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Gene expression

The selective activity of
certain genes is a highly
regulated process

Cell type Red blood Muscle Pancreatic

Gene type

Housekeeping | | | | | |

Gene expression is a

characteristic of space (e.g.,
cell type, tissue, etc.) and insuin. | | || |
time (e.g., developmental Myosin | | | |
stage, time after event)

Hemoglobin | | | | | |
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What are some questions we can answer

with bulk RNAseq data?

Does gene

How many expression differ
genes are being ,,.. genes between groups
expressed? are uniquely or in response to

expressed? a certain variable?

Are patterns of
gene expression

different among
samples? Are patterns

of expression
“ different
L among genes?
+ o

What are the
functional roles of
groups of differently
expressed genes?




Lab activities

Exploring patterns in RNAseq data
Differential gene expression analysis

Functional enrichment of gene sets

Structure:
Short background
Open work time
Review




Gene expression analysis

'

Biological samples/Library preparation
I

Sequence reads

I

Read quality check

U
Trimming (adaptors and low quality

\ bases)
U

Mapping to genome or transcriptome
I}

Count reads associated with features

De novo transcriptome assembly }
and quality assessment

~
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Quality control

Reads: To trim or not to trim?

- genome annotation, variant calling, transcriptome assembly :
Trim!
- Anything else, maybe trim lightly?
- adapters + low quality score (Q10-15)

Reference genome considerations:

- What maps where:
- Recent duplications?
- Highly repetetive content?
- Missing content?

Annotation considerations:

- What features have been annotated?

- Was RNAseq data used in the annotation?

- What RNA? Life stage? Sex?
(Williams et al. 2016 BMC Bioinformatics,

Liao and Shi 2020 NAR Genomics and Bioinformatics
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RNA sequence alignment to a reference

What are some challenges when aligning RNA-seq reads to
the reference genome?

pre-mRNA




Splice-aware sequence alignment

Transcript Exon 1 Exon 2 Exon 3
I |
Trimmed | |
N
short reads I

Alignment to reference genome

— — —
Genome [[]  Exon1 Exon3 [ ]
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Counting reads as a measure of expression

Two common counting tools are featureCounts and htseq.

Total read count associated with a gene (meta-feature) == the sum of
reads associated with each of the exons (feature) that are a part of
that gene.

genomics@ip-172-31-11-182:[~/workshop_materials/differential_expression/refs]$ head Pca_annotation.gtf
AUGUSTUS transcript 22193 24413 . - . transcript_id "Polcal_gl.t1"; gene_id "Polcal_gl";
AUGUSTUS exon 22193 22320 5 - 5 transcript_id "Polcal_gl.tl1"; gene_id "Polcal_gl";
AUGUSTUS exon 23838 24048 . - . transcript_id "Polcal_gi1.tl1l"; gene_id "Polcal_gil";
AUGUSTUS exon 24390 24413 5 : transcript_id "Polcal_gl.tl1"; gene_id "Polcal_gl";
AUGUSTUS CDS 22193 22320 . - transcript_id "Polcal_gi.tl"; gene_id "Polcal_gil";
AUGUSTUS CDS 23838 24048 5 - transcript_id "Polcal_gl.tl1"; gene_id "Polcal_gl";
AUGUSTUS CDS 24390 24413 transcript_id "Polcal_gi1.tl1l"; gene_id "Polcal_gil";

AUGUSTUS transcript 79912 80136 5 5 transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
AUGUSTUS exon 79912 80136 5 - . transcript_id "Polcal_g2.tl1l"; gene_id "Polcal_g2";
LG1 AUGUSTUS CDS 79912 80136 5 - 0 transcript_id "Polcal_g2.tl1l"; gene_id "Polcal_g2";
genomics@ip-172-31-11-182:[~/workshop_materials/differential_expression/refs1$ [J




What should count?? =SS

read
gene_A
read
gene A e gene_A

read read
gene_A L gene_A

HTSeqg manual




Read count matrix

Output of counting = A count matrix, with features as rows
and samples as columns

Each column is a sample

GENE ID KD.2 KD.3 |OE.1 |OE2 ©OE3 IR1 IR2 |IR.3
1/2-SBSRNA4 57 a1 64 55 38 45 31 39
'A1BG 71| 40 100 81 a1 77| 58| 40
AIBG-AS1 | 256 177, 220 189 107, 213 172 126
) ALCF 0 1| 1] 0 0| 0 0 0
- A2LD1 146 81 138 125 52 91| 80 50
=) A2M 10 9/ 2| 5 2| 9 8 4
o= A2MLL 3 2 6 5 2 2 1 0
8 A2MP1 0 0| 2 1 3 0 2|
Y S A4GALT 56 37, 107, 118 65| a9 52 37
A4GNT , 0 0 0 0 1 0 0 0
wn AAO6 | 0 0 0 0 0 0 0 0
"= AAAL 0 0 1 0 0 0 0 0
; AAAS | 2288 1363 1753 1727] 835 1672 1389 1121
O AACS 1586, 923 951 967 484 938 771 635
bt AACSP1 1 1 3 0 1 1 1 3
= AADAC 0 0| 0 0 0 0 0 0
AADACL2 0 0 0 0 0 0 0 0
8 'AADACL3 0 0| 0 0 0 0 0 0
LL] AADACL4 | 0 0 1] 1] 0 ) 0 0
AADAT 856 539 593 576 359 567 521 416
AAGAB 4648 2550, 2648 2356, 1481 3265 2790 2118
|AAK1 2310 1384 1869 1602| 980 1675 1614, 1108
AAMP | 5198 3081 3179 3137 1721 4061 3304 2623
AANAT _ 7| 7| 12| 12| 4 6 2| 7
AARS | 5570 3323 4782 4580 2473 3953 3339 2666

aAane,n aare amnm e e 4man ~nann ~nmra «rem




Some problems with raw counts...

Some samples consistently have more reads, some have
fewer: systematic biases

Each column is a sample

GENE ID R.1 IR.2 IR.3

1/2-SBSRNA{ a5 31 39

A1BG 77 58 40

A1BG-AS1 213 172 126

() A1CF 0 0 0

- A2LD1 91 80 50

= A2M 8 a

o= A2MLL 2 1 0
8 A2MP1 0 2

[ P A4GALT 49 52 37

@ A4GNT 0 0 0

(¢p] AAO6 0 0 0

= AAA1L 0 0 0

; AAAS 1672 1389 1121

@) AACS 938 771 635

— AACSP1 1 1 3

e AADAC 0 0 0

AADACL2 0 0 0

8 AADACL3 0 0 0

LLI AADACL4 0 0 0

AADAT 567 521 416

AAGAB 3265 2790 2118

1675 1614 1108

4061 3304 2623

6 2 7

3953 3339 2666




Solution: normalization

* Normalization is NOT fitting a normal distribution or
transforming data.

* Normalization aims to identify and account for the nature
and magnitude of systematic biases

The main factors often considered during normalization:
* Sequencing depth (aka library size)
* RNA composition
* Gene length (some methods)




Normalization

Sequencing depth
Sample A Reads
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Normalization

Sequencing depth
Sample A Reads Sample B Reads
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Normalization

RNA composition

* A few highly differentially
expressed genes

* Can skew some normalization
methods

Sample A Reads
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Median of ratios (MRN) normalization

* Used by DESeqg2 (DGE analysis tool we will use today)

* Generates a scaling factor for each sample to account for variation
in library size

Raw counts

(Gene | sampleA | samples
EF2A 1489 906
ABCD1 22 13

Normalized counts

oo Lomen ———omes

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62

ABCD1 22/1.3=16.92 13/0.77 = 16.88

Normalized counts are not whole numbers!

'l 1B e N




Exploring patterns in RNAseq data

Clustering of samples
* Dimension reduction analysis (e.g., PCA, PLS, MDS)

* Clustering (e.g., hierarchical clustering, k-means
clustering)

Clustering of features
* Same as above, just focusing on features

* Weighted co-expression analysis (WGCNA, correlation
among features)

22




Properties of RNA-seq count data

The distribution of RNA-seq counts for a single sample:

12500 -
10000 -
Most genes are expressed a low levels
(small counts), lower limit of 0
w
Q 7500~
= No upper limit of expression, and some
2 highl d leadi
= genes are highly expressed leading to a
L . °
£ 5000- long right tail
=
2500 -

L} ' ' '
0 20000 40000 60000 80000

Raw expression counts




Data transformations for clustering

and visualization
* Pseudo-log: y = log,(n + ngy)

* Ny is a constant, like 1

 Variance not stable at low values (does not scale with
expression)

Instead, we want to transform the data to remove the
trend (variances roughly similar across mean values)

* Variance stabilizing transformation DESeq2::vst()
* Regularized log transformation DESeq2::rlog()

Huber et al. 2003 Stat. Appl. Genet. Mol. Biol.,
Anders & Huber 2010 Nature, Love et al. 2023
“Analyzing RNA-seq data with DESeq2”

24




Effect of transformations on variance

Pseudo-log VST rlog
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rientation to the tutorial

2 Our questions
1 Our system: diet plasticity in

generalist butterflies 1. Do patterns of gene expression differ between larvae reared on different host plants?
: 2. Which genes are differently expressed between larvae reared on different host plants?
2 Our questions 3. What are the functions of differentially expressed gene sets?
3 Background

4 Unit 1: Exploring patterns of gene 3 BaC kg rOU nd

expression among samples
Today’s tutorial walks through a reference-based differential gene expression (DGE) analysis. This means our reads have been

5 Unit 2: Differential gene expression aligned to an existing reference genome for P c-album, rather than a de novo transcriptome generated from the RNA-seq data. The
analysis three main steps of reference-based DGE analysis are 1) alignment, 2) quantification and 3) analysis (Fig. 2). In this tutorial, we will

6 Unit 3: Gene set enrichment focus on step 3) analysis.

analysis This tutorial has three units:
7 The big challenge: running a « Exploring patterns of gene expression among samples
second contrast « |dentifying differentially expressed genes

8 Other great resources: * Evaluating functional enrichment of DE gene sets

Each unit has core exercises you should try to finish during the lab. If you finish the core exercises, there are additional challenge
exercises at the end of each unit.

9 References

Occasional blue boxes give background on the analyses. Feel free to gloss over these — you can come back to them later if you
are curious or want to learn more.

4 Unit 1: Exploring patterns of gene expression
among samples

Everything in this tutorial will be done in RStudio.

4.1 Set the working directory

Open RStudio and start by checking ( getwd() ) and setting ( setwd() ) your working directory. The activity is designed to be run in
the "RNAseq_analysis” directory.

Show

Alternatively, you can set the working directory using the RStudio interface. Click on the Files tab. Navigate by clicking on the
directories you want to enter (workshop_materials , then RNAseq_analysis ). Once inside the working directory, use the More
drop-down menu (next to the little blue gear) and select set As Working Directory .

Take a look at the contents of the directory and subdirectory. You can do this using the list.files() command with the
recursive = T option. or by selecting Go To Working Directory from the More drop-down menu onthe Files tab.

Il R N TN




Exploring patterns in RNAseq data

Part 1

Core tasks:
 Load raw count matrix
 Transform for visualization

* PCA of samples
* Hierarchical clustering of samples

Challenge exercises

28




Open work time (25 min)

Five more minutes!

5 minutes

B




Review




Lab activities

Differential gene expression analysis

Functional enrichment of gene sets




Differential expression analysis

Normalized expression level

0, 20 000
‘ \ O Significant difference
‘ ﬁ % between group means
@) “ g) O d) OGIobaI mean

@ Condition A sample
@ Condition A group mean
O Condition B sample

®00QQ
.’ @ Condition B group mean
‘) No significant difference
é) between group means

>

features (e.g. genes) samples
'4 4
Gene_id S1 S2 S3 S4 S5 S6
Polcal_g1l 17 10 5 23 10 6
Polcal_g2 0 1 0 1 2 1
Polcal_g3 7 0 2 7 4 0
Polcal g4 17 11 5 21 10 12




Differential expression analysisis




DESeq2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2

Michael | Love, Wolfgang Huber & Simon Anders

Genome Biology 15, Article number: 550 (2014) | Cite this article

450k Accesses | 34853 Citations | 131 Altmetric | Metrics




Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors)
- done!

Step 2. Estimate gene-wise dispersion

* To accurately model sequencing counts, we need to
generate accurate estimates of within-group variation for
each gene (aka dispersion)

* need to choose the right distribution

35




Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the
mean = variance.

36




Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the
mean = variance.

Fitted
poisson

Poisson distribution is distribution

not suitable to model
count data across the
biological samples.

Variance

37




Statistical modeling of count data

The distribution that fits best is the Negative Binomial (NB)

distribution.

-two parameters, one
for the mean and one
for the variance

-fexlibility to estimate
the amount of
dispersion for each
gene across samples.

Pooled gene-level variance (log10 scale)

1e+04 1e+08

1e+00

W Poisson
B Negative Binomial

500 5000 50000

Mean gene expression level (log10 scale)

e N




How does the dispersion relate to our
model?

Variation is an important part of model fitting and hypothesis
testing.

Estimates of variation for each gene are often unreliable.

DESeq?2 shares information across genes to generate more accurate
estimates of variation: : ’

1e+00

Fitted dispersion curve = expected
dispersion for genes of a given level of
expression (e.g., mean normalized count)

dispersion
1e-04

e gene-est
« fitted
* final
T I T

1e-01 1e+01 1e+03 1e+05

1e-08

mean of normalized counts




Model fitting and hypothesus_testmg
‘ QQ

OOO
qk
Bo ﬁ

Step 4. Generalized Linear Model fit for each gene

1 Bo + B1
y = ﬁO + xlﬁl * y=normalized expression level

* o = intercept (the estimated expression for the base

y — ﬁO + 0 x ﬁl level, condition A (red)
_ * Xx;=a binary indicator variable for (O if part of the red
y — ﬁo group, 1 if part of the blue group)

— * * [3; = coefficient for condition B (blue)
y ﬁO T 1 ﬁl * represents the difference between red and blue
y= Bo+ B

OGIobaI mean

@ Condition A sample

@ Condition A group mean
O Condition B sample

@ Condition B group mean




Model fitting and hypothesis testing
OOO

OGIobaI mean ‘ ‘ ‘
@ Condition A sample
@ Condition A group mean
O Condition B sample

@ Condition B group mean ‘

QO
ﬁo ﬁ1 Bo + B1

Step 4. Generalized Linear Model fit for each gene

y = Po+ b1
Yy — Bo = P1
log, (expressiony,.) — log,(expression,..q) = 1

lo (expressionblue
52 exXpressSioNn ed

) = 41 “log, Fold Change”




Specifying contrasts

Pca_dds <- DESeqDataSetFromMatrix(countData = Pca_counts,
colData = Pca_metadata,

design = ~|condition)

contrast_U R <- c("condition", "Urtica", "Ribes")

# extract the results for your specified contrast
Pca_res_table U R <- results(Pca_dds_filt, contrast=contrast_U_R)

expressiongipes \ __ ﬁ
expressionyrtica 1

‘AT B

log, “log, Fold Change”




Output of DESeq2

log2 fold change (MLE): condition Urtica vs Ribes
Wald test p-value: condition Urtica vs Ribes
DataFrame with 10253 rows and 6 columns

| baseMean |1og2FoldChange | 1fcSE

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
Polcal_gl0 89.7562 0.2644909 0.164662 1.606262 ©0.108216 ©0.248881
Polcal_gl00 128.7307 0.0751998 0.120094 0.626174 ©.531201 0.702218
Polcal_gl000 80.8697 -0.0682283 ©.117253 -0.581890 0.560641 0.724417
Polcal_gl0o00  18.4347 0.0794954 0.237090 0.335296 0.737402 0.846199
Polcal_gloooe  19.1902 0.4310584 ©0.295618 1.458158 ©0.144797 0.304659
Polcal_g9993 15.1301 -0.181906 ©.356393 -0.51041 0.6097642 0.7610362
Polcal_g9994 16.6881 0.402894 0.294354 1.36874 0.1710811 0.3409535
Polcal_g9996 84 .0056 0.140555 1.025049 0.13712 0.8909358 0.9396940
Polcal_g9998 2.9282 -1.638792 0.745256 -2.19897 0.0278803 0.0941556
Polcal_g9999 4.0105 -1.006017 ©.598296 -1.68147 0.0926717 @.2240950

baseMean: mean of normalized counts for all samples
log2FoldChange: log2 fold change

IfcSE: standard error

stat: Wald statistic

pvalue: Wald test p-value

padj: BH adjusted p-values — use a pre-defined cutoff for significance

oA WwWwNR




When can we detect differential

expression?

(

Q

) 6000 -
5000 -
4000 -
3000 -

2000 -

# DE genes (FDR 0.05)

1000 -

5 10 15 20 25
Number of Reads(M)

30

(b)),

i
o
#Reps (r 0.8-
B O uD_
-3 =
-g w06
=
mo 0?3
7
= 0.4 -
0.2 -

255.0

# Reps
—_2
- 3
- 4
5
M6
7

100 150 20.0 25.0 30.0
Number of Reads

Liu et al. 2014. Bioinformatics
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What do we do with DE genes?

* Visualize expression levels, log fold changes, and
significance

* [dentify up- and down-regulated genes
 Compare sets of DE genes
 Test for functional enrichment of DE gene sets

45



Differential gene expression

Part 2 Core tasks:
* Run a pairwise contrast
* Visualize differential expression with a volcano plot
e Extract the list of DE genes
* Visualize DE genes in a heatmap

Challenge exercises
Challenge questions

46



Open work time

Five more minutes!

5 minutes

B




Review




Part 3: functional annotation

Differential expression or clustering analysis can produce
large gene sets.

How can we figure out the functional consequences of
these differences?

Gene set enrichment analysis:

Do functional terms occur in the target gene set more than
expected by chance?

GO terms

KEGG pathways

Reactome pathways

49
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Links to other DE/DS tools

WGCNA (R package)

DEXSeq (R package)

EdgeR (R package)

LeafCutter (python & R

scripts)

IsoformSwitchAnalyzer

(R package)

EBSeq

'l 1B

Weighted gene coexpression analysis

groups genes into modules/clusters by
expression patterns across samples

Differential exon expression within the
DESeqg2 framework from exon count data

Differential expression analysis with
differential exon expression functions from
exon count data

Differential splicing analysis specifically
focused on differential intron retention
from junction count data

Differential isoform usage from transcript
count data

Bayesian differenital expression framework

Horvath lab website:
https://horvath.genetics.ucla.edu/html/Coexpressi
onNetwork/Rpackages/WGCNA/

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/DEXSeq/inst/doc/DEXSeq.html

User guide:
https://bioconductor.org/packages/release/bioc/vi
gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf

Github page:
https://davidaknowles.github.io/leafcutter/

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/IsoformSwitchAnalyzeR/inst/doc/Isoform$S
witchAnalyzeR.html

Vignette:
https://bioconductor.org/packages/release/bioc/vi
gnettes/EBSeq/inst/doc/EBSeq Vignette.pdf
Github page: https://github.com/lengning/EBSeq

I


https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://davidaknowles.github.io/leafcutter/
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://github.com/lengning/EBSeq

Median of ratios (MRN) normalization

* Used by DESeq2 (DGE analysis tool we will use today)

Let’s see how the normalization works...




Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

sampIeA sampIeB Pseudo-reference sample

EF2A 1489 sqrt(1489*906) = 1161.5
ABCD1 22 13 sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

sampleA | sampleB | Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref
reference
sample
EF2A 1489 906 1161.5 1489/1161.5 =1.28 906/1161.5=0.78
ABCD1 22 13 16.9 22/16.9 =1.30 13/16.9 =0.77
MEFV 793 410 570.2 793/570.2 =1.39 410/570.2 =0.72

et




The figure below illustrates the median value for the distribution of all gene ratios
for a single sample (frequency is on the y-axis).

sample 1 / pseudo-reference sample

- IIIIIIII‘ ‘lIIIIIlI-I--I_-I I
I 1 1
0 1 2 3

The median of ratio methods makes the assumption that not ALL genes are
differentially expressed; therefore, the normalization factors should account for
sequencing depth and RNA composition of the sample (large outlier genes will not

represent the median ratio values).
. | I
T
]

2500
I

1500
| |

0 500

|
4
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Step 3. Calculate the normalization factor for each sample (size factor)

sampleA | sampleB | Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref

reference
sample

1489/1161.5=1.28 906/1161.5=0.78

ABCD1 22 13 16.9 22/16.9=1.30

793/570.2 = 1.39

13/16.9 =0.77
410/570.2 =0.72

median(c(1.28, 1.3, 1.39, 1.35, 0.59,..))
=1.3

median(c(0.78, 0.77, 0.72, 0.8, 0.73,
=0.77

w))




Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene | samplen | samples__
EF2A 1489 906
ABCD1 22 13

Normalized counts

oo ampen ———sampis

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62
ABCD1 22/1.3=16.92 13/0.77 = 16.88

Normalized counts are not whole numbers!




