Analysis of RNAseq data

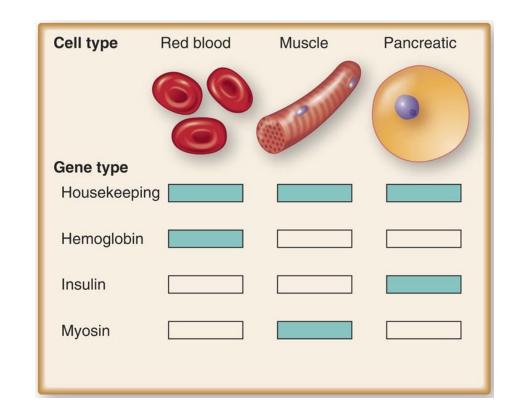
Rachel Steward Researcher Speciation, Adaptation, Coevolution group **Lund University**

Česky Krumlov 2025

Gene expression

The selective activity of certain genes is a highly regulated process

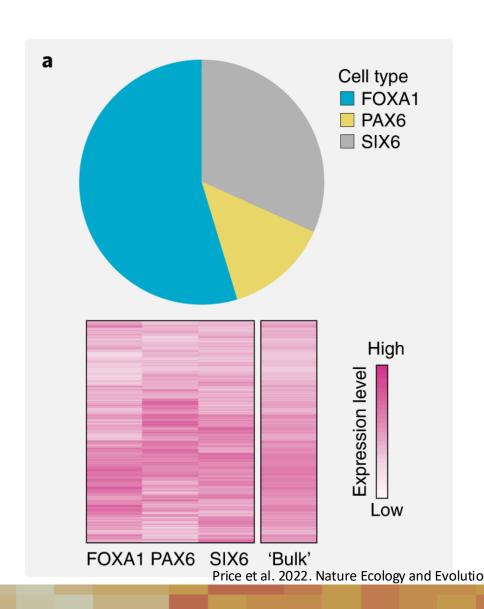
Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)



Gene expression

The selective activity of certain genes is a highly regulated process

Gene expression is a characteristic of space (e.g., cell type, tissue, etc.) and time (e.g., developmental stage, time after event)



What are some questions we can answer with bulk RNAseq data?

How many genes are being expressed?

Which genes are uniquely expressed?

Does gene expression differ between groups or in response to a certain variable?

Are patterns of gene expression different among samples?

Are patterns of expression different among genes?

What are the functional roles of groups of differently expressed genes?

Lab activities

Part 1

Exploring patterns in RNAseq data

Part 2

Differential gene expression analysis

Part 3

Functional enrichment of gene sets

Structure:

Short background

Open work time

Review

Gene expression analysis

Biological samples/Library preparation Separate tutorial Sequence reads on my github: rstewa03 Read quality check Trimming (adaptors and low quality bases) De novo transcriptome assembly and quality assessment Mapping to genome or transcriptome Count reads associated with features Identify differentially expressed features Compare expression patterns

Quality control

Reads: To trim or not to trim?

- genome annotation, variant calling, transcriptome assembly:
 Trim!
- Anything else, maybe trim lightly?
 - adapters + low quality score (Q10-15)

Reference genome considerations:

- What maps where:
 - Recent duplications?
 - Highly repetetive content?
 - Missing content?

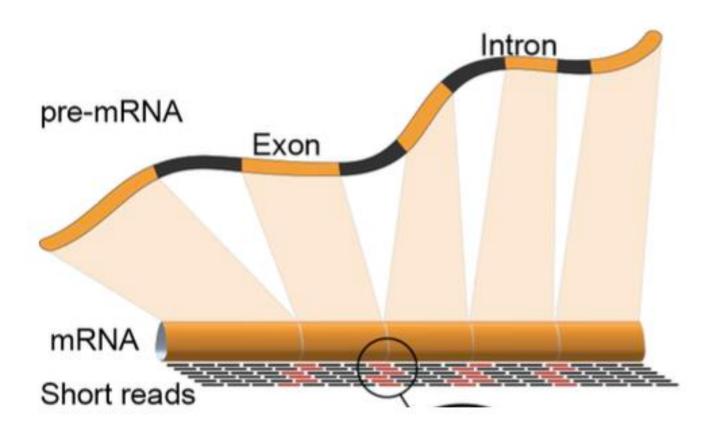
Annotation considerations:

- What features have been annotated?
- Was RNAseq data used in the annotation?
 - What RNA? Life stage? Sex?

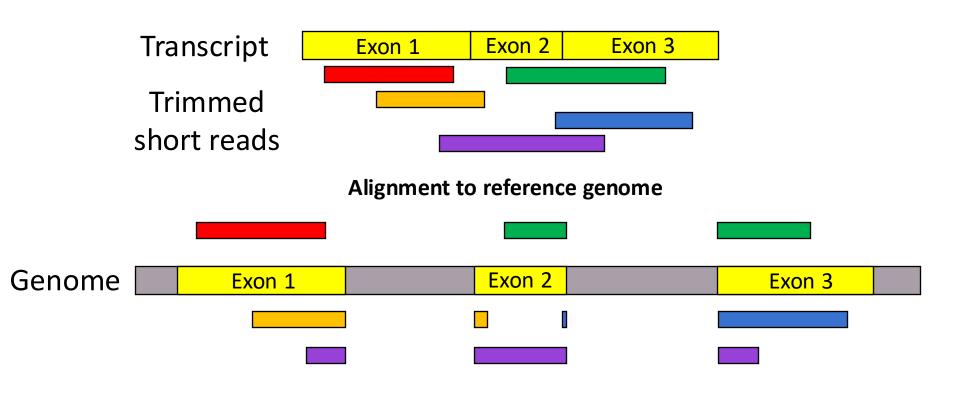
(Williams et al. 2016 BMC Bioinformatics Liao and Shi 2020 NAR Genomics and Bioinformatics

RNA sequence alignment to a reference

What are some challenges when aligning RNA-seq reads to the reference genome?



Splice-aware sequence alignment



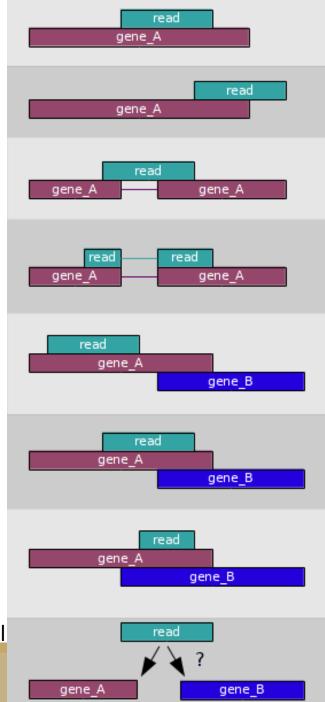
Counting reads as a measure of expression

Two common counting tools are **featureCounts** and **htseq**.

Total read count associated with a gene (*meta-feature*) == the sum of reads associated with each of the exons (*feature*) that are a part of that gene.

```
genomics@ip-172-31-11-182:[~/workshop_materials/differential_expression/refs]$ head Pca_annotation.gtf
                                                                                  transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
        AUGUSTUS
                         transcript
                                         22193
                                                 24413
        AUGUSTUS
                                         22320
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
                         exon
                                 22193
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
        AUGUSTUS
                                 23838
                                         24048
                         exon
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
        AUGUSTUS
                                 24390
                                         24413
LG1
                         exon
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
        AUGUSTUS
                         CDS
                                 22193
                                         22320
                                         24048
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
        AUGUSTUS
                         CDS
                                 23838
                                                                          transcript_id "Polcal_g1.t1"; gene_id "Polcal_g1";
LG1
        AUGUSTUS
                         CDS
                                 24390
                                         24413
                                                                                   transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
LG1
        AUGUSTUS
                         transcript
                                         79912
                                                  80136
                                                                          transcript_id "Polcal_g2.t1"; gene_id "Polcal_g2";
LG1
        AUGUSTUS
                                 79912
                                         80136
                         exon
                                                                          transcript id "Polcal g2.t1"; gene id "Polcal g2";
                                 79912
        AUGUSTUS
                         CDS
                                         80136
genomics@ip-172-31-11-182:[~/workshop materials/differential expression/refs]$
```

What should count??



HTSeq manual

Read count matrix

Output of counting = A **count matrix**, with features as rows and samples as columns

Each column is a sample

feature Each row is a gene

GENE ID	KD.2	KD.3	OE.1	OE.2	OE.3	IR.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	55	38	45	31	3
A1BG	71	40	100	81	41	77	58	4
A1BG-AS1	256	177	220	189	107	213	172	12
A1CF	0	1	1	0	0	0	0	
A2LD1	146	81	138	125	52	91	80	5
A2M	10	9	2	5	2	9	8	
A2ML1	3	2	6	5	2	2	1	
A2MP1	0	0	2	1	3	0	2	
A4GALT	56	37	107	118	65	49	52	3
A4GNT	0	0	0	0	1	0	0	
AA06	0	0	0	0	0	0	0	
AAA1	0	0	1	0	0	0	0	
AAAS	2288	1363	1753	1727	835	1672	1389	112
AACS	1586	923	951	967	484	938	771	63
AACSP1	1	1	3	0	1	1	1	
AADAC	0	0	0	0	0	0	0	
AADACL2	0	0	0	0	0	0	0	
AADACL3	0	0	0	0	0	0	0	
AADACL4	0	0	1	1	0	0	0	
AADAT	856	539	593	576	359	567	521	41
AAGAB	4648	2550	2648	2356	1481	3265	2790	211
AAK1	2310	1384	1869	1602	980	1675	1614	110
AAMP	5198	3081	3179	3137	1721	4061	3304	262
AANAT	7	7	12	12	4	6	2	
AARS	5570	3323	4782	4580	2473	3953	3339	266
AADC2	4451	2727	2201	2121	1240	2400	2074	100

Some problems with raw counts...

Some samples consistently have more reads, some have fewer: systematic biases

Each column is a sample

feature Each row is a gene

GENE ID	KD.2	D.3	OE.1	OE.2	OE.3	R.1	IR.2	IR.3
1/2-SBSRNA4	57	41	64	5	38	45	31	39
A1BG	71	40	100	8	41	77	58	40
A1BG-AS1	256	177	220	18	107	213	172	126
A1CF	0	1	1		0	0	0	0
A2LD1	146	81	138	12	52	91	80	50
A2M	10	9	2		2	9	8	4
A2ML1	3	2	6		2	2	1	0
A2MP1	0	0	2		. 3	0	2	1
A4GALT	56	37	107	11	65	49	52	37
A4GNT	0	0	0		1	0	0	0
AA06	0	0	0		0	0	0	0
AAA1	0	0	1		0	0	0	0
AAAS	2288	1363	1753	172	835	1672	1389	1121
AACS	1586	923	951	96	484	938	771	635
AACSP1	1	1	3		1	1	1	3
AADAC	0	0	0		0	0	0	0
AADACL2	0	0	0		0	0	0	0
AADACL3	0	0	0		0	0	0	0
AADACL4	0	0	1		. 0	0	0	0
AADAT	856	539	593	57	359	567	521	416
AAGAB	4648	2550	2648	235	1481	3265	2790	2118
AAK1	2310	1384	1869	160	980	1675	1614	1108
AAMP	5198	3081	3179	313	1721	4061	3304	2623
AANAT	7	7	12	1	4	6	2	7
AARS	5570	3323	4782	458	2473	3953	3339	2666
AADC2	4454	2727	2201	242	1240	2400	2074	1657

Solution: normalization

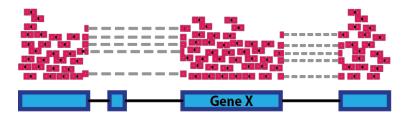
- **Normalization is <u>NOT</u>** fitting a normal distribution or transforming data.
- Normalization aims to identify and account for the nature and magnitude of systematic biases

The main factors often considered during normalization:

- Sequencing depth (aka library size)
- RNA composition
- Gene length (some methods)

Normalization

Sequencing depth Sample A Reads

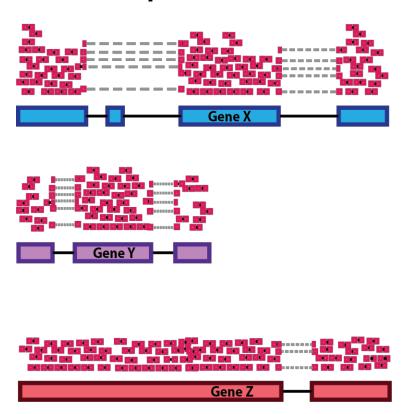


Sample B Reads

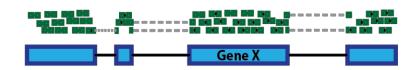


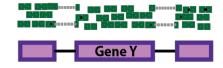
Normalization

Sequencing depth Sample A Reads



Sample B Reads

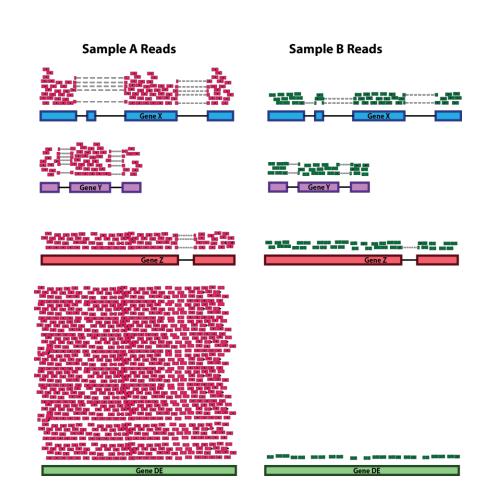




Normalization

RNA composition

- A few highly differentially expressed genes
- Can skew some normalization methods



Median of ratios (MRN) normalization

- Used by DESeq2 (DGE analysis tool we will use today)
- Generates a size factor (also called scaling factor) for each sample to account for variation in library size
 Raw counts

Gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13

Normalized counts

Gene	sampleA	sampleB
EF2A	1489/1.3 = 1145.39	906/0.77 = 1176.62
ABCD1	22/1.3 = 16.92	13/0.77 = <mark>16.88</mark>

Normalized counts are not whole numbers!

Exploring patterns in RNAseq data

Clustering of samples

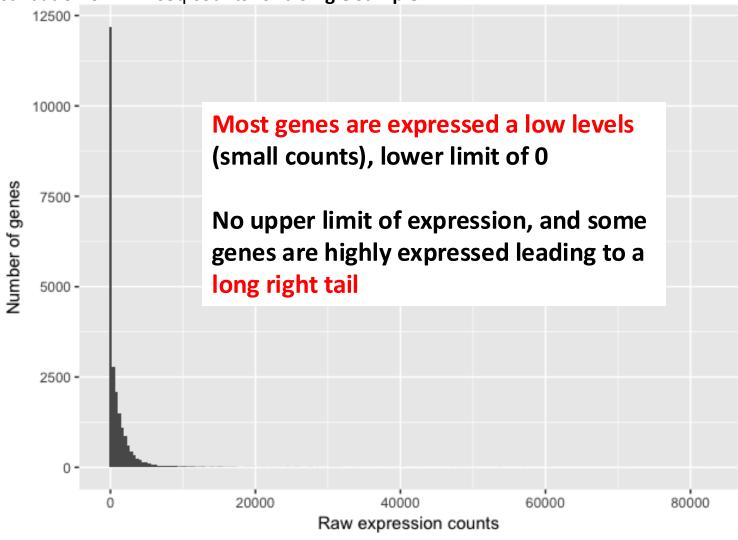
- Dimension reduction analysis (e.g., PCA, PLS, MDS)
- Clustering (e.g., hierarchical clustering, k-means clustering)

Clustering of features

- Same as above, just focusing on features
- Weighted co-expression analysis (WGCNA, correlation among features)

Properties of RNA-seq count data

The distribution of RNA-seq counts for a single sample:



Data transformations for clustering and visualization

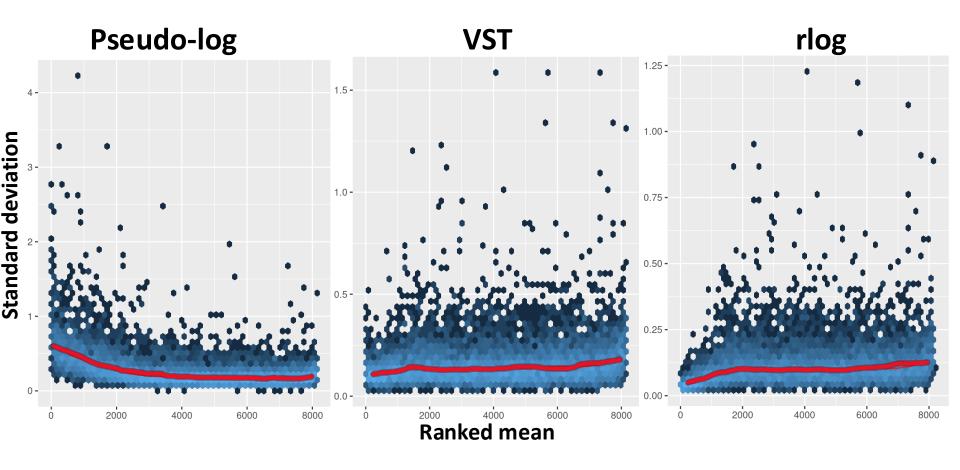
- Pseudo-log: $y = log_2(n + n_0)$
 - n_0 is a constant, like 1
 - Variance not stable at low values (does not scale with expression)

Instead, we want to transform the data to remove the trend (variances roughly similar across mean values)

- Variance stabilizing transformation DESeq2::vst()
- Regularized log transformation DESeq2::rlog()

Huber et al. 2003 Stat. Appl. Genet. Mol. Biol., Anders & Huber 2010 Nature, Love et al. 2023 "Analyzing RNA-seq data with DESeq2"

Effect of transformations on variance



Today's lab: Polygonia c-album

Orientation to the tutorial

1 Our system: diet plasticity in generalist butterflies

2 Our questions

- 3 Background
- 4 Unit 1: Exploring patterns of gene expression among samples
- 5 Unit 2: Differential gene expression analysis
- 6 Unit 3: Gene set enrichment analysis
- 7 The big challenge: running a second contrast
- 8 Other great resources:
- 9 References

2 Our questions

- 1. Do patterns of gene expression differ between larvae reared on different host plants?
- 2. Which genes are differently expressed between larvae reared on different host plants?
- 3. What are the functions of differentially expressed gene sets?

3 Background

Today's tutorial walks through a reference-based differential gene expression (DGE) analysis. This means our reads have been aligned to an existing reference genome for *P. c-album*, rather than a *de novo* transcriptome generated from the RNA-seq data. The three main steps of reference-based DGE analysis are 1) alignment, 2) quantification and 3) analysis (Fig. 2). In this tutorial, we will focus on **step 3) analysis**.

This tutorial has three units:

- · Exploring patterns of gene expression among samples
- · Identifying differentially expressed genes
- · Evaluating functional enrichment of DE gene sets

Each unit has core exercises you should try to finish during the lab. If you finish the core exercises, there are additional challenge exercises at the end of each unit.

Occasional blue boxes give background on the analyses. Feel free to gloss over these – you can come back to them later if you are curious or want to learn more.

4 Unit 1: Exploring patterns of gene expression among samples

Everything in this tutorial will be done in RStudio.

4.1 Set the working directory

Open RStudio and start by checking (getwd()) and setting (setwd()) your working directory. The activity is designed to be run in the `RNAseq_analysis" directory.

Show

Alternatively, you can set the working directory using the RStudio interface. Click on the Files tab. Navigate by clicking on the directories you want to enter (workshop_materials, then RNAseq_analysis). Once inside the working directory, use the More drop-down menu (next to the little blue gear) and select Set As Working Directory.

Take a look at the contents of the directory and subdirectory. You can do this using the list.files() command with the recursive = T option. or by selecting Go To Working Directory from the More drop-down menu on the Files tab.

Exploring patterns in RNAseq data

Part 1

Core tasks:

- Load raw count matrix
- Transform for visualization
- PCA of samples
- Hierarchical clustering of samples

Challenge exercises

Open work time (25 min)

Five more minutes!

5 minutes

Review

Lab activities

Part 1

Exploring patterns in RNAseq data

Part 2

Differential gene expression analysis

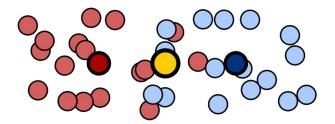
Part 3

Functional enrichment of gene sets

Differential expression analysis

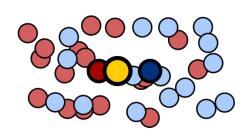
Normalized expression level

Analysis



Significant difference between group means

- Global mean
- Condition A sample
- Condition A group mean
- Condition B sample
- Condition B group mean



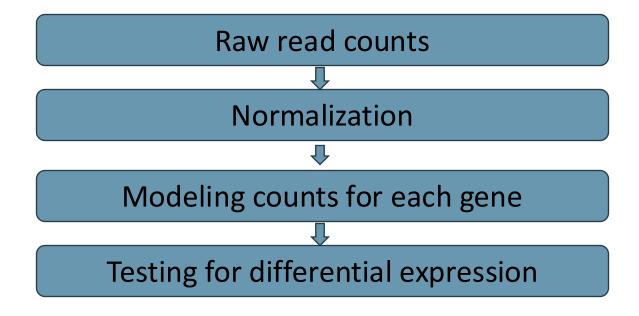
No significant difference between group means

\		
-1		
-1		
-1		
-1		
J		

Input

features (e.g. genes)				samples					
Gene_id	S1	S2	S3	S4	S5	S6			
Polcal_g1	17	10	5	23	10	6			
Polcal_g2	0	1	0	1	2	1			
Polcal_g3	7	0	2	7	4	0			
Polcal_g4	17	11	5	21	10	12			

Differential expression analysisis



DESeq2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

Michael I Love, Wolfgang Huber & Simon Anders

✓

Genome Biology 15, Article number: 550 (2014) Cite this article

450k Accesses 34853 Citations 131 Altmetric Metrics

Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors)

→ done!

Step 2. Estimate gene-wise dispersion

- To accurately model sequencing counts, we need to generate accurate estimates of within-group variation for each gene (aka dispersion)
 - need to choose the right distribution

Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the mean = variance.

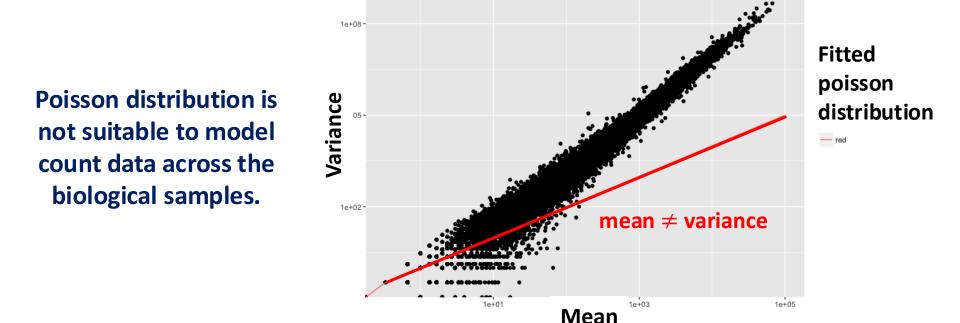
Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the

mean = variance.



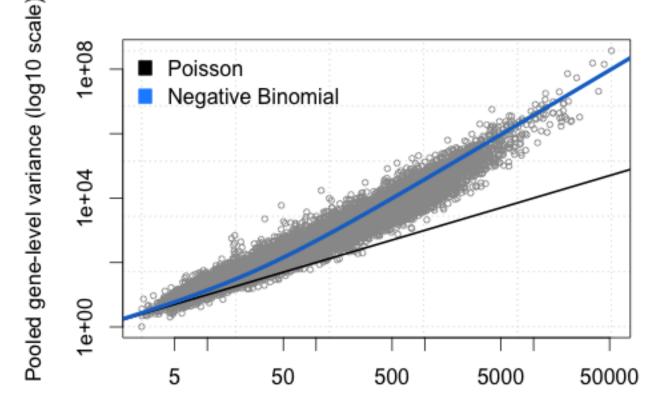
Statistical modeling of count data

The distribution that fits best is the Negative Binomial (NB)

distribution.

-two parameters, one for the mean and one for the variance

-fexlibility to estimate the amount of **dispersion** for each gene across samples.



Mean gene expression level (log10 scale)

How does the dispersion relate to our model?

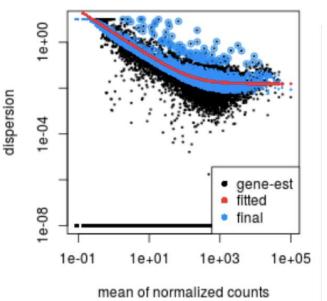
Variation is an important part of model fitting and hypothesis testing.

Estimates of variation for each gene are often unreliable.

DESeq2 shares information across genes to generate more accurate

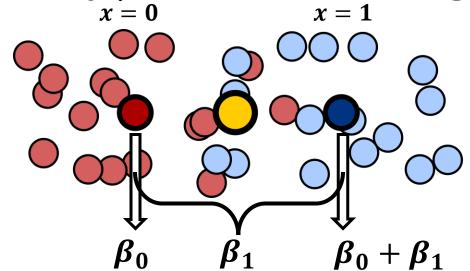
estimates of variation:

Fitted dispersion curve = expected dispersion for genes of a given level of expression (e.g., mean normalized count)



Model fitting and hypothesis testing

- Global mean
- Condition A sample
- Condition A group mean
- Condition B sample
- Condition B group mean



Step 4. Generalized Linear Model fit for each gene

$$y = \beta_0 + x_1 \beta_1$$

$$y = \beta_0 + 0 * \beta_1$$

$$y = \beta_0$$

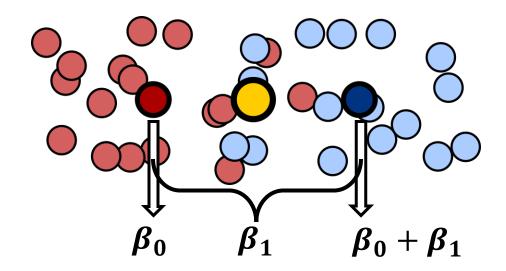
$$y = \beta_0 + 1 * \beta_1$$
.

$$y = \beta_0 + \beta_1$$

- y = normalized expression level
- β_0 = **intercept** (the estimated expression for the base level, condition A (red)
- x_1 = a binary indicator variable for (0 if part of the **red** group, 1 if part of the **blue** group)
- β_1 = coefficient for condition B (blue)
 - represents the difference between red and blue

Model fitting and hypothesis testing

- Global mean
- Condition A sample
- Condition A group mean
- Condition B sample
- Condition B group mean



Step 4. Generalized Linear Model fit for each gene

$$y = \beta_0 + \beta_1$$

$$y - \beta_0 = \beta_1$$

$$\log_2(expression_{blue}) - \log_2(expression_{red}) = \beta_1$$

$$\log_2(expression_{blue}) - \log_2(expression_{red}) = \beta_1$$

$$\log_2\left(\frac{expression_{blue}}{expression_{red}}\right) = \beta_1 \text{ "log_2 Fold Change"} \begin{vmatrix} \log_2 1 = 0 \\ \log_2 2 = 1 \\ \log_2 4 = 2 \end{vmatrix}$$

$$log_2 1 = 0$$

 $log_2 2 = 1$
 $log_2 4 = 2$

Specifying contrasts


```
contrast_U_R <- c("condition", "Urtica", "Ribes")
# extract the results for your specified contrast
Pca_res_table_U_R <- results(Pca_dds_filt, contrast=contrast_U_R)</pre>
```

$$\log_2\left(\frac{expression_{Ribes}}{expression_{Urtica}}\right) = \beta_1$$
 "log₂ Fold Change"

design = ~ condition

Output of DESeq2

log2 fold change (MLE): condition Urtica vs Ribes

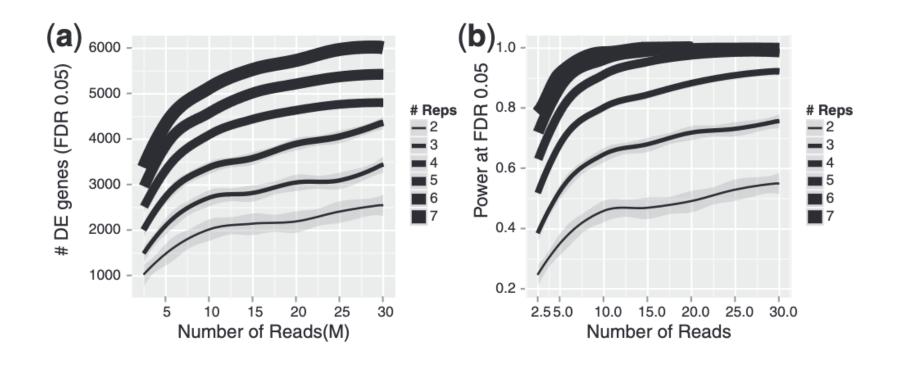
Wald test p-value: condition Urtica vs Ribes

DataFrame with 10253 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
Polcal_g10	89.7562	0.2644909	0.164662	1.606262	0.108216	0.248881
Polcal_g100	128.7307	0.0751998	0.120094	0.626174	0.531201	0.702218
Polcal_g1000	80.8697	-0.0682283	0.117253	-0.581890	0.560641	0.724417
Polcal_g10000	18.4347	0.0794954	0.237090	0.335296	0.737402	0.846199
Polcal_g10006	19.1902	0.4310584	0.295618	1.458158	0.144797	0.304659
• • •						
Polcal_g9993	15.1301	-0.181906	0.356393	-0.51041	0.6097642	0.7610362
Polcal_g9994	16.6881	0.402894	0.294354	1.36874	0.1710811	0.3409535
Polcal_g9996	84.0056	0.140555	1.025049	0.13712	0.8909358	0.9396940
Polcal_g9998	2.9282	-1.638792	0.745256	-2.19897	0.0278803	0.0941556
Polcal_g9999	4.0105	-1.006017	0.598296	-1.68147	0.0926717	0.2240950

- 1. baseMean: mean of normalized counts for all samples
- 2. log2FoldChange: log2 fold change
- 3. IfcSE: standard error
- 4. stat: Wald statistic
- 5. pvalue: Wald test p-value
- 6. padj: BH adjusted p-values use a pre-defined cutoff for significance

When can we detect differential expression?



What do we do with DE genes?

- Visualize expression levels, log₂ fold changes, and significance
- Identify up- and down-regulated genes
- Compare sets of DE genes
- Test for functional enrichment of DE gene sets

Differential gene expression

Part 2 Core tasks:

- Run a pairwise contrast
- Visualize differential expression with a volcano plot
- Extract the list of DE genes
- Visualize DE genes in a heatmap

Challenge exercises

Challenge questions

Open work time

Five more minutes!

5 minutes

Review

Part 3: functional annotation

Differential expression or clustering analysis can produce large gene sets.

How can we figure out the functional consequences of these differences?

Gene set enrichment analysis:

Do functional terms occur in the target gene set more than expected by chance?

GO terms

KEGG pathways

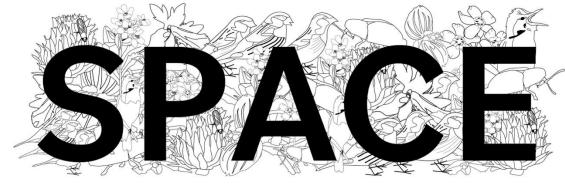
Reactome pathways

Opportunties

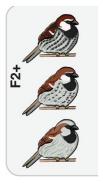
Interested in a postdoc? Write a grant with me!

Steward lab: The genomic and transcriptomic architecture of niche breadth, adaptation, and speciation

rachel.steward@biol.lu.se



SPECIATION ADAPTATION COEVOLUTION



Work with SPACE

Runemark lab: The role of novel patterns of gene expression in hybrid adaptation Birds, yeast and more!

anna.runemark@biol.lu.se

Friberg lab: Adaptive and non-adaptive drivers for diversification of complex characters **Scent and floral traits**

magne.friberg@biol.lu.se

Lozada-Gobilard lab: *Drivers of selection of flower traits in a spatio-temporal context.* **Floral color polymorphisms**

sissi.lozada gobilard@biol.lu.se

Links to other DE/DS tools

Tool	Use	Link to best resource
WGCNA (R package)	Weighted gene coexpression analysis groups genes into modules/clusters by expression patterns across samples	Horvath lab website: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
DEXSeq (R package)	Differential exon expression within the DESeq2 framework from exon count data	Vignette: https://bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
EdgeR (R package)	Differential expression analysis with differential exon expression functions from exon count data	User guide: https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
LeafCutter (python & R scripts)	Differential splicing analysis specifically focused on differential intron retention from junction count data	Github page: https://davidaknowles.github.io/leafcutter/
IsoformSwitchAnalyzer (R package)	Differential isoform usage from transcript count data	Vignette: https://bioconductor.org/packages/release/bioc/vignettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAnalyzeR.html
EBSeq	Bayesian differenital expression framework	Vignette: https://bioconductor.org/packages/release/bioc/vignettes/EBSeq/inst/doc/EBSeq_Vignette.pdf Github page: https://github.com/lengning/EBSeq

Median of ratios (MRN) normalization

Used by DESeq2 (DGE analysis tool we will use today)

Let's see how the normalization works...

Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

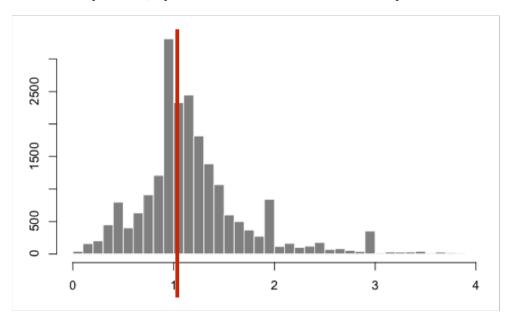
Gene	sampleA	sampleB	Pseudo-reference sample
EF2A	1489	906	sqrt(1489*906) = 1161.5
ABCD1	22	13	sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72

The figure below illustrates the median value for the distribution of all gene ratios for a single sample (frequency is on the y-axis).

sample 1 / pseudo-reference sample



The median of ratio methods makes the assumption that not ALL genes are differentially expressed; therefore, the normalization factors should account for sequencing depth and RNA composition of the sample (large outlier genes will not represent the median ratio values).

Step 3. Calculate the normalization factor for each sample (size factor)

Gene	sampleA	sampleB	Pseudo- reference sample	Ratio of sampleA/ref	Ratio of sampleB/ref
EF2A	1489	906	1161.5	1489/1161.5 = 1.28	906/1161.5 = 0.78
ABCD1	22	13	16.9	22/16.9 = 1.30	13/16.9 = 0.77
MEFV	793	410	570.2	793/570.2 = 1.39	410/570.2 = 0.72

median(c(0.78, 0.77, 0.72, 0.8, 0.73, ...)) = 0.77

Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene	sampleA	sampleB
EF2A	1489	906
ABCD1	22	13
	•••	

Normalized counts

Gene	sampleA	sampleB
EF2A	1489/1.3 = 1145.39	906/0.77 = 1176.62
ABCD1	22/1.3 = 16.92	13/0.77 = <mark>16.88</mark>

Normalized counts are not whole numbers!