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Logistics

• Introduction
• Please feel free to ask questions at any point
• Slides will be posted on workshop website
• One break at about 60 minutes
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• Prepping DNA for Sequencing
• General Study Design Considerations
• Considerations for Specific Sequencing Assays
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What is a read?  What is a library?

• Definition of “read”: A single sequence from one 
fragment in the sequencing library (one cluster, bead, 
etc.)

• If generating paired reads, then 2 reads derived from 
each fragment in the library

• Definition of “library”: A collection of DNA fragments 
that have been prepared to be sequenced

• Definition of “coverage”: The number of reads spanning 
a particular base in the genome



Where does library come from?



Types of reads

• Fragment reads (come from fragment libraries)
– Single read in one direction from a fragment

• Paired end reads (come from fragment libraries)
– Two reads from opposite ends of the same fragment
– Reads point towards each other



Types of reads

• Mate Pair Reads (come from Jumping Libraries)
– Long fragment of DNA is circularized
– Junction is captured (e.g., by biotinylated adapter)
– Remainder is cleaved (many methods)
– Ends are sequenced
– Read orientations depend on the exact method

or

or



Types of reads

• Linked reads (several methods)
– Long (10-100kb) DNA isolated
– DNA is labeled (barcode, mutation, etc.)
– Read pairs generated from specific long fragments
– Sequence normal read pairs
– Can use reads normally for alignment/assembly
– Can also group reads by haplotype of origin
– In some methods, can assemble the long fragment
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Sanger Sequencing (1977)

Image credit: https://unlockinglifescode.org/timeline/11



How Sanger Sequencing Works

Single-stranded DNA

Split into four reactions
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Automation of Sanger (1986)

• Replacement of radioactive label with laser-
excitable fluorescent dyes

• Allowed all four nucleotides to be run in a single 
lane of a gel

• Base sequence could be read off with a camera as 
the fluorescing strands passed a certain point 
near the end of the gel

• Signal from each lane could be converted to a 
nucleotide sequence by a computational process 
called base calling



Fluorescent slab gel image

Image credit: http://www.mun.ca/biology/scarr/How_it_works.htm

Image credit: NCBI Trace Archive



Capillary Gel Sequencing (1998)

• Replacement of 2D slab gels with an array of 
enclosed capillaries

• Cleaner signal processing
• Fully automated loading
• Faster run times



Cost Curve for Sanger Gel Sequencing



Other Early Technologies

• Maxam-Gilbert sequencing
• LI-COR
• Molecular Dynamics MegaBACE
• Pyrosequencing
• Mass spectrometry



Statistics of Apex Capillary Sequencing

• 96 reads per run
• 700-1000 bases per read
• Very high base accuracy over most of the read 

length (<1/100,000)
• ~$1 per read
• ~1 run per hour
• ~2 million bases per machine per day
• Large sequencing centers could do a single 

mammalian genome to assembly depth in about 
2-3 months



Limits on Sanger Gel Performance

• Tradeoff between loss of signal due to diffusion 
and loss of resolution at high voltage or short gel 
length

• Longer gels/capillaries or lower voltages provide 
better separation of short to medium fragments

• Longer gel run times mean more diffusion of 
fragments in the gel, which blurs adjacent signal 
and spreads peaks

• The maximal high quality read length is around 
1000 bp



454 Sequencing

• First “Next Generation” or massively parallel 
technique

• Based on pyrosequencing
• Emulsion PCR DNA prep on beads
• Beads loaded into a picotiter plate for 

sequencing



454 Sequencer



Rover



Emulsion PCR

Image credit: 
https://users.ugent.be/~avierstr/nextgen/nextgen.html



454 Picotiter Plate

Image credit: 
http://www.mbio.ncsu.edu/MB451/lectureModules/molecularEcology/molec
ularSurveys/454/454.html



Pyrosequencing



454 Output: the Flowgram

Image credit: https://contig.wordpress.com/2010/10/28/newbler-input-i-the-sff-file/



Cost Curve for 454 Sequencing



Statistics of Apex 454 Sequencing

• 1 million reads per run
• 400-500 bases per read (750?)
• High error rate (~1.5%), very motif dependent 

(homopolymers)
• Cost several thousand dollars per run
• ~10 hours per run
• ~1 billion bases per machine per day



Limits on 454 Performance

• Failure to accurately read homopolymers or 
sequences near homopolymers; physical limit on 
ability to read the full incorporation

• Loss of signal over time
• Signal/noise degradation due to asynchrony of 

extending strands
• Length of fragment that could be amplified on 

bead in emPCR
• No ability to sequence the second strand of DNA 

or do non-contiguous reads
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Illumina (Solexa) Sequencing

• Sequencing of DNA strands amplified in situ 
on a glass slide

• Use reversible terminators to sequence one 
base at a time



Bridge Amplification



Reversible Terminator Sequencing



Recent Changes in Illumina

• Patterned flowcells
• Exclusion amplification
• 2 color chemistry



Patterned Flowcells



Exclusion amplification

• No more bridge PCR on patterned flowcells
• Fragments rapidly amplify as soon as they 

arrive at the patterned spot
– Prevents a second fragment from amplifying there
– Allows overloading to maximally fill flowcell
– (Not perfect)

• Exact method is not described (see patent)
• Results in “proximal duplicates” or “pad hops”
• Problems with “index switching”



2 color chemistry

• One base (A) labeled with 2 colors
• One base (G) unlabeled
• Allows faster image scanning
• Dead clusters look like runs of G
– Mostly do not align (in human)
– ”Supplemental” alignments



Statistics of Apex (so far) Illumina

• 10 billion (25B) read pairs per run
• 300 bases per read pair
• Relatively low error (<1%), some context 

dependency
• Cost ~$30,000 per run (for NovaSeq on largest 

flow cell size)
• ~2-3 days per run
• ~1 trillion (4T) bases per machine per day



Limits on Illumina Performance

• Loss of signal over time
• Signal/noise degradation due to asynchrony of 

extending strands
• Viability of sequencing reagents over the 

course of a run
• Length of fragment that could be amplified 

into clusters on the slide



Cost Curve for Illumina Sequencing

454
Illumina GA

Illumina HiSeq X



Other Next Generation Technologies

• SOLiD
– Ligation rather than polymerase based
– Used redundant base sampling with error correction 

(“color space”) to enhance error rate (<0.1%), but made 
analysis very challenging

– Short reads, limited second read capability
• Ion Torrent
– Like 454 (emPCR, well-based sequencing)
– Uses direct measurement of pH changes with base addtion

(”post-light”)
• Helicos
– Like Illumina but with single molecules



New Second Generation Methods

• MGI
• Singular
• Element
• Ultima



Single Molecule (Third Generation) 
Methods
• Pacific Biosciences SMRT (Single Molecule Real Time) 

sequencing
– Uses a polymerase anchored in a zero-mode waveguide
– Images all wells at the same time in real time with digital video
– Interprets bases by the light signal visible at incorporation
– Very large instrument

• Oxford Nanopore Technologies
– Uses protein nanopores in synthetic membrane to thread DNA 

through
– Current sensors measure change in fluid current flow through 

pore to differentiate groups of multiple bases as they occupy 
the pore

– Very small instrument (attaches to compute like a USB drive)



PacBio SMRT

https://www.youtube.com/watch
?v=WMZmG00uhwU&feature=you
tu.be



PacBio “Hi-Fi” Reads

• Sized libraries, 10-20kb long
• Generate circular consensus on these
• Can read each linear piece 7-10 times
• Generates very high accuracy long reads
• Can assemble easily and even distinguish 

highly similar repeats



Oxford Nanopore



Current State of Oxford Nanopore

• Very long reads (100,000+, >1 Mbp)
• High error rates (10%+), non random
• Can read both strands to improve accuracy 

(<1% error, but not all reads)
• Low throughput
• Run times variable (few hours to 3+ days)
• Higher costs per base than Illumina (2-fold)
• Reads end when pores die



Limitations of Single Molecule 
Techniques
• Single molecule means no redundancy, so error 

rates will be high unless the same molecule can 
be read more than once

• Methods of detection are hard to massively 
parallelize

• Currently, these techniques actually require large 
amounts of DNA

• Getting very long reads requires very high quality
input DNA

• Data processing and base calling is more 
expensive
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Prepping DNA for Sequencing

• Steps of library construction and sequencing
• Making Fragment libraries (to generate 

fragment or paired end reads)
• Making Jumping libraries (to generate mate 

pair reads)
• Pooling with or without barcoding
• Possible artifacts of library construction
– PCR-based artifacts
– Sequencing of primers, adapters, and tags



Steps of Library Construction

• Add adapters containing:
– Barcodes (for multiplexing)
– Sequencing primers
– Amplification primers
– Sequence for substrate attachment

• Amplify fragments by universal PCR
• Optionally pool barcoded libraries



Steps of Fragment Library 
Construction

• Extract DNA
• Fragment and 

possibly size select 
(300-600 bp)

• Add adapters
• Amplify 
• Select single 

molecules
• Amplify in 

clusters/beads



Steps of Jumping Library 
Construction

• Extract DNA, fragment 
and size select (2-40 
kb)

• Circularize with 
labeled adapters

• Fragment and size 
select (300-600 bp)

• Select fragments 
containing labeled 
adapters

• Proceed as for 
fragment library



Steps of Linked Read Library 
Construction

• Extract DNA, 
fragment and size 
select (50+ kb)

• Isolate large 
fragments

• Fragment, barcode, 
and size select (300-
600 bp)

• Pool and proceed as 
for fragment library



Steps of PacBio Library Construction

• Extract DNA, fragment and size select (50+ kb)
• Add hairpin adapters to both ends



Pooling with barcoding

• Unique DNA tags identify samples
• Allows multiple distinct samples on one run/lane
• Advantages:
– Reduced cost of sequencing for small samples
– Analysis is identical to unpooled data

• Disadvantages:
– Some small throughput loss due to barcode fails
– Data mis-assignment from bad barcode reads
– Increased per sample cost for library construction



Pooling without barcoding
• Mix input DNA without identification
• No way to definitively separate data from different 

samples afterwards
• Advantages:
– Single library prep for a number of samples
– No yield lost to barcodes

• Disadvantages:
– Loss of all individual associations

• Loss of ability to use replicates!
– No check on accuracy of pooling



PCR-based artifacts
• Most libraries are PCR amplified during construction
• After library construction, single molecules are isolated and then 

amplified again for sequencing
• Errors from library construction PCR will not be detectable as 

sequencing errors
• Regions with secondary structure or extreme GC content:

– Will amplify poorly and be underrepresented
– May form small or weak clusters with poor sequence quality

• PCR may form chimeric sequences (especially in targeted designs)
• PCR amplification may result in duplicated sequences



PCR Errors: How Much PCR?

• You may be doing more PCR than you think
• Initial amplification of sample
• Targeting PCR
• Library amplification
• 100 rounds of PCR is equivalent to a 2 order of 

magnitude drop in polymerase accuracy



PCR-based artifacts: PCR bias

• Most PCR protocols work best for ~50% GC
• Extreme GC sequences are underrepresented

From Aird et al., Genome Biology (2011)

Red = standard PCR protocol
Other colors = modified PCR protocols



PCR-Free Libraries

• No PCR amplification in library construction
– Not the same as no PCR, depending on other steps

• More uniform coverage by GC
• Fewer regions of 0 coverage
• Still some bias as cluster formation is PCR-like
• Requires more DNA (1-2 µg vs. 100-200 ng)



GC Bias on Modern Illumina



Sequencing of primers, adapters & tags

• Not every base you sequence is useful
• Primers will be present if you used PCR to target your 

input DNA
– Sequence from primers does not represent target
– Variation seen (or not) under primers is not real
– Overlapping products will allow analysis of the primer-

covered regions
• Short fragments may read through to adapter
• Custom barcodes or other tags may get sequenced too, 

though most vendor tags will be removed automatically
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Considerations before starting a 
sequencing experiment
• What is the question you want to answer?
• How do you decide how much data to generate 

to answer your question?
– Sensitivity (e.g. number of False Negatives)
– Specificity (e.g. number of False Positives)
– Cost

• Which factors influence the amount of data you 
generate?



What is the question you want 
to answer?
• What scientific result do you want?
• Is there an hypothesis you want to test?
– Early sequencing was “hypothesis free” (i.e. the 

genome was the goal)
– Now, it is affordable to sequence for a specific aim 

(i.e. What sequence do you need for that aim?)
• Understanding this shapes many decisions in 

designing the experiment



Why choose one type of read?

• Fragments
– Fastest runs (one read per fragment), least cost
– Some technologies only make one read

• Paired reads
– More data per fragment
– Help with assembly and alignment
– Same library steps as fragments, but yields more 

data



Why choose one type of read?

• Mate Pairs (Jumping Libraries)
– Advantages over paired ends:

• Paired end separation limited by fragment size
• Some platforms can’t read second strand of fragment

– Only way to make long links, which are very useful for:
• Assembly and alignment across repeats and duplication
• Identification of large structural variants
• Phasing of small variants

– Drawback: Requires much more input DNA than paired 
ends



Why choose one type of read?

• Linked reads
– Advantages over standard paired ends:

• Can phase variants over long distances
• Can be used for assembly scaffolding
• May aid in single nucleotide and structural variant calling

– Drawbacks
• Additional cost to generate linked read barcoding
• Requires high quality, high molecular weight input DNA
• Adds some coverage bias, may require additional coverage
• May need more coverage to fully utilize haplotype information



Why choose one type of read?

• Long reads (PacBio or Oxford Nanopore)
– Advantages over short reads:

• Can phase variants over long distances
• Much better structural variant calling
• Much easier to get contiguous assemblies
• Can resolve full length transcripts for RNA-Seq
• Can get methylation information from reads

– Drawbacks
• More expensive for the same coverage
• High error rate (except PacBio HiFi, but much more expensive)
• Requires high molecular weight DNA, and a lot of it
• Fewer reads (but can concatenate)



Number of reads

• How much data do you need to generate to answer your 
question?  

• This depends on the level of completeness & accuracy 
you want

• You have to decide before beginning the experiment 
what level of completeness & accuracy you want, and 
this determines how much data to generate

• Analogy: Trying a protocol in the lab that requires 1ug of 
DNA with 0.1ug may end up working, but it may not



Complexity of library

• Definition of “complexity”: the number of 
distinct fragments in the library

• After amplification, you may have many copies 
of the same initial fragment (which does not 
increase complexity)

• For most experiments, sequencing the same 
fragment multiple times is not useful and may 
be detrimental to your analysis
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Example uses of resequencing

• SNP discovery and genotyping
• Population sequencing
• Structural variant discovery and genotyping
• Comparative genomics of closely related 

species



Considerations before a 
resequencing experiment
• Considerations for all resequencing 

experiments
– Working with a reference genome
– Aligning reads to a reference 
– Alignability
– Read length and type

• Considerations for specific types of 
resequencing experiments

• Targeted resequencing



Working with a reference genome

• How good is the reference?
– Completeness
– Accuracy

• How representative is it of your genome(s)?
• Sequence won’t align if
– Absent from the reference
– Too diverged from the reference



Alignability

• Not all of the reference will be useful for 
alignment because some parts are too similar 
for unique alignments (duplications, recent 
repeats, gene families)

• Longer reads and pairing increase alignability
• Example from human genome resequencing:

No pairing 400 bp pair 6000 bp pair

36 bp read 85% 96% -

100 bp read 93% 97% 98%
Adapted from The 1000 Genomes Project Consortium, Nature (2010)



Considerations for specific types of 
resequencing experiments
• SNP discovery and genotyping
• Population sequencing
• Comparative genomics of closely related 

species



Considerations: Sequencing depth 
for SNP discovery

Type of Experiment Coverage Required

Haploid SNPs/divergence ≥ 10 x

Diploid SNPs/divergence ≥ 30 x

Aneuploid/somatic mutations ≥ 50 x

Population sequencing ≥ 200 x



Example: Haploid SNP discovery
• You know there is only one base-pair at each locus, so 

you should make the majority call
• Assuming a uniform 1% error rate, what is the 

probability that the majority call from your sequencing 
is actually right?

Depth of coverage 
at the locus

% of time that 
majority call is correct

% of time there was
no majority call

% of time that majority 
call is an error

1 99.000 0.00 1.00

2 98.010 1.98 0.01

3 99.970 0.00 0.03

4 99.941 0.06 <0.001

5 99.999 0.00 <<0.001



SNP discovery: Adjusting for 
random sampling
• Previous graph assumed uniform coverage
• What are the probabilities if the reads are theoretically 

randomly distributed?

• In reality, distribution will be worse because reads are 
non-randomly distributed

Average depth of 
coverage across 

genome

% of time that 
majority call is correct

% of time there was no
majority call

% of time that majority 
call is an error

1 62.475 37.153 0.372

2 85.646 14.075 0.279

3 94.409 5.432 0.158

4 97.786 2.134 0.081

5 99.110 0.851 0.039

8 99.938 0.059 0.004

10 99.987 0.012 <0.001



SNP discovery: Diploid or 
aneuploid samples
• Diploid samples require twice as much coverage
– Want to be able to call heterozygotes
– Need to see each allele as often as you would for a 

haploid organism

• Aneuploid or somatic mutation samples
– Cannot rely on expected 1:0 or 1:1 allele ratios
– Often unique variants, and thus are harder to confirm



Considerations: 
Population Sequencing
• Example: Want to find all real variants in 

pooled or host/environmental samples
• What coverage do we need to find a variant at 

a given frequency?

* Lowest frequency of call which exceeds Poisson error probability after Bonferroni correction for 10kb genome

1% error + 200x
= 5.5% variant

0.1% error + 1000x
= 1% variant



Considerations: 
Population Sequencing
• Where is the sampling bottleneck?
• Generating more reads than input molecules 

doesn’t improve calling
– The accuracy and sensitivity of calling is limited by 

the sampling of the population, not the reads

• With limiting amounts of input, consider using 
a barcoding scheme that tags input molecules



Considerations: Comparative 
genomics of closely related species
• Comparative genomic analysis is most effective 

when species are less than a few % diverged
• Using a more diverged reference:
– Requires more sensitive (time consuming) algorithms
– Results in loss of alignability (reads are not placed)
– Is worse if the divergence is due to insertion/deletion

• Longer reads make this less problematic



Targeted sequencing

• Mostly similar to whole genome resequencing
• Targets specific regions (e.g., exome) by:
– PCR amplification
– Hybrid selection
– Targeted genome amplification

• Involves some special analysis considerations



Types of sequencing experiments

• Resequencing
• Genome assembly
• RNA-Seq
• Metagenomics



Example uses of genome assembly

• Generate a reference genome
• Alternative method of SNP discovery (even if you 

have a reference)
– Mostly for small, haploid genomes
– Provides better diversity calling for small indels and 

particularly difficult-to-align regions
• Discover structural variants
– De novo assembly is the only way to get the sequence of a 

novel insertion
– Complex structural variants can be more easily discovered 

through de novo assembly than read alignment to a pre-
existing reference



Steps of a genome assembly 
experiment
• Choose your sample(s)
• Extract DNA from samples
• Fragment the DNA (may need to do this into 

multiple sizes)
• Library construction (may need to make 

multiple libraries)
• Sequencing



Genome assembly considerations: 
Depth of coverage 
• Very deep coverage needed
– For short reads (Illumina): 50x – 100x
– For long reads (PacBio, ONT): 20-50x (required for 

error correction, diploid genomes)

• Common issue is not having sufficient coverage 
for de novo assembly



Genome assembly considerations: 
Type of reads
• Almost certainly use long reads
– Provide connectivity through low coverage
– Resolve repetitive/duplicated regions

• HiFi provides very high accuracy, phasing (for 
polyploids), easy assembly

• Nanopore reads provide long scaffolding with 
much lower accuracy

• For high error long reads, can polish w/Illumina



Phasing and Linking

• Even long read assemblies are not completely 
contiguous for complex organisms

• Can use additional data to scaffold and phase
– Hi-C (scaffolding and phasing)
– Strand-Seq (scaffolding and phasing)
– Optical mapping (scaffolding, probably not phasing)
– All require very long DNA and/or viable cells



Types of sequencing experiments

• Resequencing
• Genome assembly
• RNA-Seq



Example uses of RNA-Seq

• Global expression differences
• Annotating genes from a newly sequenced 

genome
• Discovery of novel genes or transcripts
• Discovery of antisense or other regulatory 

transcripts
• Variability of isoform expression across conditions



Steps of an RNA-Seq experiment

• Extract RNA from samples
• Enrich for mRNAs
• Make cDNA from RNA
• Fragment the cDNA
• Library construction
• Sequencing



Considerations before an 
RNA-Seq experiment 
• Number of samples needed (conditions and 

replicates)
• Number of reads needed



Number of samples needed

• Number of conditions or tissues determined by 
experiment:
– For differential expression, what are you comparing
– For novel discovery, what are the relevant tissues, 

conditions, or time points?
• Number of replicates determined by biological 

variability among replicates
• Website to help estimate optimal power: Scotty
– http://scotty.genetics.utah.edu/



Number of reads needed

• Need enough reads to identify (and quantify) 
all transcripts of interest

• How abundant are transcripts of interest?
• What fraction of all transcripts in the cell are in 

your transcripts of interest?



Number of reads needed

• How large are expression differences?
• Determines significance of the statistical difference
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Example RNA-Seq Runs

• Human expression (per condition):
75+bp paired (20-60M reads)
(50-150 transcriptomes per NovaSeq S2, 150-300/S4)

• Vertebrate annotation (per tissue):
100+bp paired, strand-specific (20-60M pairs)

• Bacterial and fungal annotation:
100+bp paired, strand-specific (5-15M pairs)



Single cell RNA-Seq

• Adds an extra dimension
• Consider:
– Number reads per cell
– Number of cells per replicate
– Number of replicates

• Do you have enough cells to detect differences in 
cell type composition?

• Do you have enough reads x cells to see differences 
in expression within cell types?



Examples of caveats when 
measuring expression by RNA-Seq

• PCR duplicates don’t represent actual counts of RNA 
fragments, so you need to remove them for quantitation

• Need to be careful about variance: 
• Biological Variance, e.g. Biological variability between 

replicates of the same conditions may be greater than 
what is needed to determine statistically significant gene 
expression changes between conditions

• Statistical Variance, e.g. When you align reads, they may 
map to multiple isoforms or multiple paralogs, so you 
need to assign those reads fractionally to get total 
transcription levels
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