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Bayesian methods for deep species tree inference

The concatenate/supermatrix is a popular approach particularly in the field of
deep species phylogenies

ML methods (IQ-TREE/RAXML) are probably the best in the trade-off between
accuracy / computational time

If one doesn’t have a particular preference ML vs Bayesian, why to use
Bayesian tools then?
-Results confirmed (or not) with an alternative robust method
-Posterior probabilities: an alternative assessment of branch support
-Some complex models are unavailable in ML framework: the CAT model

Bayesian methods are computationally challenging ... Few tools scale well
with large amount of data (n° of sites). One of these tools is Phylobayes



CAT : Empirical profile mixture models for phylogenetic reconstruction.

Le S.Q., Gascuel O., Lartillot N. Bioinformatics. 2008 Oct 15;24(20):2317-23.

Please cite THESE papers if you use CAT.

CAT (Lartillot and Philippe 2004) is a model especially devised to account for site-specific features of protein
evolution. In general, each position of a protein is under a very specific selective constraint, and as a result, only a
subset of the 20 amino-acids is likely to be accepted at this position during evolutionary times. As we have shown in
previous works, accounting for such site specific features is crucial, both to obtain a better statistical fit (Lartillot and
Philippe 2006), and to alleviate phylogenetic artefacts, due to long branch attraction phenomena (Lartillot et al
2007). Technicall AT is a mixture model, assuming a given number K of components (or site classes).
ecifies a biochemical profile, which is a probability vector over the 20 amino-acidsSIe RNl (iR RT3
defines a very simple amino-acid replacement process : each time a substitution event occurs, a new amino-acid is
chosen at random, according to the probabilities defined by the profile. We call this a Poisson process, although it is
also known as a Felsenstein1981, or proportional, amino-acid replacement process. The likelihood at each site of the
alignment is then an average over all available Poisson processes defined by the mixture.

http://www.atgc-montpellier.fr/cat/
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CAT : Empirical profile mixture models for phylogenetic reconstruction.

Le S.Q., Gascuel O., Lartillot N. Bioinformatics. 2008 Oct 15;24(20):2317-23.

Please cite THESE papers if you use CAT.

Papers

* If you use CAT, please cite:
"Empirical profile mixture models for phylogenetic reconstruction.”
Le S.Q., Gascuel O., Lartillot N.
Bioinformatics. 2008 Oct 15;24(20):2317-23.
Click here to download supplementary information.

* "Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model."”
Lartillot N., Brinkmann H., Philippe H.
BMC Evolutionary Biology. 2007 Feb 8;7 Suppl 1:54.

* “Computing Bayes factors using thermodynamic integration."”
Lartillot N., Philippe H.
Systematic Biology. 2006 55:195-207.

* "A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process."
Lartillot N., Philippe H.
Molecular Biology and Evolution. 2004 21(6):1095-1109.

http://www.atgc-montpellier.fr/cat/paper.php



http://www.atgc-montpellier.fr/cat/paper.php

A Bayesian Mixture Model for Across-Site Heterogeneities in
the Amino-Acid Replacement Process

Nicolas Lartillot and Hervé Philippe

Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec Canada

Most current models of sequence evolution assume that all sites of a protein evolve under the same substitution process,
characterized by a 20 X 20 substitution matrix. Here, we propose to relax this assumption by developing a Bayesian
mixture model that allows the amino-acid replacement pattern at different sites of a protein alignment to be described by
distinct substitution processes. Our model, named CAT, assumes the existence of distinct processes (or classes) differing
by their equilibrium frequencies over the 20 residues. Through the use of a Dirichlet process prior, the total number of
classes and their respective amino-acid profiles, as well as the affiliations of each site to a given class, are all free
variables of the model. In this way, the CAT model is able to adapt to the complexity actually present in the data, and it
yields an estimate of the substitutional heterogeneity through the posterior mean number of classes. We show that
a significant level of heterogeneity is present in the substitution patterns of proteins, and that the standard one-matrix
model fails to account for this heterogeneity. By evaluating the Bayes factor, we demonstrate that the standard model is
outperformed by CAT on all of the data sets which we analyzed. Altogether, these results suggest that the complexity of
the pattern of substitution of real sequences is better captured by the CAT model. offering the possibility of studying its
impact on phylogenetic reconstruction and its connections with structure-function determinants.

http://www.atgc-montpellier.fr/download/papers/cat 2004.pdf



http://www.atgc-montpellier.fr/download/papers/cat_2004.pdf

Suppression of long-branch attraction artefacts in the animal
phylogeny using a site-heterogeneous model

Nicolas Lartillot', Henner Brinkmann?, Hervé Philippe?

Conclusions: The CAT model is more robust than WAG against LBA artefacts, éssentially because it correctly
anticipates the high probability of convergences and reversions implied by the small effective size of the
amino-acid alphabet at each site of the alignment. More generally, our results provide strong evidence that
site-specificities in the substitution process need be accounted for in order to obtain more reliable phylogenetic
trees, although other evolutionary heterogeneities, such as compositional biases and heterotachy, should also be

handled.

http://www.atgc-montpellier.fr/download/papers/cat 2007 .pdf
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Fig. 2 | Evidence that the 3D tree is an artefact of long-branch attraction. a, Da Cunha et al.”” analysed a dataset of 35 core protein-coding genes under
the LG+ G4 +F model and obtained a 3D tree; the better-fitting (Supplementary Table 4) CAT + GTR + G4 model recovers a 2D tree. b, Posterior predictive
tests indicate that CAT + GTR + G4 performs significantly better than LG + G4 +F in capturing the site-specific evolutionary constraints reflected by lower
biochemical diversity approaching that of the empirical data. This results in more realistic estimates of substitutional saturation and convergence found in

he data, The longest branches on both the 3D and 2D trees in a are the stems leading to the bacteria and eukarvotes (in vellow and green. respective
CAT 4+ GTR + G4 identifies many more convergent substitutions on these branches than does LG+ G4 +F, as can be seen by comparing the branch lengths
in a. This failure to detect convergent substitutions under LG + G4 + F has the effect of drawing the bacterial and eukaryotic branches together because
convergences are mistaken for homologies (synapomorphies), resulting in a 3D tree. BOMSIE A C Y ERE R T EHER S CEIEICLELIITALELS
indicated for the key nodes defining the 3D and 2D trees. Asgard refers to a clade of Heimdallarchaeota and Lokiarchaeum. Plotting these trees to the same
scale (in terms of substitutions per site) illustrates major differences in these analyses. The 3D/LG + G4 + F analysis suggests that, on average, 30.77
changes have taken place per site; the 2D/CAT + GTR + G4 analysis suggests that 47.4 changes per site have occurred. This difference amounts to ~128,511
additional substitutions in total inferred under the CAT + GTR + G4 model.
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CAT vs no CAT: Porifera vs Ctenophora
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CAT vs no CAT: Overfitting?

Bayesian Cross-Validation Comparison of Amino Acid Replacement
Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities,
and Gamma-Distributed Rates-Across-Sites

Thomas Bujaki' - Nicolas Rodrigue'?

Received: 20 July 2022 / Accepted: 21 September 2022 / Published online: 7 October 2022
© The Author(s) 2022

Abstract

Models of amino acid replacement are central to modern phylogenetic inference, particularly so when dealing with deep
evolutionary relationships. Traditionally, a single, empirically derived matrix was utilized, so as to keep the degrees-of-
freedom of the inference low, and focused on topology. With the growing size of data sets, however, an amino acid-level
general-time-reversible matrix has become increasingly feasible, treating amino acid exchangeabilities and frequencies as
free parameters. Moreover, models based on mixtures of multiple matrices are increasingly utilized, in order to account for
across-site heterogeneities in amino acid requirements of proteins. Such models exist as finite empirically-derived amino
acid profile (or frequency) mixtures, free finite mixtures, as well as free Dirichlet process-based infinite mixtures. All of
these approaches are typically combined with a gamma-distributed rates-across-sites model. In spite of the availability of
these different aspects to modeling the amino acid replacement process, no study has systematically quantified their relative
contributions to their predictive power of real data. Here, we use Bayesian cross-validation to establish a detailed compari-
son, while activating/deactivating each modeling aspect. For most data sets studied, we find that amino acid mixture models
can outrank all single-matrix models, even when the latter include gamma-distributed rates and the former do not. We also
find that free finite mixtures consistently outperform empirical finite mixtures. Finally, the Dirichlet process-based mixture
model tends to outperform all other approaches.



CAT vs no CAT: Overfitting?

Bayesian Cross-Validation Comparison of Amino Acid Replacement
Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities,
and Gamma-Distributed Rates-Across-Sites

Table 1 Cross-validation scores

Broughton Brown Delsuc Lartillot-2007 Lartillot-2012
F81 —3641.6 £ 604 —22518.4 £ 96.3 —20009.6 + 3424 —24521.0 £ 4829 —:5579.5:+ 95.9
C60-Poisson —1520.8 £ 83.2 4341.4+4438 —5084.2 + 128.2 —5881.2 + 139.5 —2733.2 + 1204
C60-GTR —-9124+77.2 —2003.2 +207.9 —3454.0 = 139.0 — 3996.6 + 240.3 = 87157713
UDM,4-Poisson —616.7+ 69.1 1227.2 + 52.2 36.4+91.0 —95.6 +206.4 —1524.5+ 873
UDM,;-GTR —2389+64.7 1746.6 + 73.4 589.2 + 121.2 610.6 + 249.1 —75.0+45.0
CAT _,Poisson —66.7 + 39.6 2859.8 + 37.8 2028.2 + 137.1 1692.6 + 214.0 —69.3+65.4
CAT,_oGTR 216.5+47.7 3650.0 + 176.8 2684.4 + 126.0 2878.2 +229.5 560.4 + 31.1
CAT,_,GTR 262.4 + 32.7 3617.4 +205.8 2716.8 + 127.5 2878.0 + 274.7 607.0 = 18.1
CAT-Poisson —78.3 +£37.6 2988.8 + 44.8 2228.2 + 147.0 1852.8 + 211.1 —65.2+70.1
CAT-GTR 251.9+349 3315.6 + 63.8 2961.0 + 151.6 3096.8 + 249.7 610.6 + 15.8
F814T —2194.9 +52.5 —15321.4 £ 215.7 —13044.0 £ 2134 —16612.6 + 441.8 —3607.9 £ 65.3
C60-Poisson+I" —170.9 =447 2227.6 + 48.5 1435.8 + 107.5 1061.2 + 165.0 —1038.1 £ 84.0
C60-GTR+I” 253.6 +16.6 3193.2+34.0 2686.4 + 105.2 2869.6 + 162.8 370.5 £ 34.8
UDM,4-Poisson+T" —39.9+35.2 2962.8 +46.9 2306.0 + 123.6 1996.4 + 166.5 — 868.8 + 83.7
UDM,5,-GTR+T" 323.4+20.6 3651.2+41.6 3204.0 + 139.8 3473.6 = 169.9 427.0 = 41.7
CAT_Poisson+T" 65.0 + 40.1 3294.2 + 62.7 2627.2 + 158.6 2529.6 + 186.3 13.7+ 58.4
CAT ,_4GTR+T" 353.1+23.6 3599.4 + 27.2 3237.0 £ 102.6 3563.8 + 179.7 590.0 + 36.4
CAT_,GTR+I" 374.9 £ 20.8 3789.2 + 43.1 3446.8 + 109.7 3824.8 + 203.7 624.0 + 31.9
CAT-Poisson+TI" 57.5+40.6 3404.8 + 56.1 2820.0 + 150.5 2638.8 + 188.1 30.5 + 66.5
CAT-GTR+I" 370.9 + 24.2 3943.2 + 36.8 3678.6 + 134.5 4069.8 + 196.2 619.7 + 36.6

Models with an instance of the highest performance in at least one replicate are displayed in bold. For empirical mixtures, only results for the
top-performing model are displayed. For free finite mixture models, results for 100 components are displayed. as well as any free finite mixture
having the best performance on at least one of five replicates



CAT vs no CAT: Overfitting?

Bayesian Cross-Validation Comparison of Amino Acid Replacement
Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities,
and Gamma-Distributed Rates-Across-Sites

Table 2 Number of replicates

Broughton Brown Delsuc Lartillot-2007 Lartillot-2012
where a model had the best =
performance CAT-GTR+TI 2 5 5 5 2
CAT-GTR |
CAT,_poGTR+I" 2 |
CAT,_,GTR+I' |

CAT,_yGTR




CAT vs no CAT: Overfitting?

Bayesian Cross-Validation Comparison of Amino Acid Replacement
Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities,
and Gamma-Distributed Rates-Across-Sites
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CAT vs no CAT: Overfitting?

6 Cross-Validation

Cross-validation (CV) is a general method for evaluating the fit of alternative models. The
rationale is as follows: the dataset is randomly split into two (possibly unequal) parts, the

training (or learning) set and the test set. The parameters of the model are estimated on the

learning set (i.e. the model is 'trained’ on this subset of empirical observations), and these

parameter values are then used to compute the likelihood of the test set (which measures
how well the test set is 'predicted’ by the model). The overall procedure has to be repeated

(and the resulting log likelihood scores averaged) over several random splits.

See section 6 in the manual
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CAT vs no CAT: Overfitting?

6 Cross-Validation

Cross-validation (CV) is a general method for evaluating the fit of alternative models. The
rationale is as follows: the dataset is randomly split into two (possibly unequal) parts, the
training (or learning) set and the test set. The parameters of the model are estimated on the
learning set (i.e. the model is 'trained’ on this subset of empirical observations), and these
parameter values are then used to compute the likelihood of the test set (which measures
how well the test set is 'predicted’ by the model). The overall procedure has to be repeated

(and the resulting log likelihood scores averaged) over several random splits.

On the post-burn-in cycles, we used PhyloBayes to
compute site-specific likelihood values over the sample on
the testing data set, taking the averages for each site, and
finally summing the logarithm of these site-specific like-
lihood posterior averages to produce the cross-validation
score of each replicate. Supposing a sample of K (post-

Bayesian Cross-Validation Comparison of Amino Acid Replacement
Models: Contrasting Profile Mixtures, Pairwise Exchangeabilities,
and Gamma-Distributed Rates-Across-Sites



CAT vs no CAT: Overfitting?

6 Cross-Validation

Cross-validation (CV) is a general method for evaluating the fit of alternative models. The
rationale is as follows: the dataset is randomly split into two (possibly unequal) parts, the
training (or learning) set and the test set. The parameters of the model are estimated on the
learning set (i.e. the model is trained’ on this subset of empirical observations), and these
parameter values are then used to compute the likelihood of the test set (which measures
how well the test set is 'predicted’ by the model). The overall procedure has to be repeated

(and the resulting log likelihood scores averaged) over several random splits.

Note that this measure automatically takes into account dimensionality issues and will
not intrinsically favor models that have more parameters. Intuitively, overfit means that a
model focusses to much on irrelevant (random) features of the training set. By definition,
these random features will not be consistently reproduced in the test set, and thus, an

overfitted model will typically show less good performance once evaluated on the test dataset.

See section 6 in the manual
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CAT vs no CAT: The long branch attraction problem
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FiGUrRe 2. Highly constrained sites drive long-branch attraction artifacts in the Felsenstein zone. We simulated amino acid alignments with 10,000
sites exhibiting across-site compositional heterogeneity (Schrempf et al. 2020) along Felsenstein-type trees (insets in the top row; Felsenstein 1978) with
different branch lengths ¢ = 0.1 and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed analyses with CAT-PMSF, the Poisson (Felsenstein 1973; Nei
1987), the LG (Le and Gascuel 2008), and the GTR (Tavaré 1986) models constrained to the correct topology as well as to an incorrect topology (inset
in the bottom row; Farris 1999) with IQ-TREE 2 (Minh et al. 2020). The site-specific log-likelihood differences between the maximum likelihood trees
of the two competing topologies binned according to the site-specific effective number of amino acids are shown. A positive value (blue background)
indicates support for the true topology, a negative value (yellow background) indicates support for the incorrect topology exhibiting long-branch
attraction. The LG and GTR models incorrectly infer Farris-type trees if p > 0.8.

Compositionally Constrained Sites Drive Long-Branch Attraction
LENARD L. SzZANTHO3 D), N1coLAs LARTILLOT+, GERGELY J. SZOLLGsI*3 A2 AND DOMINIK SCHREMPF* /(2
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sites exhibiting across-site compositional heterogeneity (Schrempf et al. 2020) along Felsenstein-type trees (insets in the top row; Felsenstein 1978) with
different branch lengths ¢ = 0.1 and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed analyses with CAT-PMSF, the Poisson (Felsenstein 1973; Nei
1987), the LG (Le and Gascuel 2008), and the GTR (Tavaré 1986) models constrained to the correct topology as well as to an incorrect topology (inset
in the bottom row; Farris 1999) with IQ-TREE 2 (Minh et al. 2020). The site-specific log-likelihood differences between the maximum likelihood trees
of the two competing topologies binned according to the site-specific effective number of amino acids are shown. A positive value (blue background)
indicates support for the true topology, a negative value (yellow background) indicates support for the incorrect topology exhibiting long-branch
attraction. The LG and GTR models incorrectly infer Farris-type trees if p > 0.8.

Compositionally Constrained Sites Drive Long-Branch Attraction
LENARD L. SzZANTHO*3 ), N1coLAs LARTILLOT+, GERGELY J. SZOLLGsT*3 A2 AND DOMINIK SCHREMPF* ()
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FiGUrRe 2. Highly constrained sites drive long-branch attraction artifacts in the Felsenstein zone. We simulated amino acid alignments with 10,000
sites exhibiting across-site compositional heterogeneity (Schrempf et al. 2020) along Felsenstein-type trees (insets in the top row; Felsenstein 1978) with
different branch lengths ¢ = 0.1 and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed analyses with CAT-PMSF, the Poisson (Felsenstein 1973; Nei
1987), the LG (Le and Gascuel 2008), and the GTR (Tavaré 1986) models constrained to the correct topology as well as to an incorrect topology (inset
in the bottom row; Farris 1999) with IQ-TREE 2 (Minh et al. 2020). The site-specific log-likelihood differences between the maximum likelihood trees
of the two competing topologies binned according to the site-specific effective number of amino acids are shown. A positive value (blue background)
indicates support for the true topology, a negative value (yellow background) indicates support for the incorrect topology exhibiting long-branch
attraction. The LG and GTR models incorrectly infer Farris-type trees if p > 0.8.
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CAT model in ML framework; CAT-PMSF

Alignment

i

Step 1
Site-homogeneous
ML inference

Step 2
Site-heterogeneous
Bayesian inference

l

Site-specific profiles

N\

Step 3
Site-heterogeneous
ML inference

https://qithub.com/drenal/cat-pmsf-
paper/tree/main
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https://github.com/drenal/cat-pmsf-paper/tree/main
https://github.com/drenal/cat-pmsf-paper/tree/main

CAT-PMSF = PMSF run (IQ-TREE) using the site profiles -rates and compositions-
sampled with the CAT model (Phylobayes)

Site-specific frequency models

Starting with version 1.5.0, IQ-TREE provides a new posterior mean site frequency (PMSF) model as a rapid approximation to the time
and memory consuming profile mixture models €10 to €60 (Le et al., 2008a; a variant of PhyloBayes’ CAT model). The PMSF are the

amino-acid profiles for each alignment site computed from an input mixture model and a guide tree. The PMSF model is much faster and
requires much less RAM than €10 to €60 (see table below), regardless of the number of mixture classes. Our extensive simulations
and empirical phylogenomic data analyses demonstrate that the PMSF models can effectively ameliorate long branch attraction
artefacts.

If you use this model in a publication please cite:

H.C. Wang, B.Q. Minh, S. Susko and A.J. Roger (2018) Modeling site heterogeneity with posterior mean site frequency

profiles accelerates accurate phylogenomic estimation. Syst. Biol., 67:216-235. hitps://doi.org/10.1093/sysbio/syx068

Here is an example of computation time and RAM usage for an Obazoa data set (68 sequences, 43615 amino-acid sites) from Brown et
al. (2013) using 16 CPU cores:

Models CPU time Wall-clock time RAM usage
LG+F+G 43h:38m:23s 3h:37m:23s 1.8 GB
LG+C20+F+G = 584h:25m:29s 46h:39m:06s 38.8 GB
LG+C60+F+G | 1502h:25m:31s =~ 125h:15m:29s 112.8 GB
LG+PMSF+G 73h:30m:37s 5h:7m:27s 22GB

Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates
Accurate Phylogenomic Estimation

Hual-CHUN WANG!-2:3, But QUANG MINH#, EDWARD Susko!+3, AND ANDREW J. ROGER%3:*



Phylobayes (tutorials)

Phylobayes: tutorial for non-mpi version

Phylobayes (parallel computing): tutorial for mpi version

Step-by-step practical introduction: PhyloBayes: Bayesian Phylogenetics
Using Site-heterogeneous Models



https://github.com/bayesiancook/phylobayes/blob/master/pbManual4.1.pdf
https://github.com/bayesiancook/pbmpi/blob/master/pb_mpiManual1.9.pdf
https://hal.science/hal-02535342/document
https://hal.science/hal-02535342/document

Phylobayes (how to run a chain)

e pb _mpi icc -cat -gtr -d MSA.phylip -T TREE.nw chain_name

©)

O
O
O
O

‘Pb_mpi_icc’ for mpi, otherwise ‘pb’

-cat: CAT model

-gtr: GTR model

-d: input MSA. It has to be in phylip format

-T: topology to constrain tree inference <- optional (e.g., for
CAT-PMSF)

chain_name: name given to the chain. Can be any name. Usually
people run two chains, ideally more chains should run if dataset is
complex (it usually is)

For further information see ‘running a chain’ section in the tutorials



Phylobayes (convergence assessment)

See section 3.2 in the manual

“Generally, a run under PhyloBayes provides good results for a total number of points of the
order of 10 000 to 30 000, although again, this really depends on the datasets.”


https://github.com/bayesiancook/phylobayes/blob/master/pbManual4.1.pdf

Phylobayes (convergence assessment)

bpcomp -x 1000 10 <chainl> <chain2>

Here, using a burn-in of 1000, and sub-sampling every 10 trees, the bpcomp program will
output the largest (maxdiff) and mean (meandiff) discrepancy observed across all biparti-
tions. It will also produce a file (bpcomp.con.tre) with the consensus obtained by pooling
all the trees of the chains given as arguments.

Note that bpcomp can be run on a single chain (in which case it will simply produce
the consensus of all trees after burn-in). However, using bpcomp on multiple chains usually
results in more stable MCMC estimates of the posterior consensus tree.

Some guidelines:
e maxdiff < 0.1: good run.
e maxdiff < 0.3: acceptable: gives a good qualitative picture of the posterior consensus.

e 0.3 < maxdiff < 1: the sample is not yet sufficiently large, and the chains have not

converged, but this is on the right track.

e if maxdiff = 1 even after 10,000 points, this indicates that at least one of the runs is

stuck in a local maximum.

See section 3.2 in the manual

“Generally, a run under PhyloBayes provides good results for a total number of points of the
order of 10 000 to 30 000, although again, this really depends on the datasets.”


https://github.com/bayesiancook/phylobayes/blob/master/pbManual4.1.pdf

Phylobayes (convergence assessment)

time topo loglik 1length alpha Nmode statent statalpha rrent rrmean

0 0 -24816728. .03440888 12 2.609582388 20 4.846542237
102.663 68 -14938895. .30268994 .7032755141 .428581517 .83146126
107.461 69 -14484436. .52103493 .6965370084 .406584817 .17682061
108.464 68 -14200837. .10647911 .6804169489 .36840494 .7892709

109.133 67 -13957482. .13904775 .6781909863 .346440434 .02456772
108.816 66 -13818810. .70843007 .6707846456 .316263339 .34504322
112.347 67 -13696846. .87217491 .6697586554 .293644481 .51841521
114.216 67 -13565222. .40457272 .6791375646 .280649006 .27870158
113.79 66 -13344163. .98936664 .6783715098 .262438308 .9235364

117.886 66 -13282029. .2657998 .6875833193 .239272874 .5360229

119.548 65 -13164562. .4262875 .699427432 .216661036 .43812108
119.15 65 -13016621. .0806337 .7143763391 .186342971 .44453652
116.426 66 -12877836. .9087596 .734205057 .1560795 .44117899
118.082 66 -12825641. .9723256 .7533143589 .133626486 .75089686
122.461 66 -12785982. .3104918 .7664960451 .11237619 .3767552

124.033 65 -12691719. .5932328 .7917682439 .090852982 .999152597
125.012 65 -12658244. .0151941 .8083505838 .073920177 .850512115
129.132 65 -12631282. .4521593 .8229264894 .056160522 .679694104
127.473 64 -12539003. .1437839 .8418767269 .045422338 .452308412
127.784 64 -12486870. .4701117 .8655256335 .033010747 .716045644
129.449 64 -12467381. .5257564 .8890852984 .017141961 .245915399
127.933 65 -12449540. .9055839 .9080263589 .003894768 .850847593
127.28 65 -12386623. .2592583 .9252138624 .994612362 .688964371
129.706 65 -12284896. .1322911 .9397635086 .988583443 .659772038
130.212 64 -12260530. .0856437 .9552285368 .977823285 .773522691
131.285 64 -12237546. .4090526 .973296348 .970391324 .541553853
132.497 63 -12155679. .8743574 .9890490654 .971389912 .10237348

128.23 62 -12110590. .9728054 .014319489 .964096468 .886074602
130.625 62 -12084733 .1799888 .034061488 .964479875 .69355605

134.746 62 -12064272. .0537704 .045962559 .960732937 .879037474
137.252 62 -12047945. .7527363 .060978081 .959752543 .665261573
136.84 62 -12029783. .7988472 .084060454 .957924395 .859051401
132.402 63 -12015688. .2865196 .10692327 .958054132 .735711144
135.349 63 -12004316. .3412265 .122904801 .955022302 .488236416
135.606 63 -11965901. .5116148 .136099803 .955977918 .778570495
137.083 63 -11903240. .8252804 .149948499 .95891399 .655395487
135.328 62 -11876672 .3411117 .173343412 .956690653 .599501635
137.354 62 -11822065.3 .2066143 .202751303 .956590842 .613601727
pb spTree chl.trace

.9789432874

.010751946 .104091772
.004314059 .9837841347
.989205088 .054846996
.970272722

.952039101

.935247644 ;
.917740444 .024921606
.901699867 .064848813
.888706498 .013636292
.876897468 .972924239
.865087209 .095977136
.853763221 .030928462
.847514729 .9501537838
.840715901 .078626762
.834203637

.830421535 ;
.825829785 .091898872
.819782618 .053363008
.818190981

.817431442

.814717668

.809493033

.806869259 .
.806465236 .016538085
.802632378 .043708125
.79641444 .126574093
.794610589 .048662475
.789474101 .035845787
.784519198 .016993877
.783186563

.779647157

.780154852

.778753 .
.77770899 .013620027
.774175523 .8671151248
.771885679 .08189758
.76972147 .043460314
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Phylobayes (convergence assessment)

tracecomp -x 1000 <chainl1> <chain2>

will produce an output summarizing the discrepancies and the effective sizes estimated for
each column of the trace file. The discrepancy d is defined as d = 2|y — ps|/(o1 + 02),
where p; is the mean and o; the standard deviation associated with a particular column and
i runs over the chains. The effective size is evaluated using the method of Geyer (1992). The

guidelines are:
e maxdiff < 0.1 and minimum effective size > 300: good run:

e maxdiff < 0.3 and minimum effective size > 50: acceptable run.

name rel diff

loglik 0.014258

length 0.0521663

alpha 0.0636774

Nmode 0.0335166

statent 0.226332
statalpha 0.0154511

rrent 0.1029
rrmean 0.00651254

See section 3.2 in the manual



https://github.com/bayesiancook/phylobayes/blob/master/pbManual4.1.pdf

Phylobayes (convergence assessment)
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Phylobayes (convergence assessment)

“Visual assessment is essential, in particular, for getting a reliable estimate of the burn-in,
i.e the number of points before the chain has reached stationarity”
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“Visual assessment is essential, in particular, for getting a reliable estimate of the burn-in,

Phylobayes (convergence assessment)

i.e the number of points before the chain has reached stationarity”

“In general, it is particularly important to visualize at least the log likelihood (loglik, 4th column of
the trace file), the total tree length (length, column 5), the number of occupied components of
the mixture (Nmode, column 6) and the mean site entropy (statent, column 7), which is a

measure of the strength of site-specific amino acid preferences”
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