Evomics Machine Learning

Andrew Kern University of Oregon

Leo Breiman's Two Cultures

the logic of data analysis

L. Breiman, Statistical Science (2001)

Leo Breiman's Two Cultures

Data Modeling Culture

e.g. linear regression

Focus on stochastic model to explain how f(x)-> y

98% of Statistics

Leo Breiman's Two Cultures Algorithmic Modeling Culture (machine learning)

Ignore probabilistic generative model f(x)-> y

Machine Learning!

These guys don't have generative model

Discriminitive vs Generative Models

	Discriminative model	Generative model		
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$		
What's learned	Decision boundary	Probability distributions of the data		
Illustration				
Examples	Regressions, SVMs	GDA, Naive Bayes		

We are using a Support Vector Machine (SVM)

Given a set of N training (i.e. known, labelled) examples:

$$\begin{array}{c} \{(x_1, y_1), \dots, (x_N, y_N)\} \\ \uparrow & \uparrow \\ \text{feature vector } \mathbb{R}^M & \text{class label } y \in \{-1, 1\} \end{array}$$

we define a learning function:

$$g:X\to Y \quad \text{e.g.} \quad g(x)=P(y|x)$$

and a loss function:

$$L:g(x)\times Y\to \mathbb{R}^{\geq 0}$$
 e.g. $L(g(x),y)=\mathbbm{1}(g(x)\neq y)$

then simply minimize a chosen risk function:

$$R(g) = \frac{1}{N} \sum_{i} L(y_i, g(x_i))$$

Support Vector Machines

general learning function:

$$g(\boldsymbol{x}) = sign(\boldsymbol{w}^T\boldsymbol{x} - b)$$

simplest form = "Hard Margin"
i.e. all training points correctly classified

minimize $||m{w}||$ subject to, $y_i(m{w}^Tm{x_i}-b) \geq 1$

LOTS of variations on this e.g. soft margins, kernel trick for non-linear

Support Vector Machines

Decision Trees and Random Forests

Some of Our Research

Computational Evolutionary Genetics

toy neural network

Feed-forward

$O = f(f(X \cdot W_h + b_h) \cdot W_o + b_o)$

think of it like stacked linear regressions

Organisms live in space

Space is the Place

From Bradburd and Ralph (2019)

Space is the Place

Genealogical Ancestors by Neighborhood Size

Humans - HGDP

Estimating σ

Genealogical Ancestors by Neighborhood Size

Estimating σ

Isolation by distance

Classic result

BUT

need to know local N!

disperseNN works really well, particularly at small sample size (assume perfect knowledge of N or perfect IBD tract for other me)

disperseNN sensitive to misspecification but can train our way out of it (mostly)

Species	Common name	Region	σ	95% CI	Previous	N_{loc}	n	S	M. dist.
			(km)	(km)	(km)			(km)	
Zosterops borbonicus	Réunion grey white-eye	Réunion	4.97	(1.76, 13.83)	NA	295	41	62	4.59
Peromyscus leucopus	white-footed mouse	New York	0.77	(0.32, 1.67)	0.03 - 0.11	-231	12	38	8.15
Anopheles gambiae	African malaria mosquito	Cameroon	10.29	(2.00, 48.03)	0.04 - 0.5	52	29	278	9.62
Bombus bifarius	two-form bumble bee	Washington	14.75	(5.60, 37.28)	1.2-5	$1,\!147$	14	273	10.47
Bombus vosnesenskii	yellow-faced bumble bee	California	7.70	(1.21, 38.11)	1.2-5	3,944	18	169	11.83
Hippoglossus hippoglossus	Atlantic halibut	Canada	4.29	(0.71, 33.85)	NA	-5,546	11	193	14.59
Crassostrea virginica	eastern oyster	Canada	1.52	(0.72, 4.31)	21.9	$1,\!435$	13	187	19.69
Canis lupus	grey wolf	N. America	15.68	(2.36, 107.3)	98-147	35	13	721	25.42
Helianthus petiolaris	prairie sunflower	Kansas	1.00	(0.39, 3.52)	0.156	9	11	204	45.28
Zosterops olivaceus	Réunion olive white-eye	Réunion	1.05	(0.27, 4.36)	NA	2,392	10	50	45.97
Helianthus argophyllus	silverleaf sunflower	Texas	1.04	(0.38, 4.08)	0.156	57	30	307	86.49
Arabidopsis thaliana	thale cress	Spain	1.36	(0.28, 5.05)	0.001	35	35	80	198.25
Arabidopsis thaliana	thale cress	Sweden	0.44	(0.20, 0.93)	0.001	84	84	325	428.17

Empirical estimates from diverse set of organisms

Dispersal inference from population genetic variation using a convolutional neural network

Chris C. R. Smith, D Silas Tittes, Peter L. Ralph, Andrew D. Kern doi: https://doi.org/10.1101/2022.08.25.505329

But dispersal need not be homogenous across space!

Predicting maps of dispersal with an segmentation network

Predicting maps of dispersal with an segmentation network

Predicting maps of dispersal with an segmentation network

The promise of machine learning

Ehe New York Eimes

How Artificial Intelligence Could Transform Medicine

In "Deep Medicine," Dr. Eric Topol looks at the ways that A.I. could improve health care, and where it might stumble.

THE WALL STREET JOURNAL. Home World U.S. Politics Economy Business Tech Markets Opinion Life LIFE & ARTS | IDEAS | THE SATURDAY ESSAY **The Human Promise of the AI Revolution** Artificial intelligence will radically disrupt the world of work, but the right policy choice:

Artificial intelligence will radically disrupt the world of work, but the right policy choice: contract.

The promise of machine learning

Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning

Weicheng Kuo^a, Christian Häne^a, Pratik Mukherjee^b, Jitendra Malik^{a,1}, and Esther L. Yuh^{b,1}

^aElectrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; and ^bDepartment of Radiology and Biomedical Imaging,

The promise of machine learning

Fig. 5. Examples of multiclass segmentation by the algorithm and by an expert. (A–C) Small left holohemispheric subdural hematoma (SDH, green) and adjacent contusion (purple). (*D*–*F*) Small right frontal and posterior parafalcine SDH and anterior interhemispheric fissure SAH (red). (*G*–*I*) Small bilateral tentorial and left frontotemporal SDH (green) and subjacent contusions (purple) and SAH (red), in addition to shear injury in the left cerebral peduncle (purple). (*J*–*L*) Small parafalcine SDH (green) with surrounding SAH (red). (*M*–*O*) Several small right frontal areas of SDH (green) with subjacent contusion (purple) and SAH (red). (*P*–*R*) Small left tentorial and left anterior temporal SDH (green) and right cerebellopontine angle SAH (red). (*A*, *D*, *G*, *J*, *M*, and *P*) Original images. (*B*, *E*, *H*, *K*, *N*, and *Q*) Algorithmic delineation of hemorrhage with pixel-level probabilities >0.5 colored in red (SAH), green (SDH), and contusion/ shear injury (purple). (*C*, *F*, *I*, *L*, *O*, and *R*) Neuroradiologist segmentation of hemorrhage.

1. Not enough data

Facial Recognition Is Accurate, if You're a White Guy

Gender was misidentified in **up to 1 percent of lighter-skinned males** in a set of 385 photos.

Gender was misidentified in **35 percent of darker-skinned females** in a set of 271 photos.

2. Biases in the training set

Trending

Google apologizes after app mistakenly labels black people 'gorillas'

2. Biases in the training set

Gender was misidentified in **35 percent of darker-skinned females** in a set of 271 photos.

3. Out of sample prediction doesn't work well

4. Fragile classifiers

Maybe not all good?

China brings in mandatory facial recognition for mobile phone users

Ministry claims change will 'protect the legitimate rights and interest of citizens in cyberspace' but critics say it's dystopian

huge potential societal impacts

Maybe not all good? Researchers foil people-detecting AI with an 'adversarial' T-shirt

KYLE WIGGERS @KYLE_L_WIGGERS OCTOBER 29, 2019 7:59 AM

VB TRANSF

The Al even business lea

Hosted Onlin July 15 - 17

Learn More

huge potential societal impacts

Maybe not all good?

Q Search

📜 Cart (0) Check Out

huge potential societal impacts

Generative 'AI'

DALL·E

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

Generative 'AI'

ChatGPT

-;ó;-	4	Ń			
Examples	Capabilities	Limitations			
"Explain quantum computing in simple terms" →	Remembers what user said earlier in the conversation	May occasionally generate incorrect information			
"Got any creative ideas for a 10 year old's birthday?" →	Allows user to provide follow-up corrections	May occasionally produce harmful instructions or biased content			
"How do I make an HTTP request in Javascript?" →	requests	Limited knowledge of world an events after 2021			

Generative 'Al'

Large Language Model - LLM

Transformer architecture shown

Generative 'AI'

ChatGPT

