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Gene expression

Cell type Red blood Muscle Pancreatic

The selective activity of certain
genes is a highly regulated process

Gene type
Housekeeping | | | | | |

Hemoglobin | | | | | |

Gene expression is a characteristic
of space (e.g., cell type, tissue,
etc.) and time (e.g.,
developmental stage, time after
event)

2026-01-21 7

Insulin [ | | | | |

Myosin ] | | | | |




Gene expression a

Cell type
B FOXA1
[] PAX6
] SIX6

The selective activity of certain

genes is a highly regulated process

Gene expression is a characteristic — -

of space (e.g., cell type, tissue,
etc.) and time (e.g.,
developmental stage, time after
event)

w I

Expression level

,_
o}
=

)

FOXA1 PAX6 SIX6 ‘Bulk’

Price et al. 2022. Nature Ecology and Evolution
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What are some questions we can answer with bulk

RNAseq data?

Does gene
expression differ?
between groups?
According to a
certain variable?

How many
genes are being

Which genes
expressed?

are uniquely
expressed?

Which genes
are co-
expressed?

Are patterns of

gene expression

different among  Are patterns
samples? of expression

different
among genes?

What are the
functional roles of
groups of differently
expressed genes?

2026-01-21 9



Lab activities

Exploring patterns in RNAseq data
Differential gene expression analysis

Functional enrichment of gene sets

Structure:
Short background
Open work time
Review
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Gene expression analysis

Biological samples/Library preparation

\ V.

I

é Y

Sequence reads

\ v

J

Read quality check

U
Trimming (adaptors and low quality

—\
. bases) J || De novo transcriptome assembly }

2 and quality assessment
Mapping to genome or transcriptome |

U

Count reads associated with features
g Y

Separate tutorial
on my github:
rstewa03
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Quality control

Reads: To trim or not to trim?
- genome annotation, variant calling, transcriptome assembly : Trim!
- Anything else, maybe trim lightly?
- adapters + low quality score (Q10-15)
Reference genome considerations:

- What maps where:
- Recent duplications?
- Highly repetetive content?
- Missing content?

Annotation considerations:
- What features have been annotated?

- Was RNAseq data used in the annotation?
- What RNA? Life stage? Sex? Williams et al. 2016 BMC Bioinformatics,

Liao and Shi 2020 NAR Genomics and Bioinformatics
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RNA sequence alignment to a reference

What are some challenges when aligning RNA-seq reads to the

?
reference genome: | tron

pre-mRNA
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Splice-aware sequence alighment

Transcript Exon 1 Exon 2 Exon 3
[ 1 1
Trimmed | |
]
short reads —
Alignment to reference genome
[ 1
Genome ]  Exon1
[ ]
[ ]
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Counting reads as a measure of expression

 Two common counting tools are featureCounts and htseq.

* Total read count associated with a gene (meta-feature)
* sum of reads mapping to exons (features) that are a part of that gene.

 Alternative approach: pseudoalignment and quantification of

transcripts like Salmon and Kallisto

Qemgmics@ip—172—31:11—182:[~/wgrkshop_materials/differential_e;pression/refs]$ head Pca_annotation?gtf
transcript_id "Polcal_gl.t1i";

LG1
LG1
LG1
LG1
LG1
LG1
LG1
LG1
LG1
LG1

AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS
AUGUSTUS

2026-01-21

transcript

exon 22193
exon 23838
exon 24390
CDS 22193
CDS 23838
CDS 24390
transcript

exon 79912
CDS 79912

22193
22320
24048
24413
22320
24048
24413
79912
80136
80136

24413

80136

0

transcript_id
transcript_id
transcript_id
transcript_id
transcript_id
transcript_id

"Polcal_gil.t
"Polcal_gl.
"Polcal_gl.
"Polcal_gl.
"Polcal_gl.
"Polcal_gl.t

1"; gene_id
t1"; gene_id
t1"; gene_id
t1"; gene_id
t1"; gene_id
1"; gene_id

transcript_id "Polcal_g2.t1";
transcrlpt id "Polcal_g2.tl1"; gene_id
transcript_id "Polcal_g2.tl1l"; gene_id
genomics@Pip-172-31-11-182:[~/workshop_ materlals/dlfferentlal _expression/refsl$ I

gene_id "Polcal_gi";

"Polcal_gil";
"Polcal_g1l";
"Polcal_g1l";
"Polcal_gl";
"Polcal_g1l";
"Polcal_g1l";

gene_id "Polcal_g2";

"Polcal_g2";
"Polcal_g2";




What should count??
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Read count matrix

e Qutput of counting = A count matrix, with features as rows and
samples as columns Each column is a sample

GENE ID KD.2 KD.3 OE.1 OE.2 OE.3 IR.1 IR.2 IR.3
1/2-SBSRNA4 57 a1 64 55 38 a5 31 39
A1BG 71 40 100 81 a1 77 58 40
A1BG-AS1 256 177 220 189 107 213 172 126
Q A1CF 0 1 1 0 0 0 0 0
— A2LD1 146 81 138 125 52 91 80 50
= A2M 10 9 2 5 2 9 8 4
+= A2ML1 3 2 6 5 2 2
8 A2MP1 0 0 2 1 3 0 2
[P o) A4GALT 56 37 107 118 65 49 52 37
A4GNT 0 0 0 0 1 0 0 0
(¢p) AAO6 0 0 0 0 0 0 0 0
= AAA1L 0 0 1 0 0 0 0 0
; AAAS 2288 1363 1753 1727 835 1672 1389 1121
O AACS 1586 923 951 967 484 938 771 635
— AACSP1 1 1 3 0 1 1 1 3
c AADAC 0 0 0 0 0 0 0 0
AADACL2 0 0 0 0 0 0 0 0
8 AADACL3 0 0 0 0 0 0 0 0
LU AADACL4 0 0 1 1 0 0 0 0
AADAT 856 539 593 576 359 567 521 416
AAGAB 4648 2550 2648 2356 1481 3265 2790 2118
AAK1 2310 1384 1869 1602 980 1675 1614 1108
AAMP 5198 3081 3179 3137 1721 4061 3304 2623
AANAT 7 7 12 12 4 6 2 7

AARS 5570 3323 4782 4580 2473 3953 3339 2666
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Some problems with raw counts...

* Some samples consistently have more reads, some have fewer:
systematic biases Each column is a sample

GENE ID KD.2 D.3 OE.1 OE.2 R.1 IR.2 IR.3
1/2-SBSRNA{ 57 41 64 : 45 31 39

A1BG 71 40 100 : 41| 77 58 40
A1BG-AS1 256 177 220 1 w07l 23 172 126
) ALCF 0 1 1 of 0 0 0
- A2LD1 146 81 138 17 91 80 50
= A2M 10 9 2 9 8 4
+= A2MLL 3 2 6 2
8 A2MP1 0 0 2 [ 0 2
[Pt © A4GALT 56 37 107 | 49 52 37
A4GNT 0 0 0 ' 0 0 0
(¢p) AAO6 0 0 0 0 0 0
= AAA1L 0 0 1 0 0 0
; AAAS 2288 |l 1363 1753 1 1672) 1389 1121
@) AACS 1586 923 951 ] 938 771 635
— AACSP1 1 1 3 1 1 3
— AADAC 0 0 0 0 0 0
AADACL2 0 0 0 0 0 0
8 AADACL3 0 0 0 0 0 0
LL] AADACL4 0 0 1 0 0 0
AADAT 856 539 593 567 521 416
AAGAB 4648 l| 2550 2648 : | 3265 2790 2118
AAK1 2310 | 1384 1869 1675 1614 1108
AAMP sio8 f 3081 3179 [ 4061 3304 2623
AANAT 7 7 12 | 6 2 7

AARS 5570 3323 4782 g 3953 3339 2666
o | = o o
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Solution: normalization

* Normalization is NOT fitting a normal distribution or transforming
data.

* Normalization aims to identify and account for the nature and
magnitude of systematic biases

* The main factors often considered during normalization:
e Sequencing depth (aka library size)
* RNA composition
* Gene length (some methods)
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Normalization

Sequencing depth
Sample A Reads Sample B Reads

"Ba g, ou .
oa = m [ o
T St | T T
| s I 1 L L i Sy
gl T T SRl Y sasongEe o pusmmmmmng - . m=
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Normalization

Sequencing depth
Sample A Reads Sample B Reads

ol og, oo, oo

..—,-.-EEEEEEE_E'_H S -

. B -IPIF'I- m------4 0 - N meeeeeee -
ol T w . T R e T L T L A e

oa
' '...:..-- -_-_. ....... %
& o ot e 2t
--. ______ - .._-_--_ _______ .-_- -= ----- F-‘- -- ----- |-=
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Normalization

RNA composition

* A few highly differentially
expressed genes

* Can skew some normalization
methods

2026-01-21

Sample A Reads
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Median of ratios (MRN) normalization

* Used by DESeqg2 (DGE analysis tool we will use today)

* Generates a size faggrd{also called scaling factor) for each sample to account for

variation in library m

EF2A 1489

ABCD1 22 13

Normalized counts

Gene—Lsampion ———Jaampen

EF2A 1489/1.3 = 1145.39 906/0.77 =1176.62

ABCD1 22/1.3=16.92 13/0.77 = 16.88

Normalized counts are not whole numbers!
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Why don’t we normalize by gene length?

* Most of the time we are comparing WITHIN gene, ACROSS samples
* Dividing by the gene length is superfluous
« Common tools like edgeR, limma, Deseq2

* Some metrics facilitate comparison ACROSS genes, WITHIN sample
* These should be length-normalized
 TPM (Transcripts Per Kilobase Million): normalize by length, then by depth
 RPKM (Reads Per Kilobase Million): normalize by depth, then by length
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Exploring patterns in RNAseq data

Clustering of samples
* Dimension reduction analysis (e.g., PCA, PLS, MDS)
* Clustering (e.g., hierarchical clustering, k-means clustering)

Clustering of features
e Same as above, just focusing on features

* Weighted co-expression analysis (WGCNA, correlation among
features)
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Properties of RNA-seq count data

The distribution of RNA-seq counts for a single sample:

12500 -

Most genes are expressed a low levels
10000 - (small counts), lower limit of 0

No upper limit of expression, and some

w
@ 7500~ . .
S genes are highly expressed leading to a
}5 o .
z long right tail
£ 5000~
=
P

2500 -

.- |
6 20600 40600 60600 80600

Raw expression counts
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Data transtormations for clustering and

visualization
* Pseudo-log: y = log,(n + ngy)

* Ng is a constant, like 1
e Variance not stable at low values (does not scale with expression)

* Instead, we want to transform the data to remove the trend
(variances roughly similar across mean values)

* Variance stabilizing transformation DESeq2::vst()

* Regularized log transformation DESeq2::rlog()

Huber et al. 2003 Stat. Appl. Genet. Mol. Biol.,
Anders & Huber 2010 Nature,
Love et al. 2023 “Analyzing RNA-seq data with DESeq2”
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Effect of transformations on variance

Pseudo-log VST rlog

1.25-
1.00- °
0.75 -

0.50 -

Standard deviation

0.25-

0.00-

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

Ranked mean
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Today’s lab: Polygonia c-album
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Orientation to the tutorial

2 Our questions
1 Our system: diet plasticity in

generalist butterflies 1. Do patterns of gene expression differ between larvae reared on different host plants?

. 2. Which genes are differently expressed between larvae reared on different host plants?
2 Our questions 3. What are the functions of differentially expressed gene sets?
3 Background

4 Unit 1: Exploring patterns of gene 3 Bac kg rou nd

expression among samples
Today’s tutorial walks through a reference-based differential gene expression (DGE) analysis. This means our reads have been

5 Unit 2: Differential gene expression aligned to an existing reference genome for P. c-album, rather than a de novo transcriptome generated from the RNA-seq data. The
analysis three main steps of reference-based DGE analysis are 1) alignment, 2) quantification and 3) analysis (Fig. 2). In this tutorial, we will

6 Unit 3: Gene set enrichment focus on step 3) analysis.

analysis This tutorial has three units:
7 The big challenge: running a « Exploring patterns of gene expression among samples
second contrast « Identifying differentially expressed genes

8 Other great resources: ¢ Evaluating functional enrichment of DE gene sets

Each unit has core exercises you should try to finish during the lab. If you finish the core exercises, there are additional challenge
exercises at the end of each unit.

9 References

Occasional blue boxes give background on the analyses. Feel free to gloss over these — you can come back to them later if you
are curious or want to learn more.

4 Unit 1: Exploring patterns of gene expression
among samples

Everything in this tutorial will be done in RStudio.

4.1 Set the working directory

Open RStudio and start by checking ( getwd () ) and setting ( setwd() ) your working directory. The activity is designed to be run in
the 'RNAseq_analysis” directory.

Show

Alternatively, you can set the working directory using the RStudio interface. Click on the Files tab. Navigate by clicking on the
directories you want to enter (workshop_materials , then RNAseq analysis ). Once inside the working directory, use the More
drop-down menu (next to the little blue gear) and select set As wWorking Directory .

2026-01-21

Take a look at the contents of the directory and subdirectory. You can do this using the 1list.files() command with the
recursive = T option. or by selecting Go To Working Directory from the More drop-down menu onthe Files tab.




Exploring patterns in RNAseq data

Part 1

Core tasks:
* Load raw count matrix
e Transform for visualization
* PCA of samples
* Hierarchical clustering of samples

Challenge exercises
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Open work time (25 min)

Five more minutes! 5 minutes

I

2026-01-21



Review
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Lab activities

Differential gene expression analysis

Functional enrichment of gene sets
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Differential expression analysis

Normalized expression level

o’ {o Qooo

Significant difference
between group means

>

OGIobaI mean

@ Condition A sample

@ Condition A group mean
O Condition B sample

.’ Q @ Condition B group mean
No significant difference
between group means

0

m features (e.g. genes) samples
'4 4
Gene_id S1 S2 S3 S4 S5 S6
Polcal gl 17 10 5 23 10 6
Polcal g2 0 1 0 1 2 1
Polcal_g3 7 0 2 7 4 0
Polcal_g4 17 11 5 21 10 12
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Differential expression analysisis
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DESeq?2 package

METHOD | Open Access | Published: 05 December 2014

Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2

Michael | Love, Wolfgang Huber & Simon Anders

Genome Biology 15, Article number: 550 (2014) \ Cite this article

450k Accesses | 34853 Citations | 131 Altmetric | Metrics
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Modeling raw counts for each gene

Step 1. Normalization (aka estimation of size factors)
— done!

Step 2. Estimate gene-wise dispersion

To accurately model sequencing counts, we need to generate accurate
estimates of within-group variation for each gene (aka dispersion)

* need to choose the right distribution

2026-01-21



Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

A property of Poission distribution is that the mean = variance.
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Statistical modeling of count data

Which probability distributions are suitable for modeling count data?

Poisson distribution?

mean = variance?

Fitted poisson
distribution

Poisson distribution is

not suitable to model

count data across the
biological samples.
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Statistical modeling of count data

The distribution that fits best is the Negative Binomial (NB).

- two parameters, one for the
mean and one for the
variance

W Poisson
B Negative Binomial

1e+08
|

- fexlibility to estimate the
amount of dispersion for each
gene across samples.

Pooled gene-level variance (log10 scale)
1e+00 1e+04

S 50 500 5000 50000

Mean gene expression level (log10 scale)
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How does the dispersion relate to our model?

- Variation is an important part of model fitting and hypothesis testing.
- Estimates of variation for individual genes are often unreliable.

- Tools like DESeq?2 share information across genes to generate more
accurate estimates of variation:

1e+00

Fitted dispersion curve =
expected dispersion for genes
of a given level of expression

(e.g., mean normalized count) 1 e gene-est
s fitted
¢ final

=3 T |
1e-01 1e+01 1e+03 1e+05

dispersion
1e-04

1e-08

—

2026-01-21
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Model fitting and . .‘ QQ&S
hypothesis testing

OGIobaI mean
@ Condition A sample
@ Condition A group mean

O Condition B sample

. Condition B group mean ﬁO Bl ﬁO _|_ ﬁl

Step 4. Generalized Linear Model fit for each gene
* y=normalized expression level

y= FotxiBr B, = intercept (the estimated expression for the base
y= Bo+0xp4 level, condition A (red)

Yy = Bo * Xx,=a binary indicator variable for (0 if part of the red
y= Bo+1xpB4 group, 1 if part of the blue group)
y = Bo+ P1 * B, = coefficient for condition B (blue)

 represents the difference between red and blue
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Model fitting and . 00 Q&S

hypothesis testing .\ ﬁ‘ E
Cﬁ
ﬁo p4

OGIobaI mean

@ Condition A sample

@ Condition A group mean
O Condition B sample

@ Condition B group mean Bo + B4
Step 4. Generalized Linear Model fit for each gene
y = Bo+p1
Yy —PBo = B1
log, (expressiony,.) — log,(expression,.q) = B4
o, (22255) =, 1o, o change [ 71
4=
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Pca_dds <- DESegDataSetFromMatrix(countData = Pca_counts,

colData = Pca metadata,

design = ~|condition)

contrast_U R <- c("condition", "Urtica", "Ribes")

# extract the results for your specified contrast

Pca_res table U R <- results(Pca dds filt, contrast=contrast U R)

expressioNpipes \ __ ﬁ
expressionyrtica 1

log, “log, Fold Change”

2026-01-21




Output of DESeq?2

log2 fold change (MLE): condition Urtica vs Ribes
Wald test p-value: condition Urtica vs Ribes
DataFrame with 10253 rows and 6 columns

| baseMean|1og2FoldChange |

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
Polcal_gl0 89.7562 0.2644909 0.164662 1.606262 0.108216 0.248881
Polcal_gl100 128.7307 0.0751998 0.120094 0.626174 ©0.531201 ©0.702218
Polcal_gl1000 80.8697 -0.0682283 ©.117253 -0.581890 0.560641 0.724417
Polcal_gl0000  18.4347 0.0794954 0.237090 0.335296 0.737402 0.846199
Polcal_gl000e 19.1902 0.4310584 0.295618 1.458158 0.144797 0.304659
Polcal_g9993 15.1301 -0.181906 ©0.356393 -0.51041 0.6097642 0.7610362
Polcal_g9994 16.6881 0.402894 0.294354 1.36874 0.1710811 0.3409535
Polcal_g9996 84 .0056 0.140555 1.025049 0.13712 0.8909358 0.9396940
Polcal_g9998 2.9282 -1.638792 0.745256 -2.19897 0.0278803 0.0941556
Polcal_g9999 4.0105 -1.006017 ©.598296 -1.68147 0.0926717 ©.2240950

baseMean: mean of normalized counts for all samples
log2FoldChange: log2 fold change

[fcSE: standard error

stat: Wald statistic

pvalue: Wald test p-value

padj: BH adjusted p-values — use a pre-defined cutoff for significance

ok wNE
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When can we detect differential expression?

(a) 6000 -

5000 -

# DE genes (FDR 0.05

m
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4000 -

3000 -

2000 -

1000 -

5

10 15 20 25
Number of Reads(M)

30

(b)),

=

o
#Reps (C 0.8
—2 E
-3 =
-‘5* s 0.6
=
me 3
mr o

o
»

m

0.2 -

255.0

# Reps
—_—2
- 3
- 4
5
W6
m7

10.0 15.0 20.0 25.0 30.0

Number of Reads

Liu et al. 2014. Bioinformatics




RNASeqPower

This is the released version of RNASeqPower; for the devel version, see RNASeqgPower.

Sample size for RNAseq studies

platforms ‘all ll rank 549 / 2361 support [0 / (0] m updated before release | dependencies 0

| DOL: 18.18129/B9.bioc. RNASeqPower

> library(RNASeqPower)
> rnapower (depth=20, cv=.4, effect=c(1.25, 1.5, 1.75, 2),
alpha= .05, power=c(.8, .9))

0.8 0.9
1.25 66.204618 88.629200
1.5 20.051644 26.843463
1.75 10.526332 14.091771
2 6.861294 9.185326
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RNASeqPower

This is the released version of RNASeqPower; for the devel version, see RNASeqPower.

Sample size for RNAseq studies

platforms 'all @ rank 549 / 2361 support [0 / (0] m updated before release | dependencies 0

| DOL: 18.18129/B9.bioc. RNASeqPower

> rnapower (depth=8, n=10, cv=0.1, effect=c(1.5, 1.75, 2),
alpha=.05)
1.5 1.75 2
0.6941394 0.9258762 0.9880395
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Additional tools for study design

(or post-hoc evaluation)
* ssizeRNA (2016, updated 2025)

Home > BMC Genomics > Article

Commentary: areview of technical

considerations for planning an RNA-
SequenCing experiment Article Open access Published: 19 November 2025

Optimized murine sample sizes for RNA sequencing
studies revealed from large scale comparative analysis

Review | Open access | Published: 14 October 2025

Volume 26, article number 918, (2025) Cite this article

Gabor Halasz, Jennifer Schmahl, Nicole Negron, Min Ni, Wei Keat Lim, Gurinder S. Atwal, Yu Bai &

David J. Glass ™

Nature Communications 16, Article number: 10173 (2025) | Cite this article

9489 Accesses \ 1 Citations | 102 Altmetric \ Metrics
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What do we do with DE genes?

* Visualize expression levels, log, fold changes, and significance
* |dentify up- and down-regulated genes

 Compare sets of DE genes

 Test for functional enrichment of DE gene sets
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Differential gene expression

* Part 2 Core tasks:
* Run a pairwise contrast
* Visualize differential expression with a volcano plot
* Extract the list of DE genes
* Visualize DE genes in a heatmap

* Challenge exercises
* Challenge questions
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Open work time

Five more minutes! .
5 minutes

I
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Review
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Part 3: Functional enrichment

Differential expression or clustering analysis can produce large gene sets.

How can we figure out the functional consequences of these differences?

Gene set enrichment analysis:

Do functional terms occur in the target gene set more than expected by

chance?
GO terms
KEGG pathways
Reactome pathways
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GO term enrichment

genes annotated with the GO term in full annotation

back d ;
ackground frequency total genes in full annotation

genes annotated with GO term in sample

I :
sample frequency total genes in sample

P-value is the probability or chance of seeing the sample
frequency, given the background frequency.
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GO relations

Relations in the Gene Ontology
https://geneontology.org/docs/ontology-relations/
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GO relations

cytoplasm organelle

part of

mitochondrion organelle membrane

Relations in the Gene Ontology
https://geneontology.org/docs/ontology-relations/
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Links to other DE/DS tools

WGCNA (R package)

DEXSeq (R package)

EdgeR (R package)
Limma (R package)

LeafCutter (python & R
scripts)

IsoformSwitchAnalyzer (R
package)

EBSeq

into modules/clusters by expression patterns
across samples

Differential exon expression within the DESeq?2
framework from exon count data

Differential expression analysis with differential
exon expression functions from exon count data
Good when: few reps, lowly expressed genes

Differential expression analysis with complex
experimental designs, including batch and random
effects

Differential splicing analysis specifically focused on
differential intron retention from junction count
data

Differential isoform usage from transcript count
data

Bayesian differenital expression framework

Weighted gene coexpression analysis groups genes

Tutorial: https://fuzzyatelin.github.io/bioanth-stats/module-
F21-Groupl/module-F21-

Groupl.html#Weighted Gene Correlation Network Analys
is

Vignette:https://bioconductor.org/packages/release/bioc/vi
gnettes/DEXSeq/inst/doc/DEXSeq.html

User guide:
https://bioconductor.org /packages/release /bioc/vignettes/e
dgeR/inst/doc/edgeRUsersGuide.pdf

Vignette:https://www.bioconductor.org /packages/release /b
ioc/vignettes/limma/inst/doc/intro.html

Github page: https://davidaknowles.github.io/leafcutter/

Vignette:https://bioconductor.org/packages/release/bioc/vi
gnettes/IsoformSwitchAnalyzeR/inst/doc/IsoformSwitchAna

lyzeR.html
Vignette:https://bioconductor.org/packages/release/bioc/vi

gnettes/EBSeq/inst/doc/EBSeq_Vignette.pdf
Github page: https://github.com/lengning/EBSeq



https://fuzzyatelin.github.io/bioanth-stats/module-F21-Group1/module-F21-Group1.html#Weighted_Gene_Correlation_Network_Analysis
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Median of ratios (MRN) normalization

* Used by DESeqg2 (DGE analysis tool we will use today)

Let’s see how the normalization works...
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Step 1. Create a pseudo-reference sample for each gene (row-wise geometric mean)

m sampleA | sampleB | Pseudo-reference sample

EF2A 1489 906 sqrt(1489*906) = 1161.5
ABCD1 22 13 sqrt(22*13) = 16.9

Step 2. Calculates ratio of each sample to the reference

sampleA | sampleB | Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref
reference
sample
EF2A 1489 906 1161.5 1489/1161.5 =1.28 906/1161.5=0.78
ABCD1 22 13 16.9 22/16.9 =1.30 13/16.9 =0.77
MEFV 793 410 570.2 793/570.2 =1.39 410/570.2 =0.72
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The figure below illustrates the median value for the distribution of all gene ratios
for a single sample (frequency is on the y-axis).

sample 1/ pseudo-reference sample
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The median of ratio methods makes the assumption that not ALL genes are
differentially expressed; therefore, the normalization factors should account for
sequencing depth and RNA composition of the sample (large outlier genes will not
represent the median ratio values).
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Step 3. Calculate the normalization factor for each sample (size factor)

Pseudo- Ratio of sampleA/ref | Ratio of sampleB/ref

reference

sample
EF2A 1489 906 1161.5 1489/1161.5 =1.28 906/1161.5=0.78
ABCD1 22 13 16.9 22/16.9 =1.30 13/16.9 =0.77
MEFV 793 410 570.2 793/570.2 =1.39 410/570.2 =0.72

median(c(1.28, 1.3, 1.39, 1.35, 0.59,..))
=1.3

median(c(©.78, ©.77, ©.72, 0.8, 0.73, ..))
=0.77
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Step 4: calculate the normalized count values using the normalization factor

Raw counts:

Gene | somplen | sampled__
EF2A 1489 906
ABCD1 22 13

Normalized counts

Genesompion ———Laampes

EF2A 1489/1.3 = 1145.39 906/0.77 = 1176.62
ABCD1 22/1.3=16.92 13/0.77 = 16.88

Normalized counts are not whole numbers!
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