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Annotation and Analysis for Diverse  Genomes and Transcriptomes



My Favorite Activity – Bioinformatics Tool 
Development and Application

Bioinformatics, 2004

NAR, 2003

EVidenceModeler
Genome Biology, 2008

Chimera Slayer
Genome Research, 2011

Nature Biotech, 2011
Nature Protocols, 2013

STAR-Fusion
Genome Biology, 2019

FusionInspector
Cell Reports Methods, 2023
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Overview of Trinity CTAT. Given cancer RNA-seq as input, Trinity CTAT provides modules for exploring characteristics of 
the cancer transcriptome (and cancer genome) including both genome-guided and genome-free analyses, targeting bulk or 
single-cell transcriptomes. Interactive visualizations and reports are provided to facilitate downstream analysis and for 
clinical review.

My last ~10 years at the Broad Institute has focused on cancer transcriptomics:



Transcriptomics Lecture Outline

1. Intro to transcriptomics
2. Transcript reconstruction methods
3. Genome-free transcriptomics (eg. for non-model orgs)
4. Quality assessment
5. Expression quantification
6. Differential expression (brief – more details in Rachel’s workshop tonight!)
7. Example application to study limb regeneration in Axolotl
8. Latest advancements in long read isoform sequencing
9. Overview of single cell transcriptomics
10. Overview of spatial transcriptomics



Part 1. Overview of RNA-Seq



https://www.simply.science/images/content/biology/genetics/molecular_genetics/conceptmap/Central_Dogma_of_Molecular_Biology.html

Central Dogma Of Molecular Biology
Intro to Transcriptomics

https://www.simply.science/images/content/biology/genetics/molecular_genetics/conceptmap/Central_Dogma_of_Molecular_Biology.html


Adapted from: https://cs.wikipedia.org/wiki/Splicing

Primary mRNA molecules Often Undergo Splicing in Eukaryotes

Primary transcript

Gene in the Genome

Transcription

Intron Splicing,
 5’ Capping, 
and 3’ Polyadenylation

Processed RNA

Protein

Translation



Alternative Splicing – Multiple Products from Single Genes 

• Core regulatory process – diversifies 
the function of genes.

• Generates mRNAs that differ in 
coding sequence and UTRs. Effects:

– Protein isoforms
– Translation efficiency
– Stability
– Localization
– Reading frame changes

• Estimated 90-95% of human genes 
undergo alternative splicing

From Aziz Al’Khafaji, Broad Inst.



From Aziz Al’Khafaji, Broad Inst.

Think of genes as protosentences 



From Aziz Al’Khafaji, Broad Inst.

Think of genes as protosentences 



Fully formed sentences ≈ mature mRNA

From Aziz Al’Khafaji, Broad Inst.



RNA isoform sequencing provides structural insight 

From Aziz Al’Khafaji, Broad Inst.



Extract RNA, 
 … some protocol for processing, ... 

Biological Investigations Empowered by Transcriptomics

Analysis Method
(pick your favorite)

Northern

Dot Blot
Microarray

qRT-PCR Sanger Sequencing

Other…



Gene expression analyses ignore isoform variation

From Aziz Al’Khafaji, Broad Inst.

?



Historical Timeline to Modern Transcriptomics (from 1970)

From Cieslik and Chinnaiyan, 
NRG, 2017 Lots more!

Smith Waterman (1981)

BLAST (1990)

(2011)

Tophat/Cufflinks (2010)

RSEM

Kallisto (2016)
Salmon (2017)

Note: Just a small 
sampling of what’s 
available.

Seurat-v2 (2021)

StringTie  (2015)

minimap2 (2018)

STAR (2013)

SAMtools (2009)

Reverse Transcription (1970)

Northern Blot
Sanger Sequencing

(1977)

Expressed Sequence Tags (1992)

cDNA microarrays (1995)

RNA-Seq (2006-2008) 

Droplet single cell RNA-Seq (2015) 

PacBio IsoSeq (2014)

Direct RNA Seq Nanopore (2018)

SlideSeq-v2 (2021)



Extract RNA, convert to cDNA

Modern Transcriptome Studies Empowered by RNA-seq

Next-gen Sequencer
(pick your favorite)

Millions to Billions of Reads
RNA-seq



Circa 1995

Personal Reflections...



Generating RNA-Seq:  How to Choose?

*Not all shown at scale

iSeq

Stats circa 2018
For current, see: https://tinyurl.com/wbgcs65

https://tinyurl.com/wbgcs65


Maybe something fast and portable?

Oxford Nanopore Technology (ONT) Minion



Images from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

Today’s Most Popular Sequencing Technologies



Images from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

Today’s Most Popular Sequencing Technologies

Hundreds of millions to billions of 
highly accurate but shorter reads. Limited sequencing depth, but 

highly accurate full-length single 
molecule reads. ($$$)

Limited sequencing depth, and 
moderate-to-highly accurate full-
length single molecule reads.   ($$)

Video at: https://youtu.be/fCd6B5HRaZ8

https://youtu.be/fCd6B5HRaZ8
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highly accurate but shorter reads. ($) Limited sequencing depth, and 

moderate-to-highly accurate full-
length single molecule reads.   ($$)
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https://www.youtube.com/watch?v=_lD8JyAbwEo


Images from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

Today’s Most Popular Sequencing Technologies

Hundreds of millions to billions of 
highly accurate but shorter reads. ($) Limited sequencing depth, but 

highly accurate full-length single 
molecule reads. ($$$)

Can do direct RNA sequencing! 
and find evidence for methylation

Video: 
https://nanoporetech.com/how-it-works#fullVideo&modal=fullVideo

https://nanoporetech.com/how-it-works


https://help.nanoporetech.com/en/articles/8304478-why-do-i-need-to-put-a-light-shield-on-my-flow-cell

https://help.nanoporetech.com/en/articles/8304478-why-do-i-need-to-put-a-light-shield-on-my-flow-cell


A Plethora of Biological Sequence Analyses Enabled by RNA-Seq 

From Cieslik and Chinnaiyan,  NRG, 2017 

(ie. mutations)



RNA-Seq is Empowering Discovery at Single Cell Resolution

Wagner, Regev, and Yosef.  NBT 2016 



Spatial Transcriptomics

From “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

Spatial Encoding



A Myriad of Other Specialized 
RNA-seq -based Applications

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

RNA-Sequencing as your lens towards biological discovery



A Myriad of Other Specialized 
RNA-seq -based Applications

RNA-Protein Interactions

Ribosomal profiling

RNA-RNA interactions

RNA Structuromics

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)



RNA-seq Publication Trend

Paper Counts from PubMed



RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


Part 2. Transcript Reconstruction Methods



RNA-Seq Challenge: Transcript Reconstruction

Adapted from: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

(Avg. ~ 2 kb)

(Avg. ~ 300 b)

(~ 75 to 150 b reads, SE or PE)



Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAPStringTie

STAR

Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAPStringTie

STAR

Non-model organisms:
 “I don’t have a 

reference genome!”

Transcript Reconstruction from (short) RNA-Seq Reads



Cufflinks

TopHat

Transcript Reconstruction from (short) RNA-Seq Reads



Cufflinks

TopHat

Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAP

End-to-end Transcriptome-based
RNA-Seq Analysis 
Software Package

Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads

Trinity
Spades-RNA
Oases
SoapDenovoTrans
AbyssTrans
IDBA-Tran
Shannon
BinPacker
Bridger
…

minimap2
GMAP
BLAT
AAT
Spidey
Sim4
…

Stringtie
IsoLasso
Bayesembler
Trip
Traph
CEM
TransComb
Scallop
…

STAR
HISAT2
GSNAP
…

Many tools to choose among:



Part 3. Trinity for Genome-free 
transcriptomics (eg. for non-model orgs)



Contrasting Genome and Transcriptome Assembly

Genome Assembly Transcriptome Assembly

• Uniform coverage
• Single contig per locus
• Double-stranded

• Exponentially distributed coverage levels
• Multiple contigs per locus (alt splicing)
• Strand-specific



Trinity Aggregates Isolated Transcript Graphs

Genome Assembly
Single Massive Graph

Trinity Transcriptome Assembly
Many Thousands of Small Graphs

Ideally, one graph per expressed gene.Entire chromosomes represented.



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



RNA-Seq
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+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs

Manfred 
Grabherr

Moran
Yassour

Younger 
me
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RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



(isoforms and paralogs)



Butterfly Example 1: 
Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome

(Reference structure)



Teasing Apart Transcripts of Paralogous Genes
Ap2a1 Ap2a2

Butterfly Example 2:



Teasing Apart Transcripts of Paralogous Genes
Ap2a1 Ap2a2



Strand-specific RNA-Seq is Preferred
Computationally: fewer confounding graph structures in de novo assembly:
                ex.  Forward != reverse complement 
              (GGAA != TTCC)
Biologically: separate sense vs. antisense transcription

Illumina TruSeq Stranded mRNA Kit:



dUTP 2nd Strand Method:  Our Favorite

Modified from Parkhomchuk et al. (2009) Nucleic Acids Res. 37:e123

RNA

PCR and paired-end sequencing

Adaptor ligation

U UUU UUU

U UUU UUU

USER™ 
(Uracil-Specific Excision Reagent)Remove “U”s

Second-strand synthesis with dTTP à dUTP

U UUU UUU

First-strand synthesis with normal dNTPs
cDNA

Slide courtesy of Joshua Levin, Broad Institute.



Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe
(fission yeast)



Antisense-dominated Transcription



Trinity is a Highly Effective and 
Popular RNA-Seq Assembler

Nature Biotechnology, 2011

Thousands of routine users.

>15k literature citations

http://trinityrnaseq.github.io

Freely Available, Well-supported, 
Open Source Software



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – Today, Many More Components
(off-the-shelf and into the Trinity ecosystem) 

Jellyfish 
 kmer counter

+

Rob Patro

+

Salmon expression 
quantification

(eliminate assembly 
artifacts)

Rob Patro
(Capture paired-end 

links between 
inchworm contigs)

+

Ben Langmead



Transcriptome Assembly is Just the End of the Beginning…



Trinity Framework for De novo Transcriptome Assembly and Analysis

Bioconductor,
& Trinity



Bioconductor,
& Trinity

Trinity Framework for De novo Transcriptome Assembly and Analysis



In silico normalization of reads

High

Moderate

Low

P(select read) =
target_coverage(read)

observed_coverage(read)

Select reads according to the probability: 

Min( , 1)

Inspired by C. Titus Brown’s Diginorm



The product of Trinity:  a Fasta file of assembled transcripts

Bowtie & RSEM

Bioconductor,
& Trinity



Trinity output: A multi-fasta file

Can visualize using Bandage
https://rrwick.github.io/Bandage/

https://rrwick.github.io/Bandage/


Part 4. Transcriptome Quality Assessment



Bioconductor,
& Trinity

Evaluating the quality of your transcriptome assembly



De novo Transcriptome Assembly is Prone to Certain Types of Errors 

Smith-Unna et al. Genome Research, 2016

(Reality) (Observed) (Diagnostics)



%  samtools tview  alignments.bam  target.fasta

Assembled transcript contig is only as good as its read support.



IGV



Can Examine Transcript Read Support Using IGV

Transcript Sequence as Reference



Can align Trinity transcripts to genome scaffolds to examine intron/exon structures
(Trinity transcripts aligned to the genome using GMAP)



Evaluating the quality of your transcriptome assembly
Full-length Transcript Detection via BLASTX

M * Known protein (SWISSPROT)

Trinity transcript

* Mouse transcriptome

Have you 
sequenced 

deeply 
enough?



Latest is v5.4.7



#Summarized BUSCO benchmarking for file: Trinity.fasta
#BUSCO was run in mode: trans

Summarized benchmarks in BUSCO notation:
        C:88%[D:53%],F:4.5%,M:7.3%,n:3023

Representing:
        1045    Complete Single-copy BUSCOs
        1617    Complete Duplicated BUSCOs
        139     Fragmented BUSCOs
        222     Missing BUSCOs
        3023    Total BUSCO groups searched

Latest is v5.4.7



Part 5. Expression Quantification



Bioconductor,
& Trinity

Abundance Estimation
(Aka. Computing Expression Values)



Slide courtesy of Cole Trapnell
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Slide courtesy of Cole Trapnell
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Normalized Expression Values

• Transcript-mapped read counts are normalized 
for both length of the transcript and total 
depth of sequencing.

• Reported as: Number of RNA-Seq Fragments 
Per Kilobase of transcript

per total Million fragments mapped

FPKM
RPKM (reads per kb per M) used with Single-end RNA-Seq reads
FPKM used with Paired-end RNA-Seq reads.



Transcripts per Million (TPM)

iTPM = iFPKM
FPKM
j∑

*1e6

Preferred metric for measuring expression
• Better reflects transcript concentration in the sample.
• Nicely sums to 1 million

TPM

FPKM

Linear relationship between TPM and 
FPKM values.

Both are valid metrics, but best to be consistent.



Multiply-mapped Reads Confound 
Abundance Estimation

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Isoform A

Isoform B

EM  

Get original slide



Multiply-mapped Reads Confound 
Abundance Estimation

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Isoform A

Isoform B

EM  

Use Expectation Maximization (EM) to find the 
most likely assignment of reads to transcripts.

Performed by: 
• RSEM (genome-free)
• Kallisto, Salmon (alignment-free)

Estimate expression,
Compute likelihood

Adj Model Params,
Proportioning Reads



https://combine-lab.github.io/salmon/

Uses a suffix array
instead of the 
de Bruijn graph

https://combine-lab.github.io/salmon/


Part 6. Differential Expression



Differential Expression Analysis

Thx, Charlotte Soneson! J

After Dinner!!  --  Thanks, Rachel !!



DE analysis requires a counts matrix
Sample Type wt_37, 3 Bio replicates Sample Type wt_GSNO, 3 Bio replicates



Typical output from DE analysis
Transcript_id logFC logCPM PValue FDR
TRINITY_DN876_c0_g1_i1   -7.15049572793027     10.6197708379285   0                      0
TRINITY_DN6470_c0_g1_i1  -7.26777912190146     7.03987604865422   1.687485656951e-287    6.46813252309319e-284
TRINITY_DN5186_c0_g1_i1  -7.85623682454322     9.18570464327063   1.17049180235068e-278  2.99099671894011e-275
TRINITY_DN768_c0_g1_i1   7.72884741150304      9.7514619195169    4.32504881419265e-272  8.28895605240022e-269
TRINITY_DN70_c0_g1_i1    -12.7646078189688     7.86482982471445   3.92853491279431e-253  6.02322972829624e-250
TRINITY_DN1587_c0_g1_i1  -5.89392061881667     9.07366563894607   6.32919557933429e-243  8.08660221852944e-240
TRINITY_DN3236_c0_g1_i1  -7.27029815068473     8.02209568234202   3.64955175271959e-235  3.99678053376405e-232
TRINITY_DN4631_c0_g1_i1  -7.45310693639574     6.91664918183241   4.30540921272851e-229  4.1256583780971e-226
TRINITY_DN5082_c0_g5_i1  -5.33154406167545     10.6977538760467   2.74243356676259e-225  2.33594396920022e-222
TRINITY_DN1789_c0_g3_i1  10.2032564835076      7.32607652700285   1.44273728647186e-213  1.10600240380933e-210
TRINITY_DN4204_c0_g1_i1  4.81030233739325      9.88844409410644   9.27180216086162e-205  6.46160321501501e-202
TRINITY_DN799_c0_g1_i1   -4.22044475626154     6.9937398638711    1.24746518421083e-197  7.96922341846683e-195
TRINITY_DN196_c0_g2_i1   4.60597918494257      9.86878463857276   1.9819997623131e-192   1.16877001368402e-189
TRINITY_DN5041_c0_g1_i1  -4.27126549355785     9.70894399883      1.8930437900069e-185   1.03657669244235e-182
TRINITY_DN1619_c0_g1_i1  -4.47156415953777     9.22535948721718   1.76766063029526e-181  9.03392426122899e-179
TRINITY_DN899_c0_g1_i1   -4.90914328409143     7.93768691394594   1.11054513767547e-180  5.32089939088761e-178
TRINITY_DN324_c0_g2_i1   4.87160837667488      6.84850312231775   2.20092562166991e-179  9.92487989160089e-177
TRINITY_DN3241_c0_g1_i1  -4.77760618069256     7.94111259715689   1.60585457735621e-173  6.83915621667372e-171
TRINITY_DN4379_c0_g1_i1  3.85133572453294      7.23712813663389   3.48140532848425e-164  1.4046554341137e-161
TRINITY_DN1919_c0_g1_i1  4.05998814332136      6.95937301668582   1.8588621194715e-161   7.12501850393425e-159
TRINITY_DN2504_c0_g1_i1  -6.92417817059644     6.20370039359785   2.42022459856956e-160  8.83497227268296e-158
…

Up vs. Down regulated Avg. expression level Significance



Tools for DE analysis with RNA-Seq

See: http://www.biomedcentral.com/1471-2105/14/91

edgeR
ShrinkSeq
DESeq
baySeq
Vsf
Limma/Voom
mmdiff
cuffdiff

ROTS
TSPM
DESeq2
EBSeq
NBPSeq
SAMseq
NoiSeq
Sleuth

(italicized not in R/Bioconductor 
but stand-alone)

Soneson & Delorenzi, 2013
A comparison of methods for differential expression analysis of RNA-seq data

http://www.biomedcentral.com/1471-2105/14/91


Part 7. Case study: salamander transcriptome



Exploring Mechanisms for Limb Regeneration 
with Transcriptomics

Work done in collaboration with
 Jessica Whited’s lab  



Axolotl (Ambystoma mexicanum) Transcriptomics

Axolotl "water monster”, aka Mexican 
salamander or Mexican walking fish.

• Model for vertebrate studies of tissue 
regeneration

• Short generation time

• Can fully regenerate a severed limb in just 
weeks.

• Genome is ~30 Gb (Huge!)



Lovable Pets, Too!

Rayan Chikhi’s
pet axolotls



Key morphological steps during limb regeneration

wound epidermis

blastema

24 hours 1 week 1 week 1 week 2-3 weeks



Jessica Whited, Mark Mannucci, Ari Haberberg146



1.  Building a reference Axolotl transcriptome

limb tissues and select 
other tissues with 

biological replicates

1.3 billion of
 100 bp paired-end 

Illumina reads



Framework for De novo Transcriptome Assembly and Analysis

1.3 Billion 
Total Reads

86 Million 
Normalized ReadsBowtie & RSEM

EdgeR,
Bioconductor,
& Trinity
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Axolotl Transcriptome De novo Assembly Statistics
And Quality Assessment 

Counts of Transcripts
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Bone Cartilage
(Long)

Ovaries Testes Blood 
Vessel

Blastema
(Distal)

ElbowCartilage
(Wrist)

Forearm
Gill

Hand Heart Blastema
(proximal)

Skeletal
Muscle

Upper
Arm

✗
✗

✗

✗

1.3 B

86 M

N50=3457,
and

24K transcripts

ExN50 looks good!
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Testes
Skeletal Muscle
Ovaries

Gill Filament

Arm

Heart

Blood Vessel

Blastema
Bone

Cartilage

Tissues

Tissues

Biological Replicates Cluster According to Sample

Pearson Correlation Matrix for Tissue Replicates

Correlation



Testes

Skeletal Muscle

Ovaries Gill Filament

Arm

Heart

Blood Vessel

Blastema

Bone

Cartilage

All
 Pairwise DE 
Comparisons

Identification of Tissue-enriched Expression

EdgeR, min 4-fold change, FDR <= 1e-3



Arm (193), GO: thick ascending limb development [8.8e-5] 

Ovaries (1225)

Skeletal Muscle (539)

Testes (4113), GO: spermatogenesis [2.5e-14] 

Blood Vessel (939)

Tissues

Ge
ne

s

Heart (238), 
GO: vascular process in circulatory system [2.6e-3]

Cartilage (255), GO: collagen fibril organization [4.5e-10]
Blastema (202): limb morphogenesis [2.5e-5]
Bone (272), GO: myeloid leukocyte differentiation [2.2e-3] 

Gill Filament (765)

EdgeR, min 4-fold change, FDR <= 1e-3

Identification of Tissue-enriched Gene Expression

Functional enrichment using GO-Seq



Most Highly Expressed Blastema-enriched Genes

CIRBP (cold-inducible) RNA-binding protein

RABP2 Retinoic Acid Binding Protein 2
MFAP2: Microfibrillar-associated protein 2 

MKA: Pleiotrophic factor-alpha-1 

GPC6: Glypican
FBN2: Fibrillin
TENA: Tenascin
HES1: transcription factor
CXG1: connexin
RAI4: cytoskeleton & cell-cell adhesion

VWDE: von Willebrand factor D and EGF
KERA: Keratacan
K2C6A: Keratin, cytoskeletal

TWIST: transcription factor (pt. 1 of 2) 
TWIST: transcription factor (pt. 2 of 2) 

KAZD1: growth factor binding protein 

Log2(FPKM)

Regulator Signaling Structure and Extracellular MatrixColor key: 



Functional Characterization of Blastema-enriched KAZD1
RT-PCR Timecourse of Kazald1 Expression

Days post-amputation

In situ hybridization of kazald1 over course of regeneration

Work by Jessica Whited’s group, Cell Reports, 2017



Viral-based Delivered Over-expression of KAZD1 Leads to Regeneration Defects

Morpholino Knockdown of Kazald1 Expression

Work by Jessica Whited’s group, Cell Reports, 2017



A Tissue-Mapped Axolotl De Novo Transcriptome 
Enables Identification of Limb Regeneration Factors

Jan 17, 2017



Part 8. Latest advancements in long read 
isoform sequencing



Some transcripts can be challenging to reconstruct from short reads

• Complex alternative splicing (many isoforms)

• Very long RNAs (ex. Titin – up to 36 kb)

• Transcripts containing repetitive sequences



Transcript Reconstruction or Expression Analysis can be 
Quite Difficult at Complex Loci

(Ex.)  NDRG2
78 Isoforms (Gencode v19)

Which isoforms are expressed?
Which can be confidently reconstructed from short reads?



Too complex… don’t guess from short reads, use long reads.

(Ex.)  NDRG2
78 Isoforms (Gencode v19)

Which isoforms are expressed?
Is there evidence of differential transcript usage?



PacBio
Revio
2023

8 million
>1%

https://nanoporetech.com/accuracy

https://www.pacb.com/technology/hifi-sequencing/

Info on error rates for long reads – impressive!!

99% …. 99.9% …..
Q20 Q30

MAS-seq 40-120 million
cDNA reads

Inflection point for LR 
transcriptomics

Long reads for Single Cell Transcriptomes!!

Aziz Al’Khafaji

(commercially 
Kinnex)

https://nanoporetech.com/accuracy
https://www.pacb.com/technology/hifi-sequencing/


Standard isoform sequencing is inefficient on the PacBio platform

Base calling accuracy increases with 
the number of consensus reads. 

~Q30 (99.9%) @ 10 passes.Total bases:
~200kb

cDNA library

Ligate adapters

Sequence

Passes

From Aziz Al’Khafaji, Broad Inst.

CCS read accuracy ~ # passes

200kb total = 20kb / pass

PacBio HiFi Sequencing

Circular Consensus
HiFi Read



HiFi for WGS involves 20kb segments

20kb capacity

99.9% 
accuracy

WGS fragment

From Aziz Al’Khafaji, Broad Inst.

Total bases:
~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus
HiFi Read



Most transcripts are <5kb and get >60 
passes. Wasted sequencing potential!

99.9% 
accuracy

2kb
cDNA

From Aziz Al’Khafaji, Broad Inst.

Total bases:
~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus
HiFi Read



Of the 20kb segment, RNAs only use ~2kb

18kb lost opportunity!

20kb capacity

99.9% 
accuracy

From Aziz Al’Khafaji, Broad Inst.

Total bases:
~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus
HiFi Read



From Aziz Al’Khafaji, Broad Inst.

Total bases:
~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

Multiplexed Array Sequencing (MAS-Seq)

~20kb size

>15-fold increase in throughput

PacBio HiFi Sequencing

Circular Consensus
HiFi Read



Technical validation using RNA isoform standards

SIRVS serve as truth dataset to evaluate MAS-seq’s ability to accurately 
identify RNA isoforms.

SIRVs (Spike-in RNA Variant Control Mixes) are synthetic gene isoforms

From Aziz Al’Khafaji, Broad Inst.



Long-read sequencing accurately identify RNA isoform standards

From Aziz Al’Khafaji, Broad Inst.



Transcript Reconstruction from (Long) RNA-Seq Reads

RNA-Bloom2
Rattle
Trinity Eventually
(under dev)
…

minimap2
GMAP
…Isoquant

Bambu
Mandalorian
Flames
Cupcake
Isoseq
Tama
Flair
Talon
…

minimap2
GMAP
…

RNA-seq Long Reads (not drawn to scale)



Part 9. Overview of Single Cell Transcriptomics



From: https://perkinelmer-appliedgenomics.com/2022/02/15/single-cell-rna-seq-intro/

The Quintessential “Fruit Smoothie Metaphor”
 for Bulk RNA-seq

vs.



Lafzi et al., Nat Protocols, 2018

Step 1: Break down tissue to single cells (or nuclei)

Can also extract and sequence nuclei instead of whole cells – popular in neurobiology



Plate-based methods
Low throughput

Smart-seq2 Method: Get reads covering the 
full length of the RNA molecule.

Picelli et al., Nature Protocols, 2014

Examples of Different Popular Classes of Single Cell Sequencing
Droplet-based methods

From Potter, Nature Reviews Nephrology, 2018

Lafzi et al., Nat Protocols, 2018

Unique Molecular Identifier (UMI)



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 
along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 
along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method

3’ counting ==  gene expression
                      !=  transcript expression



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 
along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method



https://www.10xgenomics.com/platforms/chromium

10x Genomics Chromium Single Cell Transcriptome Sequencing

80k to > 1M  cells/run

https://www.10xgenomics.com/platforms/chromium


Analysis Workflow for Single Cell Transcriptomics

- Align reads to the reference genome

- Collapse PCR duplicates (by UMIs)

- Build a {Gene X Cell} UMI counts matrix 



Andrews, 2021, review

Single Cell Transcriptomics Data Processing Workflow

Gene ‘count’ matrices  for single cell data tend to be 
very large and very  sparse

   eg. 25k genes x 100k cells

(almost all zeros – no reads detected)

Various processing needed:

- Which cells are ‘good’ cells? vs dying/stressed cells, 
doublets,  or empty droplets?

- possibly remove confounding cell cycle signatures 
from expression data.

- Multiple experiments/replicates - batch correction?



Andrews, 2021, review

In Silico Removal of Ambient RNA
(by Cellbender)

Phenomenology of ambient RNA       

Cell Markers and Read Quantities by Cell Type

Before After

Cell-type markers

Cell 
Clusters



Andrews, 2021, review

Metrics for Filtering Cells – Keep the Good Ones

Cells ranked by #UMIs

Histogram of #UMIs per cell Histogram of #genes per cell

Gene count vs. UMI count

Exclude cells with high 
mitochondrial RNA content

Filter cells based on #genes, #UMIs, and %Mito RNA



Andrews, 2021, review

Batch Correction for Single Cell Transcriptomes

Plot your cells and paint by batch to examine this.
Batch correction methods are available 

No batch correction Batch correction



Andrews, 2021, review

Aligned using Seurat via canonical correlation analysis (CCA) 

Peripheral blood mononuclear cells (PBMCs) +/- stimulation
Unaligned Aligned Cell Types

Integrating scRNA-seq data sets based on common sources of variation

Butler et al., Nature Biotech, 2018

Unaligned Aligned Cell Types
Mouse and human pancreas islet cells



Andrews, 2021, review

Dimensionality reduction via
t-SNE, UMAP, etc 

Finally, Single Cell Data Exploration and Biological Discovery

• Cell clustering
• Defining cell types
• Biomarker Discovery 

• Cell state continuities 
• Differentiation trajectories



Popular Software Packages for Single Cell Transcriptome Studies

From 
Rahul Satija’s 

lab

F. Alexander Wolf, Philipp Angerer & Fabian J. Theis,
Genome Biology, 2018; 
Isaac Virshup: lead developer since 2019



Gene expression ≠ transcript expression

Gene X

Gene Y Gene Z

Cells

G
enes

scRNA-seq

From Aziz Al’Khafaji, Broad Inst.

But – long isoform reads to the rescue!!



Long read scRNA-seq (scMAS-Iso-seq) of tumor infiltrating CD8 T cells

CD45 epitope 
expression

Al’Khafaji et al., Nature Biotechnology, 2023

(by CITE-seq)

CD45 T-cell Marker Isoform expression resolved via long reads

Perform MAS-Iso-seq on the 10x sc libraries to get long isoform reads at single cell resolution 



Tabula Muris
Tabula Sapiens

Tabula Drosophila

Just the beginning…

Cataloguing Cell Types and Building Cell Atlases



From Li, Jin, & Bai, Protein & Cell, 2022

Single cell analysis is revolutionizing cancer research



Clinical Application for Tumor Single Cell Transcriptomics

From Kuksin et al, EJC, 2021



Part 10. Overview of Spatial Transcriptomics



“Starry skies invite space exploration.

In transcriptomics, spatial resolution opens up new worlds too.”





Single Cells vs. Spatial Transcriptomics

Car parts ~ single cells Car ~ tissue

Vs.



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 
and fluorescent tags



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 
and fluorescent tags



Single Molecule Fish (smFISH) Methods for Visualizing RNA Molecules at Sub-cellular Resolution

Target: hunchback RNA in 
Drosophila embryo

Itzkovitz & van Oudenaarden, Nature Methods Supplement, 2011

Long probe, many labels Shorter probes, fewer labels

Target: single transcripts in 
mammalian cells

Target: end-1 gene in 
C.elegans embryos

Many probes, single label ea.

Rolling circle amplification (RCA) of ’padlock probes’.
 Labels hyb to RCA product.

TARGET: ERBB2 (aka. HER2) in 
human fibroblasts

Target: ERBB2 (green) and 
18SrRNA (red)

Branched oligo sets 
that amplify labeling



https://vizgen.com/technology Movie: https://www.youtube.com/watch?v=O0QekKSscjA

https://www.youtube.com/watch?v=O0QekKSscjA


https://www.10xgenomics.com/videos/s3lqk4sivj?autoplay=true

10X Genomics Xenium – 100s to 1000s of Targeted RNAs visualized at subcellular resolution



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 
and fluorescent tags



Spatial RNA-seq – 10X Visium HD



Spatial RNA-seq – 10X Visium HD



Longo, NRG, 2021

Integration of Single Cell and Spatial Transcriptomes

+ matched short and long reads!!



Just a couple months ago…

From: https://alleninstitute.org/news/what-makes-us-human-detailed-cellular-maps-of-the-entire-human-brain-reveal-clues/

21 papers published October 2023 from NIH’s BRAIN Initiative Cell Census Network (BICCN)

Heavily using single cell sequencing and spatial technologies, 
explores fundamental questions about the brain, including: 

• How different are individual people’s brains at the cellular 
level? 

• same basic cellular parts list, the proportions of 
certain kinds of cells and the genes switched on in 
those cells varies substantially from person to person.

• How different are our brains from those of our closest ape 
relatives? 

• same basic brain cell type architecture, many genes 
involved in connections between neurons and the 
formation of circuits in the brain are different.

• How many kinds of brain cells do we have?
• > 3 thousand !!

•  What are the properties of these cells?  

• How do these cells emerge and mature in development?

https://alleninstitute.org/news/what-makes-us-human-detailed-cellular-maps-of-the-entire-human-brain-reveal-clues/


In Summary
• Many applications for RNA-seq, technology continues to evolve.

• Analysis can involve reference genomes or be genome-free via de novo 
transcriptome assembly – Trinity can help.

• Quantification involves counting reads and considering read-mapping
uncertainty

• Long reads now available for applications previously limited to short 
reads, involve far less read mapping uncertainty, and enable isoform 
rather than gene expression analyses.

• Single cell and spatial transcriptomics studies are revolutionizing our 
understanding of tissue complexity, diversity of cell types, and cellular 
interactions - particularly in studies of cancer.

• Massive resources being built: whole organism cell atlases and high-
resolution spatial maps


