Analysis of RNAseq data

Rachel Steward Postdoc researcher, Runemark Lab Lund University

Česky Krumlov 2024

Things I do for fun (other than work, because I love work)

Current fave: Imperial Radch Trilogy, Ann Leckie Audiobook! Narrated by Adjoa Andoh

Gene expression

The selective activity of certain genes is a highly regulated process

Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)

Cell type	Red blood	Muscle	Pancreatic
		CTOTO .	0
Gene type			
Housekeepi	ng		
Hemoglobin			
Insulin			
Myosin			

Gene expression

The selective activity of certain genes is a highly regulated process

Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)

What are some questions we can answer with bulk RNAseq data?

Does gene expression differ between groups or in response to a certain variable?

Which genes are uniquely expressed?

How many genes are being expressed?

Are patterns of gene expression different among samples?

Are patterns of expression different among genes? What are the functional roles of groups of differently expressed genes?

Lab activities

Structure:

Short background Open work time Review

Gene expression analysis

Quality control

Reads: To trim or not to trim?

- genome annotation, variant calling, transcriptome assembly : Trim!
- Anything else, maybe trim lightly?
 - adapters + low quality score (Q10-15)

Reference genome considerations:

- What maps where:
 - Recent duplications?
 - Highly repetetive content?
 - Missing content?

Annotation considerations:

- What features have been annotated?
- Was RNAseq data used in the annotation?
 - What RNA? Life stage? Sex?

(Williams et al. 2016 BMC Bioinformatics, Liao and Shi 2020 NAR Genomics and Bioinformatics

RNA sequence alignment to a reference

What are some challenges when aligning RNA-seq reads to the reference genome?

Splice-aware sequence alignment

Counting reads as a measure of expression

Two common counting tools are **featureCounts** and **htseq**.

Total read count associated with a gene (*meta-feature*) == the sum of reads associated with each of the exons (*feature*) that are a part of that gene.

genomics	@ip-172-31-11-18	82:[~/wo	ckshop_m	aterials	/differe	ntial_	_expressio	n/refs]\$ head Pca_annotation.gtf
LG1	AUGUSTUS	transcr	ipt	22193	24413		—	. transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
[LG1	AUGUSTUS	exon	22193	22320		-		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	exon	23838	24048		-		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	exon	24390	24413		-		transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	22193	22320		—	2	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	23838	24048		—	0	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	CDS	24390	24413		—	0	transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1	AUGUSTUS	transcr	ipt	79912	80136			. transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
LG1	AUGUSTUS	exon	79912	80136		-		transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
LG1	AUGUSTUS	CDS	79912	80136		-	0	transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
aenomics	$0in_{172}31_{11}1$	82 · [~/woi	rkehon m	atoriale	/difforo	ntial	avnraccia	n/refs]¢

What should count??

Read count matrix

Output of counting = A **count matrix**, with features as rows and samples as columns

GE	NE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2	2-SBSRNA4	57	41	64	55	38	45	31	39
A1	BG	71	40	100	81	41	77	58	40
A1	BG-AS1	256	177	220	189	107	213	172	126
A10	CF	0	1	1	0	0	0	0	0
A2	LD1	146	81	138	125	52	91	80	50
A2	м	10	9	2	5	2	9	8	4
A2	ML1	3	2	6	5	2	2	1	0
A2	MP1	0	0	2	1	3	0	2	1
A4	GALT	56	37	107	118	65	49	52	37
A4	GNT	0	0	0	0	1	0	0	0
AA	06	0	0	0	0	0	0	0	0
AA	A1	0	0	1	0	0	0	0	0
AA	AS	2288	1363	1753	1727	835	1672	1389	1121
AA	CS	1586	923	951	967	484	938	771	635
AA	CSP1	1	1	3	0	1	1	1	3
AA	DAC	0	0	0	0	0	0	0	0
AA	DACL2	0	0	0	0	0	0	0	0
AA	DACL3	0	0	0	0	0	0	0	0
AA	DACL4	0	0	1	1	0	0	0	0
AA	DAT	856	539	593	576	359	567	521	416
AA	GAB	4648	2550	2648	2356	1481	3265	2790	2118
AA	K1	2310	1384	1869	1602	980	1675	1614	1108
AA	MP	5198	3081	3179	3137	1721	4061	3304	2623
AA	NAT	7	7	12	12	4	6	2	7
AA	RS	5570	3323	4782	4580	2473	3953	3339	2666

Each column is a sample

Some problems with raw counts...

Some samples consistently have more reads, some have fewer: **systematic biases**

GENE ID	KD.2	D.3	OE.1	OE.2	OE.3	R.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	5	38	45	31	39
A1BG	71	40	100	8	41	77	58	40
A1BG-AS1	256	177	220	18	107	213	172	126
A1CF	0	1	1		0	0	0	0
A2LD1	146	81	138	12	52	91	80	50
A2M	10	9	2		2	9	8	4
A2ML1	3	2	6		2	2	1	0
A2MP1	0	0	2		3	0	2	1
A4GALT	56	37	107	11	65	49	52	37
A4GNT	0	0	0		1	0	0	0
AA06	0	0	0		0	0	0	0
AAA1	0	0	1		0	0	0	0
AAAS	2288	1363	1753	172	835	1672	1389	1121
AACS	1586	923	951	96	484	938	771	635
AACSP1	1	1	3		1	1	1	3
AADAC	0	0	0		0	0	0	0
AADACL2	0	0	0		0	0	0	0
AADACL3	0	0	0		0	0	0	0
AADACL4	0	0	1		. 0	0	0	0
AADAT	856	539	593	57	359	567	521	416
AAGAB	4648	2550	2648	235	1481	3265	2790	2118
AAK1	2310	1384	1869	160	980	1675	1614	1108
AAMP	5198	3081	3179	313	1721	4061	3304	2623
AANAT	7	7	12	1	4	6	2	7
AARS	5570	3323	4782	458	2473	3953	3339	2666
	4454				10.10			

eature

Each row is a gone

Each column is a sample

Solution: normalization

- Normalization is <u>NOT</u> fitting a normal distribution or transforming data.
- Normalization aims to identify and account for the nature and magnitude of systematic biases

The main factors often considered during normalization:

- Sequencing depth (aka library size)
- RNA composition
- Gene length (some methods)

Normalization

Sequencing depth

Sample A Reads

Sample B Reads

Normalization

Sequencing depth

Sample A Reads

Sample B Reads

Normalization

RNA composition

- A few highly differentially expressed genes
- Can skew some normalization methods

Median of ratios (MRN) normalization

- Used by DESeq2 (DGE analysis tool we will use today)
- Generates a scaling factor for each sample to account for variation in library size

Raw counts

Gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13

Normalized counts

Gene	sampleA	sampleB
EF2A	1489/1.3 = <mark>1145.39</mark>	906/0.77 = 1176.62
ABCD1	22/1.3 = <mark>16.92</mark>	13/0.77 = <mark>16.88</mark>

Normalized counts are not whole numbers!

Exploring patterns in RNAseq data

Clustering of samples

- Dimension reduction analysis (e.g., PCA, PLS, MDS)
- Clustering (e.g., hierarchical clustering, k-means clustering)

Clustering of features

- Same as above, just focusing on features
- Weighted co-expression analysis (WGCNA, correlation among features)

Properties of RNA-seq count data

The distribution of RNA-seq counts for **a single sample**:

Data transformations for clustering and visualization

- Pseudo-log: $y = log_2(n + n_0)$
 - n_0 is a constant, like 1
 - Variance not stable at low values (does not scale with expression)

Instead, we want to transform the data to remove the trend (variances roughly similar across mean values)

- Variance stabilizing transformation DESeq2::vst()
- Regularized log transformation DESeq2::rlog()

Huber et al. 2003 Stat. Appl. Genet. Mol. Biol., Anders & Huber 2010 Nature, Love et al. 2023 "Analyzing RNA-seq data with DESeq2"

Effect of transformations on variance

Love et al. 2023 "Analyzing RNA-seq data with DESeq2"

Today's lab: Polygonia c-album

Orientation to the tutorial

1 Our system: diet plasticity in generalist butterflies

2 Our questions

3 Background

4 Unit 1: Exploring patterns of gene expression among samples

5 Unit 2: Differential gene expression analysis

6 Unit 3: Gene set enrichment analysis

7 The big challenge: running a second contrast

8 Other great resources:

9 References

2 Our questions

- 1. Do patterns of gene expression differ between larvae reared on different host plants?
- 2. Which genes are differently expressed between larvae reared on different host plants?
- 3. What are the functions of differentially expressed gene sets?

3 Background

Today's tutorial walks through a reference-based differential gene expression (DGE) analysis. This means our reads have been aligned to an existing reference genome for *P. c-album*, rather than a *de novo* transcriptome generated from the RNA-seq data. The three main steps of reference-based DGE analysis are 1) alignment, 2) quantification and 3) analysis (Fig. 2). In this tutorial, we will focus on **step 3) analysis**.

This tutorial has three units:

- · Exploring patterns of gene expression among samples
- · Identifying differentially expressed genes
- · Evaluating functional enrichment of DE gene sets

Each unit has core exercises you should try to finish during the lab. If you finish the core exercises, there are additional challenge exercises at the end of each unit.

Occasional blue boxes give background on the analyses. Feel free to gloss over these – you can come back to them later if you are curious or want to learn more.

4 Unit 1: Exploring patterns of gene expression among samples

Everything in this tutorial will be done in RStudio.

4.1 Set the working directory

Open RStudio and start by checking (getwd()) and setting (setwd()) your working directory. The activity is designed to be run in the `RNAseq_analysis" directory.

Show

Alternatively, you can set the working directory using the RStudio interface. Click on the Files tab. Navigate by clicking on the directories you want to enter (workshop_materials, then RNAseq_analysis). Once inside the working directory, use the More drop-down menu (next to the little blue gear) and select set As Working Directory.

Take a look at the contents of the directory and subdirectory. You can do this using the list.files() command with the recursive = T option. or by selecting Go To Working Directory from the More drop-down menu on the Files tab.

Exploring patterns in RNAseq data

Part 1

Core tasks:

- Load raw count matrix
- Transform for visualization
- PCA of samples
- Hierarchical clustering of samples

Challenge exercises

Open work time (25 min)

Five more minutes!

5 minutes

Review

Lab activities

Part 1 Exploring patterns in RNAseq data
Part 2 Differential gene expression analysis
Part 3 Functional enrichment of gene sets

Differential expression analysis

Differential expression analysisis

DESeq2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

Michael I Love, Wolfgang Huber & Simon Anders

Genome Biology 15, Article number: 550 (2014) Cite this article

450k Accesses | 34853 Citations | 131 Altmetric | Metrics

Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors)

 \rightarrow done!

Step 2. Estimate gene-wise dispersion

- To accurately model sequencing counts, we need to generate accurate estimates of **within-group variation** for each gene (aka dispersion)
 - need to choose the right distribution

Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the mean = variance.

Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the mean = variance.

Poisson distribution is not suitable to model count data across the biological samples.

37

Statistical modeling of count data

The distribution that fits best is the Negative Binomial (NB) distribution.

-two parameters, one for the mean and one for the variance

-fexlibility to estimate the amount of **dispersion** for each gene across samples.

Mean gene expression level (log10 scale)

How does the dispersion relate to our model?

Variation is an important part of model fitting and hypothesis testing.

Estimates of variation for each gene are often unreliable.

DESeq2 **shares information across genes** to generate more accurate estimates of variation:

Fitted dispersion curve = expected dispersion for genes of a given level of expression (e.g., mean normalized count)

Model fitting and hypothesis testing

Global mean Condition A sample Condition A group mean Condition B sample Condition B group mean

Step 4. Generalized Linear Model fit for each gene

$$y = \beta_0 + x_1 \beta_1$$

- $y = \beta_0 + 0 * \beta_1$ $y = \beta_0$

$$y = \beta_0 + 1 * \beta_1$$

 $y = \beta_0 + \beta_1$

- y = normalized **expression level**
- $\beta_0 =$ **intercept** (the estimated expression for the base level, condition A (red)
 - x_1 = a binary indicator variable for (0 if part of the red group, 1 if part of the **blue** group)
- β_1 = coefficient for condition B (blue)
 - represents the **difference** between **red** and **blue**

Model fitting and hypothesis testing

Step 4. Generalized Linear Model fit for each gene

$$y = \beta_0 + \beta_1$$

$$y - \beta_0 = \beta_1$$

$$\log_2(expression_{blue}) - \log_2(expression_{red}) = \beta_1$$

$$\log_2\left(\frac{expression_{blue}}{expression_{red}}\right) = \beta_1 \text{ "log}_2 \text{ Fold Change"} \begin{bmatrix} \log_2 1 = 0 \\ \log_2 2 = 1 \\ \log_2 4 = 2 \end{bmatrix}$$

Specifying contrasts

contrast_U_R <- c("condition", "Urtica", "Ribes")
extract the results for your specified contrast
Pca_res_table_U_R <- results(Pca_dds_filt, contrast=contrast_U_R)</pre>

$$\log_2\left(\frac{expression_{Ribes}}{expression_{Urtica}}\right) = \beta_1 \quad \text{``log}_2 \text{ Fold Change''}$$

Output of DESeq2

log2	fold	change (MLE): condition Urtica vs Ribes
Wald	test	p-value: condition Urtica vs Ribes
Data	rame	with 10253 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
Polcal_g10	89.7562	0.2644909	0.164662	1.606262	0.108216	0.248881
Polcal_g100	128.7307	0.0751998	0.120094	0.626174	0.531201	0.702218
Polcal_g1000	80.8697	-0.0682283	0.117253	-0.581890	0.560641	0.724417
Polcal_g10000	18.4347	0.0794954	0.237090	0.335296	0.737402	0.846199
Polcal_g10006	19.1902	0.4310584	0.295618	1.458158	0.144797	0.304659
• • •						
Polcal_g9993	15.1301	-0.181906	0.356393	-0.51041	0.6097642	0.7610362
Polcal_g9994	16.6881	0.402894	0.294354	1.36874	0.1710811	0.3409535
Polcal_g9996	84.0056	0.140555	1.025049	0.13712	0.8909358	0.9396940
Polcal_g9998	2.9282	-1.638792	0.745256	-2.19897	0.0278803	0.0941556
Polcal_g9999	4.0105	-1.006017	0.598296	-1.68147	0.0926717	0.2240950

- 1. baseMean: mean of normalized counts for all samples
- 2. log2FoldChange: log2 fold change
- 3. IfcSE: standard error
- 4. stat: Wald statistic
- 5. pvalue: Wald test p-value
- 6. padj: BH adjusted p-values use a pre-defined cutoff for significance

When can we detect differential expression?

Liu et al. 2014. Bioinformatics

What do we do with DE genes?

- Visualize expression levels, log fold changes, and significance
- Identify up- and down-regulated genes
- Compare sets of DE genes
- Test for functional enrichment of DE gene sets

Differential gene expression

Part 2 Core tasks:

- Run a pairwise contrast
- Visualize differential expression with a volcano plot
- Extract the list of DE genes
- Visualize DE genes in a heatmap

Challenge exercises

Challenge questions

Open work time

Five more minutes!

5 minutes

Review

Part 3: functional annotation

Differential expression or clustering analysis can produce large gene sets.

How can we figure out the functional consequences of these differences?

Gene set enrichment analysis:

Do functional terms occur in the target gene set more than expected by chance?

GO terms KEGG pathways Reactome pathways

Additional slides

Links to other DE/DS tools

ТооІ	Use	Link to best resource
WGCNA (R package)	Weighted gene coexpression analysis groups genes into modules/clusters by expression patterns across samples	Horvath lab website: <u>https://horvath.genetics.ucla.edu/html/Coexpressi</u> <u>onNetwork/Rpackages/WGCNA/</u>
DEXSeq (R package)	Differential exon expression within the DESeq2 framework from exon count data	Vignette: https://bioconductor.org/packages/release/bioc/vi gnettes/DEXSeq/inst/doc/DEXSeq.html
EdgeR (R package)	Differential expression analysis with differential exon expression functions from exon count data	User guide: https://bioconductor.org/packages/release/bioc/vi gnettes/edgeR/inst/doc/edgeRUsersGuide.pdf
LeafCutter (python & R scripts)	Differential splicing analysis specifically focused on differential intron retention from junction count data	Github page: https://davidaknowles.github.io/leafcutter/
IsoformSwitchAnalyzer (R package)	Differential isoform usage from transcript count data	Vignette: https://bioconductor.org/packages/release/bioc/vi gnettes/IsoformSwitchAnalyzeR/inst/doc/IsoformS witchAnalyzeR.html
EBSeq	Bayesian differenital expression framework	Vignette: <u>https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf</u> Github page: <u>https://github.com/lengning/EBSeq</u>

Median of ratios (MRN) normalization

• Used by DESeq2 (DGE analysis tool we will use today)

Let's see how the normalization works...

Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

Gene	sampleA	sampleB	Pseudo-reference sample
EF2A	1489	906	sqrt(1489*906) = 1161.5
ABCD1	22	13	sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72

The figure below illustrates the median value for the distribution of all gene ratios for a single sample (frequency is on the y-axis).

sample 1 / pseudo-reference sample

The median of ratio methods makes the assumption that not ALL genes are differentially expressed; therefore, the normalization factors should account for sequencing depth and RNA composition of the sample (large outlier genes will not represent the median ratio values).

Step 3. Calculate the normalization factor for each sample (size factor)

	Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref		
	EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78		
	ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77		
	MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72		
medi =1.3	nedian(c(1.28, 1.3, 1.39, 1.35, 0.59,)) =1.3							
			-			-		
				median(c =0.77	(0.78, 0.77, 0.7	2, 0.8, 0.73,)		

Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13
•••	•••	

Normalized counts

Gene	sampleA	sampleB
EF2A	1489/1.3 = 1145.39	906/0.77 = 1176.62
ABCD1	22/1.3 = <mark>16.92</mark>	13/0.77 = 16.88

Normalized counts are not whole numbers!