Transcriptomics

Brian Haas, Ph.D. Broad Institute

Workshop on Genomics, Cesky Krumlov, January 2025

Intro to Brian Haas

Education and Career History

BS,MS Molecular Bio DNA Repair SUNY Albany, New York

1991-1999

Cambridge, Massachusetts, USA

2007-current

Computational Biologist / Manager / Principal Computational Scientist

Ph.D. Bioinformatics / Boston University

The Institute for Genomic Research Rockville, Maryland, USA (1999-2007)

Bioinformatics Analyst & Engineer

MS. Computer Science / Johns Hopkins

Annotation and Analysis for Diverse Genomes and Transcriptomes

My Favorite Activity – Bioinformatics Tool Development and Applications

NAR, 2003

Bioinformatics, 2004

EVidenceModeler Genome Biology, 2008

Chimera Slayer Genome Research, 2011

STAR-Fusion Genome Biology, 2019

Nature Biotech, 2011 Nature Protocols, 2013

My Favorite Activity – Bioinformatics Tool Development and Application

Latest developments focused on cancer transcriptomics:

Overview of Trinity CTAT. Given cancer RNA-seq as input, Trinity CTAT provides modules for exploring characteristics of the cancer transcriptome (and cancer genome) including both genome-guided and genome-free analyses, targeting bulk or single-cell transcriptomes. Interactive visualizations and reports are provided to facilitate downstream analysis and for clinical review.

Transcriptomics Lecture Outline

- 1. Intro to transcriptomics
- 2. Transcript reconstruction methods
- 3. Genome-free transcriptomics (eg. for non-model orgs)
- 4. Expression quantification
- 5. Differential expression (brief more details in Rachel's workshop!)
- 6. Latest advancements in long read isoform sequencing
- 7. Overview of single cell transcriptomics
- 8. Overview of spatial transcriptomics
- 9. Applications in Cancer Transcriptomics

Part 1. Intro to Transcriptomics

https://www.simply.science/images/content/biology/genetics/molecular_genetics/conceptmap/Central_Dogma_of_Molecular_Biology.html

Primary mRNA molecules Often Undergo Splicing in Eukaryotes

Adapted from: https://cs.wikipedia.org/wiki/Splicing

Alternative Splicing – Multiple Products from Single Genes

- Core regulatory process diversifies the function of genes.
- Generates mRNAs that differ in coding sequence and UTRs. Effects:
 - Protein isoforms
 - Translation efficiency
 - Stability
 - Localization
 - Reading frame changes
- Estimated 90-95% of human genes undergo alternative splicing

Think of genes as protosentences

Gene: A catalytically $\frac{\text{active}}{\text{inactive}}$ kinase $\frac{\text{with}}{\text{without}}$ a NLS

Think of genes as protosentences

Gene: A catalytically $\frac{\text{active}}{\text{inactive}}$ kinase $\frac{\text{with}}{\text{without}}$ a NLS

Alternative splicing

From Aziz Al'Khafaji, Broad Inst.

Fully formed sentences ≈ mature mRNA

From Aziz Al'Khafaji, Broad Inst.

RNA isoform sequencing provides structural insight

From Aziz Al'Khafaji, Broad Inst.

Biological Investigations Empowered by Transcriptomics

Gene expression analyses ignore isoform variation

Need to resolve isoforms for deeper insights into cellular functions

Historical Timeline to Modern Transcriptomics (from 1970)

Modern Transcriptome Studies Empowered by RNA-seq

Personal Reflections...

Circa 1995

Generating RNA-Seq: How to Choose?

																1							-						4
Platform	iSeq Project Firefly 2018	MiniSeq	MiSeq	Next Seq 550	HiSeq 2500 RR	Hiseq 2500 V3	HiSeq 2500 V4	HiSeq 4000	HiSeq X	Nova Seq S1 2018	Nova Seq S2	Nova Seq S4	5500 XL	318 HiQ 520	lon 530	lon Proton P1	PGM HiQ 540	RS P6-C4	Sequel	R&D end 2018	Smidg ION RnD	Mini ION R9.5	Grid ION X5	Prome thION RnD	Prome thION theor etical	QiaGen Gene Reader	BGI SEQ 500	BGI SEQ 50	#
Reads: (M)	4	25	25	400	600	3000	4000	5000	6000	3300	6600	20000	1400	3-5	15-20	165	60-80	5.5	38.5					-		400	1600	1600	
Read length: (paired-end*)	150*	150*	300*	150*	100*	100*	125*	150*	150*	150*	150*	150*	60	200 400	200 400	200	200	15K	12K	32K							100*	50	
Run time: (d)	0.54	1	2	1.2	1.125	11	6	3.5	3	1.66	1.66	1.66	7	0.37	0.16		0.16	4.3				2	2	2			1	0.4	
Yield: (Gb)	1	7.5	15	120	120	600	1000	1500	1800	1000	2000	6000	180	1.5	7	10	12	12	5	150	4	8	40	2400	11000	80	200	8	
Rate: (Gb/d)	1.85	7.5	7.5	100	106.6	55	166	400	600	600	1200	3600	30	5.5	50		93.75	2.8				4	20	1200	5500		200	20	
Reagents: (\$K)	0.1	1.75	1	5	6.145	23.47	29.9						10.5	0.6		1	1.2	2.4		1		0.5	1.5			0.5			
per-Gb: (\$)	100	233	66	50	51.2	39.1	31.7	20.5	7.08	18	15	5.8	58.33			100		200	80	6.6		62.5	37.5	20	4.3				
hg-30x: (\$)	12000	28000	8000	5000	6144	4692	3804	2460	849.6	1800	1564	700	7000			12000		24000	9600	1000		7500	4500	2400	500		600		
Machine: (\$)	30K	49.5K	99K	250K	740K	690K	690K	900K	1M	999K	999K	999K	595K	50K	65K	243K	242K	695K	350K	350K			125K	75K	75K		200K		
#Page maintain	ned by h	http://tw	itter.cor	n/albert	vilella	http://tir	yurl.co	m/ngsly	tics #E	ditable	version	h: http://	/tinyurl.	com/ng	sspecs	shared													
#curl "https://docs		com/en	roadeho	ote/d/10	MMAthy	K0-08)	(klo3Vyl	Ma745	Mubl	140/10	AVIEXO	avport?	aid=48.fc	rmat=ce	av" I are	n	l gron -	· 'A"' 1 co	lumn -t -		2.0								_

Stats circa 2018

For current, see: <u>https://tinyurl.com/wbgcs65</u>

Illumina

PacBio

ONT

*Not all shown at scale

Maybe something fast and portable?

Oxford Nanopore Technology (ONT) Minion

A Plethora of Biological Sequence Analyses Enabled by RNA-Seq

Figure 2 | Transcriptome profiling for genetic causes and functional phenotypic readouts.

From Cieslik and Chinnaiyan, NRG, 2017

RNA-Seq is Empowering Discovery at Single Cell Resolution

Wagner, Regev, and Yosef. NBT 2016

Spatial Transcriptomics

Spatial Encoding

From "RNA sequencing: the teenage years" Rory Stark, Marta Grzelak & James Hadfield Nature Reviews Genetics volume 20, pages631–656(2019)

A Myriad of Other Specialized RNA-seq -based Applications

RNA-Sequencing as your lens towards biological discovery

RNase V1 (digests dsRNA) RNase S1 (digests ssRNA)

Adapted from "RNA sequencing: the teenage years" Rory Stark, Marta Grzelak & James Hadfield Nature Reviews Genetics volume 20, pages631–656(2019)

A Myriad of Other Specialized RNA-seq -based Applications

RNA-RNA interactions

RNA-seq Publication Trend

PLOS COMPUTATIONAL BIOLOGY

ex. Ribo-Zero

Expected Alignments http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

AAAAA

Expected Alignments http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

Part 2. Transcript Reconstruction Methods

RNA-Seq Challenge: Transcript Reconstruction

Adapted from: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Transcript Reconstruction from (short) RNA-Seq Reads

RNA-Seq reads

Transcript Reconstruction from (short) RNA-Seq Reads

Part 3. Trinity for Genome-free transcriptomics (eg. for non-model orgs)

Butterfly Example 1: Reconstruction of Alternatively Spliced Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Butterfly Example 2: Teasing Apart Transcripts of Paralogous Genes

Teasing Apart Transcripts of Paralogous Genes

Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly: ex. Forward != reverse complement (GGAA != TTCC) Biologically: separate sense vs. antisense transcription

Illumina TruSeq Stranded mRNA Kit:

Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe (fission yeast)

Antisense-dominated Transcription

Trinity is a Highly Effective and Popular RNA-Seq Assembler

Nature Biotechnology, 2011

Thousands of routine users.

>15k literature citations

Freely Available, Well-supported, Open Source Software

http://trinityrnaseq.github.io

nature protocols

Transcriptome Assembly is Just the End of the Beginning...

NATURE PROTOCOLS | PROTOCOL

De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis

Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan Weeks, Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D LeDuc, Nir Friedman & Aviv Regev

Affiliations | Contributions | Corresponding authors

Nature Protocols 8, 1494–1512 (2013) | doi:10.1038/nprot.2013.084 Published online 11 July 2013

Framework for De novo Transcriptome Assembly and Analysis

<u>2017</u>

Trinity output: A multi-fasta file

Double

0

44.4%

8.5

Name

Read depth

Text outline

>comp0 c0 seq1 len=5528 path=[1:0-3646 10775:3647-3775 3648:3776-5527]

TOCACTOCCATCATOTOGAGATACTACAGAGGACTATCCGTCCACAGGACGTAACTGAACCCGATTCCTCCTTGCAAAGTCTTGACTTGACTCAGGATCTCAGTAGAAAAAGCAGCAGGACTTCTTTTTTCAGTCT TCACAGTAACTGGACACCCAAAGGACAGAAATAGTCTCAACGAAGAAGACCAGAATTCTCTAGGACTGCGGGTCTTCACATTGCCATCTGTAAGTCTCTAAGAGGTCCCCTTTACATGTCCCGAAGAACACCTCT TOTO AGG TO TOTO AT A CARAGED CONSTRAINT CAN DE CONSTRAINT CONTRAINT CAN TE CAN THE CARAGED CONSTRAINT CARAGED CON AT CALCULAT A ANOTIC A SECTOR A CONTRACT OF CONTRACT AND A TCCTGCTGCCAGTTCCCTCTAAAACCAATGCCCTTGAGAACCTTTGCACAGAGATCTTTGTGTTTCTCAACAGTTTATCAGTTGCCATTATCATTCCATTATCAATGGCCCG

>comp0 c0 seq2 len=5399 path=[1:0-3646 3648:3647-5398]

ARTTGRATCCCTTTTTGTATCGRARASCTGRARGCATATACAGATGGATGGATGGATGGGATGGAAATATAATGCARATTAGAAAATTATGAAAATTGATGGAGGACGACGACGACGCCCCGGGTGTGG

Can visualize using Bandage

https://rrwick.github.io/Bandage/

IGV

() www.broadinstitute.org/igv/ C

search **Broad Home Cancer Program**

NEWS ne Expression Data

July 3, 2012. Soybean (Glycine max) and Rat (m5) genomes have been updated.

April 20, 2012. IGV 2.1 has been released. See the release notes for more details.

April 19, 2012. See our new IGV paper in Briefings in **Bioinformatics**.

Overview

Citing IGV

To cite your use of IGV in your publication:

James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. Nature Biotechnology 29, 24-26 (2011), or

Helga Thorvaldsdottir, James T. Robinson, Jill P. Mesirov. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

Can Examine Transcript Read Support Using IGV

00	T	X IGV	
<u>File Genomes view</u> Trinity.fasta		s Regions Tools Genomespace Help TRINITY_DN130_c0_g1_i1 \checkmark TRINITY_DN130_c0_g1_i1 Go $ \checkmark$ \triangleright $ \square$ $ \square$ $ \square$ $ \square$ $ \square$	_
			
		Transcript Sequence as Reference	
	pp	254 bp 100 bp 200 bp	•
GSNO_SRR1582647.bowtie.csor am Coverage GSNO_SRR1582647.bowtie.csor	rt [0	- 10.00]	
am GSNO_SRR1582646.bowtie.csor am Coverage	rt [0	- 10.00]	•
- GSNO_SRR1582646.bowtie.csor am	rt		-
GSNO_SRR1582648.bowtie.csor am Coverage GSNO_SRR1582648.bowtie.csor	rt ^{[0}	- 10.00]	-
am	. [0	- 10.00]	•
wt_SRR1582649.bowtle.csorted Coverage wt_SRR1582649.bowtle.csorted	a.		-
wt_SRR1582650.bowtie.csorted Coverage wt_SRR1582650.bowtie.csorted	d. [0		
wt_SRR1582651.bowtie.csorted Coverage wt_SRR1582651.bowtie.csorted	d. [0		
Sequence → 3 tracks loaded TRI	• INITY_	Ministration and a second s	:

Part 4. Expression Quantification

Calculating expression of genes and transcripts

Slide courtesy of Cole Trapnell

Calculating expression of genes and transcripts

Slide courtesy of Cole Trapnell

Normalized Expression Values

 Transcript-mapped read counts are normalized for both length of the transcript and total depth of sequencing.

Reported as: Number of RNA-Seq Fragments
Per Kilobase of transcript
per total Million fragments mapped
FPKM

RPKM (reads per kb per M) used with Single-end RNA-Seq reads FPKM used with Paired-end RNA-Seq reads.

Transcripts per Million (TPM)

$$TPM_{i} = \frac{FPKM_{i}}{\sum_{j} FPKM} *1e6$$

Preferred metric for measuring expression

- Better reflects transcript concentration in the sample.
- Nicely sums to 1 million

Linear relationship between TPM and FPKM values.

TPM

Both are valid metrics, but best to be consistent.

FPKM

Multiply-mapped Reads Confound Abundance Estimation

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads

Get original slide

Multiply-mapped Reads Confound Abundance Estimation

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads Use Expectation Maximization (EM) to find the most likely assignment of reads to transcripts.

Performed by:

- RSEM (genome-free)
- Kallisto, Salmon (alignment-free)

https://combine-lab.github.io/salmon/

Part 5. Differential Expression

Differential Expression Analysis Involves

- Counting reads mapped to features
- Statistical significance testing

Beware of small counts leading to notable fold changes

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	No
Gene B	100	200	2-fold	Yes

Variation Observed Between Technical Replicates

Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution

See: http://en.wikipedia.org/wiki/Poisson_distribution

Example: One gene*not* differentially expressed

Example: SampleA(gene) = SampleB(gene) = 4 reads

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences

No confidence in 2-fold difference. Likely observed by chance.

From: <u>http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for</u> and from supplementary text of Busby et al., Bioinformatics, 2013

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences

No confidence in 2-fold difference. Likely observed by chance.

From: <u>http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for</u> and from supplementary text of Busby et al., Bioinformatics, 2013

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences

No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

From: <u>http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for</u> and from supplementary text of Busby et al., Bioinformatics, 2013

Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per sample	Sample A Number of reads	Sample B Number of reads	P-value (Fishers Exact Test)
100,000	1	2	1
1,000,000	10	20	0.099
10,000,000	100	200	8.0e-09

Technical vs. Biological Replicates

RNA-Seq Technical replicates aren't essential

(Technical variation is well-modeled by the Poisson distribution)

"We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice **to sequence each mRNA sample only once**" Marioni et al., Genome Research, 2008

However, biological replicates *ARE* essential

total_variance = technical_variance + biological_variance

(Total variance well-modeled by negative binomial distribution)

"... **at least six biological replicates should be used**, rising to at least 12 when it is important to identify SDE genes for all fold changes." *Schurch et al., RNA, 2016*

DE analysis requires a counts matrix

Transcript_ID	Sample	Type A , 3 Bio re	eplicates	Sample	e Type B , 3 Bio re	plicates
TR24 c0_g1_i1	90.00	67.00	85.00	36.00	35.00	34.00
TR2779 c0_g1_i1	186.00	137.00	217.00	147.00	186.00	197.00
TR127 c1_g1_i1	9.00	23.00	16.00	2.00	0.00	1.00
TR2107 c1_g1_i1	59.00	65.00	47.00	6.00	6.00	7.00
TR2011 c5_g1_i1	11.00	4.00	4.00	8.00	5.00	7.00
TR4163 c0_g1_i1	368.00	422.00	425.00	172.00	216.00	210.00
TR5055 c0_g2_i1	36.00	17.00	27.00	4.00	7.00	3.00
TR1449 c0_g1_i1	196.00	230.00	207.00	66.00	113.00	91.00
TR1982 c2_g1_i1	7.00	7.00	6.00	4.00	3.00	8.00
TR1859 c3_g1_i1	0.00	0.00	1.00	0.00	0.00	0.00
TR1492 c0_g1_i2	1895.00	1906.00	1921.00	1104.00	1263.00	1319.00
TR1122 c0_g1_i1	2.00	3.00	0.00	3.00	0.00	0.00
TR2278 c0_g1_i1	497.00	610.00	598.00	333.00	406.00	413.00
TR4084 c0_g1_i1	95.00	148.00	86.00	77.00	111.00	127.00
TR4761 c0_g1_i1	2089.00	1746.00	1875.00	155.00	174.00	165.00
TR3638 c0_g1_i1	647.00	676.00	712.00	117.00	184.00	174.00
TR2090 c0_g1_i1	0.00	0.00	0.00	22.00	0.00	0.02
TR3854 c0_g1_i1	1878.00	1734.00	1864.00	1775.00	2173.00	2151.00
TR131 c0_g1_i1	32.00	28.00	31.00	1001.00	1233.00	1208.00
TR5075 c0_g1_i1	13.00	22.00	21.00	6.00	8.00	10.00
TR2182 c3_g2_i6	1.44	2.70	3.84	3.35	0.00	0.00
TR3788 c0_g1_i1	17.00	30.00	22.00	91.00	132.00	125.00
TR4859 c0_g1_i1	6.00	12.00	8.00	4.00	1.00	3.00
TR2487 c0_g1_i1	386.00	383.00	424.00	689.00	866.00	806.00
TR2122 c0_g2_i2	145.00	135.00	136.00	155.00	157.00	201.00
TR4277 c0_g1_i1	4466.00	4701.00	4284.00	118.00	134.00	164.00
TR4669 c0_g2_i1	0.00	0.00	0.00	209.00	0.00	217.50
TR3091 c0_g1_i1	22.00	17.00	19.00	250.00	308.00	284.00

Typical output from DE analysis

TTAUSCITUC TO	Transo	crip	t i	.d
---------------	--------	------	-----	----

...

TRINITY DN876 c0 q1 i1 TRINITY DN6470 c0 g1 i1 TRINITY DN5186 c0 g1 i1 TRINITY DN768 c0 g1 i1 TRINITY DN70 c0 g1 i1 TRINITY DN1587 c0 q1 i1 TRINITY DN3236 c0 q1 i1 TRINITY DN4631 c0 q1 i1 TRINITY DN5082 c0 g5 i1 TRINITY DN1789 c0 q3 i1 TRINITY DN4204 c0 g1 i1 TRINITY DN799 c0 g1 i1 TRINITY DN196 c0 q2 i1 TRINITY DN5041 c0 g1 i1 TRINITY DN1619 c0 g1 i1 TRINITY DN899 c0 g1 i1 TRINITY DN324 c0 g2 i1 TRINITY DN3241 c0 g1 i1 TRINITY DN4379 c0 g1 i1 TRINITY DN1919 c0 g1 i1 TRINITY DN2504 c0 q1 i1

logFC
-7.15049572793027
-7.26777912190146
-7.85623682454322
7.72884741150304
-12.7646078189688
-5.89392061881667
-7.27029815068473
-7.45310693639574
-5.33154406167545
10.2032564835076
4.81030233739325
-4.22044475626154
4.60597918494257
-4.27126549355785
-4.47156415953777
-4.90914328409143
4.87160837667488
-4.77760618069256
3.85133572453294
4.05998814332136
-6.92417817059644

logCPM 10.6197708379285 7.03987604865422 9.18570464327063 9.7514619195169 7.86482982471445 9.07366563894607 8.02209568234202 6.91664918183241 10.6977538760467 7.32607652700285 9.88844409410644 6.9937398638711 9.86878463857276 9.70894399883 9.22535948721718 7.93768691394594 6.84850312231775 7.94111259715689 7.23712813663389 6.95937301668582 6.20370039359785

0 1.687485656951e-287 1.17049180235068e-278 4.32504881419265e-272 3.92853491279431e-253 6.32919557933429e-243 3.64955175271959e-235 4.30540921272851e-229 2.74243356676259e-225 1.44273728647186e-213 9.27180216086162e-205 1.24746518421083e-197 1.9819997623131e-192 1.8930437900069e-185 1.76766063029526e-181 1.11054513767547e-180 2.20092562166991e-179 1.60585457735621e-173 3.48140532848425e-164 1.8588621194715e-161 2.42022459856956e-160

PValue

0 6.46813252309319e-284 2.99099671894011e-275 8.28895605240022e-269 6.02322972829624e-250 8.08660221852944e-240 3.99678053376405e-232 4.1256583780971e-226 2.33594396920022e-222 1.10600240380933e-210 6.46160321501501e-202 7.96922341846683e-195 1.16877001368402e-189 1.03657669244235e-182 9.03392426122899e-179 5.32089939088761e-178 9.92487989160089e-177 6.83915621667372e-171 1.4046554341137e-161 7.12501850393425e-159 8.83497227268296e-158

FDR

Up vs. Down regulated

Avg. expression level

Tools for DE analysis with RNA-Seq

edgeR	ROTS
ShrinkSeq	TSPM
DESeq	DESeq2
baySeq	EBSeq
Vsf	NBPSeq
Limma/Voom	SAMseq
mmdiff	NoiSeq
cuffdiff	Sleuth

(italicized not in R/Bioconductor but stand-alone)

See: http://www.biomedcentral.com/1471-2105/14/91

A comparison of methods for differential expression analysis of RNA-seq data Soneson & Delorenzi, 2013

Part 6. Latest advancements in long read isoform sequencing

Some transcripts can be challenging to reconstruct from short reads

- Complex alternative splicing (many isoforms)
- Very long RNAs (ex. Titin up to 36 kb)
- Transcripts containing repetitive sequences

Transcript Reconstruction or Expression Analysis can be Quite Difficult at Complex Loci

Too complex... don't guess from short reads, use long reads.

Long Read Isoform Sequencing via PacBio MAS-Iso-Seq (Kinnex)

Editorial | Published: 12 January 2023

Method of the Year 2022: long-read sequencing

The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing

Info on error rates for long reads – impressive!!

https://nanoporetech.com/accuracy

https://www.pacb.com/technology/hifi-sequencing/

- 99% 99.9%
- Q20 Q30

Inflection point for LR transcriptomics

Long reads for Single Cell Transcriptomes!!

PacBio HiFi Sequencing

60

PacBio HiFi Sequencing

Multiplexed Array Sequencing (MAS-Seq)

>15-fold increase in throughput

Technical validation using RNA isoform standards

SIRVs (Spike-in RNA Variant Control Mixes) are synthetic gene isoforms

SIRVS serve as truth dataset to evaluate MAS-seq's ability to accurately identify RNA isoforms.

Long-read sequencing accurately identify RNA isoform standards

Transcript Reconstruction from (Long) RNA-Seq Reads

Part 7. Overview of Single Cell Transcriptomics

The Quintessential "Fruit Smoothie Metaphor" for Bulk RNA-seq

From: https://perkinelmer-appliedgenomics.com/2022/02/15/single-cell-rna-seq-intro/

Step 1: Break down tissue to single cells (or nuclei)

Can also extract and sequence nuclei instead of whole cells – popular in neurobiology

Examples of Different Popular Classes of Single Cell Sequencing

full length of the RNA molecule.

Picelli et al., Nature Protocols, 2014

Unique Molecular Identifier (UMI)

Single Cell Transcriptome Sequencing Methods

~400 cells ea.

~3000 cells ea.

Averaged counts of UMIs and Genes per cell by method

Based on Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

~400 cells ea.

~3000 cells ea.

Averaged counts of UMIs and Genes per cell by method

Based on Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Based on Ding et al., NBT 2020

10x Genomics Chromium Single Cell Transcriptome Sequencing

https://www.10xgenomics.com/platforms/chromium

Analysis Workflow for Single Cell Transcriptomics

Reference genome

- Align reads to the reference genome
- Collapse PCR duplicates (by UMIs)

	Cell1	Cell2		CellN
Gene1	3	2		13
Gene2	2	3		1
Gene3	1	14		18
	.			
	.	•	•	
	.			•
GeneM	25	0		0

- Build a {Gene X Cell} UMI counts matrix
Single Cell Transcriptomics Data Processing Workflow

Gene 'count' matrices for single cell data tend to be very large and very sparse

eg. 25k genes x 100k cells

(almost all zeros - no reads detected)

Various processing needed:

- Which cells are 'good' cells? vs dying/stressed cells, doublets, or empty droplets?

- possibly remove confounding cell cycle signatures from expression data.

- Multiple experiments/replicates - batch correction?

In Silico Removal of Ambient RNA

(by Cellbender)

Phenomenology of ambient RNA

Nucleus extraction

Cell Markers and Read Quantities by Cell Type

In Silico Removal of Ambient RNA

(by Cellbender)

Phenomenology of ambient RNA

Cell dissociation

Nucleus extraction

CellBender

https://github.com/broadinstitute/CellBender

Metrics for Filtering Cells – Keep the Good Ones

Exclude cells with high mitochondrial RNA content

Batch Correction for Single Cell Transcriptomes

Figure 3. UMAP visualization before and after batch correction.

Cells are coloured by sample of origin. Separation of batches is clearly visible before batch correction and less visible afterwards. Batch correction was performed using ComBat on mouse intestinal epithelium data from Haber et al (2017).

1

0 0

2

1

Integrating scRNA-seq data sets based on common sources of variation

Aligned using Seurat via canonical correlation analysis (CCA) Butler et al., Nature Biotech, 2018

Finally, Single Cell Data Exploration and Biological Discovery

Popular Software Packages for Single Cell Transcriptome Studies

Tutorials

Clustering

For getting started, we recommend Scanpy's reimplementation \rightarrow tutorial: pbmc3k of Seurat's [^cite_satija15] clustering tutorial for 3k PBMCs from 10x Genomics, containing preprocessing, clustering and the identification of cell types via known marker genes.

Visualization

This tutorial shows how to visually explore genes using scanpy. → tutorial: plotting/con

Trajectory inference

Get started with the following example for hematopoiesis for data of [^cite_paul15]: → tutorial: paga-paul15

F. Alexander Wolf, Philipp Angerer & Fabian J. Theis, Genome Biology, 2018; Isaac Virshup: lead developer since 2019

Vignettes 🗸	Extensions	FAQ	News	Reference	Archive	Fron
Introductory Vignettes						Rahul Sa
PBMC 3K guided tutorial						
Data visualiz	ation vignette					lab
SCTransform	, v2 regularizat	ion				
Using Seurat	with multi-mod	lal data			1	
Seurat v5 Command Cheat Sheet						
Data Integratio	on				1	
Introduction	to scRNA-seq ii	ntegratio	n		E	
Integrative analysis in Seurat v5						
Mapping and annotating query datasets						
Multi-assay da	ta					
Dictionary Learning for cross-modality integration						
Weighted Nearest Neighbor Analysis						
Integrating scRNA-seq and scATAC-seq data						
Multimodal r	eference mappi	ing			1	
Mixscape Vig	nette					
Massively scala	able analysis				1	
Sketch-based	l analysis in Seu	irat v5			ł	
Sketch integration using a 1 million cell dataset from Parse Biosciences						
Map COVID	PBMC datasets	to a heal	thy referer	nce		
BPCells Inter	action					
Spatial analysis						
Analysis of spatial datasets (Imaging-based)						
Analysis of spatial datasets (Sequencing-based)						
Other						
Cell-cycle scoring and regression						

Differential expression testing

Demultiplexing with hashtag oligos (HTOs)

n itija's

Gene expression ≠ transcript expression

But – long isoform reads to the rescue!!

From Aziz Al'Khafaji, Broad Inst.

Long read scRNA-seq (scMAS-lso-seq) of tumor infiltrating CD8 T cells

CD45 T-cell Marker Isoform expression resolved via long reads

Perform MAS-Iso-seq on the 10x sc libraries to get long isoform reads at single cell resolution

Al'Khafaji et al., Nature Biotechnology, 2023

Cataloguing Cell Types and Building Cell Atlases

Tabula Muris

Tabula Drosophila

Tabula Drosophilae. In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and >250 cell types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body. All data are freely available for visualization and download, with featured analyses shown at the bottom right.

Characterize the ~37 trillion cells in the human body

HCA is a global initiative of > 3k members

Initially targeting 18 biological networks of organs and tissues

https://www.humancellatlas.org/

Single cell analysis is revolutionizing cancer research

From Li, Jin, & Bai, Protein & Cell, 2022

Clinical Application for Tumor Single Cell Transcriptomics

From Kuksin et al, EJC, 2021

Part 8. Overview of Spatial Transcriptomics

Method of the Year: spatially resolved transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.

Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too. Credit: bjdlzx/Getty Images

Vivien Marx

Method of the Year: spatially resolved transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.

Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too. Credit: bjdlzx/Getty Images

Vivien Marx

Single Cells vs. Spatial Transcriptomics

Car parts ~ single cells

Car ~ tissue

Classes of Spatial Transcriptomics

Imaging Readout

Sequencing Readout

Based on In Situ Hybridization (ISH) and fluorescent tags

Classes of Spatial Transcriptomics

Imaging Readout

Based on In Situ Hybridization (ISH) and fluorescent tags

Sequencing Readout

Single Molecule Fish (smFISH) Methods for Visualizing RNA Molecules at Sub-cellular Resolution

a Long probe, many labels b Shorter probes, fewer labels C Many probes, single label ea.

Target: hunchback RNA in Drosophila embryo

Target: single transcripts in mammalian cells

e

Target: end-1 gene in C.elegans embryos

Rolling circle amplification (RCA) of 'padlock probes'.

Branched oligo sets that amplify labeling

Target: ERBB2 (green) and 18SrRNA (red)

Itzkovitz & van Oudenaarden, Nature Methods Supplement, 2011

https://vizgen.com/technology

Movie: https://www.youtube.com/watch?v=O0QekKSscjA

10X Genomics Xenium – 100s to 1000s of Targeted RNAs visualized at subcellular resolution

https://www.10xgenomics.com/videos/s3lqk4sivj?autoplay=true

Classes of Spatial Transcriptomics

Imaging Readout

Based on In Situ Hybridization (ISH) and fluorescent tags

Sequencing Readout

Spatial RNA-seq – 10X Visium HD

Spatial RNA-seq – 10X Visium HD

Integration of Single Cell and Spatial Transcriptomes

Longo, NRG, 2021

Slide-Tags: integrated single nuclei and spatial transcriptomics

UMAP and cell types, expression-based clustering

Cells plotted according to spatial coordinates, colored by cell types

Spatial Expression of Marker Genes

In situ hybridization (Allen Mouse Brain Atlas)

Russell et al., Nature 2023, PMID: 38093010

Part 9. Applications in Cancer Transcriptomics

RNA-Seq Empowers Transcriptome Studies of Cancer

Cancer Transcriptome Analysis Toolkit (CTAT)

Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

Diagnostics and Therapeutics Involving Oncogenic Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)

- Chronic Myelogenous Leukemia (CML) cases (95% of cases)
- Treatable with tyrosine kinase inhibitors

SS18—SSX

- Synovial sarcoma (~100% of cases)

TMPRSS2-ERG

Prostate cancers (50% of cases)

EML4-ALK

- Non small cell lung carcinoma (4% of cases)
- anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome

DNAJB1-PRKACA

 Fibrolamellar hepatocellular carcinoma (FL-HCC), 100% of cases, but a rare cancer.

FGFR3-TACC3

~8% of glioblastoma patients

Diagnostics and Therapeutics Involving Oncogenic Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)

- Chronic Myelogenous Leukemia (CML) cases (95% of cases)
- Treatable with tyrosine kinase inhibitors

SS18—SSX

- Synovial sarcoma (~100% of cases)

TMPRSS2-ERG

- Prostate cancers (50% of cases)
- EML4-ALK
 - Non small cell lung carcinoma (4% of cases)
 - anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome

DNAJB1-PRKACA

 Fibrolamellar hepatocellular carcinoma (FL-HCC), 100% of cases, but a rare cancer.

FGFR3-TACC3

~8% of glioblastoma patients

General Approaches to Fusion Transcript Discovery

General Approaches to Fusion Transcript Discovery

Align *reads* to the genome, Identify discordant pairs and junction/split reads.

General Approaches to Fusion Transcript Discovery

Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector

Adapting TrinityFusion and FusionInspector to Long Read Fusion Detection

New Addition to our **Cancer Transcriptome Analysis Toolkit:** <u>CTAT-LR-fusion</u> (borrows general approach from TrinityFusion and FusionInspector, adapted for LR)

New Addition to our **Cancer Transcriptome Analysis Toolkit:** <u>CTAT-LR-fusion</u> (borrows general approach from TrinityFusion and FusionInspector, adapted for LR)

CLINICAL LABS

CTAT-LR-Fusion Interactive Reports for Visualization and Analysis

Single Cell MAS-Iso-seq Applied to T-cell Enriched Melanoma Patient Sample

Long and Short scRNA-seq

- ~ 20M PacBio MAS-Iso-seq reads
- ~ 200M Illumina 10x 3' reads
- ~ 7k Total cells (10% cancer cells)

Brief Communication | Published: 08 June 2023

High-throughput RNA isoform sequencing using programmed cDNA concatenation

Aziz M. Al'Khafaji [⊠], Jonathan T. Smith, Kiran V. Garimella [⊠], Mehrtash Babadi [⊠], Victoria Popic [⊠], Moshe Sade-Feldman, Michael Gatzen, Siranush Sarkizova, Marc A. Schwartz, Emily M. Blaum, Allyson Day, Maura Costello, Tera Bowers, Stacey Gabriel, Eric Banks, Anthony A. Philippakis, Genevieve M. Boland, Paul C. Blainey [⊠] & Nir Hacohen [⊠]

Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4

Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4

Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by highthroughput full-length single-cell RNA sequencing in ovarian cancer

Arthur Dondi, Ulrike Lischetti 🖾, Francis Jacob, Franziska Singer, Nico Borgsmüller, Ricardo Coelho, Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel 🏧 & Niko Beerenwinkel 🖾

Nature Communications 14, Article number: 7780 (2023) Cite this article

Patient 1:

- 54M PacBio Isoform reads
- 35M Illumina 10x 3' reads
- ~500 cells (20% cancer)
- 4 cancer-specific fusions detected

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by highthroughput full-length single-cell RNA sequencing in ovarian cancer

Arthur Dondi, Ulrike Lischetti 🖾, Francis Jacob, Franziska Singer, Nico Borgsmüller, Ricardo Coelho, Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel 🖾 & Niko Beerenwinkel 🖾

Nature Communications 14, Article number: 7780 (2023) Cite this article

Patient 1:

- 54M PacBio Isoform reads
- 35M Illumina 10x 3' reads
- ~500 cells (20% cancer)
- 4 cancer-specific fusions detected

In Summary

- Many applications for RNA-seq, technology continues to evolve.
- Analysis can involve reference genomes or be genome-free via de novo transcriptome assembly Trinity can help.
- Quantification involves counting reads and considering read-mapping uncertainty
- Long reads now available for applications previously limited to short reads, involve far less read mapping uncertainty, and enable isoform rather than gene expression analyses.
- Single cell and spatial transcriptomics studies are revolutionizing our understanding of tissue complexity, diversity of cell types, and cellular interactions particularly in studies of cancer.
- Massive resources being built whole organism cell atlases and high-resolution spatial maps, and new software tools and algorithms developed for leveraging long reads in bulk, single cell, and spatial studies.