Is the polar bear the sister group to the American black bear or the brown bear?
Is the polar bear the sister group to the American black bear or the brown bear?

TOTAL: 16 samples
Is the polar bear the sister group to the American black bear or the brown bear?

Generating phylogenomic data matrices: hands-on session

SAMPLE COLLECTION
Is the polar bear the sister group to the American black bear or the brown bear?

Generating phylogenomic data matrices: hands-on session
Is the polar bear the sister group to the American black bear or the brown bear?

Generating phylogenomic data matrices: hands-on session

SAMPLE COLLECTION

SEQUENCING

ORTHOLOGY INFERENCE
Is the polar bear the sister group to the American black bear or the brown bear?

READY TO CREATE A MATRIX... BUT... WHICH GENES SHOULD WE INCLUDE??

Generating phylogenomic data matrices: hands-on session
Is the polar bear the sister group to the American black bear or the brown bear?

- MISSING DATA
Is the polar bear the sister group to the American black bear or the brown bear?

• MISSING DATA

Let’s create **different matrices with different taxon occupancy** to account for the effect of missing data.
Is the polar bear the sister group to the American black bear or the brown bear?

- **MISSING DATA**

 Let’s create **different matrices with different taxon occupancy** to account for the effect of missing data.

 1) The data is located in the folder

 Bear_dataset_SensitivityAnalyses/MISSING_DATA
Is the polar bear the sister group to the American black bear or the brown bear?

- **MISSING DATA**

Let’s create **different matrices with different taxon occupancy** to account for the effect of missing data.

1) The data is located in the folder
 Bear_dataset_SensitivityAnalyses/MISSING_DATA

2) If you check the list of files in the folder (ls), you’ll see that there are 50 orthologous genes (‘number.fa’). They’re already aligned.
Is the polar bear the sister group to the American black bear or the brown bear?

MISSING DATA

Let’s create **different matrices with different taxon occupancy** to account for the effect of missing data.

1) The data is located in the folder
 Bear_dataset_SensitivityAnalyses/MISSING_DATA

2) If you check the list of files in the folder (ls), you’ll see that there are 50 orthologous genes (‘number.fa’). They’re already aligned.

3) There are also 3 python scripts. For them to run, we’ll need the python libraries **numpy** and **cogent** (already installed in our cluster).
Is the polar bear the sister group to the American black bear or the brown bear?

- **MISSING DATA**

4) Let’s explore the amount of missing data that we have in each taxon. Let’s run the script:

```
python count_genesisPerSpecies.py
```

Explore the amount of missing data in each taxon. Which individuals are poorly represented in each species?
Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear or the brown bear?

● MISSING DATA

5) Now let’s select the genes that have a taxon occupancy above a certain threshold (i.e., we want to create a matrix only with the genes that have a minimum of, let’s say, 3 species). Let’s run the script:

```
python select_taxon_occupancy.py
```
Is the polar bear the sister group to the American black bear or the brown bear?

5) Now let’s select the genes that have a taxon occupancy above a certain threshold (i.e., we want to create a matrix only with the genes that have a minimum of, let’s say, 3 species). Let’s run the script:

 python select_taxon_occupancy.py

It will ask you to select the minimum taxon occupancy. Let’s start by 3. It will create a folder called `orthologs_min_[number]_taxa`. Open it and check how many genes were selected with this threshold.
Is the polar bear the sister group to the American black bear or the brown bear?

MISSING DATA

5) Now let’s select the genes that have a taxon occupancy above a certain threshold (i.e., we want to create a matrix only with the genes that have a minimum of, let’s say, 3 species). Let’s run the script:

```python
python select_taxon_occupancy.py
```

It will ask you to select the minimum taxon occupancy. Let’s start by 3. It will create a folder called ‘orthologs_min_[number]_taxa’. Open it and check how many genes were selected with this threshold.

Run the script with different thresholds and check how the number of selected genes varies.
Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear or the brown bear?

- MISSING DATA

6) Let’s now think again on our goal: to resolve the interrelationships between *Ursus* species. If we select genes just based on taxon occupancy, we may select some that do not include representatives of one or more of the species, and we’ll have a strongly biased dataset.

Let’s then select genes that have an homogeneous representation of all the four species.
Is the polar bear the sister group to the American black bear or the brown bear?

• MISSING DATA

7) Let’s open the decisive_genes.py script and inspect it together.

Notice that at the end of the script we’re defining our four species and choosing a minimum number of individuals representing each species in the genes that will be selected (3 in this case).

Run the script:

```python
decisive_genes.py
```
Is the polar bear the sister group to the American black bear or the brown bear?

MISSING DATA

8) We now have 2 folders called ‘Decisive_genes3’ and ‘NonDecisive_genes3’. Check how many genes you have in the ‘Decisive_genes3’ one. Change the threshold in the script, rerun it and check how the selected (=decisive) genes change.

How do you think this may affect the inferred phylogenetic relationships?
Is the polar bear the sister group to the American black bear or the brown bear?

● MISSING DATA

8) We now have 2 folders called ‘Decisive_genes3’ and ‘NonDecisive_genes3’. Check how many genes you have in the ‘Decisive_genes3’ one. Change the threshold in the script, rerun it and check how the selected (=decisive) genes change.

How do you think this may affect the inferred phylogenetic relationships?

9) Now (or at the end of the class) you can play with these scripts to create different matrices (see guidelines for instructions), run some trees and see how the topology and the support for each node/lineage changes. But first let’s learn how to create a matrix with these genes.
Is the polar bear the sister group to the American black bear or the brown bear?

- MISSING DATA

To create your matrix, first you will need to concatenate the genes selected for each matrix. We will use the software *catsequences*.
Is the polar bear the sister group to the American black bear or the brown bear?

MISSING DATA

We have to create a file with the list of genes that we’d like to concatenate. Let’s create a file with the list of decisive genes. For that, go to the folder containing your decisive genes (orthologs_3_fasta) (\texttt{cd \texttt{MISSING_DATA/orthologs_min_3_fasta}}) and execute the following command: \texttt{ls *.fa > list_decisive_genes.txt}

To concatenate the genes, run the following command: \texttt{cat_sequences list_decisive_genes.txt}

It will create two files: one with the information of the partitions (\texttt{allseqs_partitions.txt}) and the other one with a concatenated fasta with all genes (\texttt{allseqs.fas}). This is your matrix!!
Is the polar bear the sister group to the American black bear or the brown bear?

MISSING DATA

Once the genes are concatenated, use one of the phylogenetic inference programs that you learned in the previous days to run a quick tree and test how the phylogeny varies depending on the genes that you include.

Do you see many differences? What is the factor that is affecting the most in the tests you run?
Is the polar bear the sister group to the American black bear or the brown bear?

- OTHER PROPERTIES: genesortR

10) To further test the robustness of your phylogenomic hypothesis you should also generate matrices accounting for other confounding factors, such as evolutionary rate, compositional heterogeneity, heterotachy, etc.
Is the polar bear the sister group to the American black bear or the brown bear?

- OTHER PROPERTIES: genesortR

10) To further test the robustness of your phylogenomic hypothesis you should also generate matrices accounting for other confounding factors, such as evolutionary rate, compositional heterogeneity, heterotachy, etc.

There are many softwares to do so that you can explore: **BMGE** (compositional heterogeneity at the level of site), **BaCoCa** (compositional heterogeneity at the level of gene), **TIGER2** (order genes by evolutionary rate), etc.
Is the polar bear the sister group to the American black bear or the brown bear?

- OTHER PROPERTIES: genesortR

10) To further test the robustness of your phylogenomic hypothesis you should also generate matrices accounting for other confounding factors, such as evolutionary rate, compositional heterogeneity, heterotachy, etc.

There are many softwares to do so that you can explore: BMGE (compositional heterogeneity at the level of site), BaCoCa (compositional heterogeneity at the level of gene), TIGER2 (oder genes by evolutionary rate), etc.

We are going to try genesortR, an R package that explores several of these properties at the same time.
Is the polar bear the sister group to the American black bear or the brown bear?

- OTHER PROPERTIES: genesortR

11) Let’s take our 50 orthogroups and analyze them with genesortR to see which ones are the most adequate to analyze. We will use species tree 1 for this analysis.
Is the polar bear the sister group to the American black bear or the brown bear?

● OTHER PROPERTIES: genesortR

11) Let’s take our 50 orthogroups and analyze them with genesortR to see which ones are the most adequate to analyze. We will use species tree 1 for this analysis.

Data and scripts are located in:

Bear_dataset_SensitivityAnalyses/GENESORT_R. Go to that folder.

You will see 3 R scripts, the species tree, the 50 gene alignments concatenated (50_genes.fa), its correspondent partitions file (50_genes.partitions.txt), and the newick gene trees concatenated (50_genes.nwk).
Is the polar bear the sister group to the American black bear or the brown bear?

- OTHER PROPERTIES: genesortR

12) We will execute genesortR with default parameters on our 50 genes with this command:

```
module purge
module load r-adephylo r-phytools r-phangorn r-cowplot
Rscript genesortR.R
```

We’ll obtain a copy of our concatenated alignment, partition file and gene trees sorted by their phylogenetic usefulness, from most to least useful.

Take a look at the `sorted_figure_50_genes.pdf` file obtained. How do gene properties vary according to their phylogenetic usefulness?
Is the polar bear the sister group to the American black bear or the brown bear?

OTHER PROPERTIES: genesortR

13) We will now test how selecting the *most* and the *least* phylogenetically useful genes affects the tree inferred.

To obtain the 10 best genes run: `Rscript select_10_best_genes.R`

To obtain the 10 worst genes run: `Rscript select_10_worst_genes.R`
Is the polar bear the sister group to the American black bear or the brown bear?

OTHER PROPERTIES: genesortR

13) We will now test how selecting the *most* and the *least* phylogenetically useful genes affects the tree inferred.

To obtain the 10 best genes run: `Rscript select_10_best_genes.R`

To obtain the 10 worst genes run: `Rscript select_10_worst_genes.R`

Once we have obtained the smaller alignments, use one of the phylogenetic inference programs that you have used before to run a quick tree and test how the phylogeny varies when using genes with different phylogenetic usefulness.

Do you see any differences?
Is the polar bear the sister group to the American black bear or the brown bear?

ASTRAL is a tool for estimating an unrooted species tree given a set of unrooted gene trees. ASTRAL is statistically consistent under the multi-species coalescent model (and thus is useful for handling incomplete lineage sorting, i.e., ILS). ASTRAL finds the species tree that has the maximum number of shared induced quartet trees with the set of gene trees, subject to the constraint that the set of bipartitions in the species tree comes from a predefined set of bipartitions.
Analyzing gene tree/species tree conflict: hands-on session

Is the polar bear the sister group to the American black bear or the brown bear?
Is the polar bear the sister group to the American black bear or the brown bear?

1) Let’s analyze conflict between individual gene trees to see which phylogenetic hypothesis is the most robustly supported:

Species Tree 1

Species Tree 2

Species Tree 3
Is the polar bear the sister group to the American black bear or the brown bear?

2) We have selected 50 orthologous genes and have run individual gene trees with IQTree. Let’s have a look at them here:

Bear_dataset_SensitivityAnalyses/PHYLIP (.tree files)
Is the polar bear the sister group to the American black bear or the brown bear?

2) We have selected 50 orthologous genes and have run individual gene trees with IQTree. Let’s have a look at them here:

Bear_dataset_SensitivityAnalyses/PHYLIP (.tree files)

3) ASTRAL-III needs all gene trees in the same file. For that, let’s concatenate them:

 cat *trees > bears_allTrees.tre
Is the polar bear the sister group to the American black bear or the brown bear?

2) We have selected 50 orthologous genes and have run individual gene trees with IQTree. Let’s have a look at them here:

Bear_dataset_SensitivityAnalyses/PHYLIP (.tree files)

3) ASTRAL-III needs all gene trees in the same file. For that, let’s concatenate them:

```
cat *trees > bears_allTrees.tre
```

And create a folder called ASTRAL and move the files there:

```
mkdir ASTRAL
mv bears_allTrees.tre ASTRAL
```

And go to that folder: `cd ASTRAL`
Is the polar bear the sister group to the American black bear or the brown bear?

4) Let’s now run an analysis on the 50 individual gene trees:
 astral -i bears_allTrees.tre
Is the polar bear the sister group to the American black bear or the brown bear?

4) Let's now run an analysis on the 50 individual gene trees:

```sh
astral -i bears_allTrees.tre
```

You’ll see the output in the screen. To save it in an output file run:

```sh
astral -i bears_allTrees.tre 2> output_ASTRAL.txt
```
Is the polar bear the sister group to the American black bear or the brown bear?

4) Let’s now run an analysis on the 50 individual gene trees:

 `astral -i bears_allTrees.tre`

 You’ll see the output in the screen. To save it in an output file run:
 `astral -i bears_allTrees.tre 2> output_ASTRAL.txt`

 Examine the output. What is the optimal tree inferred by ASTRAL? What is the final normalized quarted score?

 ->The normalized quartet score is the proportion of input gene tree quartet trees satisfied by the species tree. This is a number between zero and one; the higher this number, the less discordant your gene trees are.
Is the polar bear the sister group to the American black bear or the brown bear?

4) Let’s now run an analysis on the 50 individual gene trees:

```
astral -i bears_allTrees.tre
```

You’ll see the output in the screen. To save it in an output file run:

```
astral -i bears_allTrees.tre 2> output_ASTRAL.txt
```

Examine the output. What is the optimal tree inferred by ASTRAL? What is the final normalized quartet score?

->The normalized quartet score is the proportion of input gene tree quartet trees satisfied by the species tree. This is a number between zero and one; the higher this number, the less discordant your gene trees are.

Visualize it in your preferred software or online in phylo.io (just copy-paste the newick tree and click ‘Render’).
Is the polar bear the sister group to the American black bear or the brown bear?

5) So far ASTRAL showed us the preferred topology. Let’s now check how our individual gene trees support the alternatives topologies.

For that, let’s score each species tree topology and compare the normalize quartet score for each one.
Is the polar bear the sister group to the American black bear or the brown bear?

5) So far ASTRAL showed us the preferred topology. Let’s now check how our individual gene trees support the alternatives topologies-

For that, let’s score each species tree topology and compare the normalize quartet score for each one.

Go to the folder `Bear_dataset_SensitivityAnalyses/SPECIES_TREES`

and check the three provided species trees. Visualize them and identify the differences.
Is the polar bear the sister group to the American black bear or the brown bear?

5) So far ASTRAL showed us the preferred topology. Let’s now check how our individual gene trees support the alternatives topologies—

For that, let’s score each species tree topology and compare the normalize quartet score for each one.

Go to the folder Bear_dataset_SensitivityAnalyses/SPECIES_TREES

and check the three provided species trees. Visualize them and identify the differences.

Let’s now score them with ASTRAL.
Is the polar bear the sister group to the American black bear or the brown bear?

6) Let's score the first species tree. From the ASTRAL folder, run:

```bash
astral -i bears_allTrees.tre -q
../SPECIES_TREES/bear_species_tree1.tre 2>
  score_speciesTree1.txt
```
Is the polar bear the sister group to the American black bear or the brown bear?

6) Let’s score the first species tree. From the ASTRAL folder, run:

```
  astral -i bears_allTrees.tre -q
  ../SPECIES_TREES/bear_species_tree1.tre 2>
  score_speciesTree1.txt
```

Do the same with the species trees 2 and 3.
Is the polar bear the sister group to the American black bear or the brown bear?

6) Let’s score the first species tree. From the ASTRAL folder, run:

```
astral -i bears_allTrees.tre -q
../SPECIES_TREES/bear_species_tree1.tre 2>
score_speciesTree1.txt
```

Do the same with the species trees 2 and 3.

Compare the results. Which phylogenetic hypothesis is the most robustly supported?

Which branches are not supported by many genes in each analyses? Does this affect the overall preferred phylogeny of *Ursus*?