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Outline

• Housekeeping

• Why trim? A brief history

• Trimming becomes a contentious topic

• ClipKIT implements a novel approach
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Raw course materials are available via GitHub
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I recommend using links available on the website

Karin Steffen

@JLSteenwyk

https://scholar.google.se/citations?hl=en&user=CuClhA4AAAAJ
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Outline
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• Why trim? A brief history 
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Variation in conservation

Highly conserved
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Variation in conservation

Highly conserved

Highly variable

@JLSteenwyk



Highly divergent sites in alignments can be caused by: 
1) Erroneously inferred site homology and

2) Saturation of multiple substitutions 
 
For nearly 30 years, it has been common practice in molecular 
phylogenetic to remove these sites because they are thought to 
lack phylogenetic signal

(Lake, 1991, Molecular Biology and Evolution)

Talavera et al. (2007), Syst. Biol.; Capella-Gutierrez et al. (2009), Bioinformatics; Others

Sites in alignments may be “unfit”
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Biological

• Difficult to align regions may be structurally 

disordered and evolve under relaxed selection


Analytical

• Errors in


• Genome assembly,

• Gene annotation, &

• Alignment errors

Other sources of error
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Trimming becomes controversial in 2015
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Methods examined; most remove divergent sites

Method Sites removed Reference

Gblocks Gap-rich and variable Talavera and Castresana (2007)

TrimAl Gap-rich and variable Capella-Gutiérrez et al. (2009)

Noisy Homoplastic sites Dress et al. (2008)

Aliscore Random-like sites Kück et al. (2010)

BMGE High entropy sites Criscuolo and Ribaldo (2010)

Zorro Sites with low posterior Wu et al. (2012)

Guidance Sensitive to guide tree Penn et al. (2010)
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Testing the impact of trimming
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Sequence sampling using orthologs (& additional homologs)
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Aligning sequences
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Trimming using diverse software
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Inferring trees from trimmed MSAs
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Tree pruning to organisms with “incontestable” relationships
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Comparing inferred tree to “incontestable” tree
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Testing the impact of trimming
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Testing the impact of trimming
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Testing the impact of trimming

• Gblocks is an aggressive trimmer


• trimAl (gappyout) conducts “lighter” trimming
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Testing the impact of trimming
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Take home message

•Alignment trimming often resulted in lower phylogenetic signal in an 
alignment

•The more aggressive the trimmer, the worse it performed


“Although our results suggest that light filtering (up to 20% of alignment 
positions) has little impact on tree accuracy and may save some computation 
time, contrary to widespread practice, we do not generally recommend the 
use of current alignment filtering methods for phylogenetic inference”


This suggest current methods remove sites with phylogenetic signal
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What if we kept sites with phylogenetic signal?



JLSteenwyk @JLSteenwyk

Jacob L. Steenwyk, Thomas J. Buida III, 
Yuanning Li, Xing-Xing Shen, Antonis Rokas  



• based on keeping parsimony informative sites and sites that aren’t gappy-rich

• ClipKIT has five modes:

    - kpi (keeps only parsimony informative sites)

    - kpic (keeps parsimony informative sites and constant sites)

    - smart-gap (dynamic gappyness threshold determination)

    - gappy (removes sites with >90% gaps)

    - combinations of kpi/kpic and gappy-based trimming can be used

            - e.g., kpic-smart-gap 

• ClipKIT focuses on keeping sites rich in phylogenetic signal rather than 
identifying and removing those that lack signal

ClipKIT has several modes
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ClipKIT removes sites that aren’t parsimony informative
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Measuring accuracy between inferred & expected tree
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Trees inferred using ClipKIT are accurate
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Trees inferred using ClipKIT are well supported
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Branch lengths estimates after trimming are typically accurate

@JLSteenwyk
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Branch lengths estimates after trimming are typically accurate

@JLSteenwyk

* we also found ClipKIT 
trimmed alignments that 
were shorter than other 
methods still outperformed 
the other methods



https://clipkit.genomelybio.com/



Thank you for your time and attention!
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Stay tuned for a silly quiz in the last 10 minutes!



Trimming MSAs

https://jlsteenwyk.com/@JLSteenwyk



Fun quiz, no winners…except each and every one of you!

https://jlsteenwyk.com/@JLSteenwyk


