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Leo Breiman’s Two Cultures
the logic of data analysis

NatureX y
input parameters response variables

L. Breiman, Statistical Science (2001)



Data Modeling Culture

Stochastic processX y

98% of Statistics

Focus on stochastic model to explain 
how f(x)-> y 

Leo Breiman’s Two Cultures

e.g. linear regression



Algorithmic Modeling Culture 
(machine learning)

UnknownX y
input parameters response variables

SVMs 
random forests 
neural networks

Ignore probabilistic generative model f(x)-> y 

Leo Breiman’s Two Cultures



Machine Learning!

These guys don’t 
have generative model



Discriminitive vs Generative 
Models



Supervised Machine Learning

x1

x2

We are using a Support Vector Machine (SVM)

Training data



Supervised	Machine	Learning
Given a set of N training (i.e. known, labelled) examples:

we define a learning function:

e.g.

then simply minimize a chosen risk function:

and a loss function:

e.g.

feature vector class label



Supervised	Machine	Learning
Support Vector Machines

general learning function:

x1

x2

minimize

simplest form =  “Hard Margin” 
i.e. all training points correctly classified

subject to,

LOTS of variations on this e.g. soft margins, kernel trick for non-linear



Supervised	Machine	Learning
Support Vector Machines

x1

x2

Image recognition via SVM



Decision Trees and Random 
Forests



From decision trees to extra trees
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From decision trees to extra trees
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From decision trees to extra trees
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decision trees have low 
bias but suffer from 
high variance 



From decision trees to extra trees

…
Make large collection (bag) of trees 

1)bootstrapping training examples

2)bootstrapping features

3)randomly assigning threshold

Majority Vote  
(or mean)

}
R

andom
 Forests }

Extra trees

bagging overcomes 
variance problem!



Some of Our Research

Computational Evolutionary Genetics
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toy neural network
Input Layer Hidden Layer Output Layer

X h OWh Wo

Feed-forward

O = f( f(X ⋅ Wh + bh) ⋅ Wo + bo)
think of it like stacked linear regressions



Organisms live in space

Song sparrow

Training set Predict locations of 
new genomes?



Space is the Place

From Bradburd and Ralph (2019)



Space is the Place
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Locator— (deep) learning space



Locator— (deep) learning space
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Locator— (deep) learning space
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Locator— (deep) learning space

Humans - HGDP



Estimating σ



Estimating σ

Classic result 

Rousset’s method— fit this regression, slope is approx 
1

4Nπσ2

Isolation by distance

Ramachandran et al.

BUT
 

need to know local N!



disperseNN

disperseNN works really well, particularly at small sample size
(assume perfect knowledge of N or perfect IBD tract for other me)



disperseNN

disperseNN sensitive to misspecification but can train our way out of it (mostly)

Population density
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Figure 3: Column 1. Cartoons of unknown parameters that may lead to model misspecification. Column 2.
The unknown parameter was fixed during training, but testing was performed on data with di↵erent values
of the parameter. Column 3. The unknown parameter was varied during training, and testing was performed
on data from the same distribution. Column 4. The unknown parameter was varied during training, but
testing was performed on out-of-sample values, i.e., larger values than were seen during training. The dashed
lines are y = x. Outliers greater than 3 are excluded from the fixed-habitat-size plot. “Train: P” and “Pred:
P” refer to the Parameter Sets used for training and testing, respectively. MRAE is the mean relative
absolute error. All analyses used samples of n = 100 individuals. (⇤The third row has a separate baseline
MRAE, 0.09, due to using a smaller carrying capacity, which was chosen to alleviate computation time.)
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disperseNN

Empirical estimates from diverse set of organisms



disperseNN

But dispersal need not be homogenous across space!



disperseNN
when dispersal and density vary across space? How does the rate of spread of a beneficial
mutation depend on spatial demography? How can we most effectively add layers of abiotic
variables to spatial population genetic simulations? And how can we use environmental DNA
for spatial demographic inference? These research avenues are important steps towards fully
leveraging genomic data for population biology. I am also interested in collecting additional
empirical datasets available online for exploring the evolution of dispersal across diverse taxa.
For example, I am fascinated by the following research questions: Is there a trade-off between
dispersal and population density? Does dispersal vary with latitude? And how conserved is
dispersal distance within a clade?
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Figure 1: (a) Diagram showing geographically-indexed DNA sequences, the inputs for my inference program.
Each sequence represents a sampled individual shown in its geographic position. (b) Planned output map
with estimated population density surfaces, or dispersal surfaces, that vary across space. (c) Ground-truth
dispersal maps for preliminary analysis; four different maps are shown. White surfaces encode low-dispersal
parts of the habitat, grey is medium dispersal, and blue is high dispersal. Maps like these were used to
simulate populations with a continuous-space model, which produced DNA sequences and sample locations
used as input for my neural network. (d) Predicted dispersal maps using only ten individual genomes sampled
uniformly from each map (preliminary results).
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Predicting maps of dispersal with an segmentation network



disperseNN

Den
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when dispersal and density vary across space? How does the rate of spread of a beneficial
mutation depend on spatial demography? How can we most effectively add layers of abiotic
variables to spatial population genetic simulations? And how can we use environmental DNA
for spatial demographic inference? These research avenues are important steps towards fully
leveraging genomic data for population biology. I am also interested in collecting additional
empirical datasets available online for exploring the evolution of dispersal across diverse taxa.
For example, I am fascinated by the following research questions: Is there a trade-off between
dispersal and population density? Does dispersal vary with latitude? And how conserved is
dispersal distance within a clade?

A 
T 
C 
G 
A 
T 
C 
G 
A 
T 
T 
A 
T 
T 
C 
G

A 
T 
C 
G 
C 
T 
C 
G 
A 
T 
C 
G 
A 
T 
C 
G

A 
T 
C 
G 
A 
T 
C 
G 
A 
T 
C 
G 
A 
A 
C 
G

A 
T 
C 
G 
A 
T 
C 
G 
T 
T 
C 
G 
A 
T 
C 
G

A 
T 
C 
G 
C 
T 
C 
G 
T 
T 
C 
G 
A 
T 
C 
G

(a) (b)

(c) (d)

Figure 1: (a) Diagram showing geographically-indexed DNA sequences, the inputs for my inference program.
Each sequence represents a sampled individual shown in its geographic position. (b) Planned output map
with estimated population density surfaces, or dispersal surfaces, that vary across space. (c) Ground-truth
dispersal maps for preliminary analysis; four different maps are shown. White surfaces encode low-dispersal
parts of the habitat, grey is medium dispersal, and blue is high dispersal. Maps like these were used to
simulate populations with a continuous-space model, which produced DNA sequences and sample locations
used as input for my neural network. (d) Predicted dispersal maps using only ten individual genomes sampled
uniformly from each map (preliminary results).
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Predicting maps of dispersal with an segmentation network



disperseNN
when dispersal and density vary across space? How does the rate of spread of a beneficial
mutation depend on spatial demography? How can we most effectively add layers of abiotic
variables to spatial population genetic simulations? And how can we use environmental DNA
for spatial demographic inference? These research avenues are important steps towards fully
leveraging genomic data for population biology. I am also interested in collecting additional
empirical datasets available online for exploring the evolution of dispersal across diverse taxa.
For example, I am fascinated by the following research questions: Is there a trade-off between
dispersal and population density? Does dispersal vary with latitude? And how conserved is
dispersal distance within a clade?
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Figure 1: (a) Diagram showing geographically-indexed DNA sequences, the inputs for my inference program.
Each sequence represents a sampled individual shown in its geographic position. (b) Planned output map
with estimated population density surfaces, or dispersal surfaces, that vary across space. (c) Ground-truth
dispersal maps for preliminary analysis; four different maps are shown. White surfaces encode low-dispersal
parts of the habitat, grey is medium dispersal, and blue is high dispersal. Maps like these were used to
simulate populations with a continuous-space model, which produced DNA sequences and sample locations
used as input for my neural network. (d) Predicted dispersal maps using only ten individual genomes sampled
uniformly from each map (preliminary results).
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Predicting maps of dispersal with an segmentation network



The promise of machine 
learning



The promise of machine 
learning



The promise of machine 
learning



Common pitfalls of machine 
learning

1. Not enough data



Common pitfalls of machine 
learning

2. Biases in the training set



Common pitfalls of machine 
learning

2. Biases in the training set



Common pitfalls of machine 
learning

3. Out of sample prediction doesn’t work well



Common pitfalls of machine 
learning

4. Fragile classifiers



Maybe not all good?

huge potential societal impacts



Maybe not all good?

huge potential societal impacts



Maybe not all good?

huge potential societal impacts



Generative ‘AI’



Generative ‘AI’



Generative ‘AI’

Large Language Model - LLM


Transformer architecture shown




Generative ‘AI’
ChatGPT


