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Today’s activity

7:00 - 7:30 : Differential expression background

7:30—8:30 : Free work time
(take a break when you need/want it)

8:30 — 8:45 : Check-in, walk through some preliminary
results

8:45 —-9:30 : Free work time
(take a break when you need/want it)

9:30 - 10 : Wrap-up and discussion
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Lecture outline

1. Ref-based differential expression overview

2. Trimming, mapping, counting

@ Basic Statistics

@Per base sequence quality

/ Y . .
(.l Per tile sequence quality

o LEL UL ouMUDT LT YUdlY.

Genome

Splice-Aware
Alignment

3. Differential expression analysis

a. Normalization
b. Dispersion estimates
c. Model fitting

d. Hypothesis testing & output

Deviations from global mean
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1. Biology of gene expression

Gene expression

The selective activity of Celltype  Red blood Muscle Pancreatic
certain genes is a highly QQ
regulated process called gene ‘
expression. C—

Housekeeping | | |
Gene expression is a Hemoglobin | || |
characteristic of space (e.g., insulin | | .
cell type, tissue, etc.) and Myosin | | |
time (e.g., developmental

stage, time after event)



1. Biology of gene expression

Gene expression

The selective activity of Cell type
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Gene expression is a
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Price et al. 2022. Nature Ecology and Evolution



(Ref-based) DGE workflow
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Combinations of tools

can matter.

(Baruzzo et al. 2015 Nature Methods)
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Quality control

Raw
short-read
RNAseq

Input

genome

Reference

Annotation

J

trimming?  :| TrimGalore
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reeneeenes Neeereaees .| BBduk
: Read  :| Trimmomatic

<gc

Reads: To trim or not to trim?
- genome annotation, variant calling, transcriptome assembly :

Trim!

BlobTools
Quast
SegKit
BUSCO

- Anything else, maybe trim lightly?

- adapters + low quality score (Q10-15)

(Williams et al. 2016 BMC Bioinformatics,

Liao and Shi 2020 NAR Genomics and Bioinformatics)

AGAT stats

S

OHR
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Quality control

Raw
short-read
RNAseq

Input

Reference

genome

Annotation
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Reference genome considerations:

- What maps where:
- Recent duplications?

- Highly repetetive content?

- Missing content?




Quality control

Raw
short-read
RNAseq
data

Input

Reference
genome

Annotation

‘ .| BBduk
:  Read :| Trimmomatic
:..imming? | TrimGalore <?C

( MultiQe

Annotation considerations:

- What features have been annotated?

BlobTools
Quast
SegKit
BUSCO

AGAT stats
<3> BUSCO
OHR

- Was RNAseq data used in the annotation?

- What RNA? Life stage? Sex?

- In the lab, we use a protein-based BRAKER2 annotation



Sequence alignment

Alignment

STAR 2pass
Hisat2

:Visualizé:: (1GV

QC >( MultiQC

.................
i Transcript :
: identification :

.

[StringTie

.
ooooooooooooooooo

What are some challenges when alighing RNA-seq
reads to the reference genome?



Sequence alignment

What are some challenges when aligning RNA-seq
reads to the reference genome?

pre-mRNA

15



Splice-aware sequence alignment

Transcript Exon 1 Exon 2 Exon 3
[ 1 L 1
1

Trimmed | |
short reads I




Splice-aware sequence alignment

Transcript Exon 1 Exon 2 Exon 3
N T
Trimmed I |
N
short reads ]

Alignment to reference genome
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Exon 1 Exon 2 Exon 3
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Counting reads as a measure of
expression

* Now we have our reads aligned to the genome, the next step is to count how
many reads have been mapped to each features or metafeature.

* Two common counting tools are featureCounts and htseq-count.

» Total read count associated with a gene (meta-feature) = the sum of reads
associated with each of the exons (feature) that "belong" to that gene.

genomics@ip-172-31-11-182:[~/workshop_materials/differential_expression/refs]$ head Pca_annotation.gtf
AUGUSTUS transcript 22193 24413 . - . transcript_id "Polcal_gl.tl1"; gene_id "Polcal_gl";
AUGUSTUS exon 22193 22320 5 5 transcript_id "Polcal_gl.tl1"; gene_id "Polcal_gl";
AUGUSTUS exon 23838 24048 . . transcript_id "Polcal_gi1.tl"; gene_id "Polcal_gil";
AUGUSTUS exon 24390 24413 3 : transcript_id "Polcal_gi1.tl1l"; gene_id "Polcal_gil";
AUGUSTUS CDS 22193 22320 5 transcript_id "Polcal_gi1.tl"; gene_id "Polcal_gil";
AUGUSTUS CDS 23838 24048 4 transcript_id "Polcal_gi1.tl1l"; gene_id "Polcal_gil";
AUGUSTUS CDS 24390 24413 v transcript_id "Polcal_gi1.tl1l"; gene_id "Polcal_gil";
AUGUSTUS transcript 79912 80136 5 5 transcript_id "Polcal_g2.tl1l"; gene_id "Polcal_g2";
AUGUSTUS exon 79912 80136 5 - . transcript_id "Polcal_g2.tl"; gene_id "Polcal_g2";

LG1 AUGUSTUS CDS 79912 80136 5 - 0 transcript_id "Polcal_g2.tl1l"; gene_id "Polcal_g2";

genomics@ip-172-31-11-182:[~/workshop_materials/differential_expression/refs1$ [J
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What should count??

gene B

gene_B

¥

HTSeg manual 19



Output of counting = A count matrix, with genes as rows and samples as columns

These are the “raw” counts and will be used in the downstream statistical program for

differential gene expression.

Each row is a gene

GENE ID

1/2-SBSRNA4

A1BG

Al1BG-AS1

A1CF
A2LD1
A2M
A2ML1
A2MP1
A4GALT
A4GNT
AAO6
AAAL
AAAS
AACS
AACSP1
AADAC
AADACL2
AADACL3
AADACL4
AADAT
AAGAB
AAK1
AAMP
AANAT
AARS

AAan/,n

Each column is a sample

KD.2
57
71
256
0
146
10
3
0
56
0
0
0
2288
1586

O 0 O O »

856
4648
2310
5198

5570

aars

KD.3

41
40
177

81

1363
923

O 0 O O »

539
2550
1384
3081

3323

~mam

OE.1

64
100
220

138

OE.2

55
81
189

OE.3

38
41
107

52

65

(=

835
484

O 0C O O »

359
1481
980
1721

2473

A an

IR.1

45
77
213

1672
938

O 0 O O »

567
3265
1675
4061

3953

~ann

IR.2

1389
771

O 0 O O »

521
2790
1614
3304

3339

~Amra

IR.3

1121
635

o0 O 0w

2118
1108
2623

2666

«rem
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Differential expression analysis

Expression level

’ Condition A data difference

H . Condition B data . ’ . .
Analysis

Deviations from global mean

.. @
‘ Group mean ' ﬁ .. ’ @ Significant
) @

No significant difference

samples: want to see if differences

features (e.g. genes) across condition are significant
Genei S1 S2 S3 /54 S5 S6
Polcal g1 17 10 5 23 10 6
Polcal_g2 0 1 0 1 2 1
Polcal_g3 7 0 2 7 4 0
Polcal g4 17 11 5 21 10 12



Differential expression analysisis

[
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[WGCNA

Differential
gene/transcript
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Differential edgeR
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Differential expression analysisis

[
Differential
Network .
ana\;\)l/szs [WGCNA gene/transcript [nggSe R 5
expression €q

1

Differential
exon
expression

Raw read counts associated with features

A

|

A

Normalization

]

Unsupervised clustering analyses

!

Modeling raw counts for each gene

Testing for differential expression

edgeR

[DEXSqu

JunctionSeq
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DESeq2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2

Michael | Love, Wolfgang Huber & Simon Anders

Genome Biology 15, Article number: 550 (2014) | Cite this article

450k Accesses | 34853 Citations | 131 Altmetric | Metrics

24



Normalization

* Normalization is NOT fitting a normal distribution or transforming data
transformation.

* Normalization aims to identify the nature and magnitude of systematic
biases, and take them into account in our model-based analysis of the

data.

The main factors often considered during normalization are:
e Sequencing depth
* RNA composition
* Gene length (some methods)

25



Normalization

Sequencing depth
Sample A Reads

Sample B Reads

26



Normalization

Sequencing depth
Sample A Reads
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Normalization

RNA composition

* A few highly differentially
expressed genes

* Can skew some normalization
methods

Sample A Reads
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Median of ratios (MRN) normalization

* Used by DESeq2 (DGE analysis tool we will use today)

Let’s see how the normalization works...



Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

sampIeA sampIeB Pseudo-reference sample

EF2A 1489 sqrt(1489*906) = 1161.5
ABCD1 22 13 sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

sampleA | sampleB | Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref
reference
sample
EF2A 1489 906 1161.5 1489/1161.5 =1.28 906/1161.5=0.78
ABCD1 22 13 16.9 22/16.9 =1.30 13/16.9 =0.77

MEFV 793 410 570.2 793/570.2 =1.39 410/570.2 =0.72
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The figure below illustrates the median value for the distribution of all gene ratios
for a single sample (frequency is on the y-axis).

sample 1/ pseudo-reference sample

1500 2500
| | 1 1

500
|

1
4

o I.IIIII||||||IIIIII-I--.-I e
l | | I
0 1| 2 3

The median of ratio methods makes the assumption that not ALL genes are
differentially expressed; therefore, the normalization factors should account for
sequencing depth and RNA composition of the sample (large outlier genes will not
represent the median ratio values).

31



Step 3. Calculate the normalization factor for each sample (size factor)

sampleA | sampleB | Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref

reference
sample

1489/1161.5=1.28 906/1161.5=0.78

ABCD1 22 13 16.9 22/16.9=1.30

793/570.2 = 1.39

13/16.9 =0.77
410/570.2 =0.72

median(c(1.28, 1.3, 1.39, 1.35, 0.59))
=1.3

median(c(1.28, 1.3, 1.39, 1.35, 0.59))
=1.3



Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene | samplen | samples__
EF2A 1489 906
ABCD1 22 13

Normalized counts

oo ampen ———sampis

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62
ABCD1 22/1.3=16.92 13/0.77 = 16.88

Normalized counts are not whole numbers!
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Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors) 2 done!

Step 2. Estimate gene-wise dispersion

* To accurately model sequencing counts, we need to generate
accurate estimates of within-group variation for each gene (aka

dispersion)
* need to choose the right distribution



Properties of RNA-seq count data

The distribution of RNA-seq counts for a single sample looks as below:

Number of genes

Raw expression counts

Low number of counts associated with a large proportion of genes and a long
right tail due to the lack of any upper limit for expression.



Statistical modeling of count data



Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?
- Used when the number of cases is very large but the chance of a
particular event is very low.

- A property of Poission distribution is that the mean = variance.



Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

- Used when the number of cases is very large but the chance of a
particular event is very low.

- A property of Poission distribution is that the mean = variance.
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Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

- Used when the number of cases is very large but the chance of a
particular event is very low.

- A property of Poission distribution is that the mean = variance.
mean # variance

Poisson distribution is not suitable

- to model count data across the
biological samples.




The distribution that fits best is the Negative Binomial (NB) distribution.
- two parameters, one for the mean and one for the variance

- fexlibility to estimate the amount of dispersion for each gene across samples.

)
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How does the dispersion relate to our model?

* the estimates of variation for each gene are often
unreliable.

* DESeq2 shares information across genes to generate more
accurate estimates of variation : 'shrinkage’.

e assumes that genes with similar expression levels have similar dispersion.



Step 3: Fit curve to gene-wise dispersion estimates

Different genes will have different scales of biological variability

However, we make the assumption that DESeq2 assumes that genes with
similar expression levels have similar dispersion.

Fitted dispersion curve = expected dispersion for genes of a given level of
expression (e.g., mean normalized count)

1e4+00

dispersion
1e-04

e gene-est
« fitted
1. * final

T T T
1e-01 1e+01 12403 1e+05

1e-08

mean of normalized counts .



Step 4: Shrink dispersion estimates for each gene toward the values
predicted by the curve
- Genes with low dispersion estimates are shrunken towards the curve

- Genes with high dispersion estimates do not follow model assumptions, and are their
dispersion is not shrunken

This shrinkage method is particularly important to reduce false positives
in the differential expression analysis.

dispersion estimate
0.1

0.001 0.01

1 100 10000

mean of normalized counts 43



Model fitting and hypothesis testing

Expression level

Blue: base level group, control group

O Global mean
Red: treatment group Q@ cowmen d ‘3 .
. Condition A data % o ‘
. Condition B data “. . .

¢ — >
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Model fitting and hypothesis testing

Expression level

Blue: base level group, control group

® @
O Global mean . . .
Red: treatment group Q@ Grovpmean 0.‘3 us % @ @
. Condition A dat ' . o .
@ condition B dat .. CD o @ @

Step 5. Generalized Linear Model fit for each gene

Y = ,BO 4 331131 .+ y=transformed expression level
* B, =intercept (the estimated expression for the base
level group, expression in the blue group)
* x;=a binary indicator variable for (0 if part of the
blue group, 1 if part of the red group)
* B, = coefficient for the treatment group (red)
Y = ,80 + ,81 * represents the difference between red and blue

45



Model fitting and hypothesis testing

Expression level

Blue: base level group, control group

® @
O Global mean . . .
Red: treatment group Q@ Grovpmean 0.‘3 us % @ @
. Condition A dat ' . o ‘
@ condition B dat .. CD o @ @

Step 5. Generalized Linear Model fit for each gene

Y = ,BO 4 331,31 .+ y=transformed expression level
* B, =intercept (the estimated expression for the base
level group, expression in the blue group)
* x;=a binary indicator variable for (0 if part of the
blue group, 1 if part of the red group)
* B, = coefficient for the treatment group (red)
Y = ,80 + ,81 * represents the difference between red and blue

\

B = Y — Bo = log,(expression,.q) —log,(expressionyy.)
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Model fitting and hypothesis testing

Expression level

Blue: base level group, control group

® @
O Global mean . . .
Red: treatment group Q@ Grovpmean 0.‘3 us % @ @
. Condition A dat ' . o ‘
@ condition B dat .. CD o @ @

Step 5. Generalized Linear Model fit for each gene

Y = ,BO 4 331,31 .+ y=transformed expression level
* B, =intercept (the estimated expression for the base
level group, expression in the blue group)
* x;=a binary indicator variable for (0 if part of the
blue group, 1 if part of the red group)
* B, = coefficient for the treatment group (red)
Y = ,80 + ,81 * represents the difference between red and blue

\

By = Y — B, =log,(expression,. ;) — log,(expressiony;,,)
_ log,(expression,.q)
~ log, (expression,y.)
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Model fitting and hypothesis testing

Expression level

Blue: base level group, control group

QO ciobaim ® ) .. @ ...
Red: treatment group Q@ Grovpmean ® ‘3 us o @

. Condition A data ' . o .

@ condition B dat .. “’ @ @

Step 5. Generalized Linear Model fit for each gene

y = Bo+x101 -

y = transformed expression level
* B, =intercept (the estimated expression for the base
level group, expression in the blue group)
* x;=a binary indicator variable for (0 if part of the
blue group, 1 if part of the red group)
* B, = coefficient for the treatment group (red)
Y = ,80 + ,81 * represents the difference between red and blue

\

By = Y — B, =log,(expression,. ;) — log,(expressiony;,,)
expressSion,..q4

expressionpye

= log, Fold Change 48



ok wneE

Output of DESeq?2

log2 fold change (MAP): sampletype MOV10_overexpression vs control
Wald test p-value: sampletype MOV10_overexpression vs control
DataFrame with 6 rows and 6 columns

baseMean log2FoldChange 1fcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

1/2-SBSRNA4 45.6520399 0.26976764 0.18775752 1.4367874 0.1507784
A1BG 61.0931017 0.20999700 0.17315013 1.2128030 0.2252051
A1BG-AS1 175.6658069 -0.05197768 0.12366259 -0.4203185 0.6742528
A1CF 0.2376919 0.02237286 0.04577046 0.4888056 0.6249793
A2LD1 89.6179845 0.34598540 0.15901426 2.1758136 0.0295692
A2M 5.8600841 -0.27850841 0.18051805 -1.5428286 0.1228724

baseMean: mean of normalized counts for all samples
log2FoldChange: log2 fold change

IfcSE: standard error

stat: Wald statistic

pvalue: Wald test p-value

padj: BH adjusted p-values

padj
<numeric>

0.25242910
0.34444163
0.77216278

NA

0.06725157
0.21489067

49



When can we detect differential

expression?

(@) eo00 -

5000

4000 -

# DE genes (FDR 0.05

5 10 15 20 25
Number of Reads(M)

Liu et al. 2014. Bioinformatics
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What do we do with DE genes?

* Visualize expression levels, log fold changes, and
significance

* |dentify up- and down-regulated genes
* Compare sets of DE genes
 Test for functional enrichment of DE gene sets



Today’s activity

Focus on Differential Gene Expression Analysis:
- Evaluating our genomic resources

- Unsupervised clustering of samples based on
expression

- ldentifying differentially expressed (DE) genes
- Evaluating functional enrichment of DE gene sets

When you finish, you can run the steps for trimming,
mapping and counting.



NOTES:
1. Skip counting the genes in the annotation (Rachel’s
mistake)

’ ° °
TOd ay Sd CtIVIty 2. Using ggsave on guacamole: not compatible with
.png, use .pdf.

7:00 - 7:30 : Differential expression background

7:30—8:30 : Free work time
(take a break when you need/want it)

8:45: Check-in

9:-9:40 : Free work time
(take a break when you need/want it)

9:40 — 10 : Wrap-up and discussion



Links to other DE/DS too

S

WGCNA (R package)

DEXSeq (R package)

EdgeR (R package)

LeafCutter (python & R

scripts)

IsoformSwitchAnalyzer

(R package)

EBSeq

Weighted gene coexpression analysis

groups genes into modules/clusters by
expression patterns across samples

Differential exon expression within the
DESeqg2 framework from exon count data

Differential expression analysis with
differential exon expression functions from
exon count data

Differential splicing analysis specifically
focused on differential intron retention
from junction count data

Differential isoform usage from transcript
count data

Bayesian differenital expression framework

Horvath lab website:
https://horvath.genetics.ucla.edu/html/Coexpressi
onNetwork/Rpackages/WGCNA/

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/DEXSeq/inst/doc/DEXSeq.html

User guide:
https://bioconductor.org/packages/release/bioc/vi
gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf

Github page:
https://davidaknowles.github.io/leafcutter/

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/IsoformSwitchAnalyzeR/inst/doc/Isoform$S
witchAnalyzeR.html

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/EBSeq/inst/doc/EBSeq Vignette.pdf
Github page: https://github.com/lengning/EBSeq
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https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://davidaknowles.github.io/leafcutter/
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://github.com/lengning/EBSeq

