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Early 2000s dogma: SNPs account for most human 
genetic variation

https://hapmap.ncbi.nlm.nih.gov

https://hapmap.ncbi.nlm.nih.gov/


Segmental duplications (a.k.a. Low copy 
repeats)

Bailey et al, 2002

~5% of the human genome is duplicated!

Self Dotplot: 
10 megabases of Chr 15
(dot = 1 kb exact match)



Variation in genome structure. So-called 
"structural variation" (SV)
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SV is a superset of copy number variation (CNV). Not all structural changes affect 

copy number (e.g., inversions)!



Our understanding of structural variation is driven 
by technology 

1940s - 1980s
Cytogenetics / Karyotyping

1990s
CGH / FISH / 
SKY / COBRA

2000s
Genomic microarrays

BAC-aCGH / oligo-aCGH

Today
High throughput 
DNA sequencing



Why are structural variations relevant / important?

• They are common and affect a large fraction of the 
genome

• They are a major driver of genome evolution

Genomic DisordersEvolution



Why are structural variations relevant / important?

• Genetic basis of traits

Impact on regulation Impact on phenotypes
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Outline

1. CNV analysis

2. SVs analysis
1. Assembly based

2. Short reads

3. Long reads



Humans differ by roughly 3,000 deletions 
(>=500bp)



Humans differ by a few hundred duplications



Copy-number Profiles



Gingko 
http://qb.cshl.edu/ginkgo

Interactive Single Cell CNV analysis & clustering

• Easy-to-use, web interface, parameterized for binning, 
segmentation, clustering, etc

• Per cell through project-wide analysis in any species

Compare MDA, DOP-PCR, and MALBAC

• DOP-PCR shows superior resolution and consistency

Available for collaboration

• Analyzing CNVs with respect to different clinical outcomes

• Extending clustering methods, prototyping scRNA

Interactive analysis and assessment of single-cell copy-number variations.

Garvin T, Aboukhalil R, Kendall J, Baslan T,  Atwal GS, Hicks J, Wigler M, Schatz MC 

(2015) Nature Methods doi:10.1038/nmeth.3578



Data are noisy

Potential for biases at every step
• WGA: Non-uniform amplification
• Library Preparation: Low complexity, read duplications, barcoding
• Sequencing: GC artifacts, short reads
• Computation: mappability, GC correction, segmentation, tree 

building

Coverage is too sparse and noisy for SNP analysis 
-> Requires special processing



CNV analysis

▪ Divide the genome into “bins” with ~50 – 100 reads / bin

▪ Map the reads and count reads per bin

Use uniquely mappable bases to establish bins

1. Binning



1. Binning

CNV analysis

▪ Divide the genome into “bins” with ~50 – 100 reads / bin

▪ Map the reads and count reads per bin

Use uniquely mappable bases to establish bins



1. Binning

5 4 5 10 11 5 2 5

CNV analysis

▪ Divide the genome into “bins” with ~50 – 100 reads / bin

▪ Map the reads and count reads per bin

Use uniquely mappable bases to establish bins



2. Normalization

Also correct for mappability, GC content, amplification biases



3. Segmentation

Circular Binary Segmentation (CBS)

i j j j ji ji



4. Estimating Copy Number



Using Nanopore MinION: CNV karyotyping.



Nanopore sequencing for CNV detection

1                                          2                                        3                                  4     5                           6                     7                     8                   9               10              11          12        13        14        15       16    17   18 19   20   21 22 23 X Y



SKBR3 cell line CNV Analysis



SID97277  - partial chromosomal deletions    

MinION data

~60k reads

MiSeq Data

5q deletion indicates poor 
prognosis Chr11 abnormalities 

indicate poor prognosis 



SID97277 karyotype 



SID97279 – trisomy 6, 15, 22 and deletions in chr11

MinION Data

~73k reads

MiSeq Data

Trisomy 6 correlated with 
intermediate prognosis  

Abnormalities on 11  indicate poor prognosis 



CNV detection summary

• Advantages
• Less coverage is required

• -> Applications such as single cell sequencing

• Disadvantages
• Resolution of events 

• usually in the multi kbp
• Only deletions and duplications
• Coverage biases in short reads



Assembly based

1. De novo assembly

2. Genomic alignment (WGA)

3. Detangle the genomic alignment to identify variants.



Ingredients for a good assembly

Current challenges in de novo plant genome sequencing and assembly

Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Coverage

High coverage is required

– Oversample the genome to ensure 

every base is sequenced with long 

overlaps between reads

– Biased coverage will also fragment 

assembly

Read Coverage
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Read Length

Reads & mates must be longer 

than the repeats

– Short reads will have false overlaps

forming hairball assembly graphs

– With long enough reads, assemble 

entire chromosomes into contigs

Quality

Errors obscure overlaps

– Reads are assembled by finding 

kmers shared in pair of reads

– High error rate requires very short 

seeds, increasing complexity and 

forming assembly hairballs



Goal of WGA

• For two genomes, Aand B, find a mapping from each position in A to 
its corresponding position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA



Not so fast...

• Genome Amay have insertions, deletions, translocations, inversions, 
duplications or SNPs with respect to B (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA



WGA visualization

• How can we visualize whole genome alignments?

• With an alignment dot plot
• N x M matrix

• Let i = position in genome A
• Let j = position in genome B
• Fill cell (i,j) if Ai shows similarity to Bj

• A perfect alignment between Aand B would completely fill the positive 
diagonal
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• Different structural 

variation types / 

misassemblies will be 

apparent by their 

pattern of breakpoints

• Most breakpoints will 

be at or near repeats

• Things quickly get 

complicated in real 

genomes

http://mummer.sf.net/manual/
AlignmentTypes.pdf



Question: 1

Can an assembly detect all SVs in a diploid genome?



Assembly based detection summary

• Advantages
• Enables the detection of every event
• Good quality for insertions

• Disadvantages
• Genomic alignment is challenging.
• Heterozygous events are likely missed.



Exercise Part1: Fun with assembly

• Cryptosporidium parvum: Interesting 
parasite infect ~7.6%.
• 8 chromosomes 
• ~9.2 Mbp genome size

• Sequenced with Illumina & ONT

• Go to Part 1:
https://github.com/fritzsedlazeck/teach
ing_material

https://github.com/fritzsedlazeck/teaching_material
https://github.com/fritzsedlazeck/teaching_material


How to detect Structural Variations



Looking for "discordant" paired-end fragments

Paired-end sequencing

Ref

Sample

paired-ends map farther away than expected

2000 bp

Slide in collaboration with Ira Hall



Sequence alignment “signals” for structural 
variation

1. Align DNA sequences from sample to human reference genome

2. Look for evidence of structural differences

Ref.

Exp.

(a) Depth of
coverage

(b) Paired-end
mapping

(c) Split-read
mapping

(d) de novo
assembly

Low HighResolution



A probabilistic framework for SV 
discovery

Layer et al, 2014

Ryan Layer

Lumpy integrates paired-end mapping, split-read mapping, and 
depth of coverage for better SV discovery accuracy



Problem #1: Often many false positives

- Short reads + heuristic alignment + rep. genome = 
systematic alignment artifacts (false calls)

- Chimeras and duplicate molecules

- Ref. genome errors (e.g., gaps, mis-assemblies)

- ALL SV mapping studies use strict filters for above



Problem #2: The false negative rate is also 
typically high

- Most current datasets have low to moderate physical coverage due to 
small insert size (~10-20X)

- Breakpoints are enriched in repetitive genomic regions that pose 
problems for sensitive read alignment

- FILTERING!

- The false negative rate is usually hard to measure, but is thought to be 
extremely high for most paired-end mapping studies (>30%)

- When searching for spontaneous mutations in a family or a 
tumor/normal comparison, a false negative call in one sample can be 
a false positive somatic or de novo call in another. 



How to filter / choose the SV caller?

• Each method applies its own heuristics.

Method # Sim. SV avg FDR avg Sensitivity

DELLY 33-198 0.13 0.75

LUMPY 33-198 0.06 0.62

Pindel 33-198 0.04 0.55

SURVIVOR 33-198 0.01 0.70



Question: 2

What is the difference between a CNV and SV duplication?



Exercise Part 2: Short read based 

• Utilize short read mapping to call SV
• We will use Manta 

• Go to: Part 2
https://github.com/fritzsedlazeck/teaching_material

• Remember files are also available locally

https://github.com/fritzsedlazeck/teaching_material


PacBio / ONT sequencer

Advantage:
• Long reads, 
Disadvantage:
• Throughput/yield
• Costs
• High error rates



Long Read Technologies

• (+) SVs in repetitive regions

• (+) Span SVs

• (+) Uniform coverage

• (+) Can identify more complex SVs

• (-) Higher seq. error rate

• (-) Hard to align



Mapping challenges

BWA-MEM: NGMLR:



Mapping challenges

BWA-MEM: NGMLR:



3.2 NA12878

• Healthy female

• Gold standard in genomics

• Sequenced with many technologies independently:
• Illumina, PacBio, Oxford Nanopore



3.2 NA12878: Deletion calling 

Tech. Cov. Avg len SVs DEL DUP INV INS TRA

PacBio 55x 4,334 22,877 9,933 162 611 12,052 119

Oxford 
Nanopore

28x 6,432 32,409 27,147 87 323 4,809 43

Oxford
Nanopore 

@Baylor

34x 4,982
12,596 7,102 169 113 5,166 46

Illumina 50x 2 x 101 7,275 3,744 731 553 0 2,247



3.2 NA12878: check 2,247 vs 119 TRA

Illumina data

Translocation:

PacBio data

ONT data

Truncated reads:

Insertion 
In rep. region

Overlap Illumina TRA(%)

Translocations 7.74

Insertions 53.05

Deletions 12.06

Duplications 0.57

Nested 0.31

High coverage 1.87

Low complexity 9.79

Explained 85.40



NA12878: check 2,247 TRA

ONT data

PacBio data

Illumina data

Insertion 
In rep. region

Inversion:

Translocation:

Truncated reads:

Insertion 
In rep. region



Question: 3

What are the problems of long reads?



Exercise Part 3: Long read based 

• Utilize Oxford Nanopore Technology to identify SV
• We will use Sniffles v2  

• Go to: part 3&4 
https://github.com/fritzsedlazeck/teaching_material

• Files are also available locally. If you don’t find a file I have 
included download links. 

https://github.com/fritzsedlazeck/teaching_material


Sniffles2: Genome in a Bottle (GIAB) Benchmark

● Sniffles2 outperforms current 
methods in accuracy & speed

● Coverage-adaptive: Stable 
performance across sequencing 
coverages

GIAB (Oxford Nanopore)

(minutes)



Sniffles2: GIAB benchmark

A. Default parameters: 
Sniffles2 strongly 
outperforms at low & 
medium coverages

A. Optimized parameters 
for other callers:

Sniffles2 default remains 
most accurate & fastest

B.A.



Challenging Medical Genes

For the CMRG benchmark, Sniffles2 was the most accurate and fastest caller. In 

comparison:

● ... to the 2nd most accurate (cuteSV), Sniffles2 was ~10x as fast (CPU time)

● ... to the 2nd fastest (svim), Sniffles2 was >15% more accurate (genotype F1)

Accurac
y

Consumed time



New Applications in SV detection

1. Germline SV  
2. Population scale 

→ Population-level SV detection studies?



New Applications in SV detection

1. Germline SV  

2. Population scale 

1. Somatic SVs and human disease:

→ Cancer drivers (subclonal level) 

→ Neurodegenerative disorders -

accounting for missing heritability?



Somatic SVs in Multiple System Atrophy (MSA) 

● MSA: Rare neurodegenerative disorder 
(Synuncleinopathy) → progressive 
Autonomic dysfunction, Parkinsonism-like 
symptoms

● Data: Deep long-read sequencing (>55x) of 
regional brain sample

● Sniffles2 Non-germline mode → capture rare 
SVs missed by both Illumina (too large) and 
optical mapping/Bionano (too small).

Sniffles2 recovered mosaic deletion in KCNIP4
(Interactor of neuronal voltage gated potassium channels)in collaboration with Christos Proukakis (UCL)





Thank you

• SV calling is SNP calling of 2009/10

• Reads are typically shorter than the allele 

• Lot of noise in the data 

• Contact me if you are interested:
Fritz.Sedlazeck@bcm.edu

mailto:Fritz.Sedlazeck@bcm.edu
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