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Things I do for fun (other than work, 
because I love work)
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Current fave: Imperial Radch Trilogy, Ann Leckie
Audiobook! Narrated by Adjoa Andoh
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Gene expression

The selective activity of 
certain genes is a highly 
regulated process

Gene expression is a 
characteristic of space (e.g., 
cell type, tissue, etc.) and 
time (e.g., developmental 
stage, time after event)
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Price et al. 2022. Nature Ecology and Evolution



What are some questions we can answer
with bulk RNAseq data? 
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How many 
genes are being 

expressed?  
Which genes 
are uniquely 
expressed? 

Are patterns of 
gene expression 
different among 

samples? 

Does gene 
expression differ 
between groups 
or in response to 

a certain variable? 

What are the 
functional roles of 

groups of differently 
expressed genes? Are patterns 

of expression 
different 

among genes? 



Lab activities
Part 1: Exploring patterns in RNAseq data

Part 2: Differential gene expression analysis

Part 3: Functional enrichment of gene sets
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Structure: 
Short background
Open work time
Review

Part 1

Part 2

Part 3



Biological samples/Library preparation

Sequence reads

Read quality check

Trimming (adaptors and low quality 
bases)

Mapping to genome or transcriptome

Count reads associated with features

Identify differentially expressed features

Gene expression analysis
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De novo transcriptome assembly 
and quality assessment

Compare expression patterns



Quality control 
Reads: To trim or not to trim? 

- genome annotation, variant calling, transcriptome assembly : 
Trim!

- Anything else, maybe trim lightly? 
- adapters + low quality score (Q10-15)

Reference genome considerations:
- What maps where:

- Recent duplications? 
- Highly repetetive content?
- Missing content? 

Annotation considerations:
- What features have been annotated? 
- Was RNAseq data used in the annotation?

- What RNA? Life stage? Sex? 
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(Williams et al. 2016 BMC Bioinformatics,
Liao and Shi 2020 NAR Genomics and Bioinformatics)



RNA sequence alignment to a reference

What are some challenges when aligning RNA-seq reads to 
the reference genome?
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Splice-aware sequence alignment
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Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

Alignment to reference genome

Transcript

Trimmed 
short reads

Genome



Counting reads as a measure of expression

Two common counting tools are featureCounts and htseq.

Total read count associated with a gene (meta-feature) == the sum of 
reads associated with each of the exons (feature) that are a part of 
that gene.

13



What should count??
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HTSeq manual



Read count matrix
Output of counting = A count matrix, with features as rows 
and samples as columns
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Some problems with raw counts… 
Some samples consistently have more reads, some have 
fewer: systematic biases
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Solution: normalization
• Normalization is NOT fitting a normal distribution or 

transforming data. 
• Normalization aims to identify and account for the nature 

and magnitude of systematic biases

The main factors often considered during normalization:
• Sequencing depth (aka library size)
• RNA composition
• Gene length (some methods)
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Normalization
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Sequencing depth



Normalization
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Sequencing depth



Normalization

RNA composition

• A few highly differentially
expressed genes

• Can skew some normalization
methods
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Median of ratios (MRN) normalization
• Used by DESeq2 (DGE analysis tool we will use today)
• Generates a scaling factor for each sample to account for variation 

in library size
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Gene sampleA sampleB

EF2A 1489 906

ABCD1 22 13

… … …

Gene sampleA sampleB

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62 

ABCD1 22/1.3 = 16.92 13/0.77 = 16.88

… … …

Normalized counts are not whole numbers!

Raw counts

Normalized counts



Exploring patterns in RNAseq data
Clustering of samples
• Dimension reduction analysis (e.g., PCA, PLS, MDS)
• Clustering (e.g., hierarchical clustering, k-means 

clustering) 

Clustering of features
• Same as above, just focusing on features
• Weighted co-expression analysis (WGCNA, correlation 

among features)
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Properties of RNA-seq count data
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Most genes are expressed a low levels 
(small counts), lower limit of 0

No upper limit of expression, and some 
genes are highly expressed leading to a 
long right tail

The distribution of RNA-seq counts for a single sample:



Data transformations for clustering 
and visualization
• Pseudo-log: 𝑦 = 𝑙𝑜𝑔! 𝑛 + 𝑛"
• 𝑛! is a constant, like 1
• Variance not stable at low values (does not scale with 

expression)

Instead, we want to transform the data to remove the 
trend (variances roughly similar across mean values) 
• Variance stabilizing transformation DESeq2::vst()
• Regularized log transformation DESeq2::rlog()

24

Huber et al. 2003 Stat. Appl. Genet. Mol. Biol., 
Anders & Huber 2010 Nature, Love et al. 2023 
“Analyzing RNA-seq data with DESeq2”



Effect of transformations on variance
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Pseudo-log VST rlog

Love et al. 2023 “Analyzing RNA-seq data with DESeq2”



Today’s lab: Polygonia c-album
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Orientation to the tutorial
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Exploring patterns in RNAseq data
Part 1 

Core tasks: 
• Load raw count matrix
• Transform for visualization
• PCA of samples
• Hierarchical clustering of samples

Challenge exercises
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Open work time (25 min)
Five more minutes!
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5 minutes



Review
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Lab activities
Part 1: Exploring patterns in RNAseq data

Part 2: Differential gene expression analysis

Part 3: Functional enrichment of gene sets
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Part 1

Part 2

Part 3



Differential expression analysis
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Gene_id S1 S2 S3 S4 S5 S6

Polcal_g1 17 10 5 23 10 6

Polcal_g2 0 1 0 1 2 1

Polcal_g3 7 0 2 7 4 0

Polcal_g4 17 11 5 21 10 12

features (e.g. genes) samples

Input

Analysis



Differential expression analysisis 

33

Raw read counts

Normalization

Modeling counts for each gene

Testing for differential expression



DESeq2 package
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Modeling raw counts for each gene
Step 1. Normalization (aka estimation of size factors) 

à done!

Step 2. Estimate gene-wise dispersion

• To accurately model sequencing counts, we need to 
generate accurate estimates of within-group variation for 
each gene (aka dispersion)
• need to choose the right distribution

35



Statistical modeling of count data
Which probability distributions are suitable for modeling count data? 

Poisson distribution? 

A property of Poission distribution is that the 
mean = variance.

36



Statistical modeling of count data

37

Which probability distributions are suitable for modeling count data? 

Poisson distribution? 

A property of Poission distribution is that the 
 mean = variance. 

Va
ria

nc
e

Mean

Fitted 
poisson 
distribution

mean	≠ variance

Poisson distribution is 
not suitable to model 
count data across the 

biological samples.



Statistical modeling of count data

38

The distribution that fits best is the Negative Binomial (NB) 
distribution. 

-two parameters, one 
for the mean and one 
for the variance

-fexlibility to estimate 
the amount of 
dispersion for each 
gene across samples.



How does the dispersion relate to our 
model?
Variation is an important part of model fitting and hypothesis 
testing. 

Estimates of variation for each gene are often unreliable.

DESeq2 shares information across genes to generate more accurate 
estimates of variation:
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Fitted dispersion curve = expected 
dispersion for genes of a given level of 
expression (e.g., mean normalized count)



Model fitting and hypothesis testing
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• y = normalized expression level
• β0 = intercept (the estimated expression for the base 

level, condition A (red)
• x1 = a binary indicator variable for (0 if part of the red 

group, 1 if part of the blue group)
• β1 = coefficient for condition B (blue)

• represents the difference between red and blue

Step 4. Generalized Linear Model fit for each gene

𝜷𝟎 𝜷𝟎 + 𝜷𝟏𝜷𝟏

𝒚 = 	𝜷𝟎 + 𝒙𝟏𝜷𝟏
𝒚 = 	𝜷𝟎 + 𝟎 ∗ 𝜷𝟏

𝒚 = 	𝜷𝟎 + 𝟏 ∗ 𝜷𝟏
𝒚 = 	𝜷𝟎

𝒚 = 	𝜷𝟎 + 𝜷𝟏

𝒙 = 𝟎 𝒙 = 𝟏



Model fitting and hypothesis testing
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Step 4. Generalized Linear Model fit for each gene

𝜷𝟎 𝜷𝟎 + 𝜷𝟏𝜷𝟏

log! 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒃𝒍𝒖𝒆 − log! 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝒓𝒆𝒅 = 𝜷𝟏

𝒚 = 	𝜷𝟎 + 𝜷𝟏
𝒚 − 𝜷𝟎 = 𝜷𝟏

log!
+,-.+//012𝒃𝒍𝒖𝒆
+,-.+//012𝒓𝒆𝒅

=	 𝜷𝟏
𝑙𝑜𝑔!1 = 0
𝑙𝑜𝑔!2 = 1
𝑙𝑜𝑔!4 = 2

“𝐥𝐨𝐠𝟐	𝐅𝐨𝐥𝐝	𝐂𝐡𝐚𝐧𝐠𝐞”



Specifying contrasts
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log!
+,-.+//012𝑹𝒊𝒃𝒆𝒔
+,-.+//012𝑼𝒓𝒕𝒊𝒄𝒂

=	 𝜷𝟏 “𝐥𝐨𝐠𝟐	𝐅𝐨𝐥𝐝	𝐂𝐡𝐚𝐧𝐠𝐞”



Output of DESeq2
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1. baseMean: mean of normalized counts for all samples
2. log2FoldChange: log2 fold change
3. lfcSE: standard error
4. stat: Wald statistic
5. pvalue: Wald test p-value
6. padj: BH adjusted p-values – use a pre-defined cutoff for significance



When can we detect differential 
expression? 

44

Liu et al. 2014. Bioinformatics



What do we do with DE genes? 
• Visualize expression levels, log fold changes, and 

significance
• Identify up- and down-regulated genes
• Compare sets of DE genes
• Test for functional enrichment of DE gene sets

45



Differential gene expression
Part 2 Core tasks: 
• Run a pairwise contrast
• Visualize differential expression with a volcano plot
• Extract the list of DE genes 
• Visualize DE genes in a heatmap

Challenge exercises
Challenge questions

46



Open work time
Five more minutes!

47

5 minutes



Review

48



Part 3: functional annotation
Differential expression or clustering analysis can produce 
large gene sets. 

How can we figure out the functional consequences of 
these differences? 

Gene set enrichment analysis: 
Do functional terms occur in the target gene set more than
expected by chance?  

GO terms
KEGG pathways 
Reactome pathways

49



Additional slides
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Links to other DE/DS tools

Tool Use Link to best resource

WGCNA (R package) Weighted gene coexpression analysis 
groups genes into modules/clusters by 
expression patterns across samples

Horvath lab website: 
https://horvath.genetics.ucla.edu/html/Coexpressi
onNetwork/Rpackages/WGCNA/

DEXSeq (R package) Differential exon expression within the 
DESeq2 framework from exon count data

Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/DEXSeq/inst/doc/DEXSeq.html

EdgeR (R package) Differential expression analysis with 
differential exon expression functions from 
exon count data

User guide: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf

LeafCutter (python & R 
scripts)

Differential splicing analysis specifically 
focused on differential intron retention 
from junction count data

Github page: 
https://davidaknowles.github.io/leafcutter/

IsoformSwitchAnalyzer 
(R package)

Differential isoform usage from transcript 
count data

Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/IsoformSwitchAnalyzeR/inst/doc/IsoformS
witchAnalyzeR.html

EBSeq Bayesian differenital expression framework Vignette: 
https://bioconductor.org/packages/release/bioc/vi
gnettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
Github page: https://github.com/lengning/EBSeq
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https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
https://davidaknowles.github.io/leafcutter/
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
https://github.com/lengning/EBSeq


Median of ratios (MRN) normalization
• Used by DESeq2 (DGE analysis tool we will use today)

Let’s see how the normalization works…
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Step 2. Calculates ratio of each sample to the reference

Gene sampleA sampleB Pseudo-
reference 
sample

Ratio of sampleA/ref Ratio of sampleB/ref

EF2A 1489 906 1161.5 1489/1161.5 = 1.28 906/1161.5 = 0.78

ABCD1 22 13 16.9 22/16.9 = 1.30 13/16.9 = 0.77

MEFV 793 410 570.2 793/570.2 = 1.39 410/570.2 = 0.72

… … … … … …
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Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

Gene sampleA sampleB Pseudo-reference sample

EF2A 1489 906 sqrt(1489*906) = 1161.5

ABCD1 22 13 sqrt(22*13) = 16.9

… … … …



The figure below illustrates the median value for the distribution of all gene ratios 
for a single sample (frequency is on the y-axis). 
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The median of ratio methods makes the assumption that not ALL genes are 
differentially expressed; therefore, the normalization factors should account for 
sequencing depth and RNA composition of the sample (large outlier genes will not 
represent the median ratio values). 



Step 3. Calculate the normalization factor for each sample (size factor)
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Gene sampleA sampleB Pseudo-
reference 
sample

Ratio of sampleA/ref Ratio of sampleB/ref

EF2A 1489 906 1161.5 1489/1161.5 = 1.28 906/1161.5 = 0.78

ABCD1 22 13 16.9 22/16.9 = 1.30 13/16.9 = 0.77

MEFV 793 410 570.2 793/570.2 = 1.39 410/570.2 = 0.72

… … … … … …

median(c(1.28, 1.3, 1.39, 1.35, 0.59,…))
=1.3

median(c(0.78, 0.77, 0.72, 0.8, 0.73, …))
=0.77



Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Normalized counts

Gene sampleA sampleB

EF2A 1489 906

ABCD1 22 13

… … …

Gene sampleA sampleB

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62 

ABCD1 22/1.3 = 16.92 13/0.77 = 16.88

… … …
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Normalized counts are not whole numbers!


