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An early modern human from Romania with 3 recent
Neanderthal ancestor

Qiaomei Fu'?3* | Mateja Hajdinjak**, Oana Teodors Moldovan?, Silyiy Constantin®, Swapan Mallick?®7 Pontus Skoglund?,
Nick Patterson®, Nadin Rohland?, losif Lazaridis?, Birgit Nickel®, Bence Viola®"$, Kay Priifer?, Matthias Meyer?, Janet Kelso?,
David Reich®*® & Svante Pisibg?

Neanderthals are thought to have disappeared in Europe approxi- We report genome-wide data from a modern human mandible,
mately 39,000-41,000 years ago but they have contributed 1-3% of (age 1, found in 2002 in the Pegtera cu Qase, Romania. The age of

Oase, Romania. Although the specimen contains small amounts of humans in Europe. Its morphology is generally modern but some
human DNA, we use an enrichment strategy to isolate sites that are aspects are consistent with Neanderthal ancestry” 2!, Subsequent
informative about jts relationship to Neanderthals and present-  excavations uncovered a cranium from another, probably contempor-
day humans. We find that on the order of 6-9% of the genome of aneous individual, Oase 2, which also carries morphological traits that
the Oase individual js derived from Neanderthals, more than any could reflect admixture with Neanderthals'”'*,

other modern human Sequenced to date. Three chromosomal seg- We prepared two DNA extracts from 25 mg and 10 mg of bone
ments of Neanderthal ancestry are over 5( centimorgans in size, powder removed from the inferior right ramus of Oase 1. We treated

recently as four to six generations back. However, the Oase indi. glycosylase (UDG), an enzyme that removes uracils from the interior
vidual does not share more alleles with later Europeans than with parts of DNA molecules, but leaves a proportion of uracils at the ends
East Asians, suggesting that the Oase Population did not contrib- of the molecules unaffected. Uracil residues occur in DNA molecules
ute substantially to later humans in Europe. as a result of deamination of Cytosine residues, and are particularly

Between 45,000 and 35,000 years 480, anatomically modern prevalent at the ends of ancient DNA molecules®?. Among the DNA
humans spread across Europe, while the Neanderthals, presentsince  fragments sequenced from these two extracts, 0.18% and 0.06%,
before 300,000 years ago, disappeared. How this process occurred respectively, could be mapped to the human reference genome, We

Neanderthals. The size of segments of Neanderthal ancestry in  jzation to DNA probes to isolate human DNA fragments from the 4:216-219
present-day humans Suggests that this occurred between 37,000 libraries®, Applying this strategy to the mitochondria] genome
and 86,000 years ago®. However, where and how often this occurred  allowed the mitachow du: 1 v 20 B
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Native particular present-day individuals from different populations using

n American D-statistics, which provides a robust estimate of admixture almost
regardless of how SNPs for analysis are chosen”. We find that
Oase 1 shared more alleles with present-day East Asians and Native
Americans than with present-day Europeans, counter to what might
naively be expected for an ancient individual from Europe (Fig. 1)

""" X % (52 =|Z| =64 Extended Data Table 1). However, it has been sug-
X X gested that Europeans after the introduction of agriculture derive a
part of their ancestry from a ‘basal Eurasian’ population that separated
from the initial settlers of Europe and Asia before they split from
each other’®. Therefore, we replaced present-day Europeans with
Palaeolithic and Mesolithic European individuals in these analyses.
We then find that the Oase 1 individual shares equally many alleles
with these early Europeans as with present-day East Asians and Native

. ,\o}‘@ Qo°°k &b\k X ,\é‘@ Americans (Fig. 1) (|Z] = 1.5in Extended Data Table 1). Restricting this
N3 S *_o"\o N4 analysis to transversion polymorphisms, which are not susceptible to
.+ Eurasians before agriculture errors induced by cytosine deamination, does not influence this result

(Extended Data Table 2 and Supplementary Note 3). This suggests that

se 1 individual and other genomes.  the Oase 1 - dividual belonged to a population that did not contribute
he Oase 1 genome shares alleles with - much, or notat all, to later Europeans. This contrasts, for example, with
ifferent populations indicated above  the ~36,000-39,000-year-old Kostenki 14 individual from western
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 libraries. Of the SNPs targeted, indicating that he carries more Neanderthal-like DNA than present-
by at least one DNA fragment,and  day people (5.0 = |Z| = 8.2; Extended Data Table 3). We also observe
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stimate nuclear DNA contamina-  pare him to four early modern humans: an 8,000-year-old individual
A fragments with or without evid-  from Luxembourg, and three individuals from Russia who vary in age
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MOLECULAR ECOLOGY ,
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*Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA, +Centro de Investigaciones
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AEM University, TAMU, College Station, TX 77843, USA, $Max Planck Institute for the Biology of Aging, D-50931, Cologne,

Germany, YLewis-Sigler Instityte for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
Abstract
A rapidly increasing body of work is revealing that the genomes of distinct Species
often exhibit hybrid ancestry, Presumably due to postspeciation hybridization between
ted

closely rela species. Despite the growing number of documented cases, we still
know relatively little about how genomes evolye and stabilize following hybridization,
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d KEGG pathway analysis using
¢ al. 2009). For both GO and KEGG
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vere used in the analysis. For GO
sed biological process, molecular

e tal Ae and tested

tail genomes were ~1.5%
tus reference (see Supporting information 1 for proof of

principle in mapping to a divergent reference). Average
pairwise sequence divergence (Dy,) between the sam-
pled individuals ranged from 0.1% between the two
X. nezahualcoyotl individuals to 0.65% for X. montezu-
mae-X. cortezi (see Table S2, Supporting information for
pairwise comparisons). The two X. nezahualcoyotl indi-
viduals, sampled from different populations, differed
considerably in levels of per site nucleotide heterozy-
gosity, 0.025-0.08%. Notably, X. montezumae and the
X. nezahualcoyotl (Gallitos) exhibit remarkably low levels
of polymorphism (Table 1).

Analysis of whole-genome concatenated alignments
with RAXML resulted in a high confidence species tree
with 100% bootstrap support for all internal nodes
(Fig. 2). This species tree places the two X. nezahualcoy-

otl samples sister to X. montezumae (Fig. 2), as previ-
e e o am W s 21 N1 72)
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sets with the exact number of regions as the focal data
set, we randomly sampled region sizes from the focal
data set and continued to sample null regions until we
reached the number of genes observed in the focal data
set. We repeated the analyses described above on these
data sets and asked whether null data sets generated
fewer or less significantly enriched GO terms than the

real data.

Results

Genome sequencing and species tree

Average genomewide depth coverage of the four
sequenced swordtail genomes ranged from 21 to 41x
(Table S1, Supporting information). All northern sword-
tail genomes were ~1.5% diverged from the X. macula-
tus reference (see Supporting information 1 for proof of
principle in mapping to a divergent reference). Average
pairwise sequence divergence (Dy,) between the sam-
pled individuals ranged from 0.1% between the two
X. nezahualcoyotl individuals to 0.65% for X. montezu-
mae-X. cortezi (see Table S2, Supporting information for
pairwise comparisons). The two X. nezahualcoyotl indi-
viduals, sampled from different populations, differed
considerably in levels of per site nucleotide heterozy-
gosity, 0.025-0.08%. Notably, X. montezumae and the
X. nezahualcoyotl (Gallitos) exhibit remarkably low levels
of polymorphism (Table 1).

Analysis of whole-genome concatenated alignments
with RAXML resulted in a high confidence species tree
with 100% bootstrap support for all internal nodes
(Fig. 2). This species tree places the two X. nezahualcoy-

otl samples sister to X. montezumae (Fig. 2), as previ-
e e o am W s 21 N1 72)
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set, we randomly sampled region sizes from the focal
data set and continued to sample null regions until we
reached the number of genes observed in the focal data
set. We repeated the analyses described above on these
data sets and asked whether null data sets generated
fewer or less significantly enriched GO terms than the

real data.

Results

Genome sequencing and species tree

Average genomewide depth coverage of the four

sequenced swordtail genomes ranged from 21 to 41x

(Table S1, Supporting information). All northern sword-

tail genomes were -1.5% diverged from the X. macula-
tus reference (see Supporting information 1 for proof of
principle in mapping to a divergent reference). Average
pairwise sequence divergence (Dy,) between the sam-
pled individuals ranged from 0.1% between the two
X. nezahualcoyotl individuals to 0.65% for X. montezu-
mae—X. cortezi (see Table S2, Supporting information for
pairwise comparisons). The two X. nezahualcoyotl indi-
viduals, sampled from different populations, differed
considerably in levels of per site nucleotide heterozy-
gosity, 0.025-0.08%. Notably, X. montezumae and the
X. nezahualcoyotl (Gallitos) exhibit remarkably low levels
of polymorphism (Table 1).

Analysis of whole-genome concatenated alignments
with RAXML resulted in a high confidence species tree
with 100% bootstrap support for all internal nodes
(Fig. 2). This species tree places the two X. nezahualcoy-

otl samples sister to X. montezumae (Fig. 2), as previ-
e e o am W s 21 N1 72)
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WHEAT GENOM E wheat gene trees (15); and, most importantly, the
lack of genome sequences of the hexaploid bread

wheat and its cloge diploid relatives. Improved

AnCient hybridizations among the understanding of the phylogenetic relationships

among the diploid species of wheat and the bread
wheat subgenomes is important for understand-
anceStr al genomes Of b r ead Wheat ing genome function and for future agricultural

Crop improvement in light of a changing global

Thomas Marcussen," Simen R. Sandve,'*+ Lise Heier,” Manuel Spannagl,? climate (76).
Matthias Pfeifer,” The International Wheat Genome Sequencing Consortium,i
Kjetill S. J akobsen,* Brande B. 1. Wulff,” Burkhard Steuernagel,® Gene tree top ology analyses
Klaus F, X. Mayer,? Odd-Arne Olsen! We used the genome sequences of hexaploid
bread wheat subgenomes (denoted TaA, TaB, and
The allohexaploid bread Wheat genome consists of three closely related subgenomes TaD) and five diploid relatives (T" monococcum,
- (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. T. urartu, Ae. sharonensis, Ae, speltoides, and
We used genome assemblies of bread wheat and five diploid relatives to analyze Ae. tauschii) (7,17, 18) to generate a genome-wide
genome-wide samples of gene trees, as well as to estimate evolutionary relatedness sample of 275 gene trees and to estimate the phy-
and divergence times. We show that the A and B genomes diverged from a common logenetic history of the A, B, and D genome lin-
ancestor ~7 million years ago and that these genomes gave rise to the D genome through | eages. Barley (Hordeum vuigare), Brachypodium
homoploid hybriqg Speciation 1 to 2 million years later. Our findings imply that the distachyon, and rice (Oryza sativa) were used as
Present-day bread wheat genome is a product of multiple rounds of hybrid speciation outgroup species. To generate multiple alignments
(homoploid and polyploid) and lay the foundation for a new framework for understanding | of ortholog genes, we employed a phylogeny-
the wheat genome as 3 multilevel phylogenetic mosaic. aware strategy (19), which simultaneously filters

alignments for unreliably aligned codon sites and

putative erroneously predicted ortholog sequen-
he rise of modern agriculture and wheat | is thought to have originated with modern agri- | ces (fig. S1and supplementary materials and meth-
domestication in the Fertile Crescent culture ~10,000 years ago (4). The time of origin ods). Finally, we used BEAST (20) to calculate
~10,000 years ago (I-4) was pivotal in | for hexaploid bread wheat is currently supported gene trees topologies,
shaping modern human history. Early farm- solely by archeological evidence (2, 3) and the We found that the basal relatedness among
ing practices made use of wild diploid wheat apparent absence of hexaploid wheats in wild | the three lineages A, B, and D varied substan-
species (i.e., Aegilops and Triticum species), but populations (4), Although the relatedness be- tially among the 275 gene trees, with the lineage
as agriculture evolved, wild Crops were gradu- | tween the bread wheat subgenomes and diploid topologies A(B,D) and B(A,D) each being about
ally substituted with domesticated diploid and wheat species has been well documented (8, 10), twice as common as D(A,B) (Fig. 1A and Table 1).
polyploid wheat varieties (3, 4). Presently, the | 1 clear understanding of the phylogenetic history Stochastic Population genetic processes typically
allohexaploid bread wheat (Triticum aestivum, | and divergence times among the three A, B, and cause incomplete lineage sorting (ILS), which
2n=6r=42 chromosomes; genomic code AABBDD) | D genome lineages is still lacking (9, 11-13). This results in topological discordance (i.e., varia-
dominates global wheat production. Because Knowledge 8ap is mainly a consequence of the | tion in topology) among individual gene trees.
of its economic value and the desire for its ge- paucity of Triticeae fossils (74), which has pre- | For three taxa under ILS alone, the gene tree
netic improvement, questions concerning the evo- vented investigations of diversification through topology that equals the species tree topology
lution and domestication of wheat have been time; extensive topological discordance between | g expected to be more common than the other
under intense scientific scrutiny (5, 6).

The bread wheat subgenomes A, B, and D were A . R

originally derived from three diploid (2z; 27 = 14) o '
species Within tribe Tritinana r . . 2 =0= 1%
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substitution model, whereas topologies excluding diploids were taken from A

ge topologies in gene trees. Analyses
IWGSC (7) and represent maximum likelihood topologies under the GTR+I+G

s: diploid genomes only (2x). hexaploid

> genomes or gene trees from individual model. Bold numbers represent the largest topology group. The likelihood _
ips within the A. D, and B clades are not ratio test was used to test the probability (P) of observing the data under the
jes diploids. Topologies including diploids model of multispecies coalescent and the (conservative) assumption that the ,
C sampling using the HKY+G nucleotide most common observed tree topology equaled the species tree topology. 7]
0 A-
Observed Proportion of Parental Likelihood - + o A-g
ample topologies genes with deep contributions ratio S O B-D
coalescence inD test P 6 — [0)
Av(BvD) Bv(AvD) Dv(A'B) A B (0) 1 + + +

e genome* 112 100 63 0.69 043 0.57 0.0036% 7] o) ?

e genomet 109 101 65 0.71 045 0.55 0.0050% L ]

le genome 107 105 63 0.69 0.49 0.51 0.0058% y " " 5 0} ‘#

le genome 786 909 574 0.76 0.61 0.39 84 x 107°% o ¢#

Chr. 1 109 137 78 0.72 0.66 0.34 0.0238 1 B

Chr. 2 131 191 106 0.74 0.77 0.23 0.10 o i

Chr. 3 111 141 69 0.65 0.63 0.37 0.0016% B 4 5

Chr. 4 121 102 82 0.81 0.34 0.67 0.14 Chrom 6 -

Chr. 5 127 129 ol 0.79 0.52 0.49 0.0158 Osome All

Chr. 6 99 17 74 0.77 0.63 0.37 0.057 .

9 Coalescent-b
Chr. 7 - 88 -92 74 0.87- 0.56 044 0.27 Mclian of Bayes.':sed 8enome divergence 3
occum, excluding T. urartu. tA lineage represented by T. urartu, excluding T. monococcum. 1Significant at P < 0.0l ‘Whvesi : N MCMC sampling i nalyses. Coal .
&esian hierarchical model pling in BEAST. Genome d_eSCence times were esti
R times (mean, 950 Crz Cfhrough WinBUGS and t Ivergence estimates Wergi::f, a;
e

ibility intery. e R20penBUG
es. A-B, blu:-,)A f_ODf the genome nneagesiRga;kage (35).(A)
aploid wheat genor-nred. B-D, green. (B) G'en'o nd D for 2269
endently for each .es. Node age s given as me divergence
ndant tips “1 pair of species re as mean genome
. age is given as Presenting that node. Fo
. For

pan from - the me
the lowest minimal to the hiagrr],égtr all relevant pairwise
maxi

.,exc‘ludin.g diploid speci
! ydmg diploid and hex
d timated ingd
] e

more than two decep

mosome position in the hexaploid genome using | and B genomes, giving rise to the D genome. Ge-
-antly [P < 0.01; the in silico gene order predictions from the bread nome divergence times did not support the more
ble 1)] from this wheat genome sequence (7). Such positional in- complex models of hybridization patterns, as sug-

presence of phy- formation can be used to investigate whether gested by the topology analyses assuming two

ILS in the data. | different regions of the genome have distinct phy- hybridization events (table S4). Furthermore,

cep coalescence, logenetic signals—that is, conserved chromosome the majority of the analyses produced slightly
ently formed mo- blocks from the parental genomes. Homeologs | younger divergence of A and D lineages compared N Sre not considered i

ybserved lineage

gs of their close within gene trees showed highly conserved syn- with B and D lineages (Fig. 2A and Table 2),
never with each | tenic relationships (fig. S3); however, anchoring | indicating that gene flow from A to D may have Table 2, Estimat el . line )
logous gene con- of gene tree topologies to chromosome positions persisted after gene flow from B to D had ceased. as 95% credibility ,-hf~ Te divergence times. Al i age divergence
ecombination as | in bread wheat did not support the presence of The identification of hybridization events in ;_:’f“_?s:nt the summan‘z - All ag ., nates are given in units of
| topological dis- larger chromosome blocks with a single paren- phylogenies strongly depends on taxon sam- -1aA diver At 2 = ence a of million ye
£ individual chro- | tal origin (7), indicating a relatively homogeneous pling. Nevertheless, given that the hybridization S'OidiZation tlgrsgsc ch: Cioﬂzi At-TaD divergence ;cr:few ‘cal Bayesian mo;jstgzig ::et; € At-TaD d?(/e?:;sfg signatures of hybrid ancest
of a copsiderably hybrid signal throughout the D subgenome. event happened basally in the 'I‘.ritic'um/Ae.gilops T' ead wheat were not sam e' fact that the true anc:;(f ected to be overestimate an plus median, The ;?te fm"{ A and B linea ZOf the wheat D Jip-
m likelihood gene . . clade and that the 15 extant diploid species all riticum monococcum: T: Pled. Species names ral populations to the A S of the actual pol . .Omy Is bread whe &€ ancestors (Fig. 3)
. °. | Genome divergence times seem to fall within one of the three lineages A, B, no data. - 1aA. T. aestivum A sub are abbreviated as follo and D subgenomes Y~ | l1zation and allopo] at a product of hybriq
N | e ey the huhridization pattern is likely genome: TaD, T. aestivum Dvgbgin/qeg’bps tauschii Tn:,n i;gB’ and D genom;p E)L:?I:Jatio]? involving thc;
-~ ome. Dashes indicate an €s of these three , S0 the ancestral lin-
cestral hyb §enomes are
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Maximum likelihood inference of reticulate
evolutionary histories

Yun Yy?1 Jianrong Dong?, Kevin J. Liu®®, 3nd Luay Nakhlgh?a-b-1

such groups are reticulate, and methogs for reconstructing them owever, this method jg based on the maximum parsimony

are still in their Infancy and have limited applicability. we Present  criterion It seeks g phylogenetic network that minimjzeg the

a maximum 'IkellhOOd method for mferrmg reticulate evolutlonary number of extra jlneages resu]tlng from embeddlng the set
Istories while accounting snmultaneously for Incomplete lineage of gene tree topologies within its branches

sorting. Additionally, we Propose methods for assessing confi- Progress with Phylogenetic network inference notwithstandin

reticulate evolution | incomplete lineage sorting | phylogenetic networks |

mouse (Mus musculus) genomes, The analysis yielded g well-
supported evolutionary history with two hybridization events,
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