Gene trees challenge

SC-OGs are types of phylogenomic markers

Molecular evo. often relies on SC-OGs

Many molecular evolution studies *strictly* rely on single-copy orthologs (SC-OGs)

Phylogenomics typically relies on SC-OGs

- Phylogenomics,
- gene coevolution analysis
- others

Many molecular evolution studies strictly rely on single-copy orthologs (SC-OGs)

genome-wide surveys of (+) selection

Phylogenomics typically relies on SC-OGs

- Phylogenomics,
- gene coevolution analysis
- others

but SC-OGs are hard to find...

Many molecular evolution studies strictly rely on single-copy orthologs (SC-OGs)

genome-wide surveys of (+) selection

The quest for SC-OGs

A dataset of 35 plants only one single-copy orthogroup was identified

The quest for SC-OGs

A dataset of 35 plants

only one single-copy orthogroup was identified

A dataset of 30 turtles, tortoise, birds, crocodile, alligators, and others only 27 single-copy orthogroups identified

The quest for SC-OGs

A dataset of 35 plants

only one single-copy orthogroup was identified

only 27 single-copy orthogroups identified

A dataset of 76 arthropods (Thomas et al. (2020), Genome Biology) Zero single-copy orthogroups with 100% occupancy

A dataset of 30 turtles, tortoise, birds, crocodile, alligators, and others

Too few phylogenomic markers :(

A dataset of 35 plants • only one single-copy

A dataset of 30 turtles, • only 27 single-copy o

A dataset of 76 arthrop
Zero single-copy orthogrou

The number of single-copy orthologs decreases as the number of species and evolutionary distance among species increases

The number of single-copy orthologs decreases as the number of species and evolutionary distance among species increases

Can other types of orthologs be used for molecular evolution studies?

Steenwyk et al. (2022), PLOS Biology

 Gene M, N, and O are outparalogs—paralogous genes wherein duplication occurred prior to a speciation event

Steenwyk et al. (2022), PLOS Biology

 Gene M, N, and O are outparalogs—paralogous genes wherein duplication occurred prior to a speciation event

• A, B, and C O1 and O2 are inparalogs—paralogous genes wherein duplication occurred after a speciation event

Steenwyk et al. (2022), PLOS Biology

 Gene M, N, and O are outparalogs—paralogous genes wherein duplication occurred prior to a speciation event

• A, B, and C O1 and O2 are inparalogs—paralogous genes wherein duplication occurred after a speciation event

 A | N1 and A | N2 are within species inparalogs

Steenwyk et al. (2022), PLOS Biology

Note, splitting this tree will result in multiple subgroups of single-copy orthologs

Steenwyk et al. (2022), PLOS Biology

subgroups of single-copy inand outparalogs from multi-copy orthologous groups of genes

Steenwyk et al. (2022), PLOS Biology

subgroups of single-copy inand outparalogs from multi-copy orthologous groups of genes

We term these SNAP-OGs because they are orthologs that have undergone a **s**plitting and pruning procedure

Ortho

identify single-copy orthologous genes nested within larger gene families

A Gene family sequences with multiple homologs in one or more species

> >sp0|g0 ATGCAGGCA... >sp1|g0 ATGCCGGCA... >sp2|g0 ATGCAGGCA... ...

Gene family tree with multiple homologs in one or more species

ORTHO logous group of genes Splitting And Pruning

ORTHO logous group of genes SplittiNg And Pruning

ORTHOlogous group of genes **S**plitti**N**g **A**nd **P**runing

ORTHOlogous group of genes **S**plitti**N**g **A**nd **P**runing

Cartoon depiction of Ortho

1,668

Budding yeast (No WGD)

SNAP-OGs	Fold difference
1,392	0.83

SNAP-OGs	Fold difference
1,392	0.83
1,334	0.48

	SC-OGs	SNAP-OGs	Fold difference
Budding yeast (No WGD)	1,668	1,392	0.83
Budding yeast (WGD)	2,782	1,334	0.48
Filamentous fungi (Aspergillus and	4,393	2,035	0.46

	SC-OGs	SNAP-OGs	Fold difference
Budding yeast (No WGD)	1,668	1,392	0.83
Budding yeast (WGD)	2,782	1,334	0.48
Filamentous fungi (Aspergillus and	4,393	2,035	0.46
Mammals (Eutherians)	321	1,775	5.53

	SC-OGs	SNAP-OGs	Fold difference
Budding yeast (No WGD)	1,668	1,392	0.83
Budding yeast (WGD)	2,782	1,334	0.48
Filamentous fungi (Aspergillus and	4,393	2,035	0.46
Mammals (Eutherians)	321	1,775	5.53
Plants (Complex dup. And	15	653	43.53

	SC-OGs	SNAP-OGs	Fold difference
Budding yeast (No WGD)	1,668	1,392	0.83
Budding yeast (WGD)	2,782	1,334	0.48
Filamentous fungi (Aspergillus and	4,393	2,035	0.46
Mammals (Eutherians)	321	1,775	5.53
Plants (Complex dup. And	15	653	43.53
Choanoflagellate (Transcriptomes)	390	2,087	5.35

But are SNAP-OGs bad markers?

SNAP- & SC-OGs are statistically indistinguishable

SNAP- & SC-OGs are statistically indistinguishable

Steenwyk et al. (2022), PLOS Biology

@JLSteenwyk

SNAP- & SC-OGs are statistically indistinguishable

Steenwyk et al. (2022), PLOS Biology

@JLSteenwyk

Phylogenomics typically relies on SC-OGs

High-throughput screens of (+) selection requires SC-OGs

Phylogenomics typically relies on SC-OGs

- What types of genes are not typically SC-OGs?
 - Receptors
 - Heat shock proteins
 - Transporters
 - Transcription factors
 - Kinases
 - Etc...

High-throughput screens of (+) selection requires SC-OGs

Molecular evolution of all types of genes

- 5 SNAP-OGs were identified in OGs of transcription factors
- 5 SNAP-OGs were identified in OGs of MFS transporters
- 4 SNAP-OGs were identified in an OG of kinases

Phylogenomics typically relies on SC-OGs

- What types of genes are not typically SC-OGs?
 - **Receptors**
 - Heat shock proteins
 - Transporters
 - Transcription factors
 - Kinases
 - Etc...

High-throughput screens of (+) selection requires SC-OGs

Ortho

identify single-copy orthologous genes nested within larger gene families

Gene trees challenge