Differential gene expression analysis

2023 Workshop on Genomics, Česky Krumlov

Rachel Steward Postdoctoral researcher, Runemark Lab Lund University

1

Today's activity

7:00 - 7:30 : Differential expression background

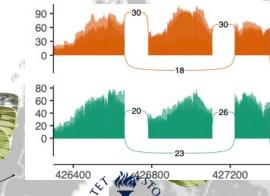
7:30 – 8:30 : Free work time (take a break when you need/want it)

8:30 – 8:45 : Check-in, walk through some preliminary results

8:45 – 9:30 : Free work time (take a break when you need/want it)

9:30 – 10 : Wrap-up and discussion

About me



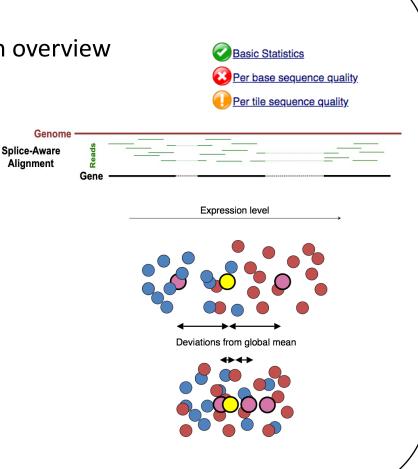
SWID

Stockholm
 University

X

Lecture outline

- 2. Trimming, mapping, counting
- 3. Differential expression analysis
 - a. Normalization
 - b. Dispersion estimates
 - c. Model fitting
 - d. Hypothesis testing & output



Gene expression

The selective activity of certain genes is a highly regulated process called gene expression.

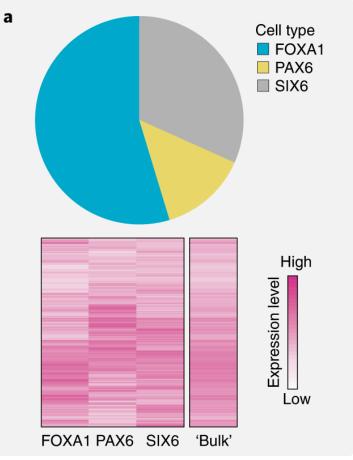
Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)

	Cell type	Red blood	Muscle	Pancreatic
		60	C COMO	
I	Gene type			
I	Housekeepi	ng		
I	Hemoglobin			
I	Insulin			
	Myosin			

Gene expression

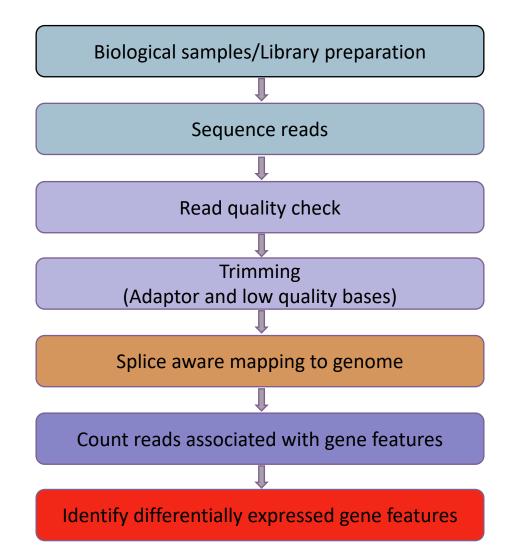
The selective activity of certain genes is a highly regulated process called gene expression.

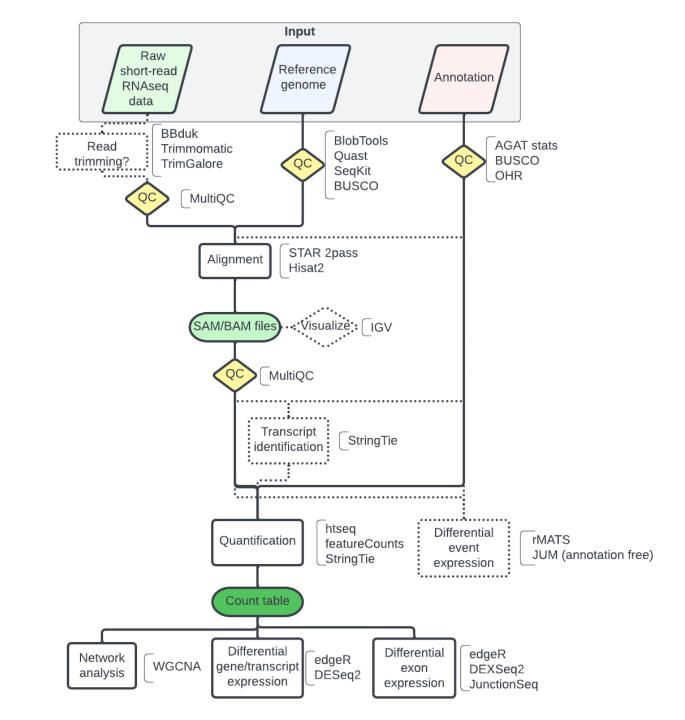
Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)

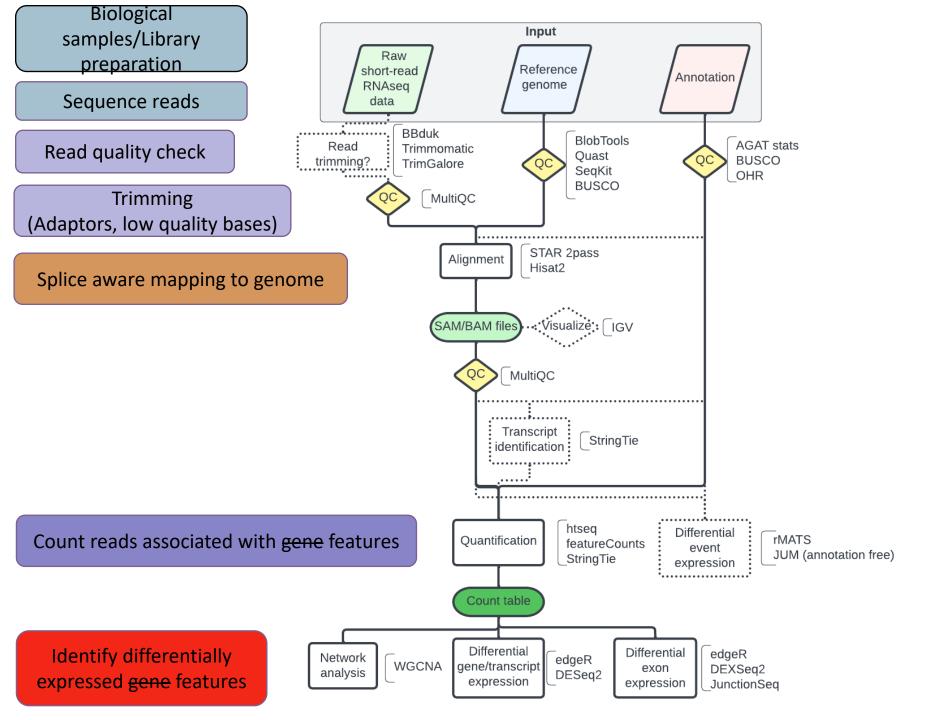


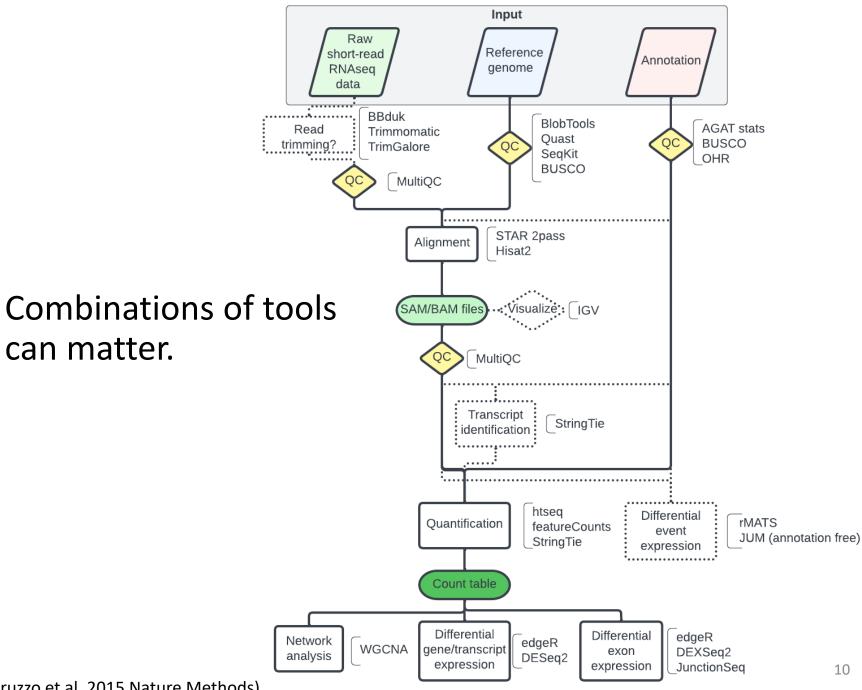
Price et al. 2022. Nature Ecology and Evolution

(Ref-based) DGE workflow



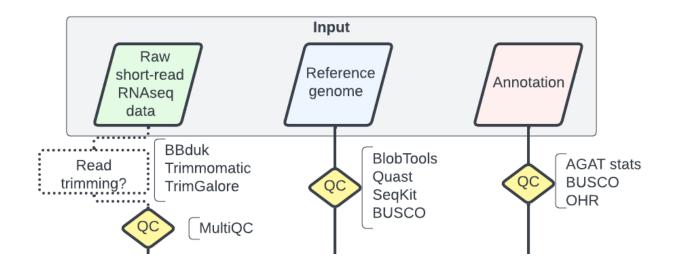






(Baruzzo et al. 2015 Nature Methods)

Quality control

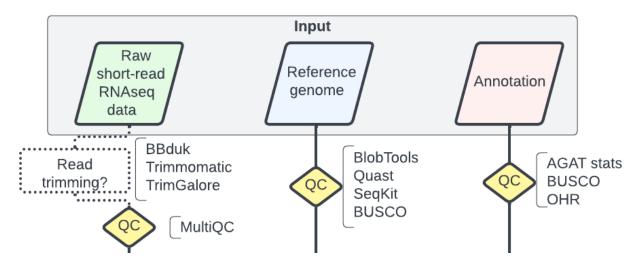


Reads: To trim or not to trim?

- genome annotation, variant calling, transcriptome assembly : Trim!
- Anything else, maybe trim lightly?
 - adapters + low quality score (Q10-15)

(Williams et al. 2016 BMC Bioinformatics, Liao and Shi 2020 NAR Genomics and Bioinformatics)

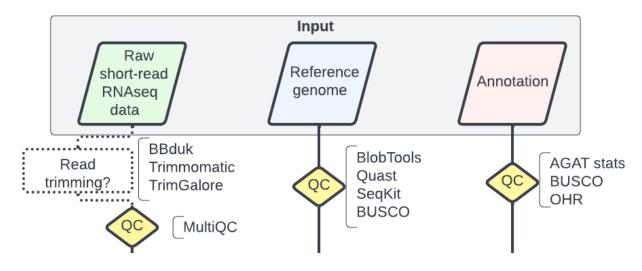
Quality control



Reference genome considerations:

- What maps where:
 - Recent duplications?
 - Highly repetetive content?
 - Missing content?

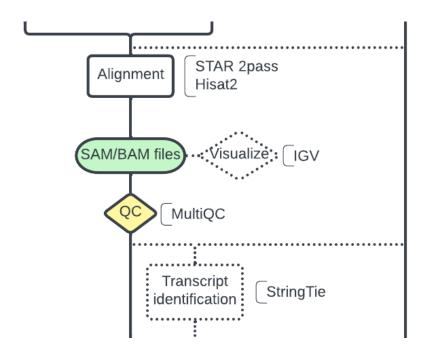
Quality control



Annotation considerations:

- What features have been annotated?
- Was RNAseq data used in the annotation?
 - What RNA? Life stage? Sex?
- In the lab, we use a protein-based BRAKER2 annotation

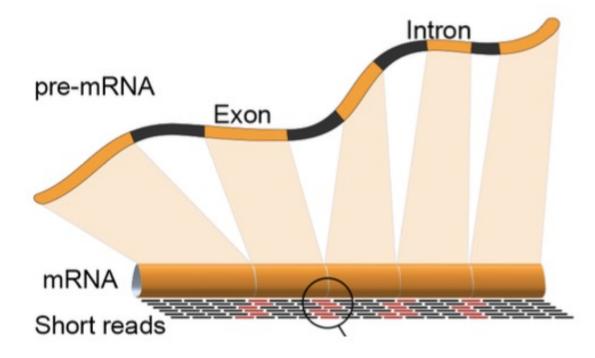
Sequence alignment



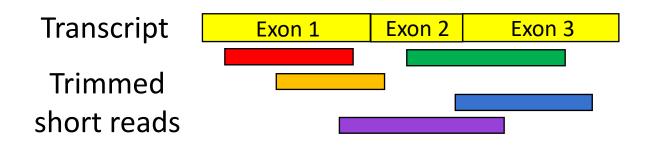
What are some challenges when aligning RNA-seq reads to the reference genome?

Sequence alignment

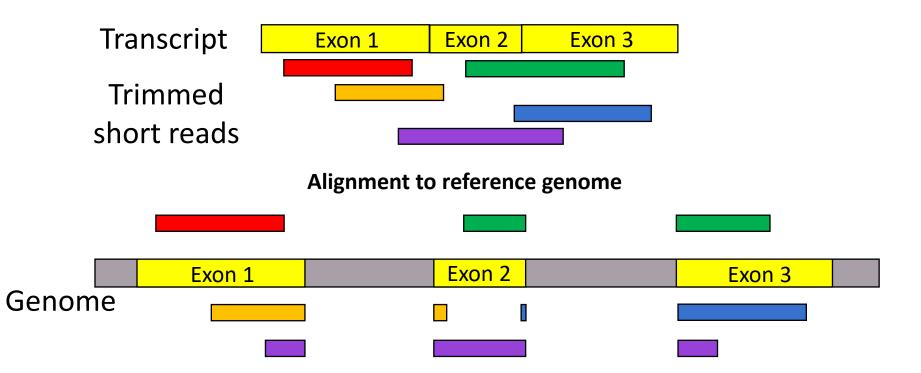
What are some challenges when aligning RNA-seq reads to the reference genome?



Splice-aware sequence alignment



Splice-aware sequence alignment

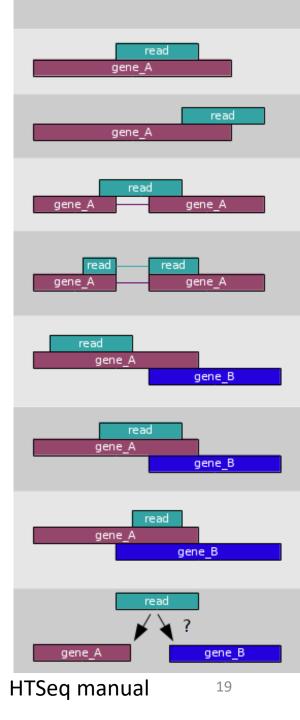


Counting reads as a measure of expression

- Now we have our reads aligned to the genome, the next step is to count how many reads have been mapped to each features or metafeature.
- Two common counting tools are **featureCounts** and **htseq-count**.
- Total read count associated with a gene (*meta-feature*) = the sum of reads associated with each of the exons (*feature*) that "belong" to that gene.

gonomio	01 p 172 21 11 1	02 . [/wo	rkohon r	atoriala	/diffor	ontiol	oversesion	/refs]\$ head Pca_annotation.gtf
genomite	serb-ris-sr-rr-r	oz:[~/wo	rksnop_m			епстат	_expression	
LG1	AUGUSTUS	transcr	ipt	22193	24413		-	<pre>. transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";</pre>
LG1	AUGUSTUS	exon	22193	22320		—		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	exon	23838	24048		—		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	exon	24390	24413		—		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	22193	22320		—	2	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	23838	24048		-	0	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	24390	24413		—	0	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	transcr	ipt	79912	80136		—	<pre>. transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";</pre>
LG1	AUGUSTUS	exon	79912	80136		—		transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
LG1	AUGUSTUS	CDS	79912	80136		-	0	transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
genomic	s@ip-172-31-11-1	82:[~/wo	rkshop_m	naterials	/differe	ential	_expression	/refs]\$

What should count??



Output of counting = A count matrix, with genes as rows and samples as columns

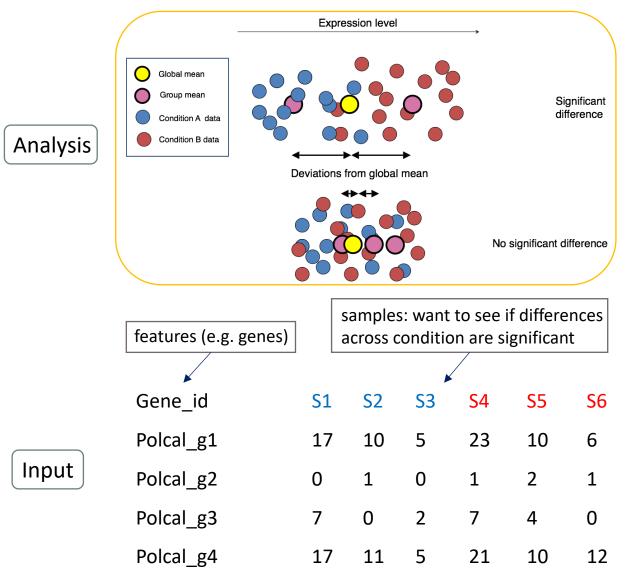
These are the "raw" counts and will be used in the downstream statistical program for differential gene expression.

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	39
A1BG	71	40	100	81	41	77	58	40
A1BG-AS1	256	177	220	189	107	213	172	126
A1CF	0	1	1	0	0	0	0	0
A2LD1	146	81	138	125	52	91	80	50
A2M	10	9	2	5	2	9	8	4
A2ML1	3	2	6	5	2	2	1	0
A2MP1	0	0	2	1	3	0	2	1
A4GALT	56	37	107	118	65	49	52	37
A4GNT	0	0	0	0	1	0	0	0
AA06	0	0	0	0	0	0	0	0
AAA1	0	0	1	0	0	0	0	0
AAAS	2288	1363	1753	1727	835	1672	1389	1121
AACS	1586	923	951	967	484	938	771	635
AACSP1	1	1	3	0	1	1	1	3
AADAC	0	0	0	0	0	0	0	0
AADACL2	0	0	0	0	0	0	0	0
AADACL3	0	0	0	0	0	0	0	0
AADACL4	0	0	1	1	0	0	0	0
AADAT	856	539	593	576	359	567	521	416
AAGAB	4648	2550	2648	2356	1481	3265	2790	2118
AAK1	2310	1384	1869	1602	980	1675	1614	1108
AAMP	5198	3081	3179	3137	1721	4061	3304	2623
AANAT	7	7	12	12	4	6	2	7
AARS	5570	3323	4782	4580	2473	3953	3339	2666

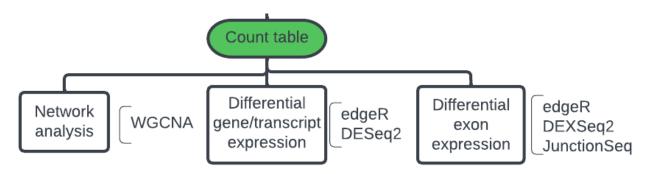
Each column is a sample

Each row is a gene

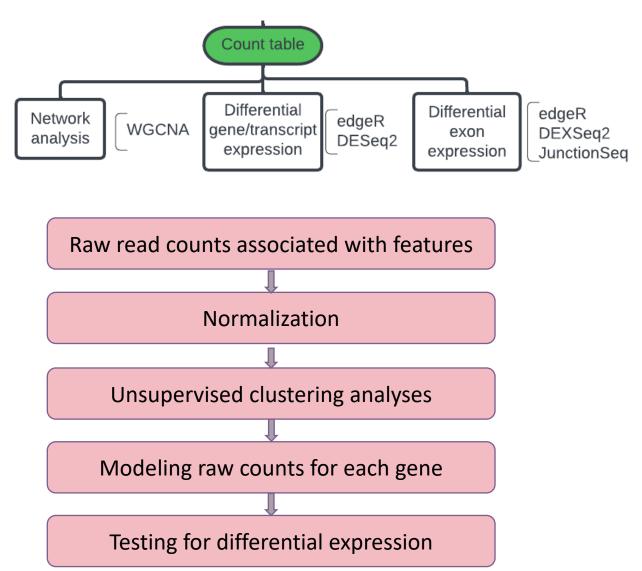
Differential expression analysis



Differential expression analysisis



Differential expression analysisis



DESeq2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

Michael I Love, Wolfgang Huber & Simon Anders

Genome Biology 15, Article number: 550 (2014) Cite this article

450k Accesses | 34853 Citations | 131 Altmetric | Metrics

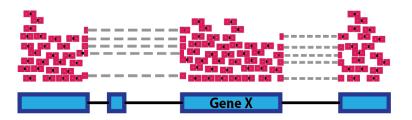
- **Normalization is NOT** fitting a normal distribution or transforming data transformation.
- Normalization aims to identify the nature and magnitude of systematic biases, and take them into account in our model-based analysis of the data.

The main factors often considered during normalization are:

- Sequencing depth
- RNA composition
- Gene length (some methods)

Sequencing depth

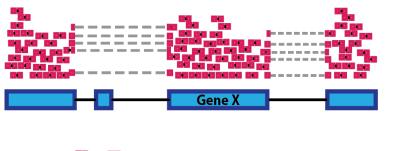
Sample A Reads



Sample B Reads

Sequencing depth

Sample A Reads

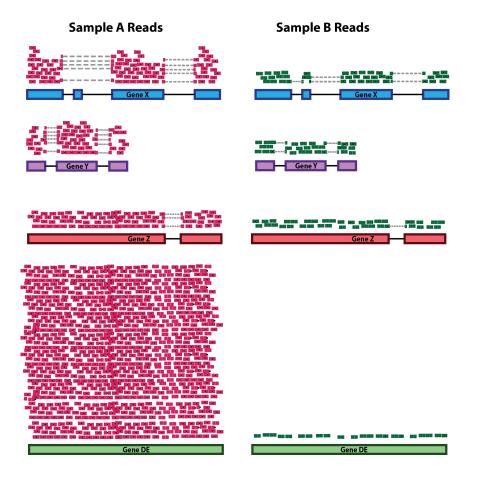


Sample B Reads

Gene Z	

RNA composition

- A few highly differentially expressed genes
- Can skew some normalization methods



Median of ratios (MRN) normalization

• Used by DESeq2 (DGE analysis tool we will use today)

Let's see how the normalization works...

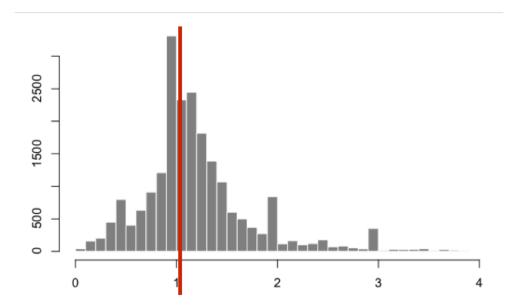
Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

Gene	sampleA	sampleB	Pseudo-reference sample
EF2A	1489	906	sqrt(1489*906) = 1161.5
ABCD1	22	13	sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72

The figure below illustrates the median value for the distribution of all gene ratios for a single sample (frequency is on the y-axis).



sample 1 / pseudo-reference sample

The median of ratio methods makes the assumption that not ALL genes are differentially expressed; therefore, the normalization factors should account for sequencing depth and RNA composition of the sample (large outlier genes will not represent the median ratio values).

Step 3. Calculate the normalization factor for each sample (size factor)

	Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref	
	EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78	
	ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77	
	MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72	
<pre>median(c(1.28, 1.3, 1.39, 1.35, 0.59)) =1.3</pre>							
median(c(1.28, 1.3, 1.39, 1.35, 0. =1.3						1.39, 1.35, 0.59))	

Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13

Normalized counts

Gene	sampleA	sampleB
EF2A	1489/1.3 = <mark>1145.39</mark>	906/0.77 = 1176.62
ABCD1	22/1.3 = <mark>16.92</mark>	13/0.77 = <mark>16.88</mark>

Normalized counts are not whole numbers!

Modeling raw counts for each gene

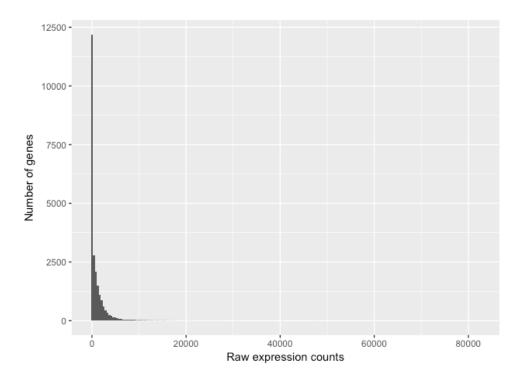
Step 1. Normalization (aka estimation of size factors) \rightarrow done!

Step 2. Estimate gene-wise dispersion

- To accurately model sequencing counts, we need to generate accurate estimates of within-group variation for each gene (aka dispersion)
 - need to choose the right distribution

Properties of RNA-seq count data

The distribution of RNA-seq counts for a single sample looks as below:



Low number of counts associated with a large proportion of genes and a long right tail due to the lack of any upper limit for expression.

Statistical modeling of count data

Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

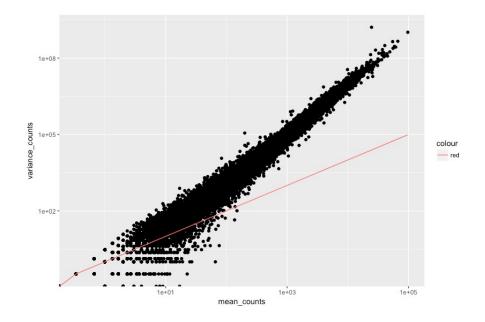
- Used when the number of cases is very large but the chance of a particular event is very low.
- A property of Poission distribution is that the mean = variance.

Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

- Used when the number of cases is very large but the chance of a particular event is very low.
- A property of Poission distribution is that the mean = variance.

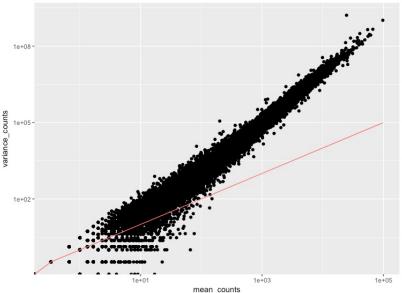


Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

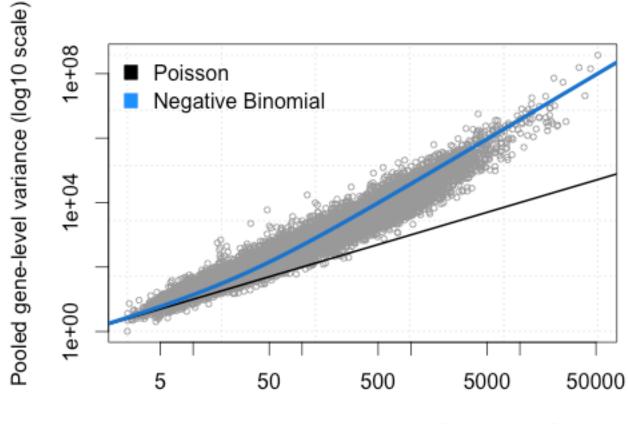
- Used when the number of cases is very large but the chance of a particular event is very low.
- A property of Poission distribution is that the mean = variance.



mean ≠ variance

Poisson distribution is not suitable to model count data across the biological samples. The distribution that fits best is the Negative Binomial (NB) distribution.

- two parameters, one for the mean and one for the variance
- fexlibility to estimate the amount of dispersion for each gene across samples.



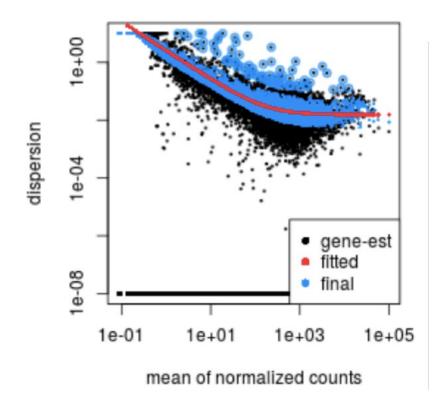
Mean gene expression level (log10 scale)

How does the dispersion relate to our model?

- the estimates of variation for each gene are often unreliable.
- DESeq2 shares information across genes to generate more accurate estimates of variation : 'shrinkage'.
 - assumes that genes with similar expression levels have similar dispersion.

Step 3: Fit curve to gene-wise dispersion estimates

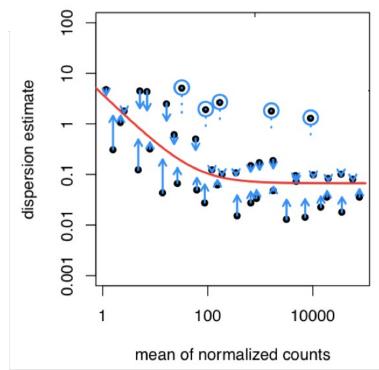
- Different genes will have different scales of biological variability
- However, we make the assumption that DESeq2 assumes that genes with similar expression levels have similar dispersion.
- Fitted dispersion curve = expected dispersion for genes of a given level of expression (e.g., mean normalized count)



Step 4: Shrink dispersion estimates for each gene toward the values predicted by the curve

- Genes with low dispersion estimates are shrunken towards the curve
- Genes with high dispersion estimates do not follow model assumptions, and are their dispersion is not shrunken

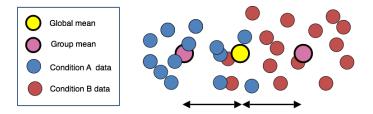
This shrinkage method is particularly important to reduce false positives in the differential expression analysis.



Expression level

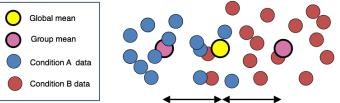
Blue: base level group, control group

Red: treatment group



Expression level

Blue: base level group, control group Red: treatment group



Step 5. Generalized Linear Model fit for each gene

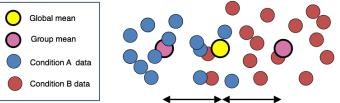
$$y=eta_0+x_1eta_1\cdot$$

- y = transformed **expression level**
- *θ*₀ = intercept (the estimated expression for the base level group, expression in the blue group)
- x₁ = a binary indicator variable for (0 if part of the blue group, 1 if part of the red group)
- *β*₁ = coefficient for the treatment group (red)
 - represents the **difference** between **red** and **blue**

$$y=eta_0+eta_1$$

Expression level

Blue: base level group, control group Red: treatment group



Step 5. Generalized Linear Model fit for each gene

$$y=eta_0+x_1eta_1\cdot$$

- y = transformed **expression level**
- *θ*₀ = intercept (the estimated expression for the base level group, expression in the blue group)
- x₁ = a binary indicator variable for (0 if part of the blue group, 1 if part of the red group)

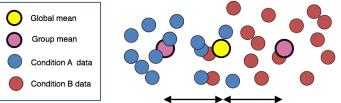
represents the difference between red and blue

 $\beta_1 = \mathcal{Y} - \beta_0 = \log_2(expression_{red}) - \log_2(expression_{blue})$

$$y=eta_0+eta_1$$

Expression level

Blue: base level group, control group Red: treatment group



Step 5. Generalized Linear Model fit for each gene

$$y=eta_0+x_1eta_1\cdot$$

- y = transformed **expression level**
- *θ*₀ = intercept (the estimated expression for the base level group, expression in the blue group)
- x₁ = a binary indicator variable for (0 if part of the blue group, 1 if part of the red group)

•
$$\beta_1$$
 = coefficient for the treatment group (red)

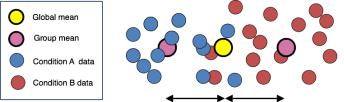
represents the difference between red and blue

$$\beta_{1} = \mathcal{Y} - \beta_{0} = \log_{2}(expression_{red}) - \log_{2}(expression_{blue})$$
$$= \frac{\log_{2}(expression_{red})}{\log_{2}(expression_{blue})}$$

$$y=eta_0+eta_1$$

Expression level

Blue: base level group, control group Red: treatment group



Step 5. Generalized Linear Model fit for each gene

$$y=eta_0+x_1eta_1\cdot$$

 $y = \beta_0 + \beta_1$

- y = transformed **expression level**
- *θ*₀ = intercept (the estimated expression for the base level group, expression in the blue group)
- x₁ = a binary indicator variable for (0 if part of the blue group, 1 if part of the red group)

•
$$\beta_1$$
 = coefficient for the treatment group (red)

represents the difference between red and blue

 $\beta_{1} = \mathcal{Y} - \beta_{0} = \log_{2}(expression_{red}) - \log_{2}(expression_{blue})$ $\log_{2} 2 = 1$ $\log_{2} 4 = 2$ $\log_{2} Fold Change$ 48

Output of DESeq2

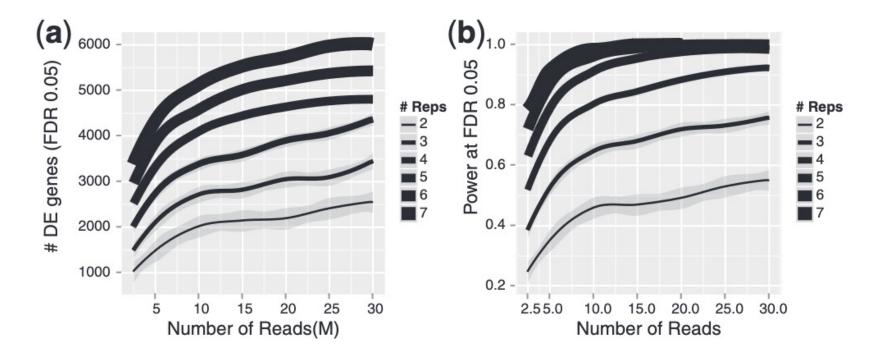
log2 fold change (MAP): sampletype MOV10_overexpression vs control
Wald test p-value: sampletype MOV10_overexpression vs control

DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
1/2-SBSRNA4	45.6520399	0.26976764	0.18775752	1.4367874	0.1507784	0.25242910
A1BG	61.0931017	0.20999700	0.17315013	1.2128030	0.2252051	0.34444163
A1BG-AS1	175.6658069	-0.05197768	0.12366259	-0.4203185	0.6742528	0.77216278
A1CF	0.2376919	0.02237286	0.04577046	0.4888056	0.6249793	NA
A2LD1	89.6179845	0.34598540	0.15901426	2.1758136	0.0295692	0.06725157
A2M	5.8600841	-0.27850841	0.18051805	-1.5428286	0.1228724	0.21489067

- 1. baseMean: mean of normalized counts for all samples
- 2. log2FoldChange: log2 fold change
- 3. IfcSE: standard error
- 4. stat: Wald statistic
- 5. pvalue: Wald test p-value
- 6. padj: BH adjusted p-values

When can we detect differential expression?



What do we do with DE genes?

- Visualize expression levels, log fold changes, and significance
- Identify up- and down-regulated genes
- Compare sets of DE genes
- Test for functional enrichment of DE gene sets

Today's activity

Focus on Differential Gene Expression Analysis:

- Evaluating our genomic resources
- Unsupervised clustering of samples based on expression
- Identifying differentially expressed (DE) genes
- Evaluating functional enrichment of DE gene sets

When you finish, you can run the steps for trimming, mapping and counting.

NOTES:

- Today's activity
- 1. Skip counting the genes in the annotation (Rachel's mistake)
- 2. Using ggsave on guacamole: not compatible with .png, use .pdf.

7:00 - 7:30 : Differential expression background

7:30 – 8:30 : Free work time (take a break when you need/want it)

8:45: Check-in

9: – 9:40 : Free work time (take a break when you need/want it)

9:40 – 10 : Wrap-up and discussion

Links to other DE/DS tools

ТооІ	Use	Link to best resource		
WGCNA (R package)	Weighted gene coexpression analysis groups genes into modules/clusters by expression patterns across samples	Horvath lab website: https://horvath.genetics.ucla.edu/html/Coexpressi onNetwork/Rpackages/WGCNA/		
DEXSeq (R package)	Differential exon expression within the DESeq2 framework from exon count data	Vignette: https://bioconductor.org/packages/release/bioc/vi gnettes/DEXSeq/inst/doc/DEXSeq.html		
EdgeR (R package)	Differential expression analysis with differential exon expression functions from exon count data	User guide: https://bioconductor.org/packages/release/bioc/vi gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf		
LeafCutter (python & R scripts)	Differential splicing analysis specifically focused on differential intron retention from junction count data	Github page: https://davidaknowles.github.io/leafcutter/		
IsoformSwitchAnalyzer (R package)	Differential isoform usage from transcript count data	Vignette: https://bioconductor.org/packages/release/bioc/vi gnettes/IsoformSwitchAnalyzeR/inst/doc/IsoformS witchAnalyzeR.html		
EBSeq	Bayesian differenital expression framework	Vignette: <u>https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf</u> Github page: <u>https://github.com/lengning/EBSeq</u>		