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“As buds give rise by growth to fresh buds, and these, if vigorous, branch
out and overtop on all sides many a feebler branch, so by generation I

believe it has been with the great Tree of Life, which fills with its dead and
broken branches the crust of the earth, and covers the surface with its

ever branching and beautiful ramifications”

(Darwin 1859)
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Mivart (1865) Proc. Zool. Soc. London Haeckel (1866) 

The concept: 
Darwin’s ‘I think’ 
(1837)

The first phylogenies
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What is a phylogeny, why is it important… and how do you build one?



Cloutier et al. 2020

What is a phylogeny, why is it important… and how do you build one?



Cloutier et al. 2020 http://www.nature.com/nrg/journal/v7/n11/images/nrg1918-f2.jpg

What is a phylogeny, why is it important… and how do you build one?
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Nuttal (1904) - serological cross-reactions were stronger
for more closely related organisms -> phylogeny of apes

Dobzhansky & Sturtevant (1938) - genomic 
rearrangements in Drosophila as phylogenetic markers

Zuckerkandl & 
Pauling (1965) - 

The origin of molecular phylogenetics
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01 DATA Incomplete, biased, or improper taxon sampling can lead to 
misleading results in reconstructing evolutionary relationships. 

Outgroups / Fast-evolving lineages / Missing data
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● Assembled and 
annotated.

● Coding genes are 
retrieved (longest 
isoform) -> this is your 
dataset!

https://knowgenetics.org/whole-genome-sequencing/
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Pros: 

● Very large set of genetic markers 
● Good identification of full-length 

genes, less chimeras (if the assembly 
and annotation are of good quality)

● Good for shallow and deep 
evolutionary distances

● Ethanol-fixed tissue OK (for draft 
genomes)

Cons: 

● Annotation may vary quite a lot 
between species (source, software, 
etc), may not be comparable.

● Expensive (money and computing 
time)

● More difficult to have a high number 
of species

● Fresh tissue needed (for 
chromosome-level genomes)
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01 DATA Source of your data

Pros: 

● Very large set of genetic markers 
● Much cheaper than sequencing 

genomes -> easier to have a high 
number of species

● Not dependent upon a reference 
genome

● Good for shallow and deep 
evolutionary distances

Cons: 

● Incomplete identification of full-length 
genes and single-copy transcripts.

● Potential misassembly of transcripts 
(especially when duplicates are present)

● Missing data as a product of the 
transcriptome representing a snapshot 
of expression (but this could also affect 
genome annotation)

● Fresh tissue needed

TRANSCRIPTOMES
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ULTRACONSERVED ELEMENTS (UCEs)

Pros: 

● Medium-large set of genetic 
markers 

● Much cheaper than sequencing 
genomes -> easier to have a high 
number of species

● Not dependent upon a reference 
genome

● Tissues fixed in EtOH or museum 
specimens are OK

Cons: 

● Limited availability of markes outside the 
designed ones.

● Potential misassembly (if probes are 
designed with a limited amount of 
species)

● Retrieval success dependent on DNA 
quality

● Usefulness of markers known a 
posteriori

● No proper orthology inference 

(Lisa Pokorny’s talk on 31st Jan)



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)

After digestion, sequencing and 
mapping, this is your data!



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)

Pros: 

● The cheapest of the methods
● Not dependent upon a reference 

genome
● Samples fixed in ethanol OK
● Markers distributed evenly across 

the genome



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)

Pros: 

● The cheapest of the methods
● Not dependent upon a reference 

genome
● Samples fixed in ethanol OK
● Markers distributed evenly across 

the genome

Cons: 

● No full genes, only SNPs
● Only for population genomics or 

phylogeny including closely-related 
species

● Missing data as a product of the 
transcriptome representing a snapshot 
of expression (but this could also affect 
genome annotation)

● No proper orthology inference
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METAGENOMICS/METATRANSCRIPTOMICS 
 

One individual, multiple cells One cell, one organismOne cell, multiple organisms

(Metagenome-Assembled 
Genome)
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01 DATA Source of your data

METAGENOMICS - single cell vs MAGs 

Bowers et al. 2017

Laura Eme’s talk on 31st Jan

Anna Karnkowska’s talk on 
2nd Feb
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When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

Orthology inference is 
essential for phylogenomics, 
as you want to consider only 
genes that arouse through 

speciation events



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)

● Trimmed orthogroups (ie, 
removing genes from 
duplication events)



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)

● Trimmed orthogroups (ie, 
removing genes from 
duplication events)



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)

● Trimmed orthogroups (ie, 
removing genes from 
duplication events)

 Marina Marcet-Houben tomorrow
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If the sequences are poorly aligned, you may want 
to consider trimming the poorly aligned areas. 

The goal of the alignment procedure should be to 
identify the events associated with the homologies, so 
that the aligned sequences accurately reflect those 
events.

Jacob and Marina today
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What? Sets of loci are selected from large genome-scale data sets and used for 
phylogenetic inference.

Why? To avoid an accumulation of nonphylogenetic signals as a product of 
heterogeneities in evolutionary processes, reduce computing time and improve 
model fit.

This step can be used to explore phylogenetic conflicts, test specific hypotheses of 
relationships, measure the impact of different sources of bias, and allow for a better 
modeling of evolutionary processes. 

How? By checking the properties of genes or sites and selecting the ones that 
minimize bias.
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-> average support
-> Robinson-Foulds distance

Systematic error: 

calculated value deviates from the 
true value in a consistent way.

Philippe et al. (2017)
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Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Systematic error

-> root-to-tip distance (ie, the degree of 
deviation from a strict clock-like behavior)

-> average pair-wise patristic distance 
between terminals (indicative of susceptibility 
to long-branch attraction)

-> level of saturation
-> compositional heterogeneity

Jacob and Marina today

Antonis Rokas and Jacob on 29th Jan
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Introgression

Gergely Szöllősi’s 
talk on 1st Feb

Aoife McLysaght’s 
talk on 27th Jan

Toni 
Gabaldón’s talk 
on 30th Jan
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Indiv. gene trees

Adapted from Fernández, Hormiga & Giribet (2014)

Phylogenetic analysis
(one tree)

Phylogenetic analysis
(multiple trees)

Estimation of a species 
tree given a set of gene 

trees

Multispecies coalescent

Erin Molloy’s talks on 
25th and 26th Jan
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More about models:

Olivier Gascuel’s talk on 25th Jan
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Two main methods: 
Maximum Likelihood (ML) and Bayesian Inference (BI)

Basic question in BI:
‘What is the probability that this model (T) is correct, given 
the data (D) that we have observed?’

Basic question in ML:
‘What is the probability of seeing the observed data (D) 
given that a certain model (T) is true?’

BI seeks P(T|D), while ML maximizes P(D|T)
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Oleksyi Kozlov’s talks on 
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AND YOU, HOW IS YOUR PROJECT?




