Demographic inference based on Site frequency spectrum (SFS) – Part I

Vitor C. Sousa

CE3C – center for ecology, evolution and environmental changes Department of Animal Biology Faculdade de Ciências da Universidade de Lisboa

> 2022 WSPG Cesky Krumlov 9 Jun 2022

vmsousa@fc.ul.pt

Outline

Part I

- Modeling demographic history: Population trees vs gene trees
- The SFS and coalescent trees
- Fastsimcoal2 principles composite likelihood
- Approximate Bayesian Computation

Part II

Example of applications to different problems and types of data

What can we learn from population genomic data?

Genomic data

Summary statistics:

- Characterize **genetic diversity** within and among populations
- Characterize **genetic differentiation** among populations

Evolutionary Processes:

- Demography
- Selection
- Mutation
- Recombination

Processes

Patterns

-1

Genomic data with Next Generation Sequencing

Ref. Genome

Individual 1

Individual 2

...

		SNP1	SNP2	SNP3		SNP <i>L</i>					
	Ind. 1	0	2	0		1					
	Ind. 2	0	0	1		2					
	Ind. 3	1	0	0		2					
	Ind. <i>n</i>	0	0	1		0					

Genotypes

Information about:

- frequencies of variants
- linkage disequilibrium

Site-frequency spectrum (SFS)

Evolutionary forces affecting the history of populations

- Past effective population sizes
- Past migration rates

Genomic processes

Demography

- Mutation rate
- Recombination rate

Selection

Natural selection

- Beneficial mutations involved in adaptation
- Deleterious mutations with negative effect

Demographic history of populations

Past demographic events:

- Population split
- Migration events
- Changes in effective population sizes (expansions or bottlenecks)
- Temporal changes in migration rates and effective sizes

Population tree

Why do we care about demographic history?

Demography affects the efficiency of natural selection

 Response to selection is different in small vs large populations, with vs without gene flow, etc.

Demographic history affects the genome-wide patterns

 It can be seen as a "null" model. Regions under selection are detected as outliers.

Gene trees within pedigrees

- Gene trees reflect the ancestral relationship of sampled gene copies
- For now, lets assume there is no mutations (branch lengths do not reflect mutations in coalescent gene trees!).
- Because of transmission of genes at each generation, at each position of the genome there is always a gene tree describing the relationship of gene copies in our sample.
- All individuals share the same pedigree, but gene trees can vary due to independent segregation and recombination

The same pedigree can lead to different gene trees across the genome

Gene tree of a sample of size n=4 (2 diploid individuals)

Chromosome 1

The same pedigree can lead to different gene trees across the genome

Gene tree of a sample of size n=4 (2 diploid individuals)

Chromosome 2

Gene trees and pedigrees

- Although we have the same pedigree, the gene trees at different loci will be different
- Ancestral chromosomes that did not contribute to our sample can be ignored
- With recombination, different regions of the chromosome will have different (correlated) gene trees

Gene trees and pedigrees

- Although we have the same pedigree, the gene trees at different loci will be different
- Ancestral chromosomes that did not contribute to our sample can be ignored
- With recombination, different regions of the chromosome will have different (correlated) gene trees

Gene trees vs. Population trees

Gene trees reflect the ancestral relationship of sampled gene copies.

The relationship between populations is given by the **population tree**. As with pedigrees, the population tree reflects the relationship between populations that is shared by all individuals.

In phylogenetics it is usually assumed that the gene tree reflects the population/species tree.

However, in the time scale of population genetics, gene trees at a particular region of the genome (locus) can be very different from the population tree.

Nichols (2001) TREE

Jobling et al (2014) Human Evolutionary Genetics, 2nd edition

Because of recombination, different regions of the genome can have different gene trees

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Model without migration

time

Because of recombination, different regions of the genome can have different gene trees

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Model without migration

time

Because of recombination, different regions of the genome can have different gene trees

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Model without migration

time

Because of recombination, different regions of the genome can have different gene trees

• Demography is expected to affect the entire genome

 Natural selection acts on specific functional regions All gene trees are consistent with the population tree. Independent gene trees can be seen as independent replicates of the same population tree.

Model without migration

time

Because of recombination, different regions of the genome can have different gene trees

Model with migration

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Because of recombination, different regions of the genome can have different gene trees

Model with migration

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Because of recombination, different regions of the genome can have different gene trees

Model with migration

- Demography is expected to affect the entire genome
- Natural selection acts on specific functional regions

Expected coalescent times in a constant size population

- What are the longest branches we expect in a stationary population?

- Do we expect the relative branch length to differ in large and small populations?

The expected time is $4N_e$, but there is a large variance

Figure 4.2 Five replicates of the coalescent process with constant population size for a sample of ten genes. Note the large variance in the time of the MRCA among replicates.

Hein et al (2004) Gene Genealogies, Variation and evolution

Gene trees in expanding populations

present

Long external branches

- Coalescent rate is larger in smaller populations, and so we expect smaller intervals ٠ between coalescent events in smaller populations
- Coalescent rate is lower with a lower number of lineages, and so we expected larger ٠ intervals between coalescent events as the number of lineages decrease

Stationary population

gene trees at five genome regions (all share same population history!)

Figure 4.2 Five replicates of the coalescent process with constant population size for a sample of ten genes. Note the large variance in the time of the MRCA among replicates.

Expanding population

gene trees at five genome regions (all share same population history!)

Figure 4.3 Five replicates of the coalescent with exponential growth, $\beta = 1000$, for a sample of n = 10 genes. Note the smaller variance in the time until the MRCA compared to the same quantity in Figure 4.2.

Hein et al (2004) Gene Genealogies, Variation and evolution

Gene trees for decreasing populations

- If we could observe directly the gene trees, we could easily reconstruct the population tree and the demographic history.
- But we do not observe gene trees...
- We can still learn about gene trees from the observed mutations and the allele frequencies in samples

Adding neutral mutations to gene trees under the Infinite sites model

No back mutations, no multiple mutations on the same site.

Adding neutral mutations

The shape of neutral coalescent trees only depend on the population demography, and not on the mutational process. Assuming that all alleles have the same fitness, the mutational process can be modeled as an independent process superimposed on a realized coalescent tree.

Mutations just accumulate along the branches of the tree according to a **Poisson process** with rate $\lambda_i = \mu t_i$ for the *i*-th branch of length t_i . The Poisson process is stochastic but it should be immediately **obvious that long branches will carry more mutations than short branches**

Hein et al (2004) Gene Genealogies, Variation and evolution

We expect less rare variants in populations that went through a bottleneck

- Mutations accumulate along the branches.
- The longer a given branch the more likely it becomes that a mutation have happened on it.

Stationary Population

Bottleneck Population

Most individuals share the same mutations

We expect more rare variants in expanding populations than in populations with a constant size

Stationary Population

present

- The SFS summarizes efficiently genome-wide data
- Assuming a single population 1Dimensional SFS

Outgroup ATACCG... Individual 1 ATACCG... Individual 2 ATTCGG... Individual 3 ATACGG...

> Observed SFS

Site frequency spectrum (SFS)

- The SFS summarizes efficiently genome-wide data
- Assuming a single population 1Dimensional SFS

- The SFS summarizes efficiently genome-wide data
- Assuming a single population 1Dimensional SFS

- The SFS summarizes efficiently genome-wide data
- Assuming a single population 1Dimensional SFS

- The SFS summarizes efficiently genome-wide data
- Assuming a single population 1Dimensional SFS

The SFS ignores information about linkage. It is best suited for the study of many unlinked (or recombining) DNA sequences.

In a stationary population, the expected SFS relative frequencies are given by:

$$E(\xi_i) = rac{ heta}{i}$$
 Fu and Li, 1993

Frequency of derived allele

VCF (variant call format) files

CHROM	POS	ID	REF	ALT	QUAL	FILTER	FORMAT	BL2009P4_us23
"Supercontig_1.50"	"2"	NA	"T"	"A"	"44.44"	NA	"GT:AD:DP:GQ:PL"	"0 0:62,0:62:99:0,190,2835"
"Supercontig_1.50"	"246"	NA	"C"	"G"	"144.21"	NA	"GT:AD:DP:GQ:PL"	"1 0:5,5:10:99:111,0,114"
"Supercontig_1.50"	"549"	NA	"A"	"C"	"68.49"	NA	"GT:AD:DP:GQ:PL"	NA
"Supercontig_1.50"	"668"	NA	"G"	"C"	"108.07"	NA	"GT:AD:DP:GQ:PL"	"0 0:1,0:1:3:0,3,44"
"Supercontig_1.50"	"765"	NA	"A"	"C"	"92.78"	NA	"GT:AD:DP:GQ:PL"	"0 0:2,0:2:6:0,6,49"
"Supercontig_1.50"	"780"	NA	"G"	"T"	"58.38"	NA	"GT:AD:DP:GQ:PL"	"0 0:2,0:2:6:0,6,49"

https://grunwaldlab.github.io/Population_Genetics_in_R/reading_vcf.html
We can obtain the SFS from genotype call data

Genotypes:

- 0 homozygote for reference allele
- 1 heterozygote
- 2 homozygote for alternative allele

This can be done if we have enough depth of coverage (>10x)

Observed SFS is a vector (1 dimensional SFS):

derived allele frequency

Frequency	0	1	2	3	4	5	6	7	8	9	10
SNP count	0	2	1	1	0	0	0	0	0	0	0

SFS from genotype call data

Even if we have millions of SNPs we can summarize the genomic data to 10 numbers with the SFS!

The size of the SFS depends on the number of sampled individuals.

frequency derived allele

Observed SFS is a vector (1 dimensional SFS):

Frequency	0	1	2	3	4	5	6	7	8	9	10
SNP count	0	250,032	152,300	76,504	45,362	30,210	15,329	5,642	3,524	2,123	0

Derived vs Minor allele frequency spectrum

- So far, we have assumed that the allele frequency is the number of sequences with the derived allele frequency (unfolded SFS). We need information (outgroup) to determine the ancestral/derived state.
- If we do not have that information, we can work with the minor allele frequency (folded SFS). In this case, the allele with a lower frequency is treated as the reference.

Folded SFS (minor allele frequency spectrum)

If you cannot determine the ancestral or derived state of mutations (e.g., no outgroup reference genome available), you can assume that the allele with the lower frequency is the "derived".

Folded SFS (minor allele frequency spectrum)

If you cannot determine the ancestral or derived state of mutations (e.g., no outgroup reference genome available), you can assume that the allele with the lower frequency is the "derived".

Folded SFS (minor allele frequency spectrum)

Minor allele frequency (MAF) SFS

Coalescent and the SFS

Coalescent and the SFS

Coalescent and the SFS

- A recent population growth following a bottleneck leads to gene trees with long external branches
- Very few mutations in the internal branches
- Most mutations in long external branches are only found in one lineage, resulting in an excess of singletons

Coalescent gene trees at multiple independent sites and the SFS

- The SFS is summed across loci
- Independent loci can have different gene trees, and different mutations and allele frequencies
- But, assuming neutrality, all sites in the genome reflect the population tree and the demographic history
- What can we say about the demographic events that lead to this SFS?
 - Bottleneck, expansion, constant size population?
 - Time of event?

derived allele frequency

SFS depends on past demography

Natural selection also affects the SFS

Background selection (BGS) leads to patterns similar to population expansion.

Bank et al (2014) Trends in Genetics

Population structure

Migration events can be incorporated into gene trees.

Migration from Pop 2 to Pop 1, leads to lineages moving from Pop 1 to pop 2 backward in time.

At each generation, the probability of immigration into population 1 from population 2 is given by:

 $Pr(migrate) = n_1 * m$

Where n_1 is the number of lineages in population 1, and m is the immigration rate.

Site frequency spectrum (SFS) for multiple populations

- Single population: 1D SFS
- Multiple populations:
 2D, 3D, ..., n_{pop}D SFS

Model based inference

- What is the model that best fits the data?
- What are the most likely parameters of each model?

Sousa and Hey (2013) Nat. Rev. Gen.

A model is represented by a population tree that reflects the past evolutionary history

Parameters:

- Population split times
- Migration rates
- Effective population sizes
- Temporal changes in migration rates and effective sizes
- Selective coefficients, type of selection (positive or negative)
- Mutation rate
- Recombination rate

Population tree

Demography

Genomic processes Selection

Site frequency spectrum (SFS)

The SFS contains information about the demographic history of populations

Sousa and Hey (2013) Nat. Rev. Genet.

Inferring the demographic history from the SFS

Genomic Data

Inferring the demographic history from the SFS

- The likelihood is easily computed based on the expected SFS under a given model
- There are different ways to obtain the expected SFS
 - Diffusion (forward in time)
 - Coalescent (backward in time)

- Effective sizes

Excoffier et al. (2013) PloS Genetics

Estimating the expected SFS under a given model using coalescent

The probability of a SFS entry *i* can be estimated under a specific model θ from its expected coalescent tree as (Nielsen 2000) $p_i = \frac{E(t_i \mid \theta)}{E(T \mid \theta)}$

Where t_i is the total length of all branches directly leading to *i* terminal nodes, and *T* is the total tree length.

It gives the relative probability that if a mutation occurs on one of these b_i branches, it will be observed *i* times in the sample

This is true under the infinite sites model. No more than 1 mutation per site, back mutations not allowed!

Composite likelihood

Even though we can have linked sites, we assume that all sites are independent. Given *S* polymorphic sites (SNPs) out of *L* sites (Adams and Hudson, 2004) the composite likelihood is:

$$CL = \Pr(X \mid \theta) \propto \frac{P_0^{L-S} (1-P_0)^S \prod_{i=1}^{n-1} \hat{p}_i^{m_i}}{\overline{\boldsymbol{n}}}$$

probability of no mutation on the tree probability of at least one mutation in the tree

These probabilities depend:

- Number of monomorphic sites
- A fixed and mutation rate

Everything is relative

- The same expected SFS can be obtained in a large or small tree
- We need a mutation rate and the number of monomorphic sites to distinguish among the two!

Methods based on the SFS

Different ways to obtain the expected SFS p_i under different demographic models

- Coalescent-based
 - Multiple populations

 Fastsimcoal2 (Excoffier et al 2013 PLoS Genetics)
 Momi (Kamm et al 2015) and Momi 2
 Rarecoal (Schiffels et al 2016 Nat Genetics)
 - Single population Stairway plot (Liu and Fu, 2015 Nat Genetics)
- Diffusion-based

Dadi (Gutenkunst et al 2009 PLoS Genetics) Multipop (Lukic and Hey 2012 Genetics) Jouganous et al (2017) Genetics Inferring demographic history with fastsimcoal2 based on the SFS

- Fastsimcoal2 can estimate parameters from the SFS using coalescent simulations
- Maximum (composite) likelihood method
- Uses a conditional expectation (CEM) maximization algorithm to find parameter combinations that maximize the likelihood
- It approximate the expected SFS by performing coalescent simulations (>100,000)

Estimating the SFS and likelihoods with coalescent simulations

The expected SFS probability p_i under a given model can then be estimated on the basis of *Z* coalescent simulations as

$$\hat{p}_i = \frac{\sum_j^Z \sum_{k \in \Phi_i} b_{kj}}{\sum_j^Z T_j}$$

where b_{ki} is the length of the *k*-th compatible branch in simulation *j*.

These probabilities can then be used to compute the **composite likelihood** (CL) of a given model as (Adams and Hudson, 2004)

$$CL = \Pr(X \mid \theta) \propto P_0^{L-S} (1 - P_0)^S \prod_{i=1}^{n-1} \hat{p}_i^{m_i}$$

where *X* is the SFS in a population sample of size *n*, *S* is the number of polymorphic sites, *L* is the length of the studied sequence, P_0 is the probability of no mutation on the tree (e^{-uT}), and m_i is the observed counts at SFS entry *i*.

Approximating the expected SFS with coalescent simulations

Β

Increasing the number of simulations improves the approximation of the expected SFS

T=0.1 - Expected vs. Fastsimcoal SFS

Excoffier et al. (2013) PloS Genetics; Chen (2012) TPB

Properties of composite likelihoods

This composite likelihood (CL) is not a proper likelihood due to the non-independence of allele frequencies at linked sites.

- CL is maximized for the same parameters as full likelihood
- Can be used for parameter estimation
- Confidence intervals cannot be estimated from likelihood profile, need to bootstrap
- CL surface might be more complex than likelihood surface, and thus more difficult to explore and get the global maximum
- CL ignores information on linkage disequilibrium (recombination) between sites

Comparisons of approaches

Simulation of 20 Mb data

8/10

Protocol for parameter estimation

1. Get the observed SFS:

- derived SFS (DAF or unfolded SFS), when the ancestral state is known;
- minor allele frequency SFS (MAF or folded SFS) when the ancestral state is unknown
- 2. Define the **demographic model**
- **3. Estimate the parameters** repeat 50-100 runs, and selecting the run with maximum likelihood
- Bootstrap to obtain confidence intervals for each parameter – bootstrap 10-100 datasets, by repeating a few runs for each dataset
 - For datasets with linked sites use block-bootstrap, diving the genome into blocks

Potential problems

- Maximization of the CL is not trivial (precision of the approximation and convergence problems)
- Need to repeat estimations to find maximum CL
- Needs genomic data (several Mb), difficult to have genespecific estimates
- Next-generation sequencing data must have high coverage (>10x) to correctly estimate SFS

Limitations of estimating demographic parameters from SFS

Can one learn history from the allelic spectrum?

Simon Myers^a, Charles Fefferman^b, Nick Patterson^{a,*}

^a Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge MA 02142, United States ^b Deptartment of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544, United States

> Received 17 March 2007 Available online 30 January 2008

A demographic history with the same spectrum as a constant size population

Theoretical Population Biology Volume 120, March 2018, Pages 42-51

On the decidability of population size histories from finite allele frequency spectra

Soheil Baharian, Simon Gravel Ӓ 🖾

Geometry of the Sample Frequency Spectrum and the Perils of Demographic Inference

Zvi Rosen, D Anand Bhaskar, Sebastien Roch and Yun S. Song GENETICS October 1, 2018 vol. 210 no. 2 665-682; https://doi.org/10.1534/genetics.118.300733

Fundamental limits on the accuracy of demographic inference based on the sample frequency spectrum

¢

Jonathan Terhorst and Yun S. Song

PNAS June 23, 2015 112 (25) 7677-7682; first published June 8, 2015 https://doi.org/10.1073/pnas.1503717112

Approximate Bayesian Computation

- Replace the likelihood function by simulations to obtain an approximation of the posterior probability when a likelihood function is not available
- Replace data by summary statistics
- **Disadvantadge:** Uses less information than fulllikelihood methods
- Advantages: Applicable to complex models, easy to perform validations and assess the quality of the estimates

Approximate Bayesian Computation Rejection sampling

- Sample θ^* from the **prior**
- Simulate data with parameter θ^*
- Compute the summary statistics of simulated data S_{sim}
- Compute a distance between d = d(S_{sim}, S_{obs})
- Accept the parameter values if $d < \delta$

• Sample θ^* from the **prior**

- Simulate data with parameter θ^*
- Compute the summary statistics of simulated data S_{sim}
- Compute a distance between d = d(S_{sim}, S_{obs})
- Accept the parameter values if $d < \delta$

Model choice using ABC

1.00

0.90

0.60

0.40

0.20

0.0

Example with 10 loci of microsatellites

(b) Admixture - Structure

Posterior probability for the admixture model

Sousa et al. (2011) Heredity

(c) No Admixture - ABC

(d) Admixture - ABC

Example: ABC for Poolseq data

ABC is useful to model complex datasets, e.g., poolSeq data by explicitly modelling differential individual contribution into the pool. João Carvalho (EG, cE3c) Roger Butlin (Sheffield Univ., UK)

Evolutionary history of parallel ecotype divergence in Littorina snails

Risks and remedies in ABC

 Table 2. Potential risks and remedies in ABC-based statistical inference.

Error Source	Potential Issue	Solution	Subsection
Nonzero tolerance ε	The inexactness introduces a bias in the computed posterior distribution.	Theoretical/practical studies of the sensitivity of the posterior distribution to the tolerance. Noisy ABC.	Approximation of the posterior
Nonsufficient summary statistics	The information loss causes inflated credible intervals.	Automatic selection/semi-automatic identification of sufficient statistics. Model validation checks (e.g., Templeton 2009 [19]).	Choice and sufficiency of summary statistics
Small number of models/mis- specified models	The investigated models are not representative/lack predictive power.	Careful selection of models. Evaluation of the predictive power.	Small number of models
Priors and parameter ranges	Conclusions may be sensitive to the choice of priors. Model choice may be meaningless.	Check sensitivity of Bayes factors to the choice of priors. Some theoretical results regarding choice of priors are available. Use alternative methods for model validation.	Prior distribution and parameter ranges
Curse-of-dimensionality	Low parameter acceptance rates. Model errors cannot be distinguished from an insufficient exploration of the parameter space. Risk of overfitting.	Methods for model reduction if applicable. Methods to speed up the parameter exploration. Quality controls to detect overfitting.	Curse-of-dimensionality
Model ranking with summary statistics	The computation of Bayes factors on summary statistics may not be related to the Bayes factors on the original data, which may therefore render the results meaningless.	Only use summary statistics that fulfill the necessary and sufficient conditions to produce a consistent Bayesian model choice. Use alternative methods for model validation.	Bayes factor with ABC and summary statistics
Implementation	Low protection to common assumptions in the simulation and the inference process.	Sanity checks of results. Standardization of software.	Indispensable quality controls

Sunnaker et al. (2013) PLoS Comp. Biol.

ABC programs

Software	Keywords and Features
DIY-ABC	Software for fit of genetic data to complex situations. Comparison of competing models. Parameter estimation. Computation of bias and precision measures for a given model and known parameters values.
ABC R package	Several ABC algorithms for performing parameter estimation and model selection. Nonlinear heteroscedastic regression methods for ABC. Cross-validation tool.
ABC-SysBio	Python package. Parameter inference and model selection for dynamical systems. Combines ABC rejection sampler, ABC SMC for parameter inference, and ABC SMC for model selection. Compatible with models written in Systems Biology Markup Language (SBML). Deterministic and stochastic models.
ABCtoolbox	Open source programs for various ABC algorithms including rejection sampling, MCMC without likelihood, a particle-based sampler, and ABC-GLM. Compatibility with most simulation and summary statistics computation programs.
msBayes	Open source software package consisting of several C and R programs that are run with a Perl "front-end." Hierarchical coalescent models. Population genetic data from multiple co-distributed species.
PopABC	Software package for inference of the pattern of demographic divergence. Coalescent simulation. Bayesian model choice.
ONeSAMP	Web-based program to estimate the effective population size from a sample of microsatellite genotypes. Estimates of effective population size, together with 95% credible limits.
ABC4F	Software for estimation of F-statistics for dominant data.
2BAD	Two-event Bayesian ADmixture. Software allowing up to two independent admixture events with up to three parental populations. Estimation of several parameters (admixture, effective sizes, etc.). Comparison of pairs of admixture models.

doi:10.1371/iournal.pcbi.1002803.t003

ABC_GWH http://www.abcgwh.sitew.ch/#Background.A

Sunnaker et al. (2013) PLoS Comp. Biol.

Demography and linked selection

Research article

Background selection as null hypothesis in population genomics: insights and challenges from *Drosophila* studies

Josep M. Comeron 🖂

Published: 06 November 2017 https://doi.org/10.1098/rstb.2016.0471

➡ HOME MAGAZINE COMMUNITY INNOVATION

NEWSLETTER ABOUT

Research Article Genetics and Genomics

Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences

Fanny Pouyet [©], Simon Aeschbacher, Alexandre Thiéry, Laurent Excoffier [©]

University of Bern, Switzerland; Swiss Institute of Bioinformatics, Switzerland; University of Zurich, Switzerland

Aug 20, 2018 · https://doi.org/10.7554/eLife.36317 👌 💿

The Impact of Purifying and Background Selection on the Inference of Population History: Problems and Prospects 3

Parul Johri ⊠, Kellen Riall, Hannes Becher, Laurent Excoffier, Brian Charlesworth, Jeffrey D. Jensen

Molecular Biology and Evolution, Volume 38, Issue 7, July 2021, Pages 2986–3003, https://doi.org/10.1093/molbev/msab050 **Published:** 16 February 2021

BROWSE PUBLISH ABOUT

PLOS BIOLOGY

OPEN ACCESS

CONSENSUS VIEW

Recommendations for improving statistical inference in population genomics

Parul Johri, Charles F. Aquadro, Mark Beaumont, Brian Charlesworth, Laurent Excoffier, Adam Eyre-Walker, Peter D. Keightley, Michael Lynch, Gil McVean, Bret A. Payseur, Susanne P. Pfeifer, Wolfgang Stephan, Jeffrey D. Jensen

Published: May 31, 2022 • https://doi.org/10.1371/journal.pbio.3001669

Article	Authors	Metrics	Comments	Media Coverage
*				

Demographic inference based on Site frequency spectrum (SFS) – Part II

Vitor C. Sousa

CE3C – center for ecology, evolution and environmental changes Department of Animal Biology Faculdade de Ciências da Universidade de Lisboa

> 2022 WSPG Cesky Krumlov 09 Jun 2022

vmsousa@fc.ul.pt

Outline part II

Example of Applications:

- Human dispersal out of Africa (high quality whole-genome) lessons on model comparison with linked SNPs
- Human colonization of Siberia and America (ancient wholegenome data) - lessons on dealing with sequencing errors
- Deer mice colonization of Nebraska Sand Hills (targeted recapture data) – lessons on effects of filtering
- Divergence times and gene flow in sawflies (ddRAD-seq data) lessons from model comparison with ddRAD
- Hybridization in freshwater fish (GBS data) lessons from inferring relative parameters

Nourlangie, Kakadu National Park, NT, Australia

A genomic history of Aboriginal Australia

Anna-Sapfo Malaspinas^{1,2,3}*, Michael C. Westaway⁴*, Craig Muller¹*, Vitor C. Sousa^{2,3}*, Oscar Lao^{5,6}*, Isabel Alves^{2,3,7}*, Anders Bergström⁸*, Georgios Athanasiadis⁹, Jade Y. Cheng^{9,10}, Jacob E. Crawford^{10,11}, Tim H. Heupink⁴, Enrico Macholdt¹², Stephan Peischl^{3,13}, Simon Rasmussen¹⁴, Stephan Schiffels¹⁵, Sankar Subramanian⁴, Joanne L. Wright⁴, Anders Albrechtsen¹⁶, Chiara Barbieri^{12,17}, Isabelle Dupanloup^{2,3}, Anders Eriksson^{18,19}, Ashot Margaryan¹, Ida Moltke¹⁶, Irina Pugach¹², Thorfinn S. Korneliussen¹, Ivan P. Levkivskyi²⁰, J. Víctor Moreno-Mayar¹, Shengyu Ni¹², Fernando Racimo¹⁰, Martin Sikora¹, Yali Xue⁸, Farhang A. Aghakhanian²¹, Nicolas Brucato²², Søren Brunak²³, Paula F. Campos^{1,24}, Warren Clark²⁵, Sturla Ellingvåg²⁶, Gudjugudju Fourmile²⁷, Pascale Gerbault^{28,29}, Darren Injie³⁰, George Koki³¹, Matthew Leavesley³², Betty Logan³³, Aubrey Lynch³⁴, Elizabeth A. Matisoo-Smith³⁵, Peter J. McAllister³⁶, Alexander J. Mentzer³⁷, Mait Metspalu³⁸, Andrea B. Migliano²⁹, Les Murgha³⁹, Maude E. Phipps²¹, William Pomat³¹, Doc Reynolds⁴⁰, Francois-Xavier Ricaut²², Peter Siba³¹, Mark G. Thomas²⁸, Thomas Wales⁴¹, Colleen Ma'run Wall⁴², Stephen J. Oppenheimer⁴³, Chris Tyler-Smith⁸, Richard Durbin⁸, Joe Dortch⁴⁴, Andrea Manica¹⁸, Mikkel H. Schierup⁹, Robert A. Foley^{1,45}, Marta Mirazón Lahr^{1,45}, Claire Bowern⁴⁶, Jeffrey D. Wall⁴⁷, Thomas Mailund⁹, Mark Stoneking¹², Rasmus Nielsen^{1,48}, Manjinder S. Sandhu⁸, Laurent Excoffier^{2,3}, David M. Lambert⁴ & Eske Willerslev^{1,8,18}

Nature(2016)

Ewaninga Rock Carvings Conservation Reserve, NT, Australia

Australia harbors some of the oldest modern human remains outside Africa

Many sites and remains dated to be older than 40 kya, suggesting a human settlement 47.5-55 kya

One wave out of Africa vs Two waves out of Africa

83 high-coverage Aboriginal Australians genomes

Average depth of coverage: 65x Very good quality of genotype calls

Effect of depth of coverage on SFS

 Compared 2D SFS based on depth of coverage of observed data (mean larger than >20x), with a distribution 8 times smaller.

A note on recovering the SFS from genomic data a) Low depth of coverage, no GQ filter, allowing missing data

- Simulation study •
- Low depth of coverage and missing data lead to biased SFS towards rare variants

b) Depth of coverage similar to observed data, GQ>30 filter, no missing dat

83 high-coverage Aboriginal Australians genomes

- ★ Archaic human genomes:
 - 1 Neanderthal (~66 kya)
 - 1 Denisovan (~52 kya)

Mutation rate assumed 1.25 x 10⁻⁸ /site/gen Scally and Durbin (2012) *Nat. Rev. Genet.*

Generation time

29 years/gen Fenner (2005) *Am. J. Phys. Anthropol.*

Since we want to infer demography we tried to minimize the number of sites affected by selection:

- 985 1Mb blocks outside genic regions and CpG islands (~4.3 Million SNPs)
- 5 dimensional SFS (16,875 entries)
- Confidence intervals obtained using block-bootstrap

Towards a model to test the hypotheses: One vs Two waves Out of Africa

- Data (SFS)
- (Re-)Define model (hypotheses to test)
- Run fastsimcoal2
- Estimates!
 - Assess the fit to the data

Do you have an outgroup?

- Yes use the derived (unfolded) SFS
- No use the minor allele frequency spectrum (folded)

Do you have monomorphic sites?

- Yes then, given a mutation rate you can infer the absolute times and effective sizes
- No then all your estimates need to be relative to a fixed parameter (fixed Ne or fixed time)

We always get results...

Evidence of two waves Out of Africa:

- Old split leading to colonization of Australia (81kya)
- More recent split leading to colonization of Eurasia (67 kya)

Towards a model incorporating Neanderthal and Denisovan admixture

- Non-African populations: 1-4% estimated Neanderthal admixture
- Aboriginal Australians and New Guineans: 3-6% estimated Denisovan admixture
- Archaic admixture can affect times of split estimates

Evidence of archaic introgression

Total length (Mb) of:

- Putative Denisovan haplotype (PDH)
- Putative Neanderthal haplotypes (PNH)

Unadmixed Australo-Papuans

Accounting for shared ancestry of Neanderthal and Denisovan

Admixture occurs between modern humans and:

- Denisovan-related (D.R.) population
- Neanderthal-related (N.R.) population

Two-waves out of Africa

West Africans

Unsampled

East Africa

Europeans

East

Asians

Australians

Present

- $(\Delta t >> 0)$
- Two independent bottlenecks associated with the two Out of Africa events

Two-waves out of Africa

Two-waves out of Africa

- Two different divergence times (\Delta t >> 0)
- Two independent bottlenecks associated with the two Out of Africa events

West ghost Eurasians Australians Africans

One wave out of Africa

- Similar divergence times (∆t close to zero)
- One single bottlenecks associated with the Out of Africa events
- A major admixture pulse with Neanderthal

- Similar divergence time (∆t close to zero)
- Bottleneck associated with the Out of Africa event

- Similar divergence time (∆t close to zero)
- Bottleneck associated with the Out of Africa event
- A major admixture pulse with Neanderthal in ancestors of all non-Africans

- Similar divergence time (∆t close to zero)
- Bottleneck associated with the Out of Africa event
- A major admixture pulse with Neanderthal in ancestors of all non-Africans

Model captures aspects about the observed data

What entries are not well fitted?

Pagani et al (2016) suggests two waves: Papuan genomes with signature of admixture with humans from first wave (at least 2% of their genome).

Model captures the higher derived allele sharing between Eurasians and Yoruba

Australia Europe Yoruba Chimp or East Asian

D-statistics suggest that Yoruba and Eurasians share more derived alleles than Yoruba and Australians

Summary Aboriginal Australians genomes support a single major wave out of Africa

- Accounting for archaic admixture with Neanderthal and Denisovan was crucial to understand population divergence
- Genomic data consistent with a single major dispersal event out of Africa (60-104 kya)
- Two major dispersal waves into Asia: Aboriginal Australians diverged
 51-72 kya from Eurasians

ARTICLE

The population history of northeastern Siberia since the Pleistocene

Martin Sikora^{1,43}*, Vladimir V. Pitulko^{2,43}*, Vitor C. Sousa^{3,4,5,43}, Morten E. Allentoft^{1,43}, Lasse Vinner¹, Simon Rasmussen^{6,41}, Ashot Margaryan¹, Peter de Barros Damgaard¹, Constanza de la Fuente^{1,42}, Gabriel Renaud¹, Melinda A. Yang⁷, Qiaomei Fu⁷, Isabelle Dupanloup⁸, Konstantinos Giampoudakis⁹, David Nogués–Bravo⁹, Carsten Rahbek⁹, Guus Kroonen^{10,11}, Michaël Peyrot¹¹, Hugh McColl¹, Sergey V. Vasilyev¹², Elizaveta Veselovskaya^{12,13}, Margarita Gerasimova¹², Elena Y. Pavlova^{2,14}, Vyacheslav G. Chasnyk¹⁵, Pavel A. Nikolskiy^{2,16}, Andrei V. Gromov¹⁷, Valeriy I. Khartanovich¹⁷, Vyacheslav Moiseyev¹⁷, Pavel S. Grebenyuk^{18,19}, Alexander Yu. Fedorchenko²⁰, Alexander I. Lebedintsev¹⁸, Sergey B. Slobodin¹⁸, Boris A. Malyarchuk²¹, Rui Martiniano²², Morten Meldgaard^{1,23}, Laura Arppe²⁴, Jukka U. Palo^{25,26}, Tarja Sundell^{27,28}, Kristiina Mannermaa²⁷, Mikko Putkonen²⁵, Verner Alexandersen²⁹, Charlotte Primeau²⁹, Nurbol Baimukhanov³⁰, Ripan S. Malhi^{31,32}, Karl-Göran Sjögren³³, Kristian Kristiansen³³, Anna Wessman^{27,34}, Antti Sajantila²⁵, Marta Mirazon Lahr^{1,35}, Richard Durbin^{22,36}, Rasmus Nielsen^{1,37}, David J. Meltzer^{1,38}, Laurent Excoffier^{4,5*} & Eske Willerslev^{1,36,39,40}*

Nature (2019)

Colonization of Siberia

Levānluhta Ust'Ishim (45 kya) Afontova Gora (17 kya) Yana Phis Mal'ta (24 kya) Upward Sun Duvanni Yar (Kolyma) River (11.5 kya) Ekven Ust'Belaya Ol'skaya (Magadan) Tianyuan (40 kya) Devil's Gate Cave

Yana RHS (31,600 years ago) Whole-genome depth of coverage 25x

Kolyma (9,800 years ago) Whole-genome depth of coverage 14x

Hypothesis: Continuity vs Replacement of populations

Data: Ancient and presentday samples; 625 blocks of 1Mb (~1.5 Million SNP), far from genic regions and CpG islands

Method: Composite likelihood - *fastsimcoal2* (Excoffier et al, 2013 Plos Genetics)

Europe Ancient Ancient (Sardinia) North Paelo-Siberians siberian (Yana) (Kolyma)

Neo-

siberian

(Even)

Fast

Asia

(Han)

Site frequency spectrum is affected by damage patterns in ancient DNA

- High proportion of singletons in Kolyma probably reflect errors
- Thus, all analyses were performed discarding the singletons

Data: Marginal 2D-SFS

Observed Data: Joint 5 population site-frequency spectrum (1125 entries) obtained from 625 blocks of 1Mb (~1.5 Million SNP)

Model comparison and likelihood profiles consistent with replacement with gene flow

Model comparison and likelihood profiles consistent with replacement with gene flow

Estimates of best nested model indicate replacement with gene flow

Eit of avaatad CEC to abaarvad data

Expected SFS according to the parameters that maximize the likelihood

Eit of avaatad CEC to abaarvad data

Observed SFS

Siberia and colonization of the Americas Yana RHS (31,600 ye

Yana RHS (31,600 years ago) Whole-genome depth of coverage 25x

USR1 (11,500 years ago) Alaska

Kolyma (9,800 years ago) Whole-genome depth of coverage 14x

Estimates consistent with replacement with gene flow

- Kolyma is the closest population to Native Americans (USR1 and Karitiana)
- Native Americans with a contribution of up to 20% from Yana

Summary: 3 migration waves

• Ancient North Siberians (Yana) reached Siberia before 30 ka (thousand-years ago)

Summary: 3 migration waves

- Ancient North Siberians (Yana) reached Siberia before 30 kya
- Paleo-Siberians (Kolyma) migrated after Last Glacial Maximum (26.5 ka)
- Native-Americans are closer to Kolyma, with 20% of Yana contribution

Summary: 3 migration waves

- Ancient North Siberians (Yana) reached Siberia before 30 ka
- Paleo-Siberians (Kolyma) likely migrated after Last Glacial Maxima
- Native-Americans are closer to Kolyma, with 20% of Yana contribution
- Paleo-Siberians (Kolyma) were replaced by Neo-Siberians, likely associated with the cooler period "Younger Dryas" (12.8-11.5 ka)

3rd migration wave

Deer mice from Nebraska Sand Hills

S. Pfeifer, S. Laurent, V. Sousa, C. Linnen, H. Hoekstra, L. Excoffier, J. Jensen

Coat color adaptation in deer mice *Peromyscus maniculatus*

- Habitat (soil color) correlated with coat phenotype
- Field experiments suggest that light color confers selective advantage against visually hunting predators
- Nebraska Sand Hills were formed 8000 to 15,000 years ago

Linnen et al (2013) Science

Pfeifer*, Laurent*, Sousa* et al (2018) MBE

A transect across the Sand Hills (ON and OFF)

Sample locations "off" and "on" the Sand Hills

- 11 populations
- 330 individuals

- Genomic data (NGS) data
 - Target 10,000 random 1.5kb regions
 - 185kbp region comprising the *Agouti* gene
- Phenotypic data for each individual

Evidence for isolation by distance but three groups

43.5

43.0

42.5

Latitude 42.0

41.5

41.0

40.5

Model-based inference

Is there evidence of gene flow between Off and On the Sand Hills?

Estimates based on the joint **3D site frequency spectrum** (SFS): - folded SFS with 140,358 SNPs

Deer mice: Pairwise marginal 2D SFS Since we did not have an outgroup we used the folded SFS

Estimates support south colonization Time (kya) and high gene flow levels Split Off North/South Recent time of colonization of 45.5 kya Sand Hills ~3-5 kya, younger than formation of Sand Hills 8-15 kya 3.6e-4 High migration rates across all populations, inferred for all models Split On Migration rates above/below 3.7 kya arrows in units of 2Nm, i.e. 12.5 average number of immigrants 18.3 6.4 per generation. 3.6 4.9

Off N On Off S

Deer mice: Model fit to marginal SFS

1

Some lessons I learned working with the deer mice data

- Be carefull when applying Hardy-Weinberg filters to your data
- Be carefull when filtering on depth of coverage applying the same thresholds for all individuals

The depth of coverage varied considerably across individuals

- Applying the same threshold for all individuals can lead to biases
- Apply a filter on DP for each individual

Effect of DP filters on the SFS Simulation study

Effect of HW filtering on demographic estimates Removing sites with HWE excess and deficit leads to different estimates

Sawflies and RAD data

MOLECULAR ECOLOGY

Molecular Ecology (2016)

doi: 10.1111/mec.13972

History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (*Neodiprion lecontei*)

ROBIN K. BAGLEY,* VITOR C. SOUSA,† MATTHEW L. NIEMILLER‡ and CATHERINE R. LINNEN*

*Department of Biology, University of Kentucky, Lexington, KY 40506, USA, †cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal, ‡Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA

Sawflies Neodiprion lecontei

- Hymenoptera
- Plant-feeding insects
- Pine tree specialists

ddRAD seq data

- 80 individuals from 77 localities and 13 host species
- 100 bp paired-end reads, mapped to reference genome of *N. lencontei*
- Depth of coverage filter DP>10

Given the detected three groups (North, Central, South):

- What is the the population tree topology?
- What are the split times?
- What are the migration levels among groups?

Comparing models with composite likelihoods

- Fastsimcoal2 likelihood is "correct" if all SNPs are independent
- We can then compare the model likelihoods using Akaike Information Criterion (AIC)

Effective size (Ne)

Composite likelihood provide unbiased maximum likelihood parameter estimates, but the likelihoods are inflated

A strategy to compare models

- 1. Divide the dataset into LD blocks.
- 2. Create a dataset with all SNPs (including linked SNPs)
- For each model, obtain the parameters that maximize the likelihood (this is ok even with linked sites!) and the corresponding expected SFS
- 4. Create a dataset with "independent" SNPs (1 SNP per RAD tag)
- Given the expected SFS of each model, compute the "correct" likelihood for each model with the dataset with independent SNPs
- 6. Compare models with AIC

"Correct" likelihood for each model

Comparing alternative models

Γ

Table 2 Summary of the likelihoods for the sixteen demographic models tested. Lhood (ALL SNPs) and Lhood (1 SNP) correspond to the mean likelihood computed with the data sets containing 'all SNPs' (including monomorphic sites) and a 'single SNP' (without monomorphic sites) per RAD locus, respectively. Mean likelihoods were computed based on 100 expected site frequency spectra simulated according to the parameters that maximized the likelihood of each model. Topology names for each model are as indicated in Fig. S1 (Supporting information). AIC scores and relative likelihoods (Akaike's weight of evidence) were calculated based on the 'single SNP' data set following Excoffier *et al.* 2013.

Topology	Migration allowed?	Exponential growth?	North bottleneck?	log ₁₀ (Lhood) ALL SNPs	log ₁₀ (Lhood) 1 SNP	# Parameters	AIC	ΔΑΙΟ	Relative likelihood
North–South	No	No	No	-46502.02	-7381.4	7	34006.70	75.69	0.000
North–Central	No	No	No	-46475.82	-7369.0	7	33949.44	18.43	0.000
South-Central	No	No	No	-46502.18	-7381.6	7	34007.60	76.59	0.000
Trifurcation	No	No	No	-46501.54	-7380.4	5	33998.07	67.06	0.000
North–South	Yes	No	No	-46470.49	-7365.0	15	33947.25	16.24	~0.000
North–Central	Yes	No	No	-46462.24	-7361.5	15	33931.01	0.00	0.851
South-Central	Yes	No	No	-46467.69	-7363.8	15	33941.57	10.56	0.004
Trifurcation	Yes	No	No	-46470.28	-7364.7	11	33937.93	6.91	0.027
North–South	Yes	Yes	No	-46469.48	-7362.8	18	33942.91	11.90	0.002
North–Central	Yes	Yes	No	-46461.17	-7361.7	18	33937.82	6.80	0.028
South-Central	Yes	Yes	No	-46463.73	-7363.9	18	33948.15	17.13	~0.000
Trifurcation	Yes	Yes	No	-46467.72	-7363.3	14	33937.39	6.37	0.035
North–South	Yes	Yes	Yes	-46467.45	-7361.5	20	33940.86	9.85	0.006
North–Central	Yes	Yes	Yes	-46461.25	-7362.1	20	33943.82	12.81	0.001
South-Central	Yes	Yes	Yes	-46463.58	-7364.1	20	33953.08	22.07	0.000
Trifurcation	Yes	Yes	Yes	-46466.06	-7362.4	16	33936.93	5.92	0.044

Estimates favors a scenario where North and Central diverged more recently with asymmetric gene flow

The inferred population tree topology and divergence times are consistent with divergence and range expansion from different refugia after LGM

Summary

- Fastsimcoal2 can be applied to RAD seq data
- We used a strategy to obtain (as close as possible) the "correct" likelihood by dividing the data into blocks, inferring the expected SFS for each model with ALL SNPs, and then re-computing the "true" likelihood with independent SNPs (1 SNP per block)
- Despite the reduced number of SNPs we were able to discriminate models based on their likelihoods

Inferring admixture in freshwater fish species

Sofia Mendes (EG, cE3c)

Admixture results (*K*=4)

Mendes et al. (2021) Heredity

Fig. 3 Unrooted species tree graph obtained with TreeMix. Branch lengths are represented in units of genetic drift, i.e. the longer a given branch the stronger the genetic drift experienced in that lineage. Higher genetic drift can be due to older divergence times or smaller effective population sizes of a given lineage. Arrows represent migration events.

D-statistic (ABBA-BABA)

D-statistic indicates that the relationship cannot be described by a bifurcating tree

Mendes et al. (2021) Heredity

Pairwise 2D-folded SFS without monomorphic sites – inference based on relative parameters

- DP>10x
- Dowsampling 3 individuals from P1 (*S. carolitertii*), 4 individuals from H (*S. pyrenaicus North*), 3 individuals from P2 (*S. pyrenaicus* South)
- 8,758 SNPs
- Folded SFS according to minor allele across the 3 populations
- Size of the three pairwise 2D-SFS: 175 entries

Relative parameter estimates

Mendes et al. (2021) Heredity

Figure S11– Relative likelihoods of demographic models based on AIC. Comparison of 8 models, including models B and C without bottlenecks, with 1000 bootstrap replicates. (A) Boxplots of relative likelihoods based on 3D-SFS with <u>all SNPs</u> per block with n=3 *S. carolitertii*, n=4 *S. pyrenaicus* North and n=3 *S. pyrenaicus* South individuals. Size of the joint 3D-SFS is SFSsize=441.

Protocol for model comparison based on AIC when we have independent SNPs

- Get the observed SFS
- Define the alternative models
- Perform 50-100 runs under each model
- Select the runs with maximum likelihood under each model
- Compute the AIC (Akaike information critera) for each model based on dataset with unlinked SNPs
- Select the model with minimum AIC

Acknowledgements

Laurent Excoffier

UID/BIA/00329/2015-2018 UID/BIA/00329/2019 CEECIND/02391/2017

MCSA 2018-2020: MAPgenome (N.799729)