
Distributions have tails.





P-values are uniformly distributed under the null hypothesis
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P-values



α = the probability of having a single false positive

(type I error)

If you are conducting a single test, then α is your p-value

10.05



1

If you are conducting multiples tests, then α is not your p-value

0.05



Bonferroni correction

To maintain a probability, α, of a single false positive, then p-
value cut-off must become:


= α/m



0.025



Dunn-Sidak correction

= 1-(1-α)
1/m



False Discovery Rate (FDR)

Instead of controlling probability of a single false positive, simply 
control fraction of false positives among your significant tests



0.05

If there are no true positives, p-values are uniformly 
distributed

P-values



0.05

FDR= the number significant expected/ 

the number significant observed


(the expected number is itself binomially distributed)

False discovery rate



0.05

Even random data should have 5% of tests significant at 0.05

False discovery rate



Real data has true positives and true negatives, 

as well as false positives (type I) and false negatives (type II)

Type I and Type II error



0.05

FDR helps to avoid false negatives

(type II error)

0.0025

False discovery rate



False Discovery Rate

FDR    =    p(i)*m

i

where p(i) is the p-value of the ith test, and

i is the rank of this test in the whole list



P-value

0.0001 1 0.01

0.0002 2 0.01

0.001 3 0.033

0.001 4 0.025

0.01 5 0.2
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0.05 10 0.5

rank FDR

m=100

B-H

Bonf



There are many ways of testing for significance, 
and many different cut-offs used.


Your choice really depends on what you want to 
do next.


