Vignettes

• Light and nutrients: defining the drivers of physiological ecology and competition in microeukaryotes

• Host-microbiome interactions: Tracking the microbiome of a keystone N₂ fixer

Core questions

Host-microbiome interactions

- What is the role of the microbiome in *Trichodesmium* physiological ecology
 - Who is there?
 - What are they doing?
 - Are they interacting?

Nitrogen-fixing marine cyanobacteria

- Symbionts
 - UNCYN-A
 - Richelia
- Free-living
 - Crococosphaera
 - Trichodesmium

-Trichodesmium erythraeum

Trichodesmium tenue
Trichodesmium contortum
Trichodesmium spp. (miru, nobis)*
* Delmont et al. (2021) PNAS
-Trichodesmium thiebautii

-Trichodesmium spiralis -Trichodesmium hildebrandtii Richelia

Crocosphaera

Trichodesmium

Clade III

Clade II

Clade I

Clade IV

Trichodesmium: critical to ecosystem function

Photo: Chris Wade *Tricho.* micrograph: WHOI

Trichodesmium: critical to ecosystem function

Predicting the role of Fe and P in *Trichodesmium* distribution and N₂ fixation

North Atlantic P-limited? North Pacific Fe-limited?

2000s

- Protein biomarkers: Dyhrman et al. (2002) L&O
- qRT-PCR of transcript biomarkers: Dyhrman et al. (2006) Nature

2010s

- Metagenomics and Metatranscriptomics: Rouco et al. (2018) ISME J.

Trichodesmium transcriptional patterns between the North Pacific and the North Atlantic

Ruoco et al. (2018) ISME

Modeling N₂ fixation is still a challenge

- Models do not balance the N cycle in the ocean or recapitulate patterns well
- Assays of nitrogen fixation are technically difficult = variability
- Information on distribution over time and with depth is still patchy
- Geochemistry is not often a good predictor of distribution or N₂ fixation

Olson et al. 2015 DSR II

Trichodesmium hosts a community of epibiotic microbes

Trichodesmium and Plectonema

Dyhrman et. al. (2002) L&O

Trichodesmium and Epibionts

Image courtesy Tracy Mincer

Trichodesmium colonies harbor other microbes with distinct physiology.

Core questions about the Trichodesmium microbiome

Who is there?

- Microbiome diversity
- 16S amplicon sequencing

What are they doing?

- Microbiome functional diversity
- Metagenome assembled genomes

Are they interacting?

- Diel patterns in the consortia
- Metatranscriptomics

Trichodesmium microbiome diversity

Trichodesmium colonies are picked and rinsed from net tows for 16S sequencing to remove all but the tightly associated epibionts.

Epibiont diversity

What groups co-occur with *Trichodesmium*?

Are epibiont communities distinct as a function of colony morphology or environment?

16S rDNA analyses

DNA extraction

Paired-end sequencing: Miseq (2x150 bp) V4 region of 16S rRNA gene (515F-806R primers)

Output: • File_I1_001.fastq • File_R1_001.fastq • File_R2_001.fastq

Data visualization and statistical analyses:

R (vegan package – Oksanen et al. 2016

- Dissimilarity matrix
- Visualization: PCOA
- Mantel tests
- PERMANOVA (adonis function)

Metabolic inference

- PICRUSt (Langille et al., 2013)
- LEFSE (Sagata et al. 2011)

- .fasta
- .count_table

OTU table

(.csv)

 Green gene database Sequence processing: MOTHUR (Kozih et al. 2013)

- Demultiplex and make contigs
- Sequence cleaning (remove homopolymers and sequence trimming)
- Remove quimeras (UCHIME)
- Classify unique sequences (RDP training set)
- Remove non-bacterial sequences
- OTU clustering (97% similarity)

Average epibiont community

16S amplicon sequencing indicates that *Trichodesmium* colonies harbor diverse epibionts distinct from common water column bacteria, and those found on sinking particles.

Microbiome community diversity (16S)

Microbiome communities significantly differ by ocean basin, and with colony morphology, except for the S. Pacific where the *Trichodesmium* composition of rafts and puffs were not significantly different.

Summary

• Need to think about *Trichodesmium* as a holobiont

- What drives community assembly?
 - Unique niche?
 - Type of *Trichodesmium*
 - Physiological ecology in the colony
 - Environment
 - Lottery?
 - Random selection of potential copiotrophs with certain gene functions?
- Stability over time?

Core questions about the *Trichodesmium* microbiome

Who is there?

• Diverse community, distinct from water column

What are they doing?

Microbiome functional diversity

Are they interacting?

• Diel patterns in the consortia

Metabolic potential in the *Trichodesmium* holobiont

Prodigal DIAMOND-BLAST MEGAN KEGG

Trichodesmium colonies were isolated for metagenome sequencing along a phosphorus gradient in the western north Atlantic.

Composition of the holobiont

Nearly complete (~90%) genome bins were reconstructed from a merged assembly and results are consistent with 16S data

Distribution of MAGs with read mapping

Frischkorn et al. (2017) ISMEJ

Relative proportion of *Trichodesmium* bins consistent across stations

Epibiont genome bins are detected at all stations, but the relative abundance varies

Microbiome MAGs differ significantly between regions

Frischkorn et al. (2017) ISME J

Significant difference in epibiont relative abundance with total dissolved phosphorus (TDP)

Variable distribution of functional pathways among epibionts

 Differential pathway enrichment consistent with a microbiome that is modulated as a function of environment

Frischkorn et al. (2017) ISMEJ

Epibionts enrich holobiont for key functions

Phosphonate, heme and siderophore functions are enriched in the epibionts relative to water column microbes in the Sargasso Sea.

Comparing metabolic potential in the holobiont

Metagenomes

Orthologous group analysis

Epibionts v. Trichodesmium

Image courtesy Tracy Mincer

Epibionts significant metabolic potential

Frischkorn et al. (2017) ISME J

Orthologous (OG) group analysis suggests that epibionts confer the vast majority (>90% of OGs) of metabolic *functions* to the holobiont.

Caveat... "Orthology not equal to function." Rob Waterhouse

Chemical-microbe network within the *Trichodesmium* holobiont

Moran et al. (2022) Nature Micro.

Microbial cross talk within the Trichodesmium holobiont

Auxin sensing and response NO production AHL QS Pathways are isolated to microbiome

QS and cell signaling

Chemical-microbe network within the *Trichodesmium* holobiont

Moran et al. (2022) Nature Micro.

Metabolic partitioning within the *Trichodesmium* holobiont

Organic Iron

Epibionts can produce organic iron complexes that likely modulate iron in the holobiont microenvironment

Siderophore mining of iron from dust

Basu et al. (2019) Communication Biol.

Siderophores are C and N rich compounds

Aerobactin

Desferrioxamine B

Siderophore mining of iron from dust

Basu et al. (2019) Communication Biol.
Cultured epibionts produce siderophores in low iron media

Uptake and metabolism of organic and reduced phosphorus forms

C-P Lyase C-P PhoX PhoA C-O-P

Phosphite uptake

PO₃

Phosphorus metabolisms are present in both *Trichodesmium* and the microbiome.

Answers to enduring mysteries... who makes C-P compounds?

Phosphonate (C-P) biosynthesis

Dyhrman et al. (2009) Nature Geo.

Van Mooy et al. (2015) Science

Phosphonates are produced at high rates in the holobiont - hot spot for reduced phosphorus cycling. Is it *Trichodesmium* or the epibionts?

Phosphonate production is a shared metabolism

Phosphonate biosynthesis

Phosphonate can be produced by both *Trichodesmium* and the epibionts – at least in this environment

Lessons learned...

- There is an amazing microbiome on *Trichodesmium*! But we need to sequence deeper.
- Trichodesmium epibionts are functionally diverse, and these functions suggest complex interactions within holobiont (substrates, signals)

Epibiont distribution in Red Sea samples

Koedooder et al.

https://www.biorxiv.org/content/10.1101/2023.03.15.532517v4.full

Red Sea epibionts carry enriched Fe traits relative to *Trichodesmium*

https://www.biorxiv.org/content/10.1101/2023.03.15.532517v4.full

Lessons learned...

- We can do it! But we need to sequence deeper.
- Trichodesmium epibionts are functionally diverse, and these functions suggest complex interactions within holobiont (substrates, signals)
- Now we are looking at how those metagenomic functions are expressed.

Coordinated analysis of phosphorus cycling

- South Pacific is undersampled and the dynamics of the *Trichodesmium* holobiont are not well understood
- Unique opportunity to sample metagenome, metatranscriptome, and key activities.
- Is there evidence of holobiont phosphorus reduction and cycling in this environment?

Physiological ecology of *Trichodesmium* and its microbiome in the western tropical South Pacific

Trichodesmium

- Metagenome
- Metatranscriptome
- P reduction

Metatranscriptomes

 Λ

Metagenomic evidence of P reduction

Frischkorn et al. (2018) *Biogeoscience*

Complete gene set for phosphonate biosynthesis assembled in *Trichodesmium* genome bin (MAG).

Not present in microbiome MAGs

Genes are expressed with P reduction

Measure phosphate reduction

Percentage of radiolabeled phosphate taken up and reduced by *Trichodesmium* colonies

- ✓ Genes detected
- ✓ Genes expressed
- Activity measured
- ? P cycling

Evidence for metabolism of reduced phosphorus compounds in *Trichodesmium* and the microbiome

Novel P currencies used in holobiont....

Summary

- Need to think about *Trichodesmium* as a holobiont with a broader metabolic potential than just *Trichodesmium* alone.
- Microbiome is distinct and varies as a function of environment
- Holobiont is a potential hot-spot of reduced phosphorus cycling.
- Consistency of epibiont diversity and functional capacity across environments?
 - Metagenomes and metatranscriptomes from different environments

Core questions about the *Trichodesmium* microbiome

Who is there?

• Diverse community, distinct from water column

What are they doing?

• Microbiome contributes functional diversity to community

Are they interacting?

• Diel patterns in the consortia

Using light to study interactions

- Light drives diel changes in *Trichodesmium* CO₂ and N₂ fixation
- Do epibionts have diel responses, and what might they tell us about interactions between the host and microbiome?

Sampling light driven responses in the NPSG

Coordinated expression dynamics in host and microbiome

https://omictools.com/rhythmicity-analysis-incorporating-nonparametric-methods-tool

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559

Diel modulation of transcripts in *Trichodesmium*

Frischkorn et al. (2018) ISMEJ

WGCNA co-expression network

Module example: Significantly coordinated expression patterns between *Trichodesmium* and microbiome.

Frischkorn et al. (2018) ISMEJ

Diel modulation of transcripts suggest coordination: Nitrogen

Tricho. nitrogenase avg.
Microbiome N metab. avg.

Frischkorn et al. (2018) ISMEJ

Diel modulation of transcripts suggests coordination: Carbon

$CO_2 \rightarrow DOC \rightarrow CO_2$

Trichodesmium Microbiome

- Tricho. photosystem & C fixation avg.
- Microbiome respiration avg.

Frischkorn et al. (2018) ISME J

Summary

- The microbiome and *Trichodesmium* are interacting!
 - Nitrogen
 - Carbon
 - Vitamin B12, P, Fe etc.
- Heterotrophic epibionts have striking diel signals that likely underpin signaling, exchanges and other activities in the holobiont.

Core questions about the *Trichodesmium* microbiome

Who is there?

• Diverse community, distinct from water column

What are they doing?

• Microbiome contributes functional diversity to community

Are they interacting?

• Yes! Significant co-expression of host-microbiome genes

Host → Microbiome

Microbiome → Host

Can the microbiome influence host N₂ fixation?

Maybe the models are missing the role of the microbiome?

Selective manipulation of the microbiome...

The epibiont community is talking to itself...

- Quorum sensing communication molecules (acylated homoserine lactones - AHL) detected in colonies (Van Mooy et al. 2012 *ISME J*)
- Addition of AHLs to field colonies changes activity independent of geochemistry (Van Mooy et al. 2012 ISME J)
- Genes for AHL biosynthesis and AHL receptors detected in epibionts – not *Trichodesmium*

Selective manipulation of the microbiome...

Do microbiome infochemicals influence Trichodesmium phenotype?

Selective manipulation of the epibiont activities with AHLs

AHL incubations modulate *Trichodesmium* N₂ fixation

Epibiont infochemicals influence host phenotype

Microbiome can modulate host N₂ fixation rates up to 40%, in orthogonal directions, and independently of known drivers (P, Fe, light, temperature)

Mechanisms still uncertain...

What is the mechanism driving the N₂ fixation response?

Microbiome activities modulate N₂ fixation in host

Epibiont infochemicals influence ecosystem drivers

Biological interactions are a previously unrecognized driver of N₂ fixation Need to revise modeling efforts focused on drivers of N₂ fixation

Summary

- The microbiome and *Trichodesmium* are interacting!
- Epibionts can influence N₂ fixation, but the full mechanisms that underpin this still need to be identified.

Core questions about the *Trichodesmium* microbiome

Who is there?

• Diverse community, distinct from water column

What are they doing?

• Microbiome contributes functional diversity to community

Are they interacting?

• Yes! Significant co-expression of host-microbiome genes Microbiome can influence host N₂ fixation!

Summary

- 16S community amplicon sequencing: Colonies harbor diverse epibionts distinct from water column, that are dynamically curated across gradients in the environment
- Metagenomics: Epibionts confer substantial metabolic potential which likely underpins *Trichodesmium* fitness
- **Metatranscriptomics**: Novel P cycling currencies may avoid competition
- Apparent interactions between *Trichodesmium* and its microbiome

Microbiome plays a critical role in *Trichodesmium* physiological ecology and biogeochemical cycling

What comes next?

We still need to understand the rules...

- The network of interacting microbes, chemicals and their ecological and biogeochemical relationships
- How taxonomic and functional diversity underpin processes at different scales
- Sensitivity to disturbance and longer term changes – *resilience*
- The time is now

Acknowledgements

- Dyhrman Lab and many extraordinary collaborators
- NSF
- DOE
- Simons Foundation
- World Surf League
- Angell Family Foundation

Conclusions

'Omics approaches are providing new insights into the chemicalmicrobe network that drive ocean ecosystem structure and function

Lessons learned: Where there is a will there is a way!

Enjoy the rest of the workshop!

