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Today’s activity

7:00 - 7:30 : Differential expression background

7:30 – 8:30 : Free work time
(take a break when you need/want it)

8:30 – 8:45 : Check-in, walk through some preliminary 
results

8:45 – 9:30 : Free work time
(take a break when you need/want it)

9:30 – 10 : Wrap-up and discussion
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Lecture outline

1. Ref-based differential expression overview

2. Trimming, mapping, counting

3. Differential expression analysis

a. Normalization

b. Dispersion estimates

c. Model fitting

d. Hypothesis testing & output
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Gene expression
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1. Biology of gene expression

The selective activity of 
certain genes is a highly 
regulated process called gene 
expression.

Gene expression is a 
characteristic of space (e.g., 
cell type, tissue, etc.) and 
time (e.g., developmental 
stage, time after event)
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1. Biology of gene expression

Price et al. 2022. Nature Ecology and Evolution



Biological samples/Library preparation

Sequence reads

Read quality check

Trimming 
(Adaptor and low quality bases)

Splice aware mapping to genome

Count reads associated with gene features

Identify differentially expressed gene features

(Ref-based) DGE workflow
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Biological 
samples/Library 

preparation

Sequence reads

Read quality check

Trimming 
(Adaptors, low quality bases)

Splice aware mapping to genome

Count reads associated with gene features

Identify differentially 
expressed gene features



Combinations of tools 
can matter. 

10
(Baruzzo et al. 2015 Nature Methods)



Quality control 

Reads: To trim or not to trim? 
- genome annotation, variant calling, transcriptome assembly : 

Trim!
- Anything else, maybe trim lightly? 

- adapters + low quality score (Q10-15)

11(Williams et al. 2016 BMC Bioinformatics,
Liao and Shi 2020 NAR Genomics and Bioinformatics)



Quality control 
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Reference genome considerations:
- What maps where:

- Recent duplications? 
- Highly repetetive content?
- Missing content? 



Quality control 
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Annotation considerations:
- What features have been annotated? 
- Was RNAseq data used in the annotation?

- What RNA? Life stage? Sex? 

- In the lab, we use a protein-based BRAKER2 annotation 



Sequence alignment
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What are some challenges when aligning RNA-seq 
reads to the reference genome?



Sequence alignment
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What are some challenges when aligning RNA-seq 
reads to the reference genome?



Splice-aware sequence alignment
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Exon 1 Exon 2 Exon 3Transcript

Trimmed 
short reads



Splice-aware sequence alignment
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Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

Alignment to reference genome

Transcript

Trimmed 
short reads

Genome



Counting reads as a measure of 
expression
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• Now we have our reads aligned to the genome, the next step is to count how 
many reads have been mapped to each features or metafeature. 

• Two common counting tools are featureCounts and htseq-count.

• Total read count associated with a gene (meta-feature) = the sum of reads 
associated with each of the exons (feature) that "belong" to that gene.



What should count??

19HTSeq manual
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Output of counting = A count matrix, with genes as rows and samples as columns

These are the “raw” counts and will be used in the downstream statistical program for 
differential gene expression. 



Differential expression analysis
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Gene_id S1 S2 S3 S4 S5 S6

Polcal_g1 17 10 5 23 10 6

Polcal_g2 0 1 0 1 2 1

Polcal_g3 7 0 2 7 4 0

Polcal_g4 17 11 5 21 10 12

features (e.g. genes)
samples: want to see if differences 
across condition are significant

Input

Analysis



Differential expression analysisis 
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Differential expression analysisis 
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Raw read counts associated with features

Normalization

Unsupervised clustering analyses

Modeling raw counts for each gene

Testing for differential expression



DESeq2 package
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Normalization

• Normalization is NOT fitting a normal distribution or transforming data 
transformation. 

• Normalization aims to identify the nature and magnitude of systematic 
biases, and take them into account in our model-based analysis of the 
data.

The main factors often considered during normalization are:
• Sequencing depth
• RNA composition
• Gene length (some methods)
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Normalization
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Sequencing depth



Normalization
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Sequencing depth



Normalization
RNA composition

• A few highly differentially
expressed genes

• Can skew some normalization
methods
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Median of ratios (MRN) normalization

• Used by DESeq2 (DGE analysis tool we will use today)

Let’s see how the normalization works…
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Step 2. Calculates ratio of each sample to the reference

Gene sampleA sampleB Pseudo-
reference 
sample

Ratio of sampleA/ref Ratio of sampleB/ref

EF2A 1489 906 1161.5 1489/1161.5 = 1.28 906/1161.5 = 0.78

ABCD1 22 13 16.9 22/16.9 = 1.30 13/16.9 = 0.77

MEFV 793 410 570.2 793/570.2 = 1.39 410/570.2 = 0.72

… … … … … …
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Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

Gene sampleA sampleB Pseudo-reference sample

EF2A 1489 906 sqrt(1489*906) = 1161.5

ABCD1 22 13 sqrt(22*13) = 16.9

… … … …



The figure below illustrates the median value for the distribution of all gene ratios 
for a single sample (frequency is on the y-axis). 
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The median of ratio methods makes the assumption that not ALL genes are 
differentially expressed; therefore, the normalization factors should account for 
sequencing depth and RNA composition of the sample (large outlier genes will not 
represent the median ratio values). 



Step 3. Calculate the normalization factor for each sample (size factor)
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Gene sampleA sampleB Pseudo-
reference 
sample

Ratio of sampleA/ref Ratio of sampleB/ref

EF2A 1489 906 1161.5 1489/1161.5 = 1.28 906/1161.5 = 0.78

ABCD1 22 13 16.9 22/16.9 = 1.30 13/16.9 = 0.77

MEFV 793 410 570.2 793/570.2 = 1.39 410/570.2 = 0.72

… … … … … …

median(c(1.28, 1.3, 1.39, 1.35, 0.59))
=1.3

median(c(1.28, 1.3, 1.39, 1.35, 0.59))
=1.3



Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Normalized counts

Gene sampleA sampleB

EF2A 1489 906

ABCD1 22 13

… … …

Gene sampleA sampleB

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62 

ABCD1 22/1.3 = 16.92 13/0.77 = 16.88

… … …
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Normalized counts are not whole numbers!



Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors) à done!

Step 2. Estimate gene-wise dispersion

• To accurately model sequencing counts, we need to generate 
accurate estimates of within-group variation for each gene (aka 
dispersion)
• need to choose the right distribution

34



Properties of RNA-seq count data
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The distribution of RNA-seq counts for a single sample looks as below:

Low number of counts associated with a large proportion of genes and a long 
right tail due to the lack of any upper limit for expression. 



Statistical modeling of count data
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Statistical modeling of count data
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Which probability distributions are suitable for modeling count data? 

Poisson distribution? 
- Used when the number of cases is very large but the chance of a 

particular event is very low. 
- A property of Poission distribution is that the mean = variance.
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Statistical modeling of count data
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Which probability distributions are suitable for modeling count data? 

Poisson distribution? 
- Used when the number of cases is very large but the chance of a 

particular event is very low. 
- A property of Poission distribution is that the mean = variance.

 Poisson distribution is not suitable 
to model count data across the 

biological samples.

𝐦𝐞𝐚𝐧 ≠ variance



The distribution that fits best is the Negative Binomial (NB) distribution. 

- two parameters, one for the mean and one for the variance

- fexlibility to estimate the amount of dispersion for each gene across samples.
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How does the dispersion relate to our model?

• the estimates of variation for each gene are often 
unreliable.

• DESeq2 shares information across genes to generate more 
accurate estimates of variation : 'shrinkage’.
• assumes that genes with similar expression levels have similar dispersion.

41



Step 3: Fit curve to gene-wise dispersion estimates

• Different genes will have different scales of biological variability

• However, we make the assumption that DESeq2 assumes that genes with 
similar expression levels have similar dispersion.

• Fitted dispersion curve = expected dispersion for genes of a given level of 
expression (e.g., mean normalized count)
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Step 4: Shrink dispersion estimates for each gene toward the values 
predicted by the curve

- Genes with low dispersion estimates are shrunken towards the curve

- Genes with high dispersion estimates do not follow model assumptions, and are their 
dispersion is not shrunken

This shrinkage method is particularly important to reduce false positives 
in the differential expression analysis.
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Model fitting and hypothesis testing
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Blue: base level group, control group
Red: treatment group



Model fitting and hypothesis testing
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• y = transformed expression level
• β0 = intercept (the estimated expression for the base 

level group, expression in the blue group)
• x1 = a binary indicator variable for (0 if part of the 

blue group, 1 if part of the red group)
• β1 = coefficient for the treatment group (red)

• represents the difference between red and blue

Step 5. Generalized Linear Model fit for each gene

Blue: base level group, control group
Red: treatment group



Model fitting and hypothesis testing
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• y = transformed expression level
• β0 = intercept (the estimated expression for the base 

level group, expression in the blue group)
• x1 = a binary indicator variable for (0 if part of the 

blue group, 1 if part of the red group)
• β1 = coefficient for the treatment group (red)

• represents the difference between red and blue

Step 5. Generalized Linear Model fit for each gene

Blue: base level group, control group
Red: treatment group

𝛽! = 𝒴 − 𝛽" = log# 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒓𝒆𝒅 − log# 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒃𝒍𝒖𝒆
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Model fitting and hypothesis testing
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• y = transformed expression level
• β0 = intercept (the estimated expression for the base 

level group, expression in the blue group)
• x1 = a binary indicator variable for (0 if part of the 

blue group, 1 if part of the red group)
• β1 = coefficient for the treatment group (red)

• represents the difference between red and blue

Step 5. Generalized Linear Model fit for each gene

Blue: base level group, control group
Red: treatment group

𝛽! = 𝒴 − 𝛽" = log# 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒓𝒆𝒅 − log# 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒃𝒍𝒖𝒆

log#
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒓𝒆𝒅
𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒃𝒍𝒖𝒆

= 𝒍𝒐𝒈𝟐 𝐅𝐨𝐥𝐝 𝐂𝐡𝐚𝐧𝐠𝐞

𝑙𝑜𝑔#1 = 0
𝑙𝑜𝑔#2 = 1
𝑙𝑜𝑔#4 = 2

\



Output of DESeq2
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1. baseMean: mean of normalized counts for all samples
2. log2FoldChange: log2 fold change
3. lfcSE: standard error
4. stat: Wald statistic
5. pvalue: Wald test p-value
6. padj: BH adjusted p-values



When can we detect differential 
expression? 

50
Liu et al. 2014. Bioinformatics



What do we do with DE genes? 

• Visualize expression levels, log fold changes, and 
significance
• Identify up- and down-regulated genes
• Compare sets of DE genes
• Test for functional enrichment of DE gene sets
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Today’s activity

Focus on Differential Gene Expression Analysis:
- Evaluating our genomic resources
- Unsupervised clustering of samples based on 

expression
- Identifying differentially expressed (DE) genes 
- Evaluating functional enrichment of DE gene sets

When you finish, you can run the steps for trimming, 
mapping and counting. 
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Today’s activity

7:00 - 7:30 : Differential expression background

7:30 – 8:30 : Free work time
(take a break when you need/want it)

8:45: Check-in

9: – 9:40 : Free work time
(take a break when you need/want it)

9:40 – 10 : Wrap-up and discussion
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NOTES: 
1. Skip counting the genes in the annotation (Rachel’s 

mistake)
2. Using ggsave on guacamole: not compatible with 

.png, use .pdf. 



Links to other DE/DS tools
Tool Use Link to best resource

WGCNA (R package) Weighted gene coexpression analysis 
groups genes into modules/clusters by 
expression patterns across samples

Horvath lab website: 
https://horvath.genetics.ucla.edu/html/Coexpressi
onNetwork/Rpackages/WGCNA/

DEXSeq (R package) Differential exon expression within the 
DESeq2 framework from exon count data

Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/DEXSeq/inst/doc/DEXSeq.html

EdgeR (R package) Differential expression analysis with 
differential exon expression functions from 
exon count data

User guide: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf

LeafCutter (python & R 
scripts)

Differential splicing analysis specifically 
focused on differential intron retention 
from junction count data

Github page: 
https://davidaknowles.github.io/leafcutter/

IsoformSwitchAnalyzer 
(R package)

Differential isoform usage from transcript 
count data

Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/IsoformSwitchAnalyzeR/inst/doc/IsoformS
witchAnalyzeR.html

EBSeq Bayesian differenital expression framework Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
Github page: https://github.com/lengning/EBSeq
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