

Swiss National Science Foundation

An introduction to pangenomics

Alexander Leonard¹

¹ETH Zürich

2025/01/23

Caveat emptor

Pangenomics is a rapidly evolving and poorly defined field, this is just a taster

Caveat emptor

Pangenomics is a rapidly evolving and poorly defined field, this is just a taster

This also focuses on "**sequence/variation graph**" pangenomics, but there are many other types out there!

Caveat emptor

Pangenomics is a *rapidly evolving* and *poorly defined* field, this is just a taster

This also focuses on "**sequence/variation graph**" pangenomics, but there are many other types out there!

Overview

1. Introduction to pangenomics

- Terminology
- Graph building
- Pangenome visualisation

2. Working with pangenomes

- Pangenome communities
- Pangenome validation
- Downstream pangenomics

3. Pangenomics of the future

- Personalised pangenomes
- Targeted pangenomes
- Pangenomes = biology?

Pangenomics 2.0

What is a genome?

Encode one layer of information for an individual organism

Sequence of \sim 1,000,000,000 nucleotides [ACTG] split into chromosomes

Pangenomics 2.0

What is a reference genome?

Definition of a reference genome:

A reference sequence is an accepted representation that is used by researchers as a standard for comparison to DNA sequences generated in their studies.

Pangenomics 2.0

What is a reference genome?

Definition of a reference genome:

A reference sequence is an accepted representation that is used by researchers as a standard for comparison to DNA sequences generated in their studies.

We use the same reference genome for these different cows?

Pangenomics 2.0

Routine genome assembly

Long read sequencing has almost solved genome assembly

Solving a puzzle is easier with larger pieces

Jarvis, E.D., Formenti, G., Rhie, A. et al. Semi-automated assembly of high-quality diploid human reference genomes. *Nature* **611**, 519–531 (2022). https://doi.org/10.1038/s415 86-022-05325-5

Pangenomics 2.0

Routine genome assembly

Long read sequencing has almost solved genome assembly

Solving a puzzle is easier with larger pieces

Jarvis, E.D., Formenti, G., Rhie, A. et al. Semi-automated assembly of high-quality diploid human reference genomes. *Nature* **611**, 519–531 (2022). https://doi.org/10.1038/s415 86-022-05325-5

Much faster and much cheaper and much easier today

Pangenomics 2.0

What is a **pan**genome?

Almost no consensus of what a pangenome is

Pangenomics 2.0

What is a **pan**genome?

Almost no consensus of what a pangenome is

- a reference genome with a vcf
- a set of genome assemblies
- a list of haplotypes

Pangenomics 2.0

What is a **pan**genome?

Almost no consensus of what a pangenome is

- a reference genome with a vcf
- a set of genome assemblies
- a list of haplotypes
- a graph structure representing variation across multiple assemblies

Pangenomics 2.0

What is a **pan**genome?

How can we integrate information from many assemblies into one structure?

Pangenomics 2.0

What is a **pan**genome?

How can we integrate information from many assemblies into one structure?

Pangenomics 2.0

What is a **pan**genome?

How can we integrate information from many assemblies into one structure?

----ACAGTCGCCGTCGGTCTGTCCG---------ACAGTCGCCGTCAGTCTGTACG---------ACAGTCTTCGTCGGTCTGTCCG-----

Pangenomics 2.0

What is a **pan**genome?

How can we integrate information from many assemblies into one structure?

-ACAGTC ____CGTC __GTCTGT __CG

Pangenomics 2.0

What is reference bias?

Pangenomics 2.0

What is reference bias?

Pangenomics 2.0

What is reference bias?

Pangenomics 2.0

What is reference bias?

Why do we even *want* pangenomes to replace reference genomes? **non-reference insertion**

Pangenomics 2.0

What is reference bias?

Pangenomics 2.0

How do we represent complex variaton?

Pangenomics 2.0

How do we represent complex variaton?

Pangenomics 2.0

How do we represent complex variaton?

Pangenomics 2.0

How do we represent complex variaton?

Pangenomics 2.0

Genome file formats

Most sequencing data (or anything representing genomes) are in fasta/q

Sequence alignments are generally in SAM/BAM

Other "annotation" files like BED, GFF, etc

Pangenomics 2.0

Pangenome terminology

Pangenomics 2.0

Pangenome terminology

Pangenomics 2.0

Pangenome terminology

Pangenomics 2.0

Pangenome terminology

Pangenomics 2.0

Pangenome terminology

Pangenomics 2.0

Pangenome file formats

What are the pangenomic file equivalents?

Pangenomics 2.0

Pangenome file formats

What are the pangenomic file equivalents?

GFA: Graphical Fragment *A**ssembly

Pangenomics 2.0

Pangenome file formats

What are the pangenomic file equivalents?

GFA: Graphical Fragment *A**ssembly

Three main components:

- S-lines: the sequence of the nodes
- L-lines: how the graph is connected with edges
- P-lines: how a "sample" traverses the graph (optional)

Pangenomics 2.0

Pangenome file formats

н	VN:Z:1	.0			
S	1	AATT	TACC		
S	2	GGTA	Т		
S	3	Т			
S	4	CCCG	ATA		
S	5	GGAC	TA		
S	6	TTAC			
L	1	+	2	+	OM
L	1	+	3	+	OM
L	2	+	4	+	OM
L	3	+	4	+	OM
L	4	+	5	+	OM
L	5	+	6	+	OM
L	4	+	6	+	OM
Р	Alice	1+,	2+,4+,5+	,6+ *	
Р	Bob	1+,3+,4+,6+ *			

Pangenomics 2.0

Pangenome file formats

That looks like

Pangenomics 2.0

Pangenome file formats

Most downstream tools have their own "efficient" representations of .gfa files

- .og
- •.vg
- .xg
- •.gbz

Pangenomics 2.0

Pangenome file formats

Most downstream tools have their own "efficient" representations of .gfa files

- .og
- .vg
- .xg
- .gbz

These graphs contain a lot of information.

GFA is human-readable, but binary formats are more compute efficient

Pangenomics 2.0

Pangenome file formats

 $\mathsf{GAF:}\ \mathbf{G}\mathsf{raph}\ \mathbf{A}\mathsf{lignment}\ \mathbf{F}\mathsf{ormat}$

A graph "superset" of PAF (**P**airwise **m**Apping **F**ormat).

Pangenomics 2.0

Pangenome file formats

GAF: Graph Alignment Format

A graph "superset" of PAF (Pairwise mApping Format).

Similar to .sam files, recording details on:

- which read
- where does it align
- how good was that alignment

Pangenomics 2.0

Pangenome file formats

GAF: Graph Alignment Format

A graph "superset" of PAF (Pairwise mApping Format).

Similar to .sam files, recording details on:

- which read
- where does it align
- how good was that alignment

Likewise, this is human-readable, and so some tools prefer the binary version $.\,{\tt gam}.$

Pangenomics 2.0

Graph building

Building a "variation graph" starts with a set of assemblies

Pangenomics 2.0

Graph building

Building a "variation graph" starts with a set of assemblies

We often rename chromosome names using PanSN-spec

[sample] # [haplotype] # [contig] (# [fragment/subrange])

Pangenomics 2.0

Graph building

Building a "variation graph" starts with a set of assemblies

We often rename chromosome names using PanSN-spec

[sample]#[haplotype]#[contig](#[fragment/subrange])

- avoids conflicts of many e.g. ">chr1" sequences
- encodes some metadata within the file
- enables selectively grouping/renaming values by "classification"

Pangenomics 2.0

minigraph

Augments a linear reference "backbone" with sufficiently new variation

Pangenomics 2.0

minigraph

Augments a linear reference "backbone" with sufficiently new variation

Pangenomics 2.0

pggb

All-versus-all alignment, followed by complicated cleaning of the graph structure

Pangenomics 2.0

pggb

All-versus-all alignment, followed by complicated cleaning of the graph structure

Different approaches

	≥ 50	< 50	Reference-			
	bp	bp	based	Lossless	N+1	Compute
minigraph	Yes	No	Yes	No	Easy	Laptop
cactus	Yes	Yes	No-ish	Yes	Easy-ish	Cluster
pggb	Yes	Yes	No	Yes	Rebuild	Big cluster

Different approaches

	≥ 50	< 50	Reference-			
	bp	bp	based	Lossless	N+1	Compute
minigraph	Yes	No	Yes	No	Easy	Laptop
cactus	Yes	Yes	No-ish	Yes	Easy-ish	Cluster
pggb	Yes	Yes	No	Yes	Rebuild	Big cluster

We can perfectly reconstruct any assembly from a lossless graph

Different approaches

	≥ 50	< 50	Reference-			
	bp	bp	based	Lossless	N+1	Compute
minigraph	Yes	No	Yes	No	Easy	Laptop
cactus	Yes	Yes	No-ish	Yes	Easy-ish	Cluster
pggb	Yes	Yes	No	Yes	Rebuild	Big cluster

We can perfectly reconstruct any assembly from a lossless graph

Pick the approach that best matches your research question

Pangenomics 2.0

Other pangenome tools

Variation is a powerful tool, but easy to get overwhelmed by

Pangenomics 2.0

Other pangenome tools

Variation is a powerful tool, but easy to get overwhelmed by

- pangene
- pgr-tk
- many dBG tools (bifrost etc.)

Pangenomics 2.0

Other pangenome tools

Variation is a powerful tool, but easy to get overwhelmed by

- pangene
- pgr-tk
- many dBG tools (bifrost etc.)

Pangenomics 2.0

Pangenome visualisation

IGV (Integrative Genomics Viewer, https://igv.org/doc/desktop/) is a useful tool for visualising different formats of genomic data:

- read alignments
- bed files
- gene annotations

Pangenomics 2.0

Pangenome visualisation

IGV (Integrative Genomics Viewer, https://igv.org/doc/desktop/) is a useful tool for visualising different formats of genomic data:

- read alignments
- bed files
- gene annotations

Is there a pangenomic equivalent?

Pangenomics 2.0

Visualising **pan**genomic data

Everything is more complicated in the pangenomic world

Pangenomics 2.0

Visualising pangenomic data

Everything is more complicated in the pangenomic world

What are we trying to visualise?

- Synteny between many assemblies?
- Genic regions in a pangenome?
- Alignments to a pangenome?

Pangenomics 2.0

Interactive visualisation

How do we visualise the .gfa output of pangenome construction?

Pangenomics 2.0

Interactive visualisation

How do we visualise the .gfa output of pangenome construction?

One of the most common tools is BandageNG (https://github.com/asl/BandageNG).

Pangenomics 2.0

Interactive visualisation

How do we visualise the .gfa output of pangenome construction?

One of the most common tools is BandageNG (https://github.com/asl/BandageNG).

We'll explore this in the practical, but it has several advantages:

- easy to install
- quick to load small-to-moderate sized graphs
- extensive analytic functionality

Pangenome basics

Working with pangenomes

Pangenomics 2.0

Interactive visualisation

Pangenomics 2.0

Static visualisation

Large graphs (many nodes and/or edges) are complex to render.

Pangenomics 2.0

Static visualisation

Large graphs (many nodes and/or edges) are complex to render.

Let the computer do the **hard** work and render a static representation!

Pangenomics 2.0

Static visualisation

Break pangenome down into multiple linear blocks

Pangenomics 2.0

Static visualisation

Break pangenome down into multiple linear blocks

Pangenomics 2.0

Static visualisation

"Optimally" lay out nodes/edges in 2D with a Hogwild! algorithm.

Pangenomics 2.0

Static visualisation

"Optimally" lay out nodes/edges in 2D with a *Hogwild!* algorithm.

Pangenomics 2.0

Static visualisation

"Optimally" lay out nodes/edges in 2D with a Hogwild! algorithm.

This step took \sim **30%** of the entire HPRC pipeline runtime!

Pangenomics 2.0

Pangenome communities

Building pangenomes per chromosome is much easier than genome-wide

Pangenomics 2.0

Pangenome communities

Building pangenomes per chromosome is much easier than genome-wide

What if

- we care about interchromosomal events
- we don't know how to define "per chromosome"
- we don't have assigned chromosomes

Pangenomics 2.0

Nonuniform karyotypes

Even "similar" species can undergo complex chromosomal evolution

Pangenomics 2.0

Nonuniform karyotypes

Even "similar" species can undergo complex chromosomal evolution

Pangenomics 2.0

Community detection

 pggb implemented community detection

- map whole genomes all-versus-all
- build a *weighted* network from all submappings
- use graph theory community-detection algorithms

Pangenomics 2.0

Community detection

 pggb implemented community detection

- map whole genomes all-versus-all
- build a *weighted* network from all submappings
- use graph theory community-detection algorithms

Translocations or complex rearrangements are also *identified*

Pangenomics 2.0

Community detection

 pggb implemented community detection

- map whole genomes all-versus-all
- build a weighted network from all submappings
- use graph theory community-detection algorithms

Translocations or complex rearrangements are also *identified*

Distinguishing signal from noise is hard for small/infrequent mappings

Pangenome basics

Community detection

Working with pangenomes

Pangenomics 2.0

Pangenomics 2.0

Pangenome validation

How do we know if the pangenome we built is any good?

Pangenomics 2.0

Pangenome validation

How do we know if the pangenome we built is any good?

What does *good* even mean to us?

Pangenomics 2.0

Pangenome analyses

There are several tools useful for checking pangenome construction and content

- gfatools
- odgi
- panacus
- gretl

Pangenomics 2.0

Pangenome graph statistics

After building a graph, the simplist statistics to check are:

- total sequence length
- maxmimum and average node size
- node depth distribution

Pangenomics 2.0

Pangenome graph statistics

Graphs can be described by the number of nodes and edges they contain.

Different graphs (e.g., pggb versus minigraph) may have similar length, but very different node/edge counts.

Pangenome graph statistics

Graphs can be described by the number of nodes and edges they contain.

Different graphs (e.g., pggb versus minigraph) may have similar length, but very different node/edge counts.

Consider the average node size (pangenome length / number of nodes) or average edge degree (number of nodes / number of edges)

Pangenome graph statistics

Graphs can be described by the number of nodes and edges they contain.

Different graphs (e.g., pggb versus minigraph) may have similar length, but very different node/edge counts.

Consider the average node size (pangenome length / number of nodes) or average edge degree (number of nodes / number of edges)

Should be *reasonable* values (how many bases do you expect before a SNP?)

Pangenomics 2.0

Pangenome graph statistics

From gfatools stat on a large, base-level bovine pangenome of chromosome 1 (159 Mb) $\,$

Number of segments: 10140559 Number of links: 14371940 Number of arcs: 28743880 Total segment length: 200985993 Average segment length: 19.820 Max degree: 106924 Average degree: 1.417

Pangenomics 2.0

Pangenome graph statistics

From gfatools stat on a large, base-level bovine pangenome of chromosome 1 (159 Mb) $\,$

```
Number of segments: 10140559
Number of links: 14371940
Number of arcs: 28743880
Total segment length: 200985993
Average segment length: 19.820
Max degree: 106924
Average degree: 1.417
```

The total pangenome size should *approximately* be equal to the reference plus all variation.

Pangenomics 2.0

Pangenome openness

How does the growth of a pangenome change with more samples?

Pangenomics 2.0

Pangenome openness

How does the growth of a pangenome change with more samples?

We can use Heap's law from text analysis: $N \propto n^{-lpha}$

Pangenome openness

How does the growth of a pangenome change with more samples?

We can use Heap's law from text analysis: $N\propto n^{-\alpha}$

If $\alpha > 1$, the pangenome is **closed**, otherwise if $\alpha \le 1$, the pangenome is **open**.

Pangenomics 2.0

Pangenome openness

With enough samples, we can estimate α

Care is needed about how much variation is *expected* to be shared . . .

Pangenomics 2.0

Pangenome openness

With enough samples, we can estimate α

Care is needed about how much variation is *expected* to be shared . . .

Pangenomics 2.0

Pangenome layers

Pangenome openness effectively addresses the total unique sequence. What about different levels of intersection?

Pangenomics 2.0

Pangenome layers

Pangenome openness effectively addresses the total unique sequence. What about different levels of intersection?

We can characterise pangenome *nodes* as:

- core: present in all/most samples
- shell: present in at least two samples
- **cloud**: present in only one sample
- flexible/dispensable: varies, but something like shell/cloud

Pangenomics 2.0

Pangenome layers

With enough samples, we expect minimal sequence to be "core"

Pangenomics 2.0

Pangenome layers

With enough samples, we expect minimal sequence to be "core"

Misassemblies can also further reduce the "core"

Pangenomics 2.0

Pangenome layers

With enough samples, we expect minimal sequence to be "core"

Misassemblies can also further reduce the "core"

Pangenomics 2.0

Downstream pangenomics

Once we have a "good" pangenome, what can we actually do with it?

Pangenomics 2.0

Calling pangenome variants

We can also call variants within the pangenome with ${\tt vg}$ deconstruct

Pangenomics 2.0

Calling pangenome variants

We can also call variants within the pangenome with ${\tt vg}$ deconstruct

"Project" back into linear space (losing *some* pangenomic benefits)

Pangenomics 2.0

Calling pangenome variants

We can also call variants within the pangenome with ${\tt vg}$ deconstruct

"Project" back into linear space (losing *some* pangenomic benefits)

Pangenome basics

Working with pangenomes

Pangenomics 2.0

Aligning to pangenomes

Linear-reference alignment is "simple"

Pangenomics 2.0

Aligning to pangenomes

Linear-reference alignment is "simple"

- check if next base is a match
- genomic distance matches insert size
- opposite strand is the reverse complement

Pangenomics 2.0

Aligning to pangenomes

Linear-reference alignment is "simple"

- check if next base is a match
- genomic distance matches insert size
- opposite strand is the reverse complement

Pangenomics 2.0

Aligning to pangenomes

 ${\tt vg}\ {\tt giraffe}\ {\tt was}\ {\tt a}\ {\tt huge}\ {\tt step}\ {\tt forward}\ {\tt for}\ {\tt read-to-graph}\ {\tt alignment}$

Pangenomics 2.0

Aligning to pangenomes

 ${\tt vg}\ {\tt giraffe}\ {\tt was}\ {\tt a}\ {\tt huge}\ {\tt step}\ {\tt forward}\ {\tt for}\ {\tt read-to-graph}\ {\tt alignment}$

Many algorithms silently assume "DAGs" (Directed Acyclic Graph)

non-DAGs allow revisiting a node (maybe infinitely times)

Pangenomics 2.0

Aligning to pangenomes

 ${\tt vg}\ {\tt giraffe}\ {\tt was}\ {\tt a}\ {\tt huge}\ {\tt step}\ {\tt forward}\ {\tt for}\ {\tt read-to-graph}\ {\tt alignment}$

Many algorithms silently assume "DAGs" (Directed Acyclic Graph)

non-DAGs allow revisiting a node (maybe infinitely times)

$$DAG \longrightarrow ACAGTC \xrightarrow{GC \longleftarrow GC \longleftarrow GC} TT$$

$$non-DAG \longrightarrow ACAGTC \xrightarrow{GC \longleftarrow TT}$$

Pangenomics 2.0

Long read alignment

Long reads span more bubbles in graphs, exponentially complicating alignment

Pangenomics 2.0

Long read alignment

Long reads span more bubbles in graphs, exponentially complicating alignment

Currently limited number of "production" tools

- GraphAligner
- vg giraffe-lr soon!

Pangenomics 2.0

Personalised pangenomes

Pangenomes are critical to give coordinates to all sequence

Personalised pangenomes

Pangenomes are critical to give coordinates to all sequence

We want to maintain those coordinates across all analyses

Personalised pangenomes

Pangenomes are critical to give coordinates to all sequence

We want to **maintain** those coordinates across all analyses

Can we "filter" out graph complexity that isn't useful for a given sample?

Pangenomics 2.0

Irrelevant pangenomic variation

Given any genomic sequencing, we can easily calculate a set of k-mers for that sample

Pangenomics 2.0

Irrelevant pangenomic variation

Given any genomic sequencing, we can easily calculate a set of k-mers for that sample

Retain nodes/edges which span those k-mers, rather than filtering by allele frequency

Pangenomics 2.0

Irrelevant pangenomic variation

Given any genomic sequencing, we can easily calculate a set of k-mers for that sample

Retain nodes/edges which span those k-mers, rather than filtering by allele frequency

Pangenomics 2.0

Irrelevant pangenomic variation

Given any genomic sequencing, we can easily calculate a set of k-mers for that sample

Retain nodes/edges which span those k-mers, rather than filtering by allele frequency

Upstream blackbox

Pangenomes can be challenging and don't always match downstream input formats

Upstream blackbox

Pangenomes can be challenging and don't always match downstream input formats

A user could provide a complete reference pangenome and (short) reads

Inside a black box, we can then run

- vg haplotype (personalise the pangenome)
- vg giraffe (align to the pangenome)
- vg surject (convert back to linear coordiantes)
- e.g. DeepVariant (call variants as per usual)

Upstream blackbox

Pangenomes can be challenging and don't always match downstream input formats

A user could provide a complete reference pangenome and (short) reads

Inside a black box, we can then run

- vg haplotype (personalise the pangenome)
- vg giraffe (align to the pangenome)
- vg surject (convert back to linear coordiantes)
- e.g. DeepVariant (call variants as per usual)

Improved variant calls without *direct* exposure to the pangenome

Pangenomics 2.0

Targeted pangenomes

A reference pangenome should cover the entire genome

Pangenomics 2.0

Targeted pangenomes

- A reference pangenome should cover the entire genome
- Most pangenome papers focus on one/several QTL

Pangenomics 2.0

Targeted pangenomes

- A reference pangenome should cover the entire genome
- Most pangenome papers focus on one/several QTL

Bison specific deletion

Pangenomics 2.0

Targeted pangenomes

- A reference pangenome should cover the entire genome
- Most pangenome papers focus on one/several QTL

Pangenomics 2.0

Targeted pangenomes

A reference pangenome should cover the entire genome

Most pangenome papers focus on one/several QTL

Pangenome basics

Working with pangenomes

Pangenomics 2.0

Manual QTL pangenome

For a given reference-annotated region, we can:

Pangenomics 2.0

Manual QTL pangenome

For a given reference-annotated region, we can:

- o lift over equivalent reference coordinates into other assemblies
- extract relevant section of those assemblies
- build a pangenome from these sequences

Pangenomics 2.0

A better approach

 impg outlines a different approach

Pangenomics 2.0

A better approach

 ${\tt impg}$ outlines a different approach

- conduct the hard all-to-all mapping once
- extract transitive regions based on a set of coordinates
- build a pangenome from those sequences

Pangenomics 2.0

A new whole-genome approach?

Building many small pangenomes is easier than one big pangenome

Can we go from per chromosome to per window?

Pangenomics 2.0

A new whole-genome approach?

Building many small pangenomes is easier than one big pangenome

Can we go from per *chromosome* to per *window*?

Recombine pieces into chromosome-scale graphs with gfalace

Pangenomics 2.0

A new whole-genome approach?

Building many small pangenomes is easier than one big pangenome

Can we go from per *chromosome* to per *window*?

Recombine pieces into chromosome-scale graphs with gfalace

Some unresolved concerns:

- boundary conditions are poorly defined
- events spanning the "split length" might be lost
- detecting subgraph isomorphisms is hard

Pangenomics 2.0

Acrocentric recombination

Caveat: biologists probably knew before the computer people

Pangenomics 2.0

Acrocentric recombination

Caveat: biologists probably knew before the computer people

Initial human pangenome construction lead to huge tangles in *some* chromosomes

Acrocentric recombination

Caveat: biologists probably knew before the computer people

Initial human pangenome construction lead to huge tangles in *some* chromosomes

Pangenomes (at minimum) offer a new perspective on existing questions

Pangenomics 2.0

Acrocentric recombination

Pseudo-homologous regions near centomeres drive Robertsonian translocations

Pangenomics 2.0

Acrocentric recombination

Pseudo-homologous regions near centomeres drive Robertsonian translocations

{Guarracino et al. 2023}

Braided snarls

Strange pangenomic structures are generally worrying

Braided snarls

Strange pangenomic structures are generally worrying

They might actually reveal biology in way we didn't anticipate!

Braided snarls

Strange pangenomic structures are generally worrying

They might actually reveal biology in way we didn't anticipate!

Superpangenomes

Typically "pangenomes" refer to a single species

Pangenomics 2.0

Superpangenomes

Typically "pangenomes" refer to a single species

Superpangenomes include more diverse assemblies, e.g., genus-level

Pangenomics 2.0

Superpangenomes

Typically "pangenomes" refer to a single species

Superpangenomes include more diverse assemblies, e.g., genus-level

Hyper/Mega/Ultrapangenomes?

Superpangenomes

What happens if we include many related species into a pangenome?

Superpangenomes

What happens if we include many related species into a pangenome?

- ultraconserved elements are still roughly single nodes
- species-specific variation are distinct paths through bubbles
- phylogeny-related information present in nested bubbles

Pangenomics 2.0

Summary – starting with pangenomes

Pangenomes can integrate many genomes into one structure to mitigate reference bias

Pangenomics 2.0

Summary – starting with pangenomes

Pangenomes can integrate many genomes into one structure to mitigate reference bias

Building pangenomes is still hard, but quickly getting easier

Pangenomics 2.0

Summary – starting with pangenomes

Pangenomes can integrate many genomes into one structure to mitigate reference bias

Building pangenomes is still hard, but quickly getting easier

Pangenome openess or graph statistics help us know if our graphs are "good"

Pangenomics 2.0

Summary – working with pangenomes

We can use the pangenome as a *reference* or as a *resource*

Pangenomics 2.0

Summary – working with pangenomes

We can use the pangenome as a *reference* or as a *resource*

T2T assemblies and pangenomes can unlocking entirely new perspectives

Pangenomics 2.0

Summary – working with pangenomes

We can use the pangenome as a *reference* or as a *resource*

T2T assemblies and pangenomes *can* unlocking entirely new perspectives

Population-scale read alignment and "direct" pangenomic analyses are becoming possible

Pangenomics 2.0

Hands on pangenomics

During the activity we'll look at

- building a small minigraph pangenome
- visualising that pangenome in BandageNG
- using gfatools to find regions of interest

Pangenome basics

Questions?

Working with pangenomes

Pangenomics 2.0