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Insight/Outlook

Phylogenomics: Improving Functional
Predictions for Uncharacterized Genes
by Evolutionary Analysis

Jonathan A. Eisen’

Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 USA

The ability to accurately predict gene
function based on gene sequence is an
important tool in many areas of biologi-
cal research. Such predictions have be-
come particularly important in the ge-
nomics age in which numerous gene se-
quences are generated with little or no
accompanying experimentally deter-
mined functional information. Almost
all functional prediction methods rely
on the identification. characterization.

(e.g., Altschul et al. 1989; Goldman et al.
1996). In this commentary, I discuss the
use of evolutionary information in the
prediction of gene function. To appreci-
ate the potential of a phylogenomic ap
proach to the prediction of gene func-
tion, it is necessary to first discuss how
gene sequence is commonly used to pre-
dict gene function and some general fea-
tures about gene evolution.

convergence (the exact threshold for
such an inference is not well estab-
lished).

Improvements in database search
programs have made the identification
of likely homologs much faster, easier,
and more reliable (Altschul et al. 1997;
Henikoff et al. 1998). However, as dis-
cussed above, in many cases the identi-
fication of homologs is not sufficient to
make specific functional oredictions be-

Phylogenomics: prediction of gene function and gene

family evolution
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Sequence Similarity, Homology,
and Functional Predictions

To make use of the identification of se-
quence similarity between genes, it is
helpful to understand how such similar-
ity arises. Genes can become similar in
sequence either as a result of convergence
(similarities that have arisen without a
common evolutionary history) or de-
scent with modification from a com-
mon ancestor (also known as homology).
It is imperative to recognize that se-
quence similarity and homology are not
interchangeable terms. Not all ho-
mologs are similar in sequence (i.e., ho-
mologous genes can diverge so much
that similarities are difficult or impos-
sible to detect) and not all similarities
are due to homology (Reeck et al. 1987;
Hillis 1994). Similarity due to conver-
gence, which is likely limited to small
regions of genes, can be useful for some
functional predictions (Henikoff et al.
1997). However, most sequence-based
functional predictions are based on the
identification (and subsequent analysis)
of similarities that are thought to be due
to homology. Because homology is a
statement about common ancestry, it
cannot be proven directly from se-
quence similarity. In these cases, the in-
ference of homology is made based on
finding levels of sequence similarity that
are thought to be too high to be due to
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The analysis of 100 genes supports the grouping of
three highly divergent amoebae: Dictyostelium,
Entamoeba, and Mastigamoeba

Eric Bapteste*, Henner Brinkmann®, Jennifer A. Lee*, Dorothy V. Moore*, Christoph W. Sensen$, Paul GordonT,
Laure Duruflé*, Terry Gaasterland*, Philippe Lopez*, Miklos Miiller*, and Hervé Philippe*!

The phylogenetic relationships of amoebae are poorly resolved. To
address this difficult question, we have sequenced 1,280 expressed
sequence tags from Mastigamoeba balamuthi and assembled a
large data set containing 123 genes for representatives of three
phenotypically highly divergent major amoeboid lineages: Pelo-
bionta, Entamoebidae, and Mycetozoa. Phylogenetic reconstruc-
tion was performed on ~25,000 aa positions for 30 species by using
maximum-likelihood approaches. All well-established eukaryotic
groups were recovered with high statistical support, validating our
approach. Interestingly, the three amoeboid lineages strongly
clustered together in agreement with the Conosa hypothesis [as
defined by T. Cavalier-Smith (1998) Biol. Rev. Cambridge Philos.
Soc. 73, 203-266]. Two amitochondriate amoebae, the free-living
Mastigamoeba and the human parasite Entamoeba, formed
a significant sister group to the exclusion of the mycetozoan
Dictyostelium. This result suggested that a part of the reductive
process in the evolution of Entamoeba (e.g., loss of typical mito-
chondria) occurred in its free-living ancestors. Applying this inex-
pensive expressed sequence tag approach to many other lineages
will surely improve our understanding of eukaryotic evolution.

Pbylagenomz’cs: species tree inference
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- single copy OGs (1:1 OGs: only one gene per species.
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If the sequences are poorly aligned, you may want to
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https://academic.oup.com/bioinformatics/article/34/22/3929/5026659
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describe the relative rates of different changes

Eg, mutational biases and purifying selection favoring
conservative changes are probably responsible for
the relatively high rate of transitions compared to

transversions in evolving sequences

Phylogenetic Analysis

[ So... how do | select a model for my data? }

Don’t worry, most phylogenetic programs have a tool to infer the
model that better fits your data :-)

If you’re dealing with a difficult phylogenetic problem, mixture models
are probably a good idea
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Phylogenetic Analysis

[ So... how do | select a model for my data? }

Key message: the selection of the
model matters a lot
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Two main methods:

Maximum Likelihood (ML) and Bayesian Inference (BIl)

Phylo. Analysis

Basic question in Bl:
‘What is the probability that this model (T) is correct, given
the data (D) that we have observed?’

Basic question in ML:
‘What is the probability of seeing the observed data (D)
given that a certain model (T) is true?’

Bl seeks P(T|D), while ML maximizes P(D|T)
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“* METHOD

Two main methods:
Maximum Likelihood (ML) and Bayesian Inference (BIl)

[Which one should | choose?}

Phylo. Analysis

Factors to consider: running time, availability of ‘complex’ models, etc.
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1 99.5%
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B DATA -~ MODEL OF EVOLUTION

METHOD

e

A WAY TO ASSESS
HOW GOOD OUR
HYPOTHESIS IS

ML: standard nonparametric bootstrap (100 reps),
approximate likelihood ratio test (1,000 reps), ultrafast
bootstrap (1,000 reps)(between 1 and 100)

you ‘believe’ in a clade with > 80-90% bootstrap
support and/or ultrafast bootstrap > 95% and/or
approx. LRT > 80-90%.

O

Bl: posterior probability (oetween 0 and 1)
you ‘believe’ in a clade with > 0.9 pp

@]
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New metrics (highly recommended in large matrices):

o  concordance factor (IQ-TREE): for every branch of a
reference tree, the concordance factor is defined as
the percentage of “decisive” gene trees containing
that branch.

o internode certainty (RAXML): a measure of the
support for a given internode by considering its
frequency in a given set of trees jointly with that of
the most prevalent conflicting internode in the same
set of trees.

o tree certainty (RAXML): the sum of all the internode
certainty across all internodes.



http://www.iqtree.org/doc/Concordance-Factor
https://academic.oup.com/sysbio/article/69/2/308/5556115
https://academic.oup.com/sysbio/article/69/2/308/5556115
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“Gruyere effect”
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Understanding your data (and the errors it may trigger in

downstream analyses)
Tree 2 Genealogy

Ancestral
Polymorphism A

Incomplete Dm eI Dere
Sorting Dyak

Polymorphisms
Maintained Btwn
Speciation Events

Dmel Dere Dyak Dana

Incomplete Lineage Sorting The history of a gene (colored lines) is drawn in the context of a species tree (gray

bars). New lineages arising from new polymorphisms in the gene are drawn in different colors. In this case, the

two alleles in the population prior to the split of Dmel are maintained through to the split of Dere and Dyak,

leading to incomplete lineage sorting and an incongruent genealogy (tree 2). The greater the diversity in the

ancestral population and the shorter the time between speciation events, the more likely nonspecies genealogies Pollard et al. 2006
are.
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downstream analyses)

A Species 1 |

Gene X C Species 1 |
Species 2 _ Gene X
—X Species 2 __

Species 1 |
Species 2 Gene Y — Species 1 |
pecies 2 _J Gene Y
Species 2 _
Schematic illustration of hidden paralogy. (A) Hypothetical situation in which two species (Species 1 and 2) have
B Sp e Cies 1 the same set of genes (Gene X and Y) that were duplicated before the speciation between the two species. (B)

Phylogenetic tree without any obvious gene duplication. If only one gene is sampled from each species without
exhaustive sampling, they might not be orthologous to each other. (C) Possible explanation of the tree topology
in B. Misidentification or loss of Gene Y of Species 1 and Gene X of Species 2 occurred, and thus the situation B
SpeC|eS 2 represents paralogy between Gene X of Species 1 and Gene Y of Species 2.

Kuraku 2013
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Fig 2.

Runemark et al. 2019
Schematic representation of homoploid and allopolyploid hybrid speciation.
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Schematic representation of homoploid and allopolyploid hybrid speciation.
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Bacteria Archaea Eukarya

Mato(,ho:\dr’\a

Common ancestral community of primitive cells

Copyright © 2005 Nature Publishing Group
Nature Reviews | Microbiology

Smets and Barkay 2005
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Why may these properties result in a highly supported ‘wrong’ tree?

Because of:

Systematic Error vs Random Error

Systematic Error Random Error
Measurements may be precise, but not Measurements lack precision, but
accurate. cluster around accurate value.

» Using a stretched measuring tape » Timing depends on reaction time
e Scale that always reads too high or low « People take turns taking readings
 Reading an indicator from a poor angle » Rounding values up or down.

sciencenotes.org
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c(;)cjail;jg multi genes phylogenomics
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# genes Philippe et al. (2017)
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Why may these properties result in a highly supported ‘wrong’ tree?

Because of:

1) Systematic error

Eg 1, compositional heterogeneity in the gene sequence to correctly infer/apply a substitution model

Eg 2, no recombination

Eg 3, genes evolved through duplication and not through speciation

etc.



Why may these properties result in a highly supported ‘wrong’ tree?

Because of:

1) Systematic error
2) Model violation

3) Gene tree/species tree discordance
. — Heliconius cydno '“’

- H. timareta
Silvaniform clade

- melpomene clade

3 Y B a H. melpomene
erato clade iy S

Basal Heliconius

H. melpomene re! ference
H. pardalinus

H. besckel

H. e.demophoon reference
H. erato H. himera hybrid
H. himera

H. hecalesia

H. telesiphe

H. demeter

H.sara

Eueides tales

Agraulis vanillae

2L ¢ Lo

Edelman et al. 2019
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3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees

Current|

BiologyL } ,
) o ’ié\ \
T

Supermatrix

)

} [ iana
1
'Cﬂ e e
7 ; .-
) B € L
4 o Q Gane
- c £ end 3
g, g, - e
| ® [P :
Fy
g S —
Gene
g 9 U ['__F
-— 1
o
LIS iCend ¥
T 4 Gane ?
2
o} - P
Gene q{?_
{ e E
a4

Supernetwork

(subset of indiv. gene trees)
Fernandez, Hormiga and Giribet 2014



So... what do we do to test the robustness of our tree?

1) Build different subsets of your data through a subsampling strategy selecting genes with different
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3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees

Current|
Biology_ T
V- L} Confounding factors
Lromee ? 73 —
/7//16‘ ) Supermatrix
/ & » f [i::'m
4 .Ci Sene
= y =) g — ; 2 ;
) 4 3 E Gene ii
c Gt.:new 3
& 5 = Gon
% Gene B
5% e
o 5| B«
ng Gene] |
s - 4 3 2
o E
Geane
Ge‘re E

Supernetwork

(subset of indiv. gene trees)
Fernandez, Hormiga and Giribet 2014



So... what do we do to test the robustness of our tree?
1) Build different subsets of your data through a subsampling strategy selecting genes with different
properties
2) Run different analyses that rely on different assumptions and/or apply different models

3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees
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1) Build different subsets of your data through a subsampling strategy selecting genes with different
properties
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3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees
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So... what do we do to test the robustness of our tree?

1) Build different subsets of your data through a subsampling strategy selecting genes with different
properties

2) Run different analyses that rely on different assumptions and/or apply different models

3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees
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So... what do we do to test the robustness of our tree?

4 Heterotachy refers to the )
phenomenon of a site in a
gene-sequence changing its rate

2) Run different analyses that rely on different assum| ~ Of evolution throughout the tree
(ie, sometimes evolving fast, some

3) Do 1) and 2) both at the level of supermatrix \ others evolving slow) /
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So... what do we do to test the robustness of our tree?

1) Build different subsets of your data through a subsampling strategy selecting genes with different
properties

2) Run different analyses that rely on different assumptions and/or apply different models

3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees
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So... what do we do to test the robustness of our tree?

2) Run different analyses that rely on different assumptions or apply different models

3) Do 1) and 2) both at the level of supermatrix and subset of individual gene trees
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And... how do | chose a subset of genes to run these analyses?

a) Random subsampling (eg, select randomly 30% of your initial data)

/b) Check the properties of the genes and chose the ones that behave ‘well’ (eg\,
discard the outliers).

-> Custom scripts (eg, select genes with less 50% of missing data)

-> Software to measure some of these properties (eg, compositional
Kheterogeneity, saturation, etc.) /

1)

We will be doing this today in our hands-on session
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S many as you ca
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These are matrices/subsets
of individual gene trees

U\

Fernandez, Edgecombe & Giribet (2016) Syst Biol
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So... how many matrices/subsets/analyses should | analyze?

Fernandez, Edgecombe & Giribet (2016) Syst Biol

Peripatopsis overbergiensis

Limulus polyphemus
| Metasiro amencanus
l Centruroides vittatus
Liphistivs malayanus
Damon varkegatus
Mastigoproctus giganteus

i insigoi

Calanus fir

Daphnia pulex
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POLYXENIDA

Prostemmiulus
Nerceus

SPHAEROTHERIIDA
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Psoudopolydesmus sp. POLYDESMIDA

. STEMMIULIDA
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& Craterostignos tasmanisnas CRATEROSTIGMOMORPHA
LITHOBIOMORPHA
GEOPHILOMORPHA
SCOLOPENDROMORPHA



Generating phylogenomic data matrices: hands-on session



Generating phylogenomic data matrices: hands-on session




Generating phylogenomic data matrices: hands-on session

/ The Cesky Krumlov \
town hall decides to fund
a project to understand
whether the brown bear is
more closely related to the
polar bear or the American

\ black bear /




Generating phylogenomic data matrices: hands-on session

(Important piece of information (shared by
Scott): Cesky Krumlov locals used to refer to the
workshop participants as ‘molekulos’)

/ The Cesky Krumlov \
town hall decides to fund
a project to understand
whether the brown bear is
more closely related to the
polar bear or the American

\ black bear /




Generating phylogenomic data matrices: hands-on session

(Important piece of information (shared by
Scott): Cesky Krumlov locals used to refer to the
workshop participants as ‘molekulos’)

/ The Cesky Krumlov \
town hall decides to fund
a project to understand
whether the brown bear is
more closely related to the
polar bear or the American

\ black bear /

Let’s ask the ‘molekulos’ for help!!




Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

Giant Panda
Alluropoda melanoleuca
(outgroup)

Black bear
Ursus americanus

~~ Polar bear
2 Ursus
maritimus

rown bear
rsus arctos

-



Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear? _

Siro

Luisa

[ Pepe

Juan
Noah
Oskar
Summer
Montana . =

Joseph
L Margaret
Maripepa
= Maria
Amparo i}
Paco
Adelaide

Margo
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Is the polar bear the sister group to the American black bear
or the brown bear?

?

1)

2)

3)

» SAMPLE COLLECTION

SEQUENCING

l

ORTHOLOGY INFERENCE

SUPERMATRIX CONSTRUCTION
(several ones)

PHYLOGENETIC INFERENCE
(MAXIMUM LIKELIHOOD)



Generating phylogenomic data matrices: hands-on session

or the brown bear?

» SAMPLE COLLECTION

SEQUENCING

P 1

1) ORTHOLOGY INFERENCE

[Is the polar bear the sister group to the American black bear]

2) SUPERMATRIX CONSTRUCTION

(Important considerations: (several ones)

- the genes provided come from real
transcriptomic data; | have filtered them out to
have only the longest isoform per gene

- we are going to work at the level of amino acid
data, not nucleotide (TransDecoder)

3) PHYLOGENETIC INFERENCE
(MAXIMUM LIKELIHOOD)






Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

During the first part of the tutorial, you have...

1) Inferred orthologous groups with OrthoFinder.
2) Created a supermatrix selecting genes based on:

a) their amount of missing data
b) their ‘decisiveness’ (ie, representation among species)

C) removing outliers accounting for a bunch of
confounding factors (eg, compositional heterogeneity,

saturation, etc.).
3) Inferred ML phylogenetic trees from these matrices

Which topology are your analyses supporting? Is this
topology robust, or are the analyses showing any



Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear
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Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
and supports the brown bear as sister group to the polar bear

SCENCE & NATTR
Q Authors: Participants of the 2023 Workshop on Genomics ¢esky Krumlov (‘molekulos’)

Abstract:

The interrelationships within the genus Ursus have been
contentious based on the analysis of a limited amount of
molecular markers. Here, we sequenced full genomes of 16
specimens of the American black bear, brown bear, polar bear
and giant panda and explored their phylogenetic relationships
through a phylogenomic spyglass. Our results, based on
the analysis of multiple supermatrices to account for
the effect of missing data, compositional heterogeneity
and other confounding factors, strongly support a sister
relationship of the brown bear to the polar bear. Our
findings pave te road towards understanding bear evolution at
a deeper level.

thgh support
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Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear
Q “ Authors: Participants of the 2023 Workshop on Genomics ¢esky Krumlov (‘molekulos’)

Abstract:
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the brown bear to the polar bear. Our findings pave te road
towards understanding bear evolution at a deeper level.

thgh support



Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear
SUENCE & NATURE

Q “ Authors: Participants of the 2023 Workshop on Genomics ¢esky Krumlov (‘molekulos’)
Abstract:
The interrele been
contentious unt of
molecular r nes of 16
specimens ( r, polar bear

and giant pe - : slationships
through a pl sed on the
analySiS Of rl IUILI'JIU OU'JUI rialivco v avuuuliul 1ul o ]e eﬁeCt Of

= 2;} 1 Reviewer #3: although | appreciate the efforts of the authors to
account for confounding factors and test the robustness of their
results, they failed to test whether their hypothesis was driven
by incongruence between individual gene evolutionary
trajectories.

thgh support



Time

Analyzing gene tree/species tree conflict: hands-on session

Brief introduction to coalescent theory

a) Geneaology of a

population
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b) Geneaology of a sample
of genes of the population
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c) Genealogy of the
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Analyzing gene tree/species tree conflict: hands-on session

Brief introduction to coalescent theory
Tree 2 Genealogy
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Analyzing gene tree/species tree conflict: hands-on session

Brief introduction to coalescent theory

Tree 2 Genealogy

Ancestral 4
Polymorphism

~N —=
Incomplete
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Speciation Events

Dmel Dere Dyak Dana

Pollard et al. 2006
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Analyzing gene tree/species tree conflict: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

ﬂSTRAL IS a tool for estimating an unrooted species tr%
given a set of unrooted gene trees.

ASTRAL is statistically consistent under the multi-species
coalescent model (and thus is useful for handling
iIncomplete lineage sorting, i.e., ILS).

ASTRAL finds the species tree that has the maximum
number of shared induced quartet trees with the set of
gene trees, subject to the constraint that the set of
bipartitions in the species tree comes from a predefined set
of bipartitions.
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Is the polar bear the sister group to the American black bear
or the brown bear?




Analyzing gene tree/species tree conflict: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

Second part of the tutorial: analyzing how the evolutionary trajectory
of each individual orthogroup supports each of the three topologies.

Species Tree 1 Species Tree 2 Species Tree 3
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Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear
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Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear

NS 4 A\ I, UV\ o ) . } ,
Q UL L"L t Al Ut Authors: Participants of the 2023 Workshop on Genomics Cesky Krumlov (‘molekulos’)
Abstract:

The interrelationships of the species within the genus Ursus
has been contentious based on the analysis of a limited
amount of molecular markers. Here, we sequenced full
genomes of 16 specimens of the American black bear, brown
bear, polar bear and giant panda and explored their
phylogenetic relationships through a phylogenomic spyglass.
Our results, based on the analysis of multiple supermatrices to
account for the effect of missing data, compositional
heterogeneity and other confounding factors, as well as
accounting for incongruence between individual gene
trees under the multispecies coalescent model, strongly
support a sister relationship of the brown bear to the polar
bear. Our findings pave te road towards understanding bear
evolution at a deeper level.

‘ high support indiv. gene trees (multispecies coalescent)

Q high support supermatrix



Generating phylogenomic data matrices: hands-on session

Is the polar bear the sister group to the American black bear
or the brown bear?

“ Phylogenomics illuminate the interrelationships of the genus Ursus
p and supports the brown bear as sister group to the polar bear
SCEMCEGNATURE . . . S ‘ ,
” uthors: Participants of the 2023 Workshop on Genomics Cesky Krumlov (‘molekulos’)
Q’ Abstract:
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support a sister relationship of the brown bear to the polar
bear. Our findings pave te road towards understanding bear
evolution at a deeper level.

‘ high support indiv. gene trees (multispecies coalescent)

O high support supermatrix



