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Overview

1. DNA variation and sequencing
2. Alignment to linear sequences
3. Error detection and genotyping
4. Learning to genotype

5. Practicals



(small) Genomic variation
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A SNP

A point mutation in which one base is swapped
for another.

AATTAGCCATTA
AATTAGTCATTA



An INDEL

A mutation that results from the gain or loss of
sequence.

AATTAGCCATTA
AATTA--CATTA



(some) causes of SNPs

e Deamination

o cytosine — uracil

o 5-methylcytosine — thymine

o guanine — xanthine (mispairs to A-T bp)

o adenine — hypoxanthine (mispairs to G-C bp)
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Deamination of Cytosine to Uracil
http://en.wikipedia.org/wiki/Deamination



(some) causes of SNPs

e Depurination
o purines are cleaved from DNA sugar backbone
(5000/cell/day, pyrimidines at much lower rate)
o Base excision repair (BEP) can fail — mutation
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Multi-base events (MNPs)

o NMNPs
o thymine dimerization (UV induced)
o other (e.g. oxidative stress induced)
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http://www.rcsb.org/pdb/101/motm.do?momID=91



Transitions and transversions

In general transitions
are 2-3 times more
common than
transversions. (But this
depends on biological
context.)
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https://upload.wikimedia.org/wikipedia/commons/3/35/Transitions-transversions-v3.png



DNA replication

As helicase unwinds the DNA, DNA

polymerase runs along the two tem-

plate strands and uses them to pro-
duce new strands.

DNA polymerase ll|

DNA polymerase |
helicase

/lwww.stanford.edu/group/hopes/cqi-bin/wordpress/2011/02/all-about-mutations/



Polymerase slippage

A) Slippage Event (A) During replication, polymerase
slippage and subsequent reattach-
template strand ment may cause a bubble to form
DNA Replication @ in the new strand_ Shppage is
thought to occur in sections of
DNA with repeated pattermns of
bases (such as CAG), represented
here by matching colors. Then,
DNA repair mechanisms realign
the template strand with the new
new strand strand and the bubble is straight-
ened out. The resulting double
template strand helix is thus expanded

DNA Repair Mechanisms @

new strand
L expanded section ———! template strand
B) No Slippage (B) Polymerase slippage, as theo-

gy (iZ€d, CanNOt OCCUr in DNA with-
B e e e B eSS out repeating patterns of bases.

http://www.stanford.edu/group/hopes/cqi-bin/wordpress/2011/02/all-about-mutations/



Insertions and deletions via slippage

Single Base Deletion
Mutation

Single Base Insertion

06008
Mutation 00000
Slippage

Energetic signatures of single base bulges:
thermodynamic consequences and biological
implications. Minetti CA, Remeta DP, Dickstein R,
Rraclatier K. 1 - Niicleic Acide Rece (2000)



DSB

Double-stranded break repair
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Possible anti-recombinogenic role of Bloom’s syndrome helicase in double-strand break processing. doi: 10.1093/nar/gkg834



http://dx.doi.org/10.1093%2Fnar%2Fgkg834

NHEJ-derived indels
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DNA Slippage Occurs at Microsatellite Loci without Minimal Threshold Length in Humans: A
Comparative Genomic Approach. Leclercq S, Rivals E, Jarne P - Genome Biol Evol (2010)



Genome sequencing recap



Genomic DNA
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http://bitesizebio.com/13546/sequencing-by-synthesis-explaining-the-illumina-sequencing-technology/



http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-course/what-next-generation-dna-sequencing/illumina-



What can go wrong?

1. Input artifacts, problems with library prep
a. replication in PCR has no error-correction (— SNPs)
b. no quaternary structures (e.g. clamp) to prevent slippage (— indels)
C. cChimeras...
d. duplicates (worse if they are errors)
2. Sequencing-by-synthesis
a. phasing of step
I. synthesis reaction efficiency is not 100%
ii. particularly bad in A/T homopolymers
b. certain context specific errors
i. vary by sequencing protocol, device
ii. often strand-specific



Example: Context specific errors

Show up as strand-specific errors:

. . '

CHEENCEG T AT CAAAATINCERESOINNAGNIEA A A A GCT GACAGADGHYG A

http://www.ncbi.nim.nih.gov/pmc/articles/PMC3622629/



Context specific errors (motifs)

Rank Context FER RER ERD
[%] [%] [%]
1 ACGGCGGT 26.1 05 256
2 GTGGCGGT 25.1 0.7 244
3 GCGGCGGT 229 0.7 22.2
4 GTGGCTGT 224 0.6 218
5 ATGGCGGT 212 1.0 203
6 NCGGCGGT 20.0 0.7 19.3
7 GTGGCTTG 20.2 1.2 19.0
8 GNGGCGGT 19.2 0.7 18.5
9 GCGGCTGT 18.8 0.7 18.1
10 ACGGCTGT 186 0.8

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622629/

17.7

«— forward and reverse error rates for
the ten most-common CSEs on a
variety of illumina systems (in 2013)

Often GC-rich!

Changes in chemistry mean that this

may not be such a big deal now, but this

example is something to keep in mind!




Long read technologies

“3rd-gen” sequencing.
- Read single molecules (long too!)
- Have high error rates (10-15%)
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Pacific Biosciences sequencing

b Phospholinked hexaphosphate nucleotides

Fluorescence
pulse

—Intensity —»

Epifluorescence detection




Oxford Nanopore
sequencing

NANOPORE SEQUENCING

At the heart of the MinlON device, an enzyme unwinds DNA,

feeding one strand through a protein pore. The unique shape of \ 4
each DNA base causes a characteristic disruption in electrical g
current, providing a readout of the underlying sequence. o‘\fj\'

DNA double
helix

DNA base

Unwinding enzyme

Membrane
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Alignment Is interpretation



Alignment

Covered in our last session!

Key idea for variant calling:
alignment provides a kind of interpretation of variation.

Changes in parameters, alignments, or sequence context
can lead to changes in called alleles.



Seeing variation

These sequences have mutations between them.

T TTTTCT TTCTATTAT
T TTTGCTATCTAGGTTATTAT

They are homologous but it's not easy to see.



Pairwise alignment

One solution, assuming a particular set of alignment
parameters, has 3 indels and a SNP:

T TTT----TCT TTCTATTAT
T ---TTTGCTATCT - - T-TATTAT

But if we use a higher gap-open penalty, things look different:

T TTT--TCTGGAGTTCTATTAT
TAAGG- - -TTTGCTATCTAGCT-TATTAT



Alignment = interpretation

Different parameterizations can yield different results.
Different results suggest “different” variation.

What kind of problems can this cause? (And how can
we mitigate these issues?)



INDELs have multiple representations and
require normalization for standard calling

Left alignment allows us to ensure that our representation
IS consistent across alignments and also variant calls.

CGTATGATCTAGCGCGCTAGCTAGCTAGC p I..eft
CGTATGATCTA - - GCGCTAGCTAGCTAGC aligned

CGTATGATCTAGCGCGCTAGCTAGCTAGC
CGTATGATCTAGC - - GCTAGCTAGCTAGC

CGTATGATCTAGCGCGCTAGCTAGCTAGC
CGTATGATCTAGCGC - -TAGCTAGCTAGC

https://www.biostars.org/p/66843/ user sa9



https://www.biostars.org/p/66843/

example: 1000G Phasel low coverage
chr15:81551110, ref:CTCTC alt:ATATA

f_%
ref: TGTCACTCGCTCTCTCTCTCTCTCTCTATATATATATATTTGTGCAT

alt: TGTCACTCGCTCTCTCTCTCTATATATATATATATATATTTGTGCAT
%_J

Interpreted as 3 SNPs

Al

ref: TGTCACTCGCTCTCTCTCTCTCTCTCT=------ ATATATATATATTTGTGCAT
alt: TGTCACTCGCTCTCTCTCTCT------ ATATATATATATATATATTTGTGCAT

|\

Y

Interpreted as microsatellite expansion/contraction



example: 1000G Phasel low coverage
chr20:708257, ref:AGC alt:CGA

—A—

ref: TATAGAGAGAGAGAGAGAGCGAGAGAGAGAGAGAGAGGGAGAGACGGAGTT
alt: TATAGAGAGAGAGAGAGCGAGAGAGAGAGAGAGAGAGGGAGAGACGGAGTT

h—l

I—H
ref: TATAGAGAGAGAGAGAGAGC--GAGAGAGAGAGAGAGAGGGAGAGACGGAGTT

alt: TATAGAGAGAGAGAGAG--CGAGAGAGAGAGAGAGAGAGGGAGAGACGGAGTT
ﬁ_l



Processing alignments

Reference
Genome
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Aligned
Reads

A typical workflow for

alignment and variant

calling.
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Variant (haplotype) detection



Alignments to candidates

\ Reference
A
A [ [ Reads
A ]
A
A

7

Variant observations



The data exposed to the caller

\ Reference

B
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Direct detection of haplotypes

Reference

Direct detection of haplotypes
from reads resolves
differentially-represented
alleles (as the sequence is
compared, not the alignment).

A ]

Detection window




Variant Variant
Region Region
G
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Genotyping and error detection



Bayesian (visual) intuition
We have a universe of individuals.

A = samples with a
variant at some locus

. Universe

Figures from http://oscarbonilla.com/2009/05/visualizing-bayes-theorem/

B = putative observations
of variant at some locus



http://oscarbonilla.com/2009/05/visualizing-bayes-theorem/

probability(A|B)

We want to estimate the probability that we have a real
polymorphism "A" given "|" that we observed variants in our

alignments "B".

|AB]

P(A|B) = 5

P(AB)

P(AIB) = 5

P(AB)

P(B|A) = T

P(B|A)P(A)
P(B)

P(A|B) =



In our case it's a bit more like this...

Observations (B) provide pretty good sensitivity, but
poor specificity.



The model

e Bayesian model estimates the probability of polymorphism at a locus given
input data and the population mutation rate (~pairwise heterozygosity) and
assumption of “neutrality” (random mating).

e Following Bayes theorem, the probability of a specific set of genotypes
over some number of samples is:

o P(G|R) =(P(R|G) P(G))/P(R)
e Which in FreeBayes we extend to:
o P(G,S|R) =( P(R|G,S) P(G)P(S) )/ P(R)
o G = genotypes, R =reads, S = locus is well-characterized/mapped
o P(R]|G,S) is our data likelihood, P(G) is our prior estimate of the
genotypes, P(S) is our prior estimate of the mappability of the locus,
P(R) is a normalizer.



Handling non-biallelic/diploid cases

We compose our data likelihoods, P(Reads|Genotype)
using a discrete multinomial sampling probability:

reads
P(reads|genoytpe) = (]reaa’s = 4|| ”7’6’0’(19 = B] )

H freq(allele € genotype)

Vallelese genotype
H P(correct(read))
X Vreads

Our priors, P(Genoypes), follow the Ewens Sampling Formula
and the discrete sampling probability for genotypes.



Are our locus and alleles sequenceable?

In WGS, biases in the way we observe an allele (placement, position,
strand, cycle, or balance in heterozygotes) are often correlated with error.

We include this in our posterior P(G,S|R), and to do so we need an
estimator of P(S). _

placement bias
.

L

L

neutral Strand bias cycle bias
> > ] > ]
- l - - 1 B |
| > > > |
« « « «
) ¢ - - - -
« o
- . - .

< | P(S) multinom([|R = b|Vb,.. ., biel: I BY|s Foyws s )
- > X [Tweqpy binom(|forwardStrand({R = b})|; {R = b}|,1/2)
< > xbinom(|placedLe ft({R = b})|; [{R = b}|,1/2)
> xbinom(|placedRight({R = b})|; { R = b}|, 1/2)




The detection process




Variant detector lineage

PolyBayes— original Bayesian variant detector (Gabor Marth,
1999); written in perl

GigaBayes— ported to C++
BamBayes— “modern” formats (BAM)

FreeBayes— 2010-present



FreeBayes-specific developments

FreeBayes model features (~in order of introduction):

VYVYVYVYVYVVVYVYY

Multiple alleles

Indels, SNPs, MNPs, complex alleles

Local copy number variation (e.g. sex chromosomes)

Global copy-number variation (e.g. species-level, genome ploidy)
Pooled detection, both discrete and continuous

Many, many samples (>30k exome-depth samples)
Genotyping using known alleles (hints, haplotypes, or alleles)
Genotyping using a reference panel of genotype likelihoods
Direct detection of haplotypes from short-read sequencing
Haplotype-based consensus generation (clumping)
Allele-length-specific mapping bias

Contamination-aware genotype likelihoods



Learning to genotype



Current best practices (in humans)

Lots of people use freebayes (not in human).

FYI: The current gold standard in human
genomics is DeepVariant.

It learns how to genotype.

We won’t use it in the practicals, but you should
know how it works. It could help.




We can learn to genotype

Bioinformaticians working with sequencing data
can look at a visualization of alignments and
make a good guess at the genotype.



“It looks wrong/[gls]gl”’

141 151 161 171 181
CACACAACAGCTATCTCAAACTTTCTTCACACTTTCCAAGCCCCTGATCCC

, » ,NNNNN

,nnnnn

b







Can machines learn to genotype?

Thomas Bayes

Traditionally, we mix observations
and a priori models using
Bayesian statistics to find
variants and estimate genotypes.



Can machines learn to genotype?

But instead of building our model
and prior from first principles, we
could learn it (with machines).

Marvin Minsky



DeepVariant

ldea: you can leverage convolutional neural
networks designed for images to learn to

genotype.

https://doi.orq/10.1038/nbt.4235



https://doi.org/10.1038/nbt.4235

DeepVariant
inputs

ldea: convert alignments
to the reference into
read pileups. Annotate
various channels with
useful things (like
quality, read base,
reference base, etc.)

https://ai.googleblog.com/2017/12/deepvariant-highly-accurate-genomes.html



https://ai.googleblog.com/2017/12/deepvariant-highly-accurate-genomes.html

Channels are shown in greyscale below in the following order:
1. Read base: different intensities represent A, C, G, and T.
2. Base quality: set by the sequencing machine. White is higher quality.
3. Mapping quality: set by the aligner. White is higher quality.
4. Strand of alignment: Black is forward; white is reverse.
5. Read supports variant: White means the read supports the given alternate allele, grey means it does not.

6. Base differs from ref: White means the base is different from the reference, dark grey means the base
matches the reference.

read base base quality mapping quality strand read supports variamt base differs from ref
1 | | |

https://google.qithub.io/deepvariant/posts/2020-02-20-looking-through-deepvariants-eyves/



https://google.github.io/deepvariant/posts/2020-02-20-looking-through-deepvariants-eyes/

I DeepVariant
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Heterozygous variant call

______________________________



Words of caution

- Neural networks are universal approximators.

- But, they're only guaranteed to model any
pattern over the domain in which they've been
trained.

- DeepVariant may work well (it wins all variant
calling competitions), but it's worth comparing it
to other methods in the context of non-human
genomes.



Practicals



Practical

Walkthrough:

https://github.com/ekg/alignment-and-variant-ca
lling-tutorial/tree/evomics2024

Goal is to get our hand dirty with a variant
calling workflow, and maybe to dig into
iInteresting edge cases that arise.



https://github.com/ekg/alignment-and-variant-calling-tutorial/tree/evomics2024
https://github.com/ekg/alignment-and-variant-calling-tutorial/tree/evomics2024

Notes

- The workflow is pretty complete. You can copy-paste if
you want, but please look at what you're ingesting and
producing at each step.

- Data and time-consuming indexing results are in
~/workshop materials/variant_calling

- If something is taking too long or you've got stuck, there
IS also a .results directory that contains most outputs.

- At the end we've got some open-ended mini-projects.
Explore them!






