\$ wget http://ssolo.web.elte.hu/lab_slides.pdf

\$ cd ~/workshop_materials
\$ wget <u>http://ssolo.web.elte.hu/lab_data.tgz</u>
\$ tar xzf lab_data.tgz
\$ cd lab_data

The stories of gene families can be complicated

The story of each gene family consist of a unique series of evolutionary events that often results in a change of copy number and shifts in function.

The stories of gene families can be complicated

The story of each gene family consist of a unique series of evolutionary events that often results in a change of copy number and shifts in function.

\$ cd ~/workshop_materials/lab_data/Hemoglobin

Hemoglobin.tree

(Human_beta:1,Human_delta:1):1,

\$ cd ~/workshop_materials/lab_data/Hemoglobin

\$ cd ~/workshop_materials/lab_data/Hemoglobin

\$ cd ~/workshop_materials/lab_data/Hemoglobin

Species tree

HuHoCo.tree

(Human:2,(Horse:1,Cow:1):1);

DL along **S**

Human

Horse

Cow

ALEobserve Hemoglobin.tree ALEmI HuHoCo.tree Hemoglobin.tree.ale tau=0 sample=10 less HuHoCo.tree_Hemoglobin.tree.ale.ml_rec

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

ALEmI HuHoCo.tree Hemoglobin.tree.ale tau=0 sample=10

((Human_gamma:2,(Human_beta:1,Human_delta:1)D@0|0.01|Human:1)D@0|0.05|Human:2,(Horse_beta-delta:3,(Cow_gamma:2,Cow_beta-delta:2)D@0|0.3|Cow:1).1:2).2:0;

view the tree using either phylo.io, seaview or FigTree!

The stories gene families can be complicated

The story of each gene family consist of a unique series of evolutionary events that often results in a change of copy number and shifts in function.

Hemoglobin gene tree

Zukerkandl & Pauling 1965

Zukerkandl & Pauling 1965

The first ever gene tree

Zukerkandl & Pauling 1965

ALEobserve Zukerkandl-Pauling.tree

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale tau=0 sample=10

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

S: (Human:1,(Horse:0.5,Cow:0.5)1:0.5)2;	species tree	
Input ale from: HuHoCo.tree_Zukerkandl-Pauling.tree.ale >logl: -10.0385 rate of Duplications Transfers Losses ML 0.721451 0 0.699903 10 reconciled G-s:	ML log-likelihood (tau=0) ML rates (tau=0)	DL species tree
<pre>((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.2 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.45 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.4 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.3 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.3 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.3 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.4 Human:1,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.1 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta.1:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0 0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).100]0.15 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_gamma:5,(Cow_beta</pre>	<pre>an_beta:1,Human_delta:1)D@1 0.55 Human:1).2:1)D@2 1.05 2:0; eta-delta:1,Cow_gamma:1).1D@0 0.1 Cow:2).2:1)D@2 1.2:2)D@2 1.35 2:0 man_beta:1,Human_delta:1)D@0 0.05 Human:1).2:1)D@2 1.45 2:0; an_beta:1,Human_delta:1)D@0 0.15 Human:1).2:1)D@2 1.45 2:0; an_beta:1,Human_delta:1)D@0 0.05 Cow:2).2:1)D@2 1 2:2)D@2 1.3 2:0; an_beta:1,Human_delta:1)D@0 0.1 Human:1).2:1)D@2 1.35 2:0; man_beta:1,Human_delta:1)D@0 0.05 Human:1).2:1)D@2 1.1 2:0; an_beta:1,Human_delta:1)D@0 0.2 Human:1).2:1)D@2 1.05 2:0; man_beta:1,Human_delta:1)D@0 0.2 Human:1).2:1)D@2 1.05 2:0;</pre>	;
S_terminal_branch Cow 0.9 0 1 2 S_terminal_branch Horse 0 0 1.1 1 S_terminal_branch Human 1 0 0.2 3 S_internal_branch 1 0.1 0 0.2 2.1 S_internal_branch 2 1.2 0 0 2.2 HuHoCo.tree_Zukerkandl-Pauling.tree.ale.ml_rec (END)	andom reconciled gene trees ed according to joint likelihood	
mean number of events per branch in sampled reconciliations	■(

ALEml HuHoCo.tree Zukerkandl-Pauling.tree.ale tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

S: (Human:1,(Horse:0.5,Cow:0.5)1:0.5)2;

ALEml HuHoCo.tree Hemoglobin.tree.ale tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

- S: (Human:1,(Horse:0.5,Cow:0.5)1:0.5)2;
 - Sc. 0. 3, Com. 0. 3 J1. 0. 3 J2,

>logl: -10.0	385		ng.tree.			
rate of Dup	lications 1	Transfer	S	Losses		
ML 0.72	1451 🛛 🛛 🖗	0		0.699903	3	
••						
# of Dup	lications 1	Transfer	S	Losses	Speciati	ions
Total 3.4	6	0		2.9	4.5	
# of Dup	lications 1	Transfer	S	Losses	copies	
S_terminal_b	ranch (Cow	0.9	0	1	2
S_terminal_b	ranch H	lorse	0	0	1.1	1
S_terminal_b	ranch H	Human	1	0	0.4	3
S_internal_b	ranch 1	1	0.1	0	0.4	2.1
S_internal_b	ranch 2	2	1.4	0	0	2.4
HuHoCo.tree Zukerkandl-Paulina.tree.ale.ml rec (END)						

Input al >logl: -	e from: Hemoglo 4.45543	bin.tree	.ale				
rate of	Duplications	Transfe	rs	Losses			
ML	0.76128	0		1e-10			
# of	Duplications	Transfers		Losses	Speciations		
Total	3	0		0	2		
# of	Duplications	Transfe	rs	Losses	copies		
S_termin	al_branch	Cow	1	0	0	2	
S_termin	al_branch	Horse	0	0	0	1	
S_termin	al_branch	Human	2	0	0	3	
S_internal_branch		1	0	0	0	1	
S_internal_branch		2	0	0	0	1	
HuHoCo.tree_Hemoglobin.tree.ale.ml_rec (END)							

DL
ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

S: (Human:1,(Horse:0.5,Cow:0.5)1:0.5)2;

Input ale from: Zukerkandl-Pauling.tree.ale								
rate of	Dupli	cations	Transfers		Losses			
ML	0.01	0	0.01					
 # of Duplications			Transfe	ers	Losses	Speciat	ions	
Total	3		0		2	4		
# .C	D		TuranaC					
# of Duplications		Transfe	ers	Losses	copies			
S_terminal_branch			Cow	1	0	1	2	
S_terminal_branch			Horse	0	0	1	1	
S_terminal_branch			Human	1	0	0	3	
S_internal_branch			1	0	0	0	2	
S_internal_branch			2	1	0	0	2	
HuHoCo.tree_Zukerkandl-Pauling.tree.ale.ml_rec (END)								

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale tau=0 sample=10

Input ale from: Zukerkandl-Pauling.tree.ale									
rate of Duplicat	ions Transf	ers	Losses						
MI 0.721451	0	0		0,699903					
	· ·		0.000000						
# of Duplicat	ions Transf	Transfers		Speciations					
Total 3.4	0	0		4.5					
# of Duplicat	ions Transf	Transfers		copies					
S_terminal_branch	Cow	0.9	0	1	2				
S_terminal_branch	Horse	0	0	1.1	1				
S_terminal_branch	Human	1	0	0.4	3				
S_internal_branch	1	0.1	0	0.4	2.1				
S_internal_branch	2	1.4	0	0	2.4				
HuHoCo.tree_Zukerkandl-Pauling.tree.ale.ml_rec (END)									

ALEmI HuHoCo.tree Hemoglobin.tree.ale tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

S: (Human:1,(Horse:0.5,Cow:0.5)1:0.5)2;

Input ale from: Hemoglobin.tree.ale >logl: -4.45543									
rate of	Duplications	Transfers		Losses					
ML	0.76128	0		1e-10					
••									
# of	Duplications	Transfers		Losses	Speciations				
Total	3	0		0	2				
# of	Duplications	Transfers		Losses	copies				
S_termin	nal_branch	Cow	1	0	0	2			
S_termir	nal_branch	Horse	0	0	0	1			
S_termin	nal_branch	Human	2	0	0	3			
S_interr	nal_branch	1	0	0	0	1			
S_interr	nal_branch	2	0	0	0	1			
HuHoCo.tree_Hemoglobin.tree.ale.ml_rec (END)									

DL

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

#ALEml using ALE v0.5 by Szollosi GJ et al.; ssolo@elte.hu; CC BY-SA 3.0;

S:	(Human:1,(Horse	e:0.5,Cow:0.	5)1:0.5)2;			
				•	species tree	
Input a >logl:	le from: Zukerko -25.1341	andl-Pauling	.tree.ale		log-likelihood	
rate of ML	Duplications 0.01 0	Transfers 0.01	Losses		fixed rates	DL
10 reco	nciled G-s:					species tree
((Human ((Human ((Human ((Human ((Human ((Human ((Human ((Human ((Human # of Total	_gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be _gamma:5,(Cow_be	eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, eta-delta:1, transfers 2 4	Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Cow_gamma:1) Losses	1D@0 0 C 1D@0 0.1 1D@0 0.4 1D@0 0.0 1D@0 0.2 1D@0 0.2 1D@0 0.3 1D@0 0.1 5peciat	2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@1 0.5 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@1 0 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@1 0 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 :2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 :2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 :2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0 Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0 0	Human:1).2:1)D@2 1.45 2:0; .05 Human:1).2:1)D@2 1.3 2:0; .45 Human:1).2:1)D@2 1.65 2:0; .95 Human:1).2:1)D@2 1.65 2:0; .1 Human:1).2:1)D@2 1.65 2:0; .05 Human:1).2:1)D@2 1.65 2:0; .05 Human:1).2:1)D@2 1.65 2:0; .05 Human:1).2:1)D@2 1.612:0; .05 Human:1).2:1)D@2 1.612:0; .05 Human:1).2:1)D@2 1.712:0; .25 Human:1).2:1)D@2 1.712:0;
# of S_termi S_termi S_termi	Duplications nal_branch nal_branch nal_branch	Transfers Cow 1 Horse 0 Human 1	Losses Ø Ø Ø	copies 1 1 0	10 random reconcile	gene trees
S_inter	nal_branch	2 1	0 0	0	sampled according to i	ioint likelihood
		†			$\sum P(=)$	
mean number of events per branch in sampled						
	re	CONCIII	alions		sum over reconciled	
					gene trees	

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

ALEmI HuHoCo.tree ZukerkandI-Pauling.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

((Human_gamma:5,(Cow_beta-delta:1,Cow_gamma:1).1D@0|0.15|Cow:2).2:1,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@0|0.05|Human:1).2:1)D@2|1.3|2:0;

The story of individual gene families is often blurred

Errors in gene trees will result in conflicts with the species tree that imply spurious evolutionary events.

ALEobserve Zukerkandl-Pauling_OUT.tree ALEml HuHoCo_OUT.tree Zukerkandl-Pauling_OUT.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

S: ((Human:0.571429,(Horse:0.285714,Cow:0.285714)1:0.285714)2:0.428571,OUT:1)3;

Input ale from: Zukerkandl-Pauling_OUT.tree.ale >logl: -44.1068 rate of Duplications Transfers Losses ML 0.01 0 0.01

10 reconciled G-s:

 # of Total	Dup 4	lications 0	Transfe 4	ers 6	Losses	Specia	ations	
# of	Dup	lications	Transfe	ers	Losses	copies	5	
S_terminal_branch			Cow	1	0	1	2	
S_terminal_branch			Horse	0	0	1	1	
S_terminal_branch			Human	1	0	1	3	
S_termi	ranch	OUT	0	0	0	1		
S_inter	ranch	1	0	0	1	2		
S_inter	ranch	2	2	0	0	3		
S_inter	nal_b	ranch	3	0	0	0	1	
<pre>HuHoCo_OUT.tree_Zukerkandl-Pauling_OUT.tree.ale.ml_rec (END)</pre>								

3......

ALEmI HuHoCo_OUT.tree ZukerkandI-Pauling_OUT.tree.ale delta=0.01 lambda=0.01 tau=0 sample=10

(OUT:6,(Human_gamma.2:4,((Cow_beta-delta:1,Cow_gamma:1).2.1D@0|Cow:2,(Horse_beta-delta.1:2,(Human_beta:1,Human_delta:1)D@1|Human:1).2:1)D@2|2:1)D@2|2:6).3:0;

Horizontal gene transfer as information

Transfer events, encoded in the topologies of gene trees can be thought of as "*molecular fossils*" that record the order of speciation events.

\$ cd ~/workshop_materials/lab_data/abcd

ALEobserve g.tree

ALEml abcd_S.tree g.tree.ale sample=10

ALEml cdab_S.tree g.tree.ale sample=10

ALEml abc-d_S.tree g.tree.ale sample=10

ALEobserve g.tree

ALEml abcd_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

ALEml abc-d_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

DTL species tree

ALEml abcd_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

 $((d_{1:1},c_{1:1}).1:3,(b_{1:2},(a_{1:1.5},(c_{2:1},d_{2:1})@1|1.1:0.5)T@1|a:0.5).2:3).3:0; \\ ((d_{1:1},c_{1:1}).1:3,(b_{1:2},(a_{1:1.5},(c_{2:1},d_{2:1})@1|1.1:0.5)T@1|a:0.5).2:3).3:0; \\ ((c_{2:1},d_{2:1}).1:0.5,(a_{1:1.5},(b_{1:2},(d_{-1:1},c_{-1:1})@1|1.1:3)T@1|b:0.5).2:0.5).3:0; \\ ((c_{2:1},d_{2:1}).1:0.5,(a_{-1:1.5},(b_{-1:2},(d_{-1:1},c_{-1:1})@1|1.1:3)T@1|b:0.5).2:0.5).3:0; \\ ((c_{2:1},d_{2:1}).1:0.5,(a_{-1:1.5},(b_{-1:2},(d_{-1:1},c_{-1:1})@1|1.1:3)T@1|b:0.5).2:0.5).3:0; \\ ((c_{2:1},d_{2:1}).1:0.5,(a_{-1:1.5},(b_{-1:2},(d_{-1:1},c_{-1:1})@1|1.1:3)T@1|b:0.5).2:0.5).3:0; \\ ((d_{-1:1},c_{-1:1}).1:3,(b_{-1:2},(a_{-1:1.5},(c_{-2:1},d_{-2:1})@1|1.1:0.5)T@1|a:0.5).2:3).3:0; \\ ((d_{-1:1},c_{-1:1}).1:3,(b_{-1:2},(a_{-1:1.5},(c_{-2:1},d_{-2:1})@1|1.1:0.5)T@1|a:0.5).2:0.5).3:0; \\ ((d_{-1:1},c_{-1:1}).1:3,(b_{-1:2},(a_{-1:1.5},(c_{-2:1},d_{-2:1})@1|1.1:0.5)T@1|a:0.5).2:3).3:0; \\ ((d_{-1:1},c_{-1:1}).1:3,(b_{-1:2},(a_{-1:1.5},(c_{-2:1$

phylo.io, seaview or FigTree!

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2@0|d:1)T@0|-1:0.5)T@0|a:0.5).1:3).3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3)@3|3.3:0.5)T@3|3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1@0|c:1)T@0|-1:3)T@0|b:0.5).1:0.5).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1@0|c:1)T@0|-1:3)T@0|b:0.5).1:0.5).3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1@0|b:2,(d_1:1,c_1:1)@2|2.2:3)T@2|-1:0.5)T@3|3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1@0|c:1)T@0|-1:3)T@0|b:0.5).1:0.5).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1:1)@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1:1)@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1:1,c_1@0|c:1)@0|dT@0|d:3)T@0|b:0.5).1:0.5).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2:1,d_2@0|d:1)@0|cT@0|c:0.5)T@0|a:0.5).1:3).3:0;

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.01 tau=0.0 lambda=0.01

DTL species tree

Total 0 2 0 3 ((a_1.1:1.5, (c_2:1,d_2:1).2:0.5).3:0.5, (b_1.1:2, (d_1:1, c_1:1).2:3).3:0.5)D@3|1.45|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.3|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.2|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.4|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.1|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.45|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@311.2|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.1|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.35|3:0; ((a_1.1:1.5, (c_2:1, d_2:1).2:0.5).3:0.5, (b_1.1:2, (d_1:1, c_1:1).2:3).3:0.5)D@3|1.3|3:0; # of Duplications Transfers Losses Speciations Total 1 ۵ 2 6

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.01

 $((d_{1:1}, c_{1:1}) 2:3, (b_{1:2}, (a_{1:1.5}, (c_{2@0|c:1}, d_{2@0|d:1})T@0|-1:0.5)T@0|a:0.5).1:3).3:0; \\ ((a_{1.1:1.5}, (c_{2:1}, d_{2:1}).2:0.5).3:0.5, (b_{1.1:2}, (d_{1:1}, c_{1:1}).2:3)@3|3.3:0.5)T@3|3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1@0|d:1}, c_{1@0|c:1})T@0|-1:3)T@0|b:0.5).1:0.5).3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1@0|d:1}, c_{1@0|c:1})T@0|-1:3)T@0|b:0.5).1:0.5).3:0; \\ ((a_{1.1:1.5}, (c_{2:1}, d_{2:1}).2:0.5), (a_{1.1:5}, (b_{1:2}, (d_{1@0|d:1}, c_{1@0|c:1})T@0|-1:3)T@0|b:0.5).1:0.5).3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1@0|d:1}, c_{1@0|c:1})T@0|-1:3)T@0|b:0.5).1:0.5).3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1@0|d:1}, c_{1:1)@0|cT@0|c:3})T@0|b:0.5).1:0.5).3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1@0|d:1}, c_{1:1})@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; \\ ((c_{2:1}, d_{2:1}).2:0.5, (a_{1:1.5}, (b_{1:2}, (d_{1:0}|d:1, c_{1:1})@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; \\ ((d_{1:1}, c_{1:1}).2:3, (b_{1:2}, (a_{1:1.5}, (c_{2:1}, d_{2:0}|d:1)@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; \\ ((d_{1:1}, c_{1:1}).2:3, (b_{1:2}, (a_{1:1.5}, (c_{2:1}, d_{2:0}|d:1)@0|cT@0|c:0.5)T@0|a:0.5).1:3).3:0; \\ (d_{1:1}, c_{1:1}).2:3, (b_{1:2}, (d_{1:1}, c_{1:1}).2:0, (d_{1:0}|c:0.5)T@0|a:0.5).1:3).3:0; \\ (d_{1:1},$

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.01 tau=0.0 lambda=0.01

Total 0 2 0 3 ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.45|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@311.313:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.2|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.4|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.1|3:0; ((a_1.1:1.5, (c_2:1,d_2:1).2:0.5).3:0.5, (b_1.1:2, (d_1:1, c_1:1).2:3).3:0.5)D@3|1.45|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@311.213:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@3|1.1|3:0; ((a_1.1:1.5, (c_2:1, d_2:1).2:0.5).3:0.5, (b_1.1:2, (d_1:1, c_1:1).2:3).3:0.5)D@3|1.35|3:0; ((a_1.1:1.5,(c_2:1,d_2:1).2:0.5).3:0.5,(b_1.1:2,(d_1:1,c_1:1).2:3).3:0.5)D@311.313:0; # of Duplications Transfers Losses Speciations Total 1 2 0

DTL

ALEml cdab_S.tree g.tree.ale sample=10 delta=0.0 tau=0.01 lambda=0.0

((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2:1,d_2@0|d:1)@0|cT@0|c:0.5)T@0|a:0.5).1:3).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1@0|c:1)T@0|-1:3)T@0|b:0.5).1:0.5).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2@0|d:1)T@0|-1:0.5)T@0|a:0.5).1:3).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1:1)@0|cT@0|c:3)T@0|b:0.5).1:0.5).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2@0|d:1)T@0|-1:0.5)T@0|a:0.5).1:3).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1@0|d:1,c_1@0|c:1)T@0|-1:3)T@0|b:0.5).1:0.5).3:0; ((c_2:1,d_2:1).2:0.5,(a_1:1.5,(b_1:2,(d_1:1,c_1@0|c:1)@0|dT@0|d:3)T@0|b:0.5).1:0.5).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:3)T@0|b:0.5).1:0.5).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; ((d_1:1,c_1:1).2:3,(b_1:2,(a_1:1.5,(c_2@0|c:1,d_2:1)@0|dT@0|d:0.5)T@0|a:0.5).1:3).3:0; # of Duplications Transfers Losses Speciations

? T@0|-1

ALEobserve g.tree

ALEml abcd_S.tree g.tree.ale sample=10

ALEml cdab_S.tree g.tree.ale sample=10

ALEml abc-d_S.tree g.tree.ale sample=10

"undated" DTL

"undated" DTL species tree

"undated" DTL

"undated" DTL species tree

"undated" DTL

"undated" DTL

"undated" DTL species tree

"undated" DTL

"undated" DTL

"undated" DTL

What do you see that is different compared to ALEmI?

ALEml_undated **abcd_S.tree** g.tree.ale sample=10 ALEml_undated **cdab_S.tree** g.tree.ale sample=10 ALEml_undated **abc-d_S.tree** g.tree.ale sample=10

"undated" DTL species tree

"undated" DTL

What do you see that is different compared to ALEml?

ALEml_undated **abcd_S.tree** g.tree.ale sample=10 ALEml_undated **cdab_S.tree** g.tree.ale sample=10 ALEml_undated **abc-d_S.tree** g.tree.ale sample=10

"undated" DTL species tree

abcdef/

Efficiently exploring the space of reconciled gene trees

Based on a sample of trees conditional clade probabilities can be used to estimate posterior probability of any gene tree that can be amalgamated. This is usually a very large number of trees (e.g. for 10⁴ samples 10¹² trees, but up to 10⁴⁰). *The dynamic programming used in gene tree-species tree reconciliation can be extended to approximate the joint likelihood efficiently for a very large set of gene trees.*

implemented in ALE:

Szöllősi, Tannier, Lartillot & Daubin Systematic Biology (2013) Lateral Gene Transfer from the Dead

Szöllősi, Rosikiewicz, Boussau, Tannier & Daubin Systematic Biology (2013) *Efficient exploration of the space of reconciled gene trees*

gene trees

http://github.com/ssolo/ALE
\$ cd ~/workshop_materials/lab_data/abcdef

Use ALEmI (and/or ALEmI_undated) on each gene tree to estimate ML rates and sample reconciliations with the specie tree

 $\frac{5}{10} \times \frac{3}{8} \times \frac{3}{8}$

Combine the three trees into the same file to have 2x red.tree, 3x green.tree, 5x blue.tree

Then use ALEmI (and/or ALEmI_undated) on each gene tree to estimate ML rates and sample reconciliations with the specie tree

ALEmI S.tree help/rgb.trees.ale

gene trees

Efficiently exploring the space of reconciled gene trees

Based on a sample of trees conditional clade probabilities can be used to estimate posterior probability of any gene tree that can be amalgamated. This is usually a very large number of trees (e.g. for 10⁴ samples 10¹² trees, but up to 10⁴⁰).

more samples the better

real_data/simulated/sc_univ_fams

Real data!

OK .. first realistic data

\$ cd ~/workshop_materials/lab_data/real_data/simulated \$ cd sc_univ_fams

real_data/simulated/sc_univ_fams Real data! OK .. first realistic data

Sample trees using bootstrap and take a look:

iqtree2 -m LG -bb 10000 -s HBG486560_sim.fasta -wbtl less HBG486560_sim.fasta.ufboot

Run ALEml_undated on the ML tree

ALEobserve HBG486560_sim.fasta.treefile ALEml_undated ../S.tree HBG486560_sim.fasta.treefile.ale

Run ALEml_undated on the **true** tree ALEobserve **HBG486560_true.tree** ALEml_undated **../S.tree HBG486560_true.tree.ale**

Run ALEml_undated on the sample of trees ALEobserve HBG486560_sim.fasta.ufboot ALEml_undated ../S.tree HBG486560_sim.fasta.ufboot.ale

Do the same for HBG747311_sim.fasta..

What do you see?

(Hint: compare the "Total" rows giving the avg. number of events)

real_data/sc_univ_fams

Real data!

\$ cd ~/workshop_materials/lab_data/real_data/ \$ cd sc_univ_fams

Run ALEml_undated on the ML tree

ALEml_undated ../S.tree HBG486560_real.fasta.treefile.ale

we don't know the true tree, sorry

Run ALEml_undated on the **sample of trees** from phylobayes

ALEml_undated ../S.tree HBG486560_real.ale

What do you see?

(Hint: compare the "Total" rows giving the avg. number of events)

Real data!

ALEml_undated ../S.tree HBG486560_real.fasta.treefile.ale

# of	Duplications	Transfers	Losses	Speciations
Total	0	6.25	3.96	32.71

ALEml_undated ../S.tree HBG486560_real.ale

Real data!

ALEml_undated ../S.tree HBG486560_real.fasta.treefile.ale

# of	Duplications	Transfers	Losses	Speciations
Total	0	6.25	3.96	32.71

ALEml_undated ../S.tree HBG486560_real.ale

# of	Duplications	Transfers	Losses	Speciations
Total	0	1.05	0.99	34.94

Can you find a true orthologous family? (i.e. a family with 0 Duplication , Transfer and Loss events)

Hint: if you are less familiar with the command line you can ask ChatGPT or Bard how to run the same command on multiple files?

real_data/general_fams

Real data!

\$ cd ~/workshop_materials/lab_data/real_data/simulated \$ cd general_fams

Find the rooted species tree with the highest likelihood using DTL by

summing the log-likelihood across all .ale files (cf. bash command on previous page) for each candidate species tree S.tree, S_alt1.tree, S_alt2.tree (or your own rerooted version of S.tree made with seaview or FigTree).

DTL

species tree

ALEml_undated ../S.tree \$ale_file

\$ wget http://ssolo.web.elte.hu/S_alt1.tree
ALEml_undated S_alt1.tree \$ale_file

\$ wget http://ssolo.web.elte.hu/S_alt2.tree
ALEml_undated S_alt2.tree \$ale_file

Bonus/Home Work: try our new implementation that can do this and a lot more for you (efficiently using MPI):

https://github.com/BenoitMorel/AleRax.git

Join us for a postdoc at the interface of computational & evolutionary biology! Use probabilistic models & machine learning to model coevolution, reconstruct the Tree of Life, understand somatic evolution or pursue your own project..

Model-Based Evolutionary Genomics Unit モデルベース進化ゲノミクスユニット https://www.oist.jp/research/research-units/modevolgenom

Okinawa Institute of Science and Technology

gergely.szollosi@oist.jp

Bonus/Home Work: try our new implementation that can do this and a lot more for you (efficiently using MPI):

https://github.com/BenoitMorel/AleRax.git