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microViz

Interactive data exploration
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The plan: 2 parts

- Key concepts in microbiome taxonomic data analysis

A 19:00 - 19:30 - Lecture

- Barcharts and Diversity - getting started in R

R Exercises - about 45 mins

- Dissimilarity, Ordination, & Differential Abundance
B 20:30 - 21:00 - Lecture

R Exercises - until 22:00



Key concepts in microbiome
taxonomic data analysis

1. Processing 16S gene amplicon sequencing data

_.g.!i!:o. :
- Denoising with: s 88 5 ' —

- Diversity
- Dissimilarity

- Differential Abundance




Sequencing: of 16S rRNA gene amplicons

Microbiota profiling - who's there?



U

Denoising: Infer Amplicon Sequence Variants

U

Taxonomic classification: map ASVs to database

Amplicon Sequencing. Exactly.

high quality ribosomal RNA databases



I3, DA? vs. OTUS

Sample sequences Sequencing reads Operational Taxonomic Units
(Ground truth) (Our raw data) (~97% similar sequences)
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Divisive Amplicon Denoising Algorithm
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Count unique sequences

not an error

Initial error model Reject sequence least likely to
(one partition) arise from errors
(too abundant and/or different)

not an error

\ not an error
(=]

Repeat: Reject more sequences and Convergence: All errors are plausible

divide into further partitions
Callahan et al. 2016. Nature Methods



https://www.nature.com/articles/nmeth.3869

— phyloseq

—
—

Amplicon Sequencing. Exactly.

https://benjjneb.github.io/dada2/tutorial.html

: i ape Biostrings
matrix data.frame matrix
package package

read.tree DNAStringSet

tu tabl le dat read.nexus RNAStringSet

otu_table as Selbos gakd as read_tree AAStringSet

OTU Abundance Sample Variables Taxonomy Table Phylogenetic Tree Reference Seq.

otu_table sample data taxonomyTable XStringSet

Accessors:
get_taxa
get_samples
get_variable

otu_table

: nsamples
Experiment Data nBaxa
constructor: phylosed rank_names
k phyloseq otu_table, sample_names
sam_data, sample_sums
> tax_table, ¥ | sample_variables
import phy_tree taxa_names

refseq taxa_sums

Processors:
filter taxa
merge_phyloseq
merge_samples
merge_taxa
prune_samples
prune_taxa
subset_taxa
subset_samples
tip_glom
tax_glom



https://benjjneb.github.io/dada2/tutorial.html

Analysing taxon abundance data

Diversity

<~

2. Dissimilarity

3. Differential Abundance
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Ecosystem
Diversity

® Richness - how many different taxa?
e Evenness - how balanced are the taxa?

e Diversity - how rich and balanced is the ecosystem?

There are many different ways to calculate these things!

More about diversity indices -> https://www.davidzeleny.net/anadat-r/doku.php/en:div-ind



https://www.davidzeleny.net/anadat-r/doku.php/en:div-ind
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Binary Jaccard Distance
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- how different are two ecosystems?
e Very useful - for plots (PCoA) and stats (PERMANOVA)

e Distance matrix - pairwise ecosystem dissimilarities

e Dissimilarity

There are many different dissimilarity measures!
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e Compare abundance of each taxon, across ecosystems
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Differential

Abundance

of each taxon

Oé
ABC ABC




Differential
Abundance
of each taxon
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e Compare across groups of samples

e.g. - group ABC vs. group XYZ
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Differential

Abundance

of each taxon

XY Z
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Differential

Abundance

of each taxon

i

Various statistical methods

available for differential
abundance testing

ABC XY 2z




Microbiome data are
compositional

e We do not directly count microbes
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e We extract DNA and throw it in a MiSeq

e Total reads # Total microbial biomass
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Microbiome data are

Low Biomass

High Biomass

compositional

e We do not directly count microbes

e We extract DNA and throw it in a MiSeq

e Total reads # Total microbial biomass
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Microbiome data are
compositional

High Biomass Low Biomass

e We do not directly count microbes
e We extract DNA and throw it in a MiSeq

e Total reads # Total microbial biomass

160

120

80

40

o — Microbiome Datasets Are Compositional: And This Is Not Optional

Hic¢

Gregory B. Gloor,!" Jean M. Macklaim,! Vera Pawlowsky-Glahn,? and Juan J. Egozcue®




NOW: Barcharts and Diversity - getting started in R

david-barnett.qgithub.io/evomics-material/exercises/exercises 1.html

Next lecture at 20:30
4

Remember to take a
break before then!

&
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https://david-barnett.github.io/evomics-material/exercises/exercises_1.html

Activate RStudio Project in microbiome_analysis directory

File Edit Code View Plots Session Build Debug Profile Tools Help

genomics [+

®

Vo .loplar. ~+ Go to file/funct . Addins - % Project: (None) -
Console Terminal Background Jobs 5/ Environment History Connections =0
R R4.3.2 -~/ “ I “*Import Dataset . ' 178 MiB . ¥ List . = -

R - ' & Global Environment -
R version 4.3.2 (2023-10-31) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit) Environment is empty
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation(D' on how to cite R or R packages in publications. Files Plots Packages Help Viewer Presentation e
. © New Folder © New Blank File - “/Upload '© Delete = Rename & More -
Type 'demo()' for some demos, 'help()' for on-line help, or & Home ~ workshop materials = microbiome analysis
'help.start()' for an HTML browser interface to help. 4 Name Size Modified
Type 'q()' to quit R. . 1
] _gitignore 40 B Dec 28, 2023, 5:53
Session restored from your saved work on 2024-Jan-@7 15:59:32 UTC (6 days ago) %] Rprofile 101 8B Dec 28, 2023, 5:53
> data
% evomics-material.Rproj _ 229 B Dec 28, 2023, 5:53
exercises
vo| README.md 1.2 KB Dec 28, 2023, 5:53
setup
slides
Files Plots Packages Help Viewer Presentation =]
© New Folder © New Blank File - “ /Upload © Delete = Rename % More - Confirm Open Project
& Home ~ workshop materials = microbiome analysis i
_— . .
A o
Name Size Modified o Do you want to open the project
t. ~/workshop_materials
1 .gitignore 40 B Dec 28, 2023, 5:53 /microbiome_analysis?
¥ Rprofile 101 B Dec 28, 2023, 5:53
data Yes No
% evomics-material.Rproj 229B Dec 28, 2023, 5:53 e
exercises
vo| README.md 1.2 KB Dec 28, 2023, 5:53
setup Learn more about RStudio projects?
slides https://rstats.wtf/projects



https://rstats.wtf/projects

Ensure you have the latest version of the project git repo

rofile Tools Help

genomics

R

ns - microbiome_analysis
#  Environment History Connections Git =
Diff ' Commit ® Ppull - ® push * History ¥ More - “= New Branch  main -
Staged Status ~« Path I
(to run git pull)
Files Plots Packages Help Viewer Presentation = |
©  New Folder © New Blank File . © Upload ® Delete = Rename ¥ More -
A Home workshop materials microbiome analysis 3
| Git Pull Stop Git Pull Close
| '>>> /usr/bin/git pull ‘ >>> /usr/bin/git pull

Already up to date.

More about using git with R & RStudio?
https://happyqitwithr.com/



https://happygitwithr.com/

NOW: Barcharts and Diversity - getting started in R

david-barnett.qgithub.io/evomics-material/exercises/exercises 1.html

Next lecture at 20:30
4

Remember to take a
break before then!
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https://david-barnett.github.io/evomics-material/exercises/exercises_1.html

Dissimilarity, Ordination,
and Differential Abundance

3. From Dissimilarity to Ordination

- Common dissimilarity measures

- PCoA, PERMANOVA, and PCA

Differential Abundance testing

A gentle intro to modelling individual taxa
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- how different are two ecosystems?
e Very useful - for plots (PCoA) and stats (PERMANOVA)

e Distance matrix - pairwise ecosystem dissimilarities

e Dissimilarity

There are many different dissimilarity measures!
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Dissimilarity
Measures

1. Binary Jaccard Distance

- an “unweighted” measure

B C
A 057 1 0.25

B § 0.43

1 - (shared taxa / total taxa)
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Dissimilarity
Measures

1. Binary Jaccard Distance

- an “unweighted” measure

= 1 - (shared taxa / total taxa)

=AC-1-(000/0000)

»AC=1-(3/4)=1/4-=80.25
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Dissimilarity
Measures

2. Bray-Curtis Dissimilarity

- “abundance-weighted”




Dissimilarity
Measures

2. Bray-Curtis Dissimilarity

- “abundance-weighted”
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issimilarity
Measures
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Dissimilarity
Measures

3. UniFrac distance family

-  “phylogenetic” distances

Samples share the same taxa = UniFrac is very low (or zero)
Samples contain distinct but related taxa ™ UniFrac is low

Samples contain unrelated taxa = UniFrac is higher

Example adapted from Lozupone and Knight 2005



Dissimilarity
Measures

3. UniFrac distance family

-  “phylogenetic” distances

share the same taxa = UniFrac is very low (or zero)
... distinct but related taxa = UniFrac is low

... unrelated taxa = UniFrac is higher
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Taxon
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Taxon

Taxon C2

Taxon C3
Taxon C4

Taxon C5
Taxon A6

Tree tips are taxa!
Shape shows their source

UniFrac = “Unique Fraction”

of branch length leading to
taxa from only one sample



Dissimilarity
Measures

3. UniFrac distance family

-  “phylogenetic” distances

share the same taxa = UniFrac is very low (or zero)
... distinct but related taxa = UniFrac is low

... unrelated taxa = UniFrac is higher

Taxon
Taxon
Taxon
Taxon
Taxon
Taxon
Taxon

" ‘1_- Taxon

Tree tips are taxa!

Shape shows their source

Al
A2
A3
Bl
B2
A4
B3

OO0

O»OPr»

A6 A

UniFrac = “Unique Fraction”

of branch length leading to

taxa from only one sample



Dissimilarity
Measures

3. UniFrac distance family

-  “phylogenetic” distances

share the same taxa = UniFrac is very low (or zero) -
i (7= Taxon C2
... distinct but related taxa = UniFrac is low %
m Taxon C3
... unrelated taxa = UniFrac is higher s Taxon C4
- Taxon C5

Tree tips are taxa!
Shape shows their source

UniFrac = “Unique Fraction”
of branch length leading to

taxa from only one sample
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Dissimilarity
Measures

L
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Taxon

3. UniFrac distance family

-  “phylogenetic” distances

share the same taxa = UniFrac is very low (or zero)
... distinct but related taxa = UniFrac is low

... unrelated taxa = UniFrac is higher

Taxon

Tree tips are taxa!

Shape shows their source

Bl
B2
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Cc2
c3
C4
c5
A6

UniFrac = “Unique Fraction”

of branch length leading to

taxa from only one sample
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3.

Dissimilarity
Measures

UniFrac distance family

-  “phylogenetic” distances

share the same taxa = UniFrac is very low (or zero)
... distinct but related taxa = UniFrac is low

... unrelated taxa = UniFrac is higher

The UniFrac family:
1. UniFrac (unweighted)
2. Abundance-weighted UniFrac

3. Generalised UniFrac (balanced)

Taxon
Taxon
Taxon
Taxon
Taxon
Taxon
Taxon

Taxon

Taxon
Taxon

Taxon

Taxon

Treg are taxa!

Shape <F. -7 5 their source
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UniFrac = “Unique Fraction”

of branch length leading to
taxa from only one sample



Principal Coordinates Analysis
Dissimilarities = Ordination

Distances (Kilometres)

Now, place the cities on map .




Principal Coordinates Analysis
Dissimilarities = Ordination

Distances (Kilometres) Map (Coordinates)

Lon. Par. Ams. Maa. Pra. Kru.

London @ O
Paris | ... O | ... | ... | ... | .. London
Amsterdam
Amsterdam | ... | ... o|..[...1|.. - Maastricht
. Prague
Maastricht | ... | ... | ... o |...|... Paris Krurato
Prague ... ... | ... | ... O

Krumlov | ... ... | ... .../ ... 0




Principal Coordinates Analysis
Dissimilarities = Ordination

Dissimilarities (Bray-Curtis) Plot (Principal Coordinates)

S1 S2 S3 S4 S5 S6

Samplel O | ... | ... ... | ... ..

Sample2 ... 0 ... | .. .. .. @ e

Sample3 | ... | .. 0 | ... | ...| ... -

Sampled4 | ... | ... | .. 0o ... .. a
Sample5 | ... | ... ... ... | 0 | .. @ G

Sample6 | ... | ... ... .. | ... O
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-2 © Other Genus
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2 -
PCoA
on real data 1
3
N
Ulcerative Colitis patients E B
and Healthy Controls o
% -11 Group
Stool samples --> 16S N
microbiota abundances = Colttis
T 4 Healthy
Compute Bray-Curtis
dissimilarities with genera 1 0 1 5 3
/ MDS1 [22.2%)]
T —> PERMANOVA: p < 0.01
- ® Permutational Multivariate ANOVA

® Does average composition differ by Group?
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PCoA

Principal Coordinates
Analysis

Taxon abundances

Calculate Dissimilarities

Distance Matrix

PCoA / MDS ordination

New dimensions (Coordinates)

Plot first 2 or 3 dims

VS.

-— €— — «— <«

PCA

Principal Components
Analysis

Taxon abundances

Transform abundances

Transformed abundances

PCA ordination (rotate input)

New dimensions (Components)

Plot first 2 or 3 dims
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Differential Abundance

- Just comparing two groups of numbers, how hard can it be?
- But, we have compositional, noisy, and zero-inflated abundance counts...

- And about 15 different specialist methods to choose from...

Microbiome differential abundance methods produce
disturbingly different results across 38 datasets
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Microbiome differential abundance methods
produce different results across 38 datasets
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Microbiome differential abundance methods
produce different results... 2 () 5%

So what can you do?

1. Filter out the noise

- Most methods perform poorly on rare taxa (which are also often less relevant)

2. Keep it simple, and visualise your data!

- Check for visible patterns and start with non-parametric measures

(Spearman correlations or Wilcox tests)

3. Try a couple of common DA methods (not DESeq2)

- Pick methods that suit your dataset (covariates? repeated samples?)

- Check where the methods agree on overlapping results



NOW: PCoA, PCA, and DA exercises in R

david-barnett.qgithub.io/evomics-material/exercises/exercises 2.html

Continue until 10

-

Or until the need for beer or bed
becomes too strong...


https://david-barnett.github.io/evomics-material/exercises/exercises_2.html

Thank you & good luck -




