps

Hard selective sweep leaves a signature in the genome

Is there evidence for recent selection on pattern loci?

Can we distinguish forms of selection?

Comparing signatures of sweeps under different forms of selection - theory

Signatures of sweeps - empirical patterns

Pi

Tajima's D

Sweepfinder
Likelihood Ratio

Signatures of selection at all wing pattern genes

WntA

Cortex

Optix

Invasion of a mega-pest - Helicoverpa

Admixture has declined through time in H . armigera

ALX1 associated with beak shape

Pupfish radiation sorts ancestral variation

Richards et al., PNAS 118(20)e2011811118

Implications for tree-thinking

Mallet, Hahn and Besansky BioEssays 2015
Hahn and Nakhleh Evolution 2015

The true phylogeny showing bifurcation events as well

Implications for tree-thinking

The tree of life is reticulated

Okay, so what have we learnt and where do we go from here?

An alternative is to take an explicit modelling approach

IM and IMa Jody Hey

Martin et al., Biorxiv 2015

So far models have mostly just estimated genomewide parameters...assuming the genome is homogenous

Where we need to go next is to incorporate genome heterogeneity in selection and recombination

Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models

Vitor C. Sousa,**1.2 Miguel Carneiro, ${ }^{+}$Nuno Ferrand, ${ }^{+}$and Jody Hey ${ }^{* .1}$
*Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New lersey 08854, and ${ }^{1}$ CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4099-002 Porto, Portugal

High density linkage maps to map the recombination landscape

The effect of background selection on introgression in humans

Admixture is less in gene rich regions supporting this model.....

[^0]: 」1 ل｜いいいいい

