
Best Practices in Handling Genomic Data

Dag Ahrén
Lund University Sweden

Cooking

National Bioinformatics Infrastructure Sweden

Umeå

Stockholm

Uppsala

Linköping

Göteborg

Lund

~120 staff at six
different sites across

Sweden with
expertise in many
different omics-

related areas

Genomic Ecology

Tomas Larsson
Auguste de Pennart

Claudia Tocco

Marie Dacke

Dag Ahrén

NGI
Olga Vinnere Petterson
Christian Tellgren-Roth

Genome project of the dung beetle
Kheper lamarcki

IG Nobel Prize
Marie Dacke,
Eric Warrant
Emily Baird

IG Nobel prize

Let’s start cooking!

Ingredients

• Reproducible research

• Tools for reproducibility

• Special requests?

• Lab

Reproducible
research,
FAIR and
Data management

Data management plan

https://dmponline.dcc.ac.uk/

https://dmponline.dcc.ac.uk/
https://dmponline.dcc.ac.uk/
https://dmponline.dcc.ac.uk/

Why important?

To be able to rerun
analyses

Assist when publishing

Increase the usability of
the data and results

. . .

Your future self will thank
you!!!

My thoughts…

Set realistic goals

Share and help each other
& give positive feedback
(e.g. github repository)

My goal today is to make
all of this a little bit easier!

Technical bits

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

Backup

• Get an off-site backup for your raw data as soon as it arrives

• Make sure metadata is backed up with the raw data

• Once initial QC is complete, submit raw data to a data
repository (with embargo)

• Get frequent backups of scripts

• Backup intermediate results
rsync -Pa

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

File & Project

structure

Organise your project!

File names

• Use extentions to guide you (.txt .csv .fastq)

• Name files so that it is easy to understand and describe where
it comes from (AT1_R1_trimmed.fq)

• Avoid any label that implies order relative to other files
(Final1.txt UltraFinal.txt This_is_my_Final_Final_version2.txt)

File names

My take on a strategy
(but with support from
literature)

Totally fine if you have
another strategy…

… but remember that chaos
does not count as a strategy!!

Project

Good descriptive name of project, e.g ArcticMetagenome2025

• Include information about the goal and reasoning for the
project README

• Data

• Analysis

• Docs

• Scripts

• Progs

Data

Read-only, raw data and meta data
> chmod -R 555 Data
This is an exact COPY of the data at the start of the project

Make a symbolic link to the raw data
Name the link something that is easy for you!

ln -s /data/runs/run42/SAMPLE_00123_L001_R1_001.fastq.gz \

K_lamarcki_brain_sampleA_lane1_R1.fastq.gz

Note: Keep a backup at a separate location
Submit raw data to public repository early, with embargo

Docs

Put documentation (e.g R markdown, Quarto, Notes etc)

Scripts

Scripts, such as sbatch, bash, R scripts etc

Progs

Store software installed
manually

Keep a record of software &
versions

Analysis
Make a separate folder for each
analysis.

1.raw_data is a symbolic link:

ln -s source destination

So you have a Project and File structure

Where do we go from here?

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

File & Project

structure
Version control

Work reproducibly

• Ten simple rules for Reproducible Computational Research
(Sandve et al, 2013)

1. Track how results were produced (Quarto, Markdown,
Juypiter notebook)

2. Avoid manual data manipulation

3. Archive/document all external software used. Versions!! (e.g.
conda, R yml files)

4. Version control custom scripts (conda, markdown git/github)

5. Make it all available! (github)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285

Version control

Git & Github

What is Git?
Git is a free and open source distributed version control system
designed to handle everything from small to very large projects
with speed and efficiency.

What is GitHub?
GitHub is a web page were git repositories can be shared. It is a
essentially social platform for code. Good for most things that fit
with Git.

Git is distributed

Basic git workflow

Shortlist of the most useful terms in git

status
stage (add)
commit
push

pull
clone
branch

Recommendations when committing to the
repository

• Commit on a regular basis, ideally when one set of work has
been performed and tested.

• Write short descriptive comments to each commit

Best practices when publishing

• Use git tag to tag a specific version that was submitted:
 git tag ”submission1”

 git switch -d submission1

 git add config.yml

 git commit -m "Increase number of reads”

 git tag "revision-1"

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

File & Project

structure
Version control

Package

manager

Conda

Package and environment manager

• Install software with dependencies

• Avoid dependency issues

• Save the software versions and dependencies in a file

Conda commands

conda create -n project_A

conda env list

conda activate project_A

conda info –envs

conda install -c bioconda sra-tools

Save the environment software and dependencies to a file

conda env export > project_A_condaenv.yml

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

File & Project

structure
Version control

Package

manager
Workflow Container

Other tools for reproducible science

• Workflows such as Snakemake & Nextflow

• Containers Docker & Apptainer

Take home messages

Do not try to do all at once.

Start with file structure and backup.
then consider more advanced steps such at git and conda Set
goals that are realistic

Research Project Overview

Publication
Data

generation

Standard

analyses
Project-specific analyses

Study

design

Backup
Data

generation

File & Project

structure
Version control

Package

manager
ParallelisationWorkflow Container

Parallellization in genomics

Why is Parallelization Important?

• Data Volume: The sheer size of bioinformatics datasets, such
as genomic sequences, requires robust computational
approaches.

• Complexity: Many bioinformatics algorithms involve complex
calculations that can benefit from parallel execution.

• Time: In time-sensitive research, reducing computational time
can accelerate discovery and the application of findings.

Approaches to Parallelization

Multithreading: Utilizing multiple threads within a single processor to
execute multiple tasks concurrently.
Distributed Computing: Spreading tasks across multiple compute nodes in a
cluster or cloud environment.
GPU Acceleration: Using Graphics Processing Units (GPUs) for their parallel
processing capabilities with large numbers of cores suited for certain types of
calculations.

Not all software can be efficently parallelized
E.g Genome assembly Check if multithreading is an option
Eric slide on alignment

Tools & Libraries

• GNU parallel

• MPI (Message Passing Interface)

• OpenMP (Open Multi-Processing)

• Bioconductor packages (e.g., BiocParallel)

Pick your poison

Putting it all together

1

Create a new git
repository for
the project (e,g,
GitHub)

2

Add a README
file which should
contain the
required
information on
how to run the
project

3

Create a Conda
environment.yml
file with the
required
dependencies 4
Create a R
Markdown or
Jupyter
notebook to run
your code

4

Alternatively,
create a
Snakefile to run
your code as a
workflow and
use a config.yml
file to add
settings to the
workflow

5

Use git to
continuously
commit changes
to the repository

6

Possibly make a
Docker or
Singularity image
for your project

Best Practices Lab

Lab on Git and Conda

NBIS Data management & Reproducibility courses

https://nbis.se/training

Setup on your instance

git clone https://github.com/NBISweden/workshop-reproducible-research.git

Avoid creating a repo inside another repo!

From your GitHub account, go to Settings → Developer Settings →
Personal Access Token → Tokens (classic) → Generate New Token (Give
your password) → Fillup the form → click Generate token → Copy the
generated

Token, it will be something like
ghp_sFhFsSHhTzMDreGRLjmks4Tzuzgthdvfsrta
Add the copies token string and use as password
May need to do: git push -u origin main

Thanks

I look forward to talk to you about:

• Reproducible research

• Different career paths

• Work-Life balance

• Life in Sweden/UK/Greece

… and Food!

	Slide 1: Best Practices in Handling Genomic Data
	Slide 2
	Slide 3: Cooking
	Slide 4: National Bioinformatics Infrastructure Sweden
	Slide 5: Genomic Ecology
	Slide 6
	Slide 7
	Slide 8: Let’s start cooking!
	Slide 9: Ingredients
	Slide 10: Reproducible research, FAIR and Data management
	Slide 11: Data management plan
	Slide 12: Why important?
	Slide 13: My thoughts…
	Slide 14: Technical bits
	Slide 15: Research Project Overview
	Slide 16: Research Project Overview
	Slide 17: Backup
	Slide 18: Research Project Overview
	Slide 19: Organise your project!
	Slide 20: File names
	Slide 21: File names
	Slide 22: My take on a strategy
	Slide 23: Project
	Slide 24: Data
	Slide 25: Docs
	Slide 26: Scripts
	Slide 27: Progs
	Slide 28: Analysis
	Slide 29: So you have a Project and File structure
	Slide 30: Research Project Overview
	Slide 31: Work reproducibly
	Slide 32: Version control
	Slide 33: Git & Github
	Slide 34: Git is distributed
	Slide 35: Basic git workflow
	Slide 36: Shortlist of the most useful terms in git
	Slide 37: Recommendations when committing to the repository
	Slide 38: Best practices when publishing
	Slide 39: Research Project Overview
	Slide 40: Conda
	Slide 41: Conda commands
	Slide 42: Research Project Overview
	Slide 43: Other tools for reproducible science
	Slide 44: Take home messages
	Slide 45: Research Project Overview
	Slide 46: Parallellization in genomics
	Slide 47
	Slide 48: Approaches to Parallelization
	Slide 49: Tools & Libraries
	Slide 50: Putting it all together
	Slide 51: Best Practices Lab
	Slide 52: Lab on Git and Conda
	Slide 53: Setup on your instance
	Slide 54
	Slide 55
	Slide 56: Thanks

