Detecting signatures of positive selection

Literature for further reading (& sources of figures used here)

Oleksyk et al., 2010 (doi:10.1098/rstb.2009.0219)

Vitti et al., 2013 (doi:10.1146/annurev-genet-111212-133526)

Hoban et al., 2016 (10.1086/688018)

Weigand et al., 2018 (doi.org/10.1093/zoolinnean/zly007)

Koropoulis et al., 2020 (doi.org/10.1007/978-1-0716-0199-0_5)

Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions

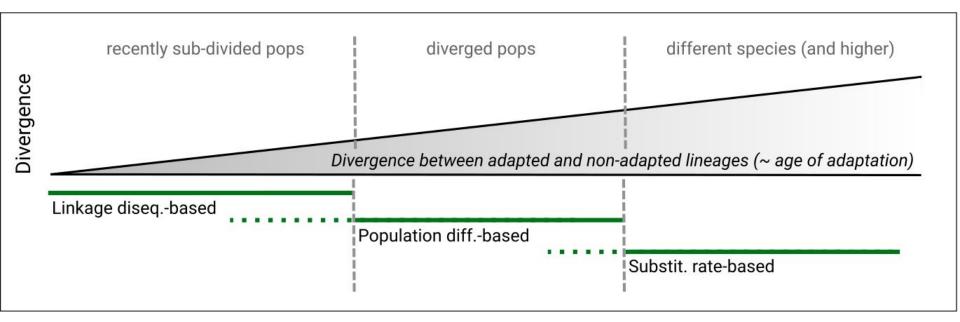
Sean Hoban, Joanna L. Kelley, Katie E. Lotterhos, Michael F. Antolin, Gideon Bradburd, David B. Lowry, Mary L. Poss, Laura K. Reed, Andrew Storfer, and Michael C. Whitlock

Eindin	Table 1: Approaches to identifying loci involved in local adaptation				
Findin	Approach	Data collected/resources required	What analysis reveals	Review articles/programs	
Solutic Sean Hoban	Genetic differentia- tion outlier tests	Genome-wide SNPs from multiple populations	Allele frequencies for a SNP or SNPs that are differentiated across populations above what is expected from neutrality	See table A1	
Andrew Sto	Genetic-environment association	Genome-wide SNPs from multi- ple populations and environ- mental data for each population	Alleles at a SNP or SNPs that are associated with environmental variables over space	See table A1	
	QTL mapping in a reciprocal trans- plant field experi- ment	Hybrids (F ₂ s, BCs, RILs, etc.) be- tween locally adapted popula- tions grown and phenotyped for fitness traits in reciprocal transplant common garden ex- periment	Use of hybrids allows identifying QTLs involved in local adapta- tion and the effect size of those QTLs on fitness; can resolve whether trade-offs at individual loci underlie local adaptation	Reviewed in Anderson et al. 2011; Savolainen et al. 2013	
	GWAS	Genome-wide SNPs from hundreds of individuals grown in one or multiple common gardens; phenotypes and/or fit- ness for each individual	Identifies SNPs that are associated with traits associated with fit- ness measured under field con- ditions	Key example study: Fournier- Level et al. 2011; commonly used: TASSEL (Bradbury et al. 2007); EMMA (Kang et al. 2008); GCTA (Yang et al. 2011)	
	Population-specific selective sweeps	Genome-wide SNPs from at least two populations and a recom- bination map	DNA sequences with longer-than- expected regions of extended haplotype homozygosity, which is consistent with a recent se- lective sweep in one of the populations	XP-EHH (Sabeti et al. 2007); hapFLK (Fariello et al. 2013)	

Lindin	Table 1: Approaches to identifying loci involved in local adaptation				
Findin	Approach	Data collected/resources required	What analysis reveals	Review articles/programs	
Solutic	Genetic differentia- tion outlier tests	Genome-wide SNPs from multiple populations	Allele frequencies for a SNP or SNPs that are differentiated across populations above what is expected from neutrality	See table A1	
Sean Hoban Andrew Sto	Genetic-environment association	Genome-wide SNPs from multi- ple populations and environ- mental data for each population	Alleles at a SNP or SNPs that are associated with environmental variables over space	See table A1	
	QTL mapping in a reciprocal trans- plant field experi- ment	Hybrids (F ₂ s, BCs, RILs, etc.) be- tween locally adapted popula- tions grown and phenotyped for fitness traits in reciprocal transplant common garden ex- periment	Use of hybrids allows identifying QTLs involved in local adapta- tion and the effect size of those QTLs on fitness; can resolve whether trade-offs at individual loci underlie local adaptation	Reviewed in Anderson et al. 2011; Savolainen et al. 2013	
	GWAS	Genome-wide SNPs from hundreds of individuals grown in one or multiple common gardens; phenotypes and/or fit- ness for each individual	Identifies SNPs that are associated with traits associated with fit- ness measured under field con- ditions	Key example study: Fournier- Level et al. 2011; commonly used: TASSEL (Bradbury et al. 2007); EMMA (Kang et al. 2008); GCTA (Yang et al. 2011)	
	Population-specific selective sweeps	Genome-wide SNPs from at least two populations and a recom- bination map	DNA sequences with longer-than- expected regions of extended haplotype homozygosity, which is consistent with a recent se- lective sweep in one of the populations	XP-EHH (Sabeti et al. 2007); hapFLK (Fariello et al. 2013)	

Selection scan design

Important aspects:


What is the **time frame** (macroevolution / **microevolution**)

What is the **scope of the comparison** (within / **among populations**)

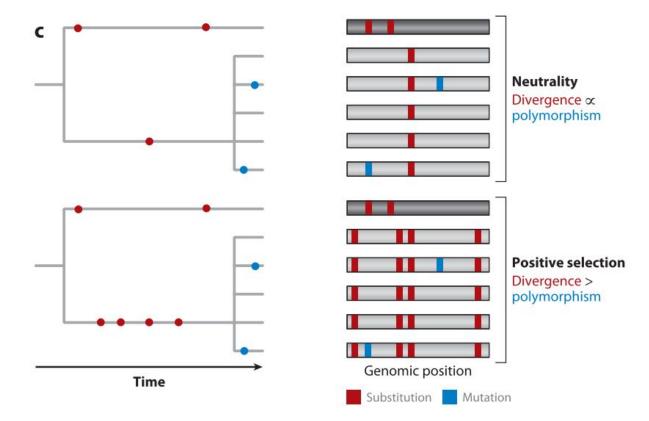
How are populations distributed across the environmental condition of interest (clinally / only at extremes)

What are your **data** (**individual-based resequencing** / phased / poolseq)

Time frame matters

Let's start the activity!

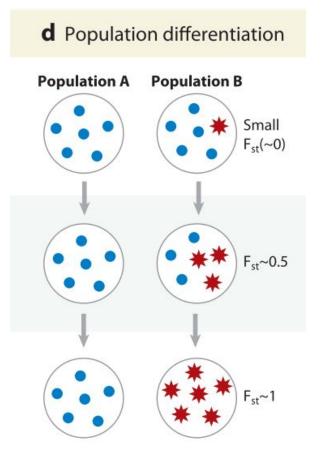
Macroevolution - substitution-based



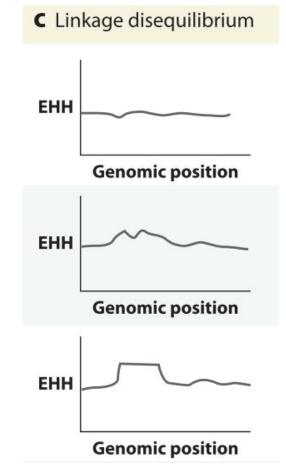
Ka/Ks (= dN/dS or ω)

Software PAML

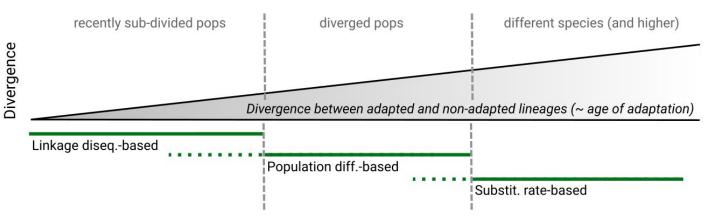
Input: (consensus) fasta


Macroevolution - substitution-based

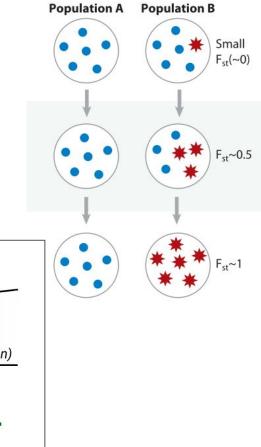
McDonald-Kreitman test


Microevolution - differentiation-based

- use of the focal adapted and "background" non-adapted populations
- Measures of differentiation:
 - Fst, Rho, Dxy, XtX,...
- Model-based test for excess differentiation
- **Software** BayPass, BayeScan, FLK,...
- Input: allele counts/frequencies, population-level sampling


Microevolution - linkage disequilibrium-based

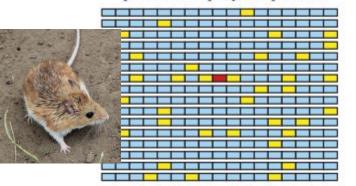
- High prevalence of longer (selected) haplotype
- Suitable for soft sweeps
- Integrated haplotype score (iHS), Cross-population extended haplotype homozygosity (XP-EHH),...
- Software: selScan
- Input: haplotypes, even single population is ok

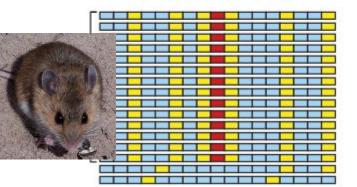


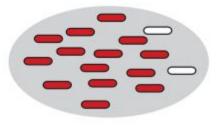
Differentiation-based scans:

- intuitive
- frequently used
- applicable to wide spectrum of divergences

d Population differentiation


"the most widely used descriptive statistics in population and evolutionary genetics"


- Combines genetic differentiation between populations and diversity within them.
- High values high differentiation between populations, low diversity within
- Between 0 1


Signal of positive selection in a gene

patterns of polymorphisms

population space

polyorphism

polyorphism

VI

How to design selection scan for your study - best practices

- Try to understand your species of interest Heritable difference? Mating system? Genetic diversity? Divergence between non-adapted and adapted populations?
- 2. Get familiar with available (up-to-date) methods they develop quickly!
- 3. Pick multiple (>1) complementary methods, i.e. Fst + LD-based + BayeScan
- 4. Available literature involving selection scans and simulations/functional validation might be good inspiration.
- 5. Re-analyze with multiple thresholds are the results consistent?
- 6. Visualize!!!

How to design selection scan for your study - best practices

7. Try to find as much as possible about your candidate genes - GO enrichment/KEGG pathways/protein-protein interaction/modeling the impact of changes on protein structure/detecting the origin of the selected allele,... Be creative!

8. Combine with QTL mapping/GWAS

9. Functional validation of your candidate genes is optimal - but laborious and often limited to model organisms