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Genetic Variation

Types
Sequence
® Single base-pair changes — point mutations

®* Small insertions/deletions— frameshift, microsatellite, minisatellite

® Mobile elements—retroelement insertions (300bp -10 kb 1n size)

® Large-scale genomic variation (>1 kb)

— Large-scale Deletions, Inversion, translocations

— Segmental Duplications

® Chromosomal variation—translocations, inversions, fusions.

Cytogenetics



Genome Structural Variation

Deletion Duplication Inversion



Introduction

* Genome structural variation : gains and losses
of DNA (copy-number variation (CNV)) as well
as balanced events such as inversions and
translocations—operationally defined >=50 bp

* Objectives
1. Genomic architecture and disease impact.

2. Detection and characterization methods

3. Primate genome evolution



Copy number polymorphism in Fcgr3 predisposes to
glomerulonephritis in rats and humans

Timothy J. Aitman', Rong Dong'*, Timothy J. Vyse™*, Penny J. Norsworthy'*, Michelle D. Johnson',

Jennifer Smith?, Jonathan Mangion', Cheri Roberton-Lowe"?, Amy J. Marshall', Enrico Petretto’,

Matthew D. Hodges', Gurjeet Bhangal®, Sheetal G. Patel', Kelly Sheehan-Rooney', Mark Duda'~, Paul R. Cook",
David J. Evans®, Jan Domin”, Jonathan Flint*, Joseph J. Boyle®, Charles D. Pusey’ & H. Terence Cook’ Mature 2006

The Influence of CCL3L7 Gene-
Containing Segmental Duplications
on HIV-1/AIDS Susceptibility

Enrique Gonzalez,'* Hemant Kulkarni,'* Hector Bolivar,'*f
Andrea Mangano,”* Racquel Sanchez,'} Gabriel Catano,’}
Robert ). Nibbs,?{ Barry I. Freedman,*; Marlon P. Quinones,'}
Michael J. Bamshad,” Krishna K. Murthy,® Brad H. Rovin,”
William Bradley,®” Robert A. Clark,' Stephanie A. Anderson,®”
Robert J. O'Connell,”'° Brian K. Agan,”'®
Seema S. Ahuja,’ Rosa Bologna,'' Luisa Sen,”
Matthew J. Dolan,”"%'%§ Sunil K. Ahuja'§

Schizophrenia risk from complex
variation of complement component 4

Aswin Sekar, Allison R. Bialas, Heather de Rivera, Avery Davis, Timothy R. Hammond,
Nolan Kamitaki, Katherine Tooley, Jessy Presumey, Matthew Baum, Vanessa Van
Doren, Giulio Genovese, Samuel A. Rose, Robert E. Handsaker, Schizophrenia
Working Group of the Psychiatric Genomics Consortium, Mark J. Daly, Michael C.
Carroll, Beth Stevens & Steven A. McCarroll

Nature 530, 177-183(2016) | Cite this article

Discovery of previously unidentified genomic disorders
from the duplication architecture of the human genome

Andrew | Shm‘pl, Sierra Hansen!, Rebecca R Selzer?, Ze Chcngl, Regina chm13, Jane A Hurst?,

Helen Stewart®, Sue M Price!, Edward Blair*, Raoul C Hennekam®®, Carrie A Fitzpntrick?,

Rick chrm’csg, Todd A Richmond?, Cheryl Guiver’, Donna G Albertson®®, Daniel Pinkel®, Peggy S Eis?,

Stuart Schwartz’, Samantha J L Knight® & Evan E Eichler' VOLUME 38 TNUMBER 9 [ SEPTEMBER 2006 NATURE GENETICS

Association between Microdeletion and Microduplication
at 16p11.2 and Autism

Lauren A. Weiss, Ph.D., Yiping Shen, Ph.D., Joshua M. Korn, B.S., Dan E. Arking, Ph.D., David T. Miller, M.D., Ph.D.,
Ragnheidur Fossdal, B.Sc., Evald Saemundsen, B.A., Hreinn Stefansson, Ph.D., Manuel A.R. Ferreira, Ph.D.,
Todd Green, B.S., Orah S. Platt, M.D., Douglas M. Ruderfer, M.S., Christopher A. Walsh, M.D,, Ph.D.,
David Altshuler, M.D., Ph.D., Aravinda Chakravarti, Ph.D., Rudolph E. Tanzi, Ph.D., Kari Stefansson, M.D., Ph.D.,
Susan L. Santangelo, Sc.D., James F. Gusella, Ph.D., Pamela Sklar, M.D., Ph.D., Bai-Lin Wu, M.Med., Ph.D,,
and Mark ). Daly, Ph.D., for the Autism ConsoriN Engl | Med 2008;358:667-75

Strong Association of De Novo Copy
Number Mutations with Autism

Jonathan Sebat,** B. Lakshmi," Dheeraj Malhotra,™* Jennifer Troge,** Christa Lese-Martin,?
Tom Walsh,® Boris Yamrom,* Seungtai Yoon,* Alex Krasnitz,® Jude Kendall,* Anthony Leotta,*
Deepa Pai,! Ray Zhang,1 Yoon-Ha Lee,* James Hicks,! Sarah ]. Spence,4 Annette T. Lee,’
Kaija Puura,® Terho Lehtimiki,” David Ledbetter,? Peter K. Gregersen,” Joel Bregman,®
James S. Sutcliffe,’ Vaidehi Jobanputra,® Wendy Chung,*® Dorothy Warburton,°
Mary-Claire King,® David Skuse,** Daniel H. Geschwind,™ T. Conrad Gilliam,*?

Kenny Ye,'* Michael Wigler't SCIENCE VOL 316 20 APRIL 2007

NCE



Perspective: Segmental Duplications (SD)

Definition: Continuous portion of genomic sequence represented
more than once 1n the genome ( >90% and > 1kb in length)=historical
copy number variation

@ Intrachromosomal

@ Interchromosomal Distribution

; i s = Interspersed
:: i; Tandem

Configuration
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Importance:
SDs promote genome structural variation

GAMETES

Non Allelic Homologous Recombination

ABC
~  ABC
NAHR
ABC

TEL

Human Disease

Triplosensitive, Haploinsufficient and Imprinted Genes



Importance: Evolution of New Gene Function

Acquire New/
Modified Function

Duplication

Mutation

Mutation

Maintain old
Function

Mutation

Loss of Function




Human Genome Segmental Duplication Pattern

~ +~4% duplication (125 Mb)
« >20 kb, >95%

*59.5% interspersed

* Gene/transcript rich

* Associated with Alu repeat
* 50% of all CNV > 1 kbp

" She, X et al., (2004) Nature 431:927-30



Mouse Segmental Duplication Pattern
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Human Segmental Duplications Properties

Large (>10 kb)

Recent (>95% 1dentity)

Interspersed (60% are separated by more than 1 Mb)
Modular in organization

Difficult to resolve



Rare Structural Variation & Disease
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Triplosensitive, Haploinsufficient and Imprinted Genes

*Genomic Disorders: A group of diseases that results
from genome rearrangement mediated mostly by non-allelic
homologous recombination. (/noue & Lupski, 2002).




DiGeorge/VCEFS/22q11 Syndrome
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. Human Genome Segmental

Duplication Map

*130 candidate regions (298 Mb)

23 associated with genetic disease
°Target patlents array CGH
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Chromosome 17

Chromosome 15
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Developmental Delay Cases
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~14.2% of genetic cause of
developmental delay
explained by large CNVs
(>500 kbp)
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Common and rare structural variation are linked
17q21.31 deletion syndrome

Chromosome 17




>—<¢(am—A2- 2 mm) Direct
;\

Inverted

—

Region of recurrent deletion is a site of common inversion
polymorphism in the human population

 Inversion is largely restricted to European populations
—  >20% frequency in Northern European populations

Inversion is associated with increase in global
recombination and increased fecundity

Stefansson, K et al., (2005) Nature Genetics



> A common inversion polymorphism
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*Tested 17 parents of children with microdeletion and found that every parent
within whose germline the deletion occurred carried an inversion
Inversion polymorphism is a risk factor for the microdeletion event



Duplication Architecture of 17¢g21.31
Inversion (H2) vs. Direct (H1) Haplotype
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. Inversion break

Inversion occurred 2.3 million years ago and was mediated by the LRRC37A core duplicon
*H2 haplotype acquired human-specific duplications in direct orientation that mediate rearrangement
and disrupts KANSLI gene

Zody et al., Nat. Genet. 2008, Itsara et al., Am J. Human Genet 2012




Summary

Human genome 1s enriched for segmental duplications which
predisposes to recurrent large CNV's during germ-cell production

14-15% of neurodevelopmental disease 1n intellectual disabled
children 1s “caused” by large CNVs—8% of normal individuals
carry large events

Segmental duplications enriched >10 fold for structural variation
because of increased probability of non-allelic homologous
recombination

Increased complexity is beneficial and deleterious: Ancestral
duplication predisposes to inversion polymorphism, inversion
polymorphisms acquires duplication, haplotype becomes positively
selected and now predispose to microdeletion



II. Genome-wide SV Discovery Approaches

Hybridization-based

« Jafrate et al., 2004, Sebat et al.,
2004

e SNP microarrays: McCarroll et
al., 2008, Cooper et al., 2008,
Itsara et al., 2009

« Array CGH: Redon ef al. 2006,
Conrad et al., 2010, Park ef al.,
2010, WTCCC, 2010

Single molecule mapping

* Optical mapping: Teague et al.,
2010 e.g. Bionano Genomics:
Levy-Sakin et al, 2019

Sequencing-based
Read-depth: Bailey et al, 2002

Fosmid ESP: Tuzun et al. 2005,
Kidd et al. 2008

Next-gen sequencing: Korbel ef
al. 2007, Yoon et al., 2009,
Alkan et al., 2009, Chen ef al.
2009; Mills 1000 Genomes
Project, 2011, Sudmant et al.
2015a,

Long-read sequencing and
assembly: Chaisson et al., 2015,
2019, Pendleton et al., 2015,
Sedlazeck et al., 2018 Audano et
al, 2019, Ebert et al,, 2021




Array Comparative Genomic Hybridization
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One copy gain = log,(3/2) = 0.57 (3 copies vs. 2 copies in reference

One-copy loss = log2(1/2) = -1
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SNP Microarray detection of Deletion (Illumina)
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SNP Microarray detection of duplication
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Using sequence read pairs to detect structural variation

Human Genomic DNA
/ — | T~ Genomic Library (1 million clones)
Human DNA
Sequence ends of genomic inserts &
l map paired-ends to human genome
Concordant Insertion Deletion Inversions
Fosmid
> < > < > < < <
Build35

Dataset: 1,122,408 fosmid pairs preprocessed (15.5X genome coverage)
639,204 fosmid pairs BEST pairs (8.8 X genome coverage)



Genome-wide detection of structural variation (>8kb)
by end-sequence pairs or “mate pairs”
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Tuzun et al, Nat. Genetics, 2005; Kidd et al., Nature, 2008



Next-Generation Sequencing Methods

Read pair analysis —

— Deletions, small novel insertions, inversions, transposons

— Size and breakpoint resolution dependent to insert size =

Read depth analysis

— Deletions and duplications (CNV) only — ——

— Relatively poor breakpoint resolution

Split read analysis

— Small novel insertions/deletions, and mobile element —_— - -~
insertions -/

— 1bp breakpoint resolution

Local and de novo assembly —

— SV in unique segments

| Assemble

— 1bp breakpoint resolution T

Alkan et al., Nat Rev Genet, 2011



Using Sequence Read Depth

 Map whole genome sequence to reference genome
— Variation in copy number correlates linearly with read-depth

Illumina Sequence

Reference Sequence M
Sequence to Test L nillic ds
Random Genome

Sample

unique duplicated

Bailey et al., Science, 2002



Personalized Duplication or Copy-Number Variation Maps
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Alkan, Nat. Genet, 2009



Interphase FISH
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Read-Depth CNV Heat Maps vs. FISH
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Challenges with indirect short-read
approaches

Repeat biases—a large fraction of events mediated by
repeats are missed

S1ze biases—read-pair methods limited by insert size while
read-depth typically requires > Skbp

Class bias: deletions>>>duplications>>>>balanced events
(inversions)

Multiallelic copy number states—incomplete references and
the complexity of repetitive DNA

False negatives.



Long read Genome Sequencing Revolution

Aluminum

77 1\ -

N Emnss:on

Excitation

Pacific Biosciences (PacBio)—single-molecule real-time sequence
(SMRT) data (15-50) kbp sequence reads

ONT (Oxford Nanopore Technology)—higher error rate but,
portable, scalable native DNA sequencing of long-reads



Advances in long-read sequencing

HiFi Pac Bio Sequencing

Double-stranded

DNA
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99.9% accurate 18-23 Kbp reads
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>100 Kbp in length



Advantages of long read sequencing

HiFi PacBio
~18-20 kbp

Illumina
150-300 bp



More uniform coverage and sequencing of native DNA
SHANK3

PacBio
Sequence
Coverage

Ilumina
Sequence
Coverage

SHAMKZ

'| - - - -




Increased sensitivity for structural variation (SV)

Short-read
- Yoruban African
1 06 - —— Puerto Rican
Han Chinese

Long-read
—— Yoruban African
— Puerto Rican
Han Chinese

10% .

Optical Mapping
, — Yoruban African
\ » - Puerto Rican

- ~— Han Chinese
W

10kb  1Mb

Count of SVs
S

Z100bp -1(1)bp  100bp
SV Size
e ~25,000 PacBio SVs vs. 11,000 Illumina SVs >50 bp

 Eleven Illumina callers combined detect 49% of deletions and 11% of insertions in a
human genome--NGS misses 75% of SVs

10° J1Mb —10kb

Chaisson et al, Nature, 2015; Chaisson et al., Nat Comm, 2019



Complete sequence of a human genome

©
y A $2022 « 8% of missing genome
\ s sequence added (>200 Mbp)

« Complete sequence of

; (/13 Hlll“G centromeres, acrocentric and

segmental duplications

: | T“E GAPS e Adds 1956 gene predictions

= Closing in on a complete

| - human genome p.42 Of Wthh 130-190 are prOtein
coding

* Framework for
understanding the
genetically most complex
regions of our genome.

Nurk et al, bioRxiv, 2021, Science 2022



So how did we do it?

/ We used an effectively haploid human cell line \

known as CHM13

CHM13 is a complete hydatidiform mole

O—e—

A diploid genome
with only one
haplotype

This greatly simplifies this problem because it allows us
to assemble each chromosome without interference

K from a second set of chromosomes

J

ﬁe used two long-read sequencing technologie}
with complementary strengths

1. Pacific Biosciences (PacBio) high-fidelity (HiFi)

¢ 15-25 kbp long
* >99% accurate (similar to Illumina)
Q-  Strength: Extremely accurate

2. Oxford Nanopore Technologies (ONT)
O

* No limit in read length!
* 93-99% accurate
e Strength: Extremely long

\_ /




Trio-based verkko assemblies of HG002
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LRS has transformed how we characterize copy

number and structural variation
2015 2023

Short-read copy number (CN) profile (reference-based) DupMasker profile of phased genome assemblies (reference-free)
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Primate phased genome assembly efforts

i Human (~300 m : ;

I-I GSVC \S

4.5-6 mya
6-8 mya
12-16 mya

18-20 mya
Y n Gorilla (2)

25-33 mya
}\ Orangutan (2)

Q Gibbon (1)

genomes)

m Chimpanzee (2)

Kronenberg et al, Science, 2017; Ebert et al., Science, 2021; Liao/HPRC Nature, 2023; Yoo et al, bioRxiv, 2024



Ape telomere-to-telomere sequencing

* Chimpanzee, bonobo, Western
lowland gorilla, Bornean
orangutan, Sumatran orangutan,

Siamang
* led by UW, Penn State, NIH
(60 labs)

* Assembled 12 genomes
(99.98-99.99% complete)

* 94% non-rDNA chromosomes T2T
* QVof61.7-66.4 -- less than 1
error per 2.7 million base pairs

Yoo et al, bioRxiv, 2024, Nature, 2025



Complete sequencing of ape chromosomes (SVbyEye
“stacked” plot)

Chromosome 12

Chimp h1l

Bonobo h2

Human T2T
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Complete sequencing of ape chromosomes

Chromosome 16

Chimp hl

Bonobo h2

color.id
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Inversions & SDs are the largest and most abundant
form of structural variation affecting genes

NX29 : SHISA9 XYL 51’.'1_&-’6
genes N BNIBERNNAIY 10 D OEEE— w1 GIDENI) DEED OG0 VDEDNINES H{ /ENDOENN OEMIREEN | ) (| |

FISH probes PA 3.7 Mbp pB

5 10 15 20 Mb
HSA chri6o i TR —— S ——— - — S+ —H————————+ ——" . - P

! A S g 15 A20 Mbp

FISH probes  PA 16.2 Mbp pB
genes IENDEDERENEN | | 19 VNN | DGR ORI NN || | OENDOEDGERINEND | GEENR SN | UGN
XyLn HS3ST4 . S o
BOLA2B LICAD b CAN30

large inversion intermediate inversion small inversion
HSA chr16p — — — ——— —_ a®
1 2 3
20 Mbp 13 Mbp 1 Mbp
A Y 4 — — — — @ GGO chri8p

[S—

inverted transposition

* Discovered a total of 1,140 inversions between ape species--522 are
novel; 63.5% are flanked by large highly identical duplications



Lineage-specific duplicate genes emerge at the edges of
large-scale inversions
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Lineage-specific ape protein-coding genes

Human Orthologou Novel Loci Novel loci Novel isoforms
Species  transcript s Toci S Isoseq overlapping Outside of novel
s mapped support SDs loci
Bonobo
(PPA) 99.82% 93.52% 41482 (6.48% 1004 1708 (2.1%)
Chimp
(PTR) 99.77% : 1167 (5.16%) 904 2560 (2.9%)
Gorilla
(GGO) 99.80% 94.98% 1153 (5.12%) 812 2105 (2.6%)
S. Orang
(PAB) 99.44% 94.019h 1328 (5.99%) 909 2363 (2.9%)
B. Orang
(PPY) 99.40% 93.95%\ 1336 (6.05%) 906 2239 (2.8%)
Siamang
(SSY) 99.27% 96.51% 70 (3.49% 471 3638 (5.1%)

*Number of protein coding genes annotated: > 200 AA protein length filter, 50%
protein homology percentage filter, IsoSeq filter applied

* 5-6% novel, multi-exonic protein coding per ape genes -70-
o . . :
80% driven by lineage-specific SDs y . o; 41 pioRxiv, 2024, Nature, 2025



Human Segmental duplication polymorphism

600
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Doubleton
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Jeong et al, bioRxiv, 2024, Nat Genet, 2025, Yoo et al, unpublished



22¢q11 syndrome LCRA.
- Complexity of normal human variation
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Copy number and structural variation of
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Guitart et al, Genome Res, 2024



A graph can capture such variation e.g. Minigraph

1. Generate phase genome assemblies

2. Iteratively introduce assembly sequence to
a graph.

3. Distinguish query sequence already
present in graph from novel sequence

4. Include novel sequence as new segments or
edges between segments in graph.

5. Repeat with next assembly

Graph 1
(asm 1):
Align asm 2

to graph 1

—

Construct
graph 1/2

Coarse
graph 1/2:
N7

Align asm 3 l from asm 1

from asm 2

to graph 1/2

O\

Construct
graph 1/2/3

Coarse
graph 1/2/3:

Ny

Guitart, X



A graph-based representation of structural
variation

A B CYP2D6-CYP2D7 CYP2D7
GRCh38 HGO01891#1
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WINSYAEA | 1311 ey
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¥ ] ene
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Liao et al., bioRxiv, 2022, Nature, 2023



A graph-based representation of the entire
human genome as a conceptual new reference.

The international journal of science /11May 2023
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Summary
* Short read NGS approaches

— Multiple methods are needed—readpair+read-depth+splitread
often with orthogonal validation such as SNP microarray

— ~75% of SVs are missed because SVs are non-randomly
distributed to repetitive regions where mapping quality 1s low

— Read-depth approaches allow CNV prediction but not structure

* Long-read sequencing methods provide complete SV but
currently limited throughput
— Read-based versus assembly-based approaches

— Telomere-to-telomere assemblies of human genomes now
possible or nearly so for diploid—complete genetic
information where all variants are phased.

— First human pangenomes now available—a new concept to
eventually replace a singular reference.



| *Ohno—Duplication is the
primary force by which new
gene functions are created

*There are ~1000 annotated
protein-coding genes
completely contained

within segmental duplications




Dynamic Genetic Variation

p human (n=10)

» bonobo (n=14)

p chimpanzee (n=23)

» gorilla (n=32) Copy
orangutan (n=17)

chrl6 -

Genomic copy number changes contributes more genetic
difference between apes and humans than SNVs

468 Mbp CNYV vs. 167 Mbp SNVs (ration: 2.8)

Sudmant et al., Genome Res., 2013, Sudmant et al, Science, 2015



Rate of Duplication

Bornean Orangutan

1.8 mya - Sumatran Orangutan
o Denisova
6.5 mya m > Homo Sapiens
16.5 mya —~
* — Bonobo
| 054 20myapy

Nigerian/Cameroonian/
Western Chimpanzee
1.1 mya

Eastern/Central

* - Chimpanzee

0.35

Eastern Gorilla

C )(1.1 mya
Western Gorilla

duplicated bp /
substituted bp

p=9.786 X 10-12
Sudmant PH et al. , Genome Res. 2013



Mosaic Architecture

11q14 11q14 1026  11p15 736

21q21 22q12 4p16.1 4pl16.1
12p11 4q24 Xq28 12q24
* I
Duplicons | /8 . |

7q36ﬁ “ 4p16.3 2p22

l Primary Duplicative Transpositions

Duphication  ap11 EEEINNE SN EHIE 0D

0 100 kbp
l Secondary Block Duplications

16p 15q
HE | N H B Hl HIE KK N

*A mosaic of recently transposed duplications
*Duplications within duplications.
*Potentiates “exon shuffling”, regulatory innovation



Human Chromosome 16 Core Duplicon

154—
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12.2
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N

100 kbp
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11926 :|||| 11945

1?:Chr1811598|'l||| 11638
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*The burst of segmental duplications
8-12 mya corresponds to core-
associated duplications which have
occurred on six human chromosomes
(chromosomes 1,2, 7, 15, 16, 17)

*Most of the recurrent genomic
disorders associated with
developmental delay, epilepsy,
intellectual disability, etc. are
mediated by duplication blocks
centered on a core.

Jiang et al, Vat. Genet., 2007



Human/Great-ape “Core Duplicons”
have led to the emergence of new genes

TREZ OO
NPIP YUY rezs m

EVI5

NBPF T (VT T
LRRC37A4 P_? > PZWWW

RGPD {iiiiniiigaim

Features: No orthologs in mouse; multiple copies in chimp & human
dramatic changes in expression profile; signatures of positive selection




Core Duplicon Hypothesis

The selective disadvantage of interspersed
duplications 1s offset by the benefit of evolutionary
plasticity and the emergence of new genes with new
functions associated with core duplicons.

Marques-Bonet and Eichler, CSHL Quant Biol, 2008



10

copy number

Human-specific gene family expansions

Population

‘ Asian
#% European
B8 African

hg18
- Neanderthal
Chimp
. Orangutan

- BB Gorilla

i M_‘_ ;‘_“_ff‘_‘_*__‘_“_’_*_‘_*_‘il’ lilf

NCF1 (0.00)
NAIP (0.10) -
HYDIN (0.01) J
SMN1 (0.02)
RBMBA (0.04)-

SERF1A (0.01) -

FCGR1A (0.03) -
SRGAP2 (0.01) )
GTF2H2 (0.28) -

PRIN2 (0.02)
C100rf57 (0.09) -
DUSP22 (0.10) -
FRMPD2 (0.00) -
FAM115C (0.07) -
ZNF322B (0.04) -
PTPN20A (0.01) -

ARHGEF5 (0.25) -

GTF2IRD2 (0.02)
HIST2H2BF (0.02) -
CHRFAM7A (0.05)
LOC154761 (0.06) -
ARHGAP11A (0.00)-

NCRNA00152 (0.03) -

Notable human-specific expansion of brain development genes.

Neuronal cell death: p=5.7e-4; Neurological disease: p=4.6e-2
Sudmant et al.. Science. 2010

Humans

Great Apes



SRGAP2 function

+ SRGAP2 (SLIT-ROBO Rho T —S—
GTPase activating protein 2) 4 ®
functions to control migration T ke 2, i
of neurons and dendritic “" i m\ |
formation in the cortex H '" i“f’"f, o

* Gene has been duplicated three N A -~
times in human and no other o | e &\(/ S
mammalian lineage g }Yi \\J/ y

» Duplicated loci not in human ¢

genome

Guerrier et al., Cell, 2009



SRGAP2 Human Specific Duplication

SR GAP ZA » : : o 1932.1- ancestral

~2.4
mya

~3.4
mya

A \ R ',.‘ “‘: A‘.v
\ N A R
| \ WA . l
‘\ \ .“ ¥ y l",' ! ,j \
P (i HARE
W f'; (L 1 "‘\l"‘: YT W \ b Ak
i) pid RN . .
| 1 B W A 1 1p12.1 - duplicated
i1} Al
I T -

600.0 700.0 KBases

SRGAP2C

0.0

Dennis, Nuttle et al., Cell, 2012



SRGAP2B

SRGAP2C is fixed in humans

(n=661 individual genomes)

SRGAP2A

SRGAP2C

5

4

2 3
SRGAP2A




SRGAP2 duplicates are expressed

human chimpanzee rhesus

RNAseq = _.pd& Lol &
EB@: —_
&iII I ==t I £

In situ

Human embryos Gestational Week 12




+ SRGAP2°>-mRFP

SRGAP2C duplicate antagonizes function
| .e:jﬁ/\m- " ﬁ)

© | Leading process Neurite initiation

dynamics \ / and branching

Filopodia protrusions

) : N
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Activated? ? =) \"‘0& 9‘
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o Neosn
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K
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Charrier et al., Cell, 2012



A Fixed in hum7 populationand exqa.ssed in neurons

SRGAP2A

SRGAP2B,DV

HH- = 1

LT

LTS
A

3.4 mya 2.4 mya
| | !
Sahelanthropus K. platyops
I |
?
Orrorin .
E.:l A. anamensis
?
| 7
Ardipithecus A. afarensis o
[ Y
A. aethiopicus
million B million & million 4 million 4 million
Wedrs ago

Australopithecus

~350 cc

SRGAP2C

|
Cell (2012)

Dennis, Nuttle et al.

A. garhi
1

A. africanus

A. boisei

A. robustus

-

2 million

1 million

~1000 cc

Homo habilis



Example 2: Human-specific Duplication of
ARHGAPIIB

* Hypothesis: increase in
number of basal radial glial
cells or prolonged
proliferation may lead to 4 ., BP0 O
enlargement of the @ PC " neuron

Human GW 15

SP | CP_MZ

1Z

b tricul h Mouse E14.5 ("
subventricular zone in humans ( X [‘ﬂ’mﬁl V|
» Search for genes that are o s ARl (13 |l
dramatically increased in A‘ | gﬁ q‘,, [
concentration in basal radial e [l (';{L o |8/
glial cells as compared to DRV WO
neurons during development * :qu. ” L :
e ventricle

* Only one gene of 56 not

present in mouse
ARHGAPI IB Florea et al., Science 2015, Antonacci et al., Nat. Genet., 2014



ARHGAPIIB induced gyrification of mouse

brain
« E13.5 microinjection of ARHGAPI1B induced folding in the neocortex
by E18.5 in 2 of the cases— a significant increase in cortical area.

DAPI / GFP

Florea et al., Science 2015



Transgenic human-specific duplicate ARHGAPI11B:

Marmoset fetal brain with human promoter
A ARHGAP11B

WT brain and brain expressing ARHGAPIIB in neocortex
(TG3). Arrowheads indicate cortical folds. R, rostral; C,
caudal. Scale bars, 1 mm

* Increased the numbers of basal radial glia progenitors in the
marmoset outer subventricular zone, increased the numbers of upper-

layer neurons, enlarged the neocortex, and induced its folding.
Heide et al., Science 2020



Duplication of ARHGAPIIB and 15¢q13.3 Syndrome

Chromosome 15

Orangutan  —|(|— /i =1 WA
4 4 TRPM1<—  KLF13> CHRNA7 ——> = ARHG/FI)I A
MTMR10< OTUD7A<—
. ~ —)4——
Chimpanzee —Ij|li = | zzzz22) N
44 TRPM1<—  KLF13> CHRNA7 —> ° ¢
RS i OTUD7A< ARHGAPI1A4
P : _—
Human He,  — /|l 0 e i | Bl | NN S
4 - . 4 TRPM1<—  KLF13-> CHRNA7 —> 5 L
ARHGAP11BMTMR10< OTUD7A<— ARHGAPIIA
o B . g : o 8] a 8]
Human Hee,  — (Il 0 0 0 i = | W} N7 |
o - 4s ¢ TRPM1<—  KLF13-> CHRNA7 —> ¢ C —>
ARHGIEJHBMTMR’O(— OTUD7A<—— ARHGAPI1A
f | 99 human_ARHGAP11A _
0.005

human_ARHGAP11B
chimp_ARHGAP11A C
orang_ARHGAP11A_

Duplication fromARHGAPIIA to ARHGAPI1IB estimated to have
occurred 5.3 +/- 0.5 million years ago.

Antonacci et al., Nat Genet, 2014,



Human-specific duplicated gene

innovations and brain development
SRGAP2C— 3.2 mya—produces a truncated protein that
heterodimerizes with the parental product and alters neuronal

migration, dendritic morphology and density of synapses (Dennis et o
al., Cell, 2012; Charrier et al., Cell, 2012). B

ARHGAPI1B— truncated duplicate is expressed in basal radial glial
cells appears to expand neuronal count and expand subventricular
zone (Antonacci et al., Nat Genet, 2014: Florio et al., Science, 2015,).

BOLA2B--- (256 kya) duplication of gene family specifically at root
of Homo sapiens, rapid fixation and largest difference between

Neandertals and human genomes and is important in iron homeostasis
(Nuttle et al., Nature, 2016, Gianuzzi et al., Am J Hum Genet 2019).

NOTCH2NL--- (<3 mya) partial duplication expressed in radial glial
where interacts with NOTCH2 receptors and delays neuronal
progenitor differentiation(Fiddes et al., Cell, 2018)

Properties: Nearly fixed for copy number in the human population,
predispose to disease instability and the duplications are incomplete
with respect to gene structure. NONE present in original human
genome.




Genetic differences that make us uniquely
human




Summary

Interspersed duplication architecture sensitized our genome to
copy-number variation increasing our species predisposition to
disease—children with autism and intellectual disability

Duplication architecture has evolved recently in a punctuated

fashion around core duplicons which encode human great-ape
specific gene innovations (eg. NPIP, NBPF, LRRC37, etc.).

Cores have propagated 1n a stepwise fashion “transducing”
flanking sequences---human-specific acquisitions flanks are
associated with brain developmental genes.

Core Duplicon Hypothesis: Sclective disadvantage of these
interspersed duplications offset by newly minted genes and
new locations within our species. Eg. SRGAP2C



Overall Summary

 I. Disease: Role of CNVs in human disease—relationship

of common and rare variants—biased toward interspersed
SDs due to NAHR

* II. Methods: NGS Read-pair and read-depth methods to
characterize SVs—Ilong-read genomes can now be fully
phased and assembled achieving complete telomere-to-
telomere assembly & complete variation discovery.

« III: Evolution: Rapid evolution of complex human
architecture that predisposes to disease also coupled to
human-specific gene innovations that make us uniquely
human
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Glossary

SV-structural variation
SD-segmental duplication

CNV- copy number variation

CNP—copy number polymorphism

NGS—mnext generation sequencing

(eg. Illumina short read)
Indel-insertion/deletion event

SMRT-single-molecule real-time
sequencing

CCS—circular consensus
sequencing

HiFi-high fidelity long-read

CLR——continuous long-read
sequencing

WGS—whole genome shotgun
sequencing

ONT—Oxford Nanopore
Technology

PacBio—Pacific Biosciences
ZMW-zero-mode wave guide
CDR—centromere dip region

NAHR—non-allelic homologous
recombination



SV Software

PennCNV (Kai Wang) and CNV Partition—calling CNVs from SNP microarray

Genomestrip—Handsaker/McCarroll—combines read-depth and readpair data to
identify potential sites of SV data from population genomic data; Del/ly—EMBL
Rausch/Korbel—uses split-read and readpair signatures; Lumpy --Quinlan/Hall—
uses probabilistic framework to integrate multiple SV such as discordant paired-end
alignments and split-read alignments; GATK-SV—Talkowski—integrates multiple
short reads signatures; Manta—TIllumina split and paired-end reads followed by
assembly

Conifer /XHMM— Krumm/Eichler & Frommer/Purcell-exome CNV calling

PBSV—Aaron Wenger (PacificBiosciences software) signatures from pbmm?2
alignments; SNIFFLES2—Sedlaczeck/Schatz— NGLMR mapping of PacBio or
ONT data using split-read alignments, high-mismatch regions, and coverage

PAV—Audano/Eichler & SVIM-asm—Heller/Vingron--assembly-to-assembly based
discovery of SVs using minimap and LRSassembled genomes

Verkko—Koren/ Philippy & HiFiasm- Cheng/Li—graph based approaches to
generate near T2T assemblies using UL-ONT and HiF1 sequencing data

Saffire-SV, StainedGlass & SVbyEye- (Vollger/ Porubsky/Eichler)—visualization
tools to characterize chromosomal level SV and centromeric satellite DNA



SD-Mediated Rearrangements
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