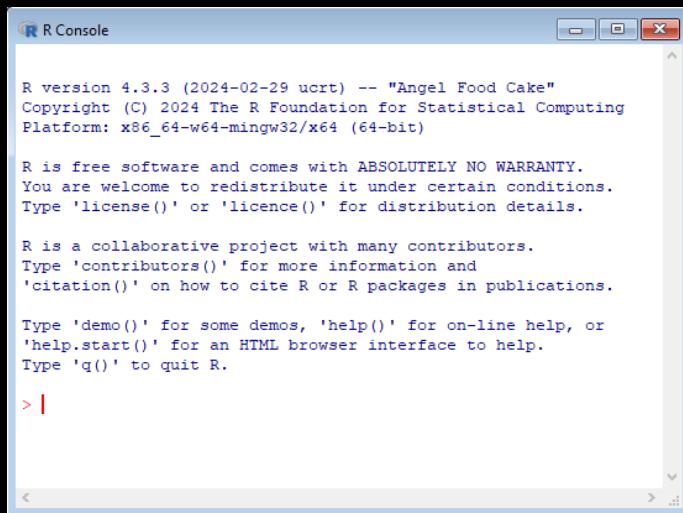


Evomics 2026

R & ggplot2

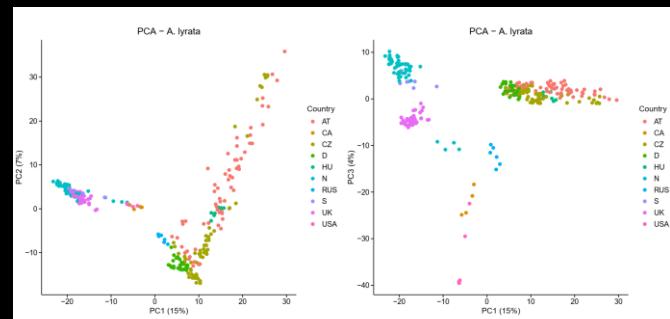
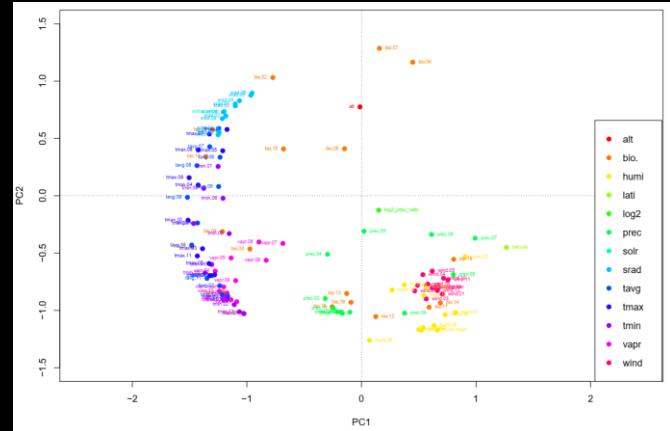

Outline

- Short introduction
 - Why is R useful
 - RStudio
 - R Markdown
 - Data structures
- Dataset for practical
- Practical

What is R?

A free software environment
(and language) for statistical
computing and graphics

<http://www.r-project.org>



```
R version 4.3.3 (2024-02-29 ucrt) -- "Angel Food Cake"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> |
```


Why is R useful?

- **Open source**
- **Data management and manipulation**
 - Importing data in various formats (like text files, excel files, etc.)
 - Manipulating data (subsetting and filtering tables, merging, transposing, etc.)
- Cutting-edge **graphical data visualization**
- Support for rich **statistical simulation and modeling**
- Well established system of **packages and documentation**
- **Active development** and dedicated **community**

When do we use R?

Big data (*fastq etc.*)

UNIX tools

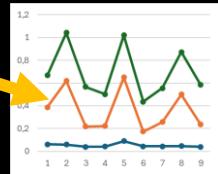
Small data (*count tables etc.*)

R / Python

Final results, visualisations

Why R and not Excel?

Why R and not Excel?



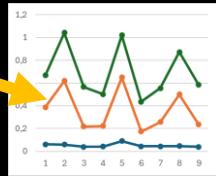

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 9:  
"XA53" 18.9921700965613 3:  
"XA53" 40.9197598161176 7:  
"XA53" 33.1389955806546 N:  
"control" 72.1092449936084:  
"control" 35.888557069:  
"XA53" 39.86406666861087 5:  
"XA53" 13.141525790561 15.11:  
"XA53" 15.0448761012405 2:  
"XA53" 47.0790477729402 5:  
"XA53" 81.999406393338 74.05:  
"XA53" 13.8409304767847 7:
```

	A	B	C
1			
2			
3			
4			
5			
6			
7			

	A	B	C
1			
2			
3			
4			
5			
6			
7			

	A	B	C
1			
2			
3			
4			
5			
6			
7			

Why R and not Excel?

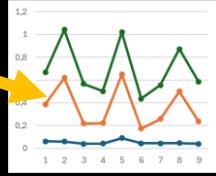

Scenario 1: Data changed

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 58  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			



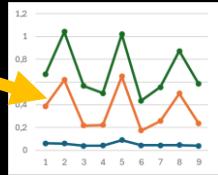

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 58  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

Why R and not Excel?

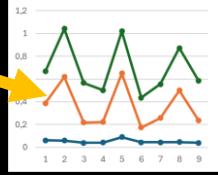

Scenario 1: Data changed

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

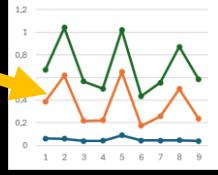



```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			



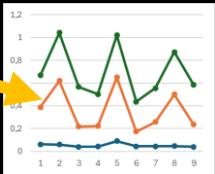

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

Why R and not Excel?

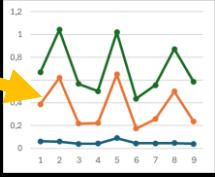

Scenario 1: Data changed

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

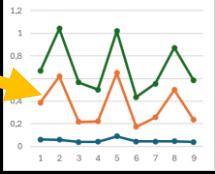



```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

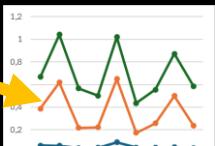



```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			




```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

Why R and not Excel?

Scenario 2: Analysis changed

```
["genotype" "cell.width"
"XA53" 28.9213274233043 9
"XA53" 18.9921700965613 3
"XA53" 40.9197598161176 75
"XA53" 33.1389955806546 N
"control" 72.1092449936084
"control" 35.8885570695 0
"XA53" 39.86406666861087 58
"XA53" 13.141525790561 15.11
"XA53" 15.0448761012405 27
"XA53" 47.0790477729402 53
"XA53" 81.999406393338 74.05
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

```
["genotype" "cell.width"
"XA53" 28.9213274233043 9
"XA53" 18.9921700965613 3
"XA53" 40.9197598161176 75
"XA53" 33.1389955806546 N
"control" 72.1092449936084
"control" 35.8885570695 0
"XA53" 39.86406666861087 58
"XA53" 13.141525790561 15.11
"XA53" 15.0448761012405 27
"XA53" 47.0790477729402 53
"XA53" 81.999406393338 74.05
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

```
["genotype" "cell.width"
"XA53" 28.9213274233043 9
"XA53" 18.9921700965613 3
"XA53" 40.9197598161176 75
"XA53" 33.1389955806546 N
"control" 72.1092449936084
"control" 35.8885570695 0
"XA53" 39.86406666861087 58
"XA53" 13.141525790561 15.11
"XA53" 15.0448761012405 27
"XA53" 47.0790477729402 53
"XA53" 81.999406393338 74.05
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

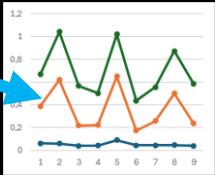
	A	B	C
1			
2			
3			
4			
5			
6			
-			

```
["genotype" "cell.width"
"XA53" 28.9213274233043 9
"XA53" 18.9921700965613 3
"XA53" 40.9197598161176 75
"XA53" 33.1389955806546 N
"control" 72.1092449936084
"control" 35.8885570695 0
"XA53" 39.86406666861087 58
"XA53" 13.141525790561 15.11
"XA53" 15.0448761012405 27
"XA53" 47.0790477729402 53
"XA53" 81.999406393338 74.05
"XA53" 13.9409304767847 75
```

	A	B	C
1			
2			
3			
4			
5			
6			
-			

	A	B	C
1			
2			
3			
4			
5			
6			
-			

Why R and not Excel?

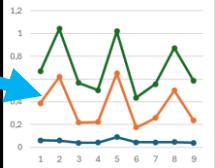

Scenario 2: Analysis changed

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			




```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			


```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

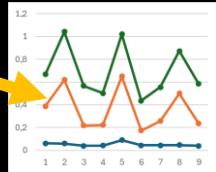

```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.8885570695 0  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.9409304767847 77
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

Why R and not Excel?


Scenario 3: Many plots needed

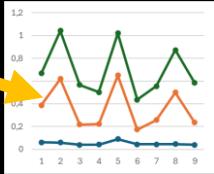
```
["genotype", "cell.width", "  
"XA53" 28.9213274233043 93  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084 1  
"control" 35.888557069 5  
"XA53" 39.86406666861087 58  
"XA53" 13.141525790561 15.11  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.05  
"XA53" 13.8409304767847 71
```

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

Why R and not Excel?


Scenario 3: Many plots needed

```
["genotype", "cell.width", "X", "XA53", 28.9213274233043, 93, "XA53", 18.9921700965613, 3, "XA53", 40.9197598161176, 75, "XA53", 33.1389955806546, N, "control", 72.1092449936084, "control", 35.888557069, 5, "XA53", 39.86406666861087, 58, "XA53", 13.141525790561, 15.11, "XA53", 15.0448761012405, 27, "XA53", 47.0790477729402, 53, "XA53", 81.999406393338, 74.05, "XA53", 13.8409304767847, 72]
```

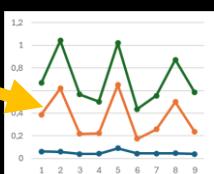
	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

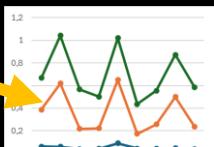
	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			


	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

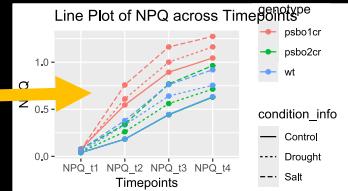
	A	B	C
1			
2			
3			
4			
5			
6			


	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			

	A	B	C
1			
2			
3			
4			
5			
6			



Why R and not Excel?


```
["genotype" "cell.width" "c  
"XA53" 28.9213274233043 9  
"XA53" 18.9921700965613 3  
"XA53" 40.9197598161176 75  
"XA53" 33.1389955806546 N  
"control" 72.1092449936084  
"control" 35.888557661000  
"XA53" 39.8640666661087 51  
"XA53" 13.141525790561 15.111  
"XA53" 15.0448761012405 27  
"XA53" 47.0790477729402 53  
"XA53" 81.999406393338 74.051  
"XA53" 13.9409304767847 71
```

```
```{r}  
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2")
old.par<-par(no.readonly = T)

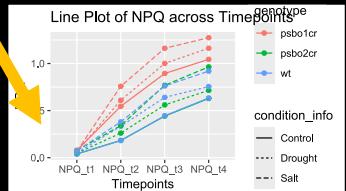
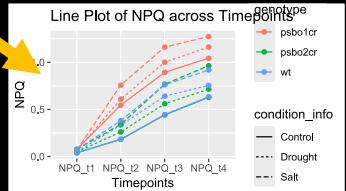
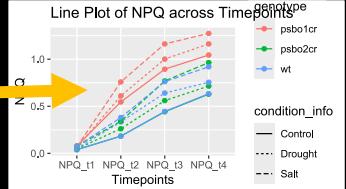
spec.overlap <- read.table(file =
"orthofinder_results/results_brassicaceae
_2/Comparative_Genomics_Statistics/orthog
roups/speciesoverlaps.tsv")

heatmap with values
pdf ("R_analysis/Orthogroups_Speciesoverl
aps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
input data
gdata <- spec.overlap
```



# Why R and not Excel?






## Scenario 1: Data changed

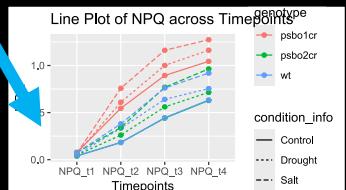
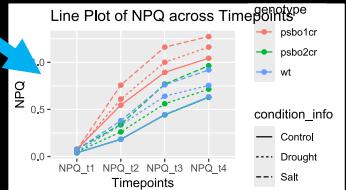
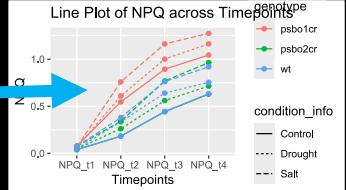
```
["genotype" "cell.width" "
"XA53" 28.9213274233043 9:
"XA53" 18.9921700965613 3:
"XA53" 40.9197598161176 75:
"XA53" 33.1389955806546 N:
"control" 72.10924496102405 1:
"control" 35.888557661000 1:
"XA53" 39.864066681087 5:
"XA53" 13.141525790561 15.11:
"XA53" 15.0448761012405 2:
"XA53" 47.0790477729402 5:
"XA53" 81.999406393338 74.05:
"XA53" 13.9409304767847 7:
```

```
["genotype" "cell.width" "
"XA53" 28.9213274233043 9:
"XA53" 18.9921700965613 3:
"XA53" 40.9197598161176 75:
"XA53" 33.1389955806546 N:
"control" 72.10924496102405 1:
"control" 35.888557661098 1:
"XA53" 39.864066681087 5:
"XA53" 13.141525790561 15.11:
"XA53" 15.0448761012405 2:
"XA53" 47.0790477729402 5:
"XA53" 81.999406393338 74.05:
"XA53" 13.9409304767847 7:
```

```
["genotype" "cell.width" "
"XA53" 28.9213274233043 9:
"XA53" 18.9921700965613 3:
"XA53" 40.9197598161176 75:
"XA53" 33.1389955806546 N:
"control" 72.10924496102404 1:
"control" 35.888557661098 1:
"XA53" 39.864066681087 5:
"XA53" 13.141525790561 15.11:
"XA53" 15.0448761012405 2:
"XA53" 47.0790477729402 5:
"XA53" 81.999406393338 74.05:
"XA53" 13.9409304767847 7:
```

```
```{r}  
setwd("D:/!ecolgen/resources/orthofinder/  
brassicaceae_2")  
old.par<-par(no.readonly = T)  
  
spec.overlap <- read.table(file =  
"orthofinder_results/results_brassicaceae  
_2/Comparative_Genomics_Statistics/orthog  
roups/speciesoverlaps.tsv")  
  
## heatmap with values  
g1 <- ("R_analysis/orthogroups_speciesoverlaps_heatmap.pdf", width=14, height=7,  
onefile = T)  
par(mar=c(2, 12, 12, 2) + 0.1)  
input data  
data <- spec.overlap
```


Why R and not Excel?




Scenario 2: Analysis changed

```
["genotype" "cell.width" "  
"XA53" 28.9213274233043 9:  
"XA53" 18.9921700965613 3:  
"XA53" 40.9197598161176 7:  
"XA53" 33.1389955806546 N:  
"control" 72.1092449616084  
"control" 35.888555691898  
"XA53" 39.864066681087 5:  
"XA53" 13.141525790561 15.11:  
"XA53" 15.0448761012405 2:  
"XA53" 47.0790477729402 5:  
"XA53" 81.999406393338 74.05:  
"XA53" 13.9409304767847 7:
```

```
["genotype" "cell.width" "  
"XA53" 28.9213274233043 9:  
"XA53" 18.9921700965613 3:  
"XA53" 40.9197598161176 7:  
"XA53" 33.1389955806546 N:  
"control" 72.1092449616084  
"control" 35.888555691898  
"XA53" 39.864066681087 5:  
"XA53" 13.141525790561 15.11:  
"XA53" 15.0448761012405 2:  
"XA53" 47.0790477729402 5:  
"XA53" 81.999406393338 74.05:  
"XA53" 13.9409304767847 7:
```

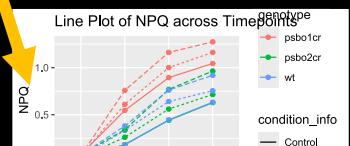
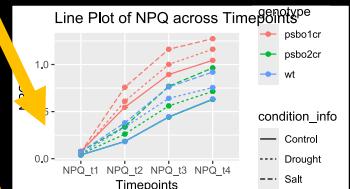
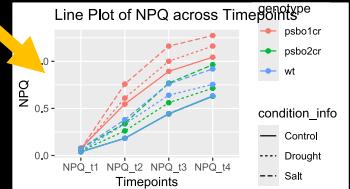
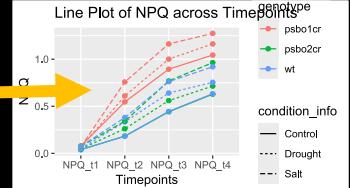
```
["genotype" "cell.width" "  
"XA53" 28.9213274233043 9:  
"XA53" 18.9921700965613 3:  
"XA53" 40.9197598161176 7:  
"XA53" 33.1389955806546 N:  
"control" 72.1092449616084  
"control" 35.888555691898  
"XA53" 39.864066681087 5:  
"XA53" 13.141525790561 15.11:  
"XA53" 15.0448761012405 2:  
"XA53" 47.0790477729402 5:  
"XA53" 81.999406393338 74.05:  
"XA53" 13.9409304767847 7:
```

```
```{r}  
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2")
old.par<-par(no.readonly = T)

spec.overlap <- read.table(file =
"orthofinder_results/results_brassicaceae
_2/Comparative_Genomics_Statistics/orthog
roups_speciesoverlaps.tsv")

heatmap with values
g1 <- ("R_analysis/orthogroups_speciesoverlaps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar=c(2, 12, 12, 2) + 0.1)
input data
data <- spec.overlap
```







# Why R and not Excel?



## Scenario 3: Many plots needed

```
["genotype" "cell.width" "
"XA53" 28.9213274233043 9:
"XA53" 18.9921700965613 3:
"XA53" 40.9197598161176 7:
"XA53" 33.1389955806546 N:
"control" 72.1092449936084
"control" 35.888557661000
"XA53" 39.8640666861087 5:
"XA53" 13.141525790561 15.11:
"XA53" 15.0448761012405 27:
"XA53" 47.0790477729402 53:
"XA53" 81.999406393338 74.05:
"XA53" 13.9409304767847 7:
```

```
```{r}  
setwd("D:/!ecolgen/resources/orthofinder/  
brassicaceae_2")  
old.par<-par(no.readonly = T)  
  
spec.overlap <- read.table(file =  
"orthofinder_results/species_results_brassicaceae  
_2/Comparative_genomics_statistics/orthog  
roup_species_overlaps.tsv",  
sep = "\t")  
  
## heatmap with values  
pdf ("R-analysis/Orthogroups_Species_overlaps_heatmap.pdf", width=14, height=7,  
onefile = T)  
par(mar = c(2, 12, 12, 2) + 0.1)  
# input data  
gdata <- spec.overlap
```


Why R and not Excel?

Scenario 4: Someone wants to understand or repeat the analysis

```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2/")
old.par<-par(no.readonly = TRUE)

spec.overlap <- read.table(file =
"orthofinder_results/results_brassicaceae
_2/Comparative_Genomics_Statistics/Orthog
roups_SpeciesOverlaps.tsv")

heatmap with values
pdf ("R_analysis/Orthogroups_Speciesoverl
aps_heatmap.pdf", width=14, height=7,
onefile = TRUE)
par(mar = c(2, 12, 12, 2) + 0.1)
input data
gdata <- spec.overlap
```

# Why R and not Excel?



Scenario 4: Someone wants to understand or repeat the analysis

```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2/")
old.par<-par(no.readonly = T)

spec.overlap <- read.table(file =
"orthofinder_results/results_brassicaceae
_2/Comparative_Genomics_Statistics/Orthog
roups_SpeciesOverlaps.tsv")

## heatmap with values
pdf ("R_analysis/Orthogroups_Speciesoverl
aps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap
```


Me in 2 months

Why R and not Excel?

Scenario 4: Someone wants to understand or repeat the analysis

```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2/")
old.par<-par(no.readonly = TRUE)

spec.overlap <- read.table(file =
"orthofinder_results/results_brassicaceae
_2/Comparative_Genomics_Statistics/Orthog
roups_speciesoverlaps.tsv")

heatmap with values
pdf ("R_analysis/Orthogroups_Speciesoverl
aps_heatmap.pdf", width=14, height=7,
onefile = TRUE)
par(mar = c(2, 12, 12, 2) + 0.1)
input data
gdata <- spec.overlap
```



Me in 2 months



Me in 2 years

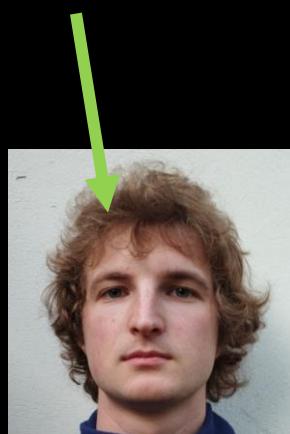
# Why R and not Excel?



Scenario 4: Someone wants to understand or repeat the analysis

```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2/")
old.par<-par(no.readonly = T)

spec.overlap <- read.table(file =
"orthofinder_results/results_bassicaceae
_2/Comparative_Genomics_Statistics/Orthog
roups_speciesoverlaps.tsv")


## heatmap with values
pdf ("R_analysis/Orthogroups_Speciesoverl
aps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap
```


Me in 2 months

Me in 2 years

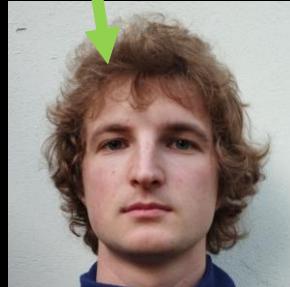
Collaborator

Why R and not Excel?

Scenario 4: Someone wants to understand or repeat the analysis

```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassicaceae_2/")
old.par<-par(no.readonly = T)

spec.overlap <- read.table(file =
"orthofinder_results/results_bassicaceae
_2/Comparative_Genomics_Statistics/Orthog
roups_SpeciesOverlaps.tsv")


heatmap with values
pdf ("R_analysis/Orthogroups_SpeciesOverl
aps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
input data
gdata <- spec.overlap
```



Me in 2 months



Me in 2 years



Collaborator



Paper reader

# Why R and not Excel?

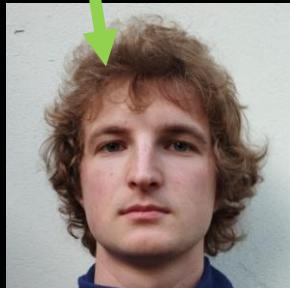


Scenario 4: Someone wants to understand or repeat the analysis

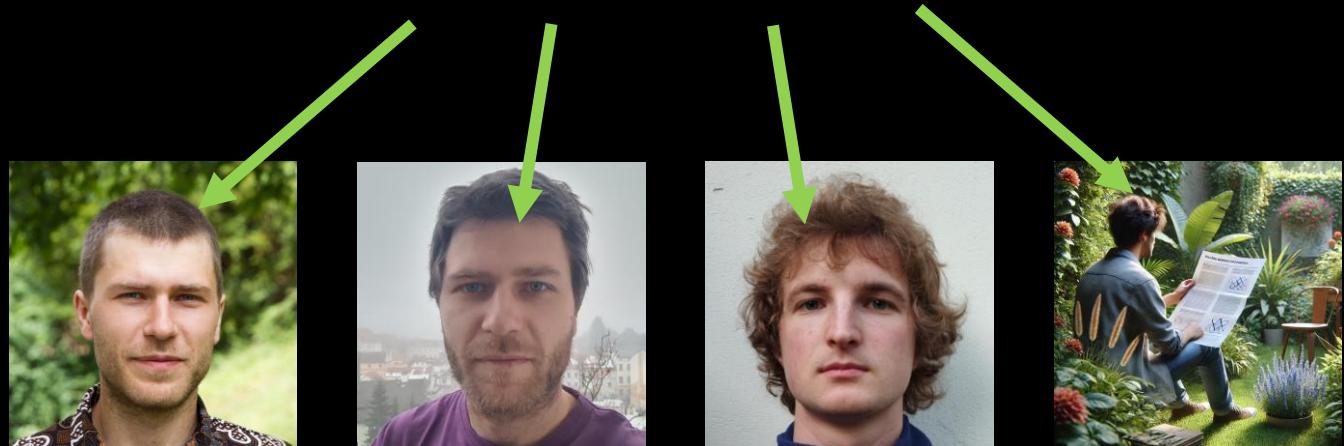
```
```{r}
setwd("D:/!ecolgen/resources/orthofinder/
brassiaceae_2/")
old.par<-par(no.readonly = T)

spec.overlap <- read.table(file =
```

Reproducibility


```
par("R_analysis/orthogroups_speciesoverlap_
aps_heatmap.pdf", width=14, height=7,
onefile = T)
par(mar = c(2, 12, 12, 2) + 0.1)
# input data
gdata <- spec.overlap
```


Me in 2 months


Me in 2 years

Collaborator

Paper reader

WALTER HAMILTON FLATT

**I WANT YOU
FOR REPRODUCIBLE
SCIENCE**

Why R and not Excel?

- Automation
 - Many plots in one loop
 - Easily repeated if the data changes
- Reproducibility and transparency
 - You will know later what you did with the data
 - Other people will know what you did with the data
 - You can publish your code with your paper
- Excel tends to change some numbers to dates etc.

wt	10.23333	1007.22
psbo1cr	12.56666	71.56
psbo2cr	18.111	516.33
wt	20.73333	1666.67
psbo1cr	23.16666	72.34

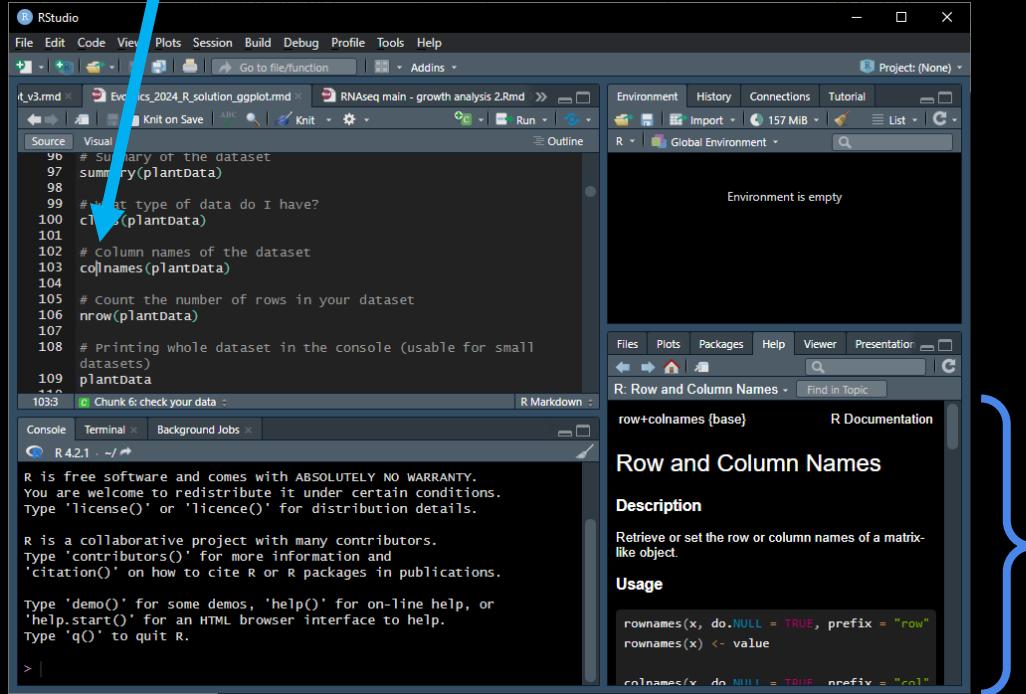
R Studio

Integrated development environment (IDE) for R

Script (enter commands here)

The screenshot shows the R Studio interface with the following components:

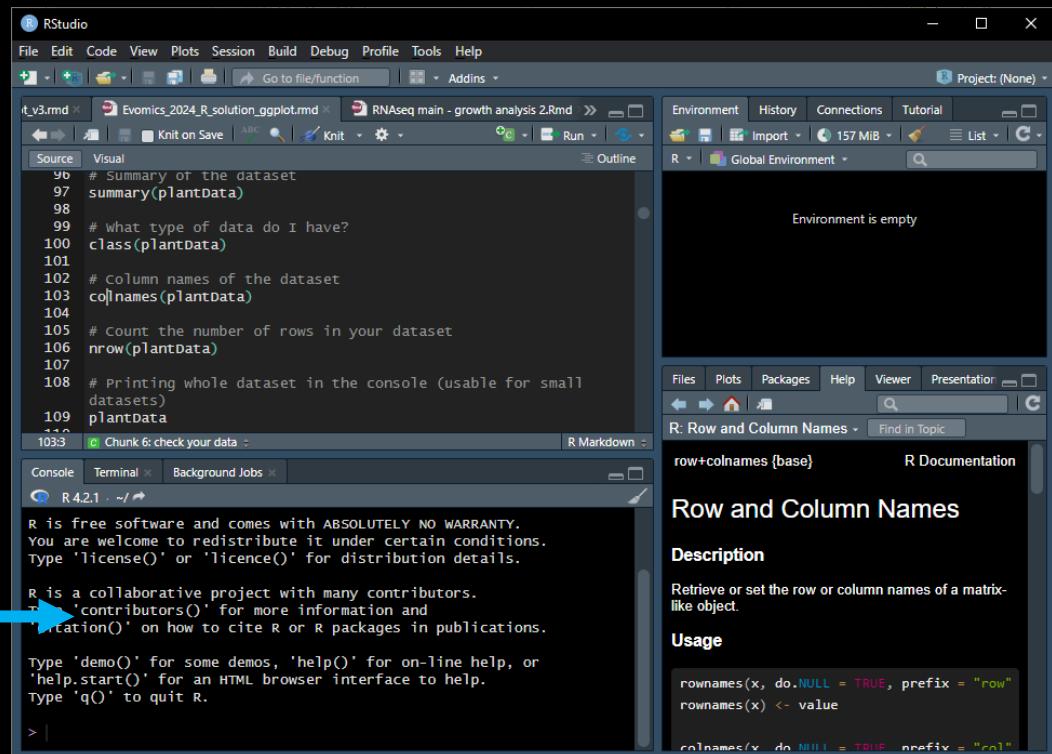
- Script Editor:** On the left, a script editor window titled "diamondPricing.R" contains R code. An arrow points to the line "p <- ggplot(carat, price, data=diamonds, color=clarity, xlab="Carat", ylab="Price", main="Diamond Pricing")".
- Console:** Below the script editor, the "Console" window displays the results of the R code execution, including summary statistics for the "diamonds" dataset and the generated plot "p".
- Workspace:** On the right, the "Workspace" tab shows the "diamonds" dataset (53940 obs. of 10 variables) and the plot "p" (ggplot[8]).
- Plots:** Below the workspace, the "Plots" tab displays a scatter plot titled "Diamond Pricing" showing the relationship between "Carat" (X-axis, 0.0 to 3.5) and "Price" (Y-axis, 0 to 10000). The plot is color-coded by "clarity" levels: I1 (red), SI2 (orange), SI1 (yellow), VS2 (green), VS1 (light green), VVS2 (blue), VVS1 (light blue), and IF (purple).


Workspace data

Help and Plots viewer

View results here

Help in R Studio


Press **F1** when the cursor is in the name of the function

The help
will open
here

Where to write the code?

Console? Not good for reproducibility.

The screenshot shows the RStudio interface. The left pane displays an R Markdown file (it_v3.rmd) with code for summarizing a dataset. The right pane shows the R console output, which includes the R license and a warning about the 'contributors()' function. A blue arrow points to the 'Console' tab in the bottom-left of the RStudio interface. The bottom right shows the R documentation for the 'row+colnames' function.

```
96 # Summary of the dataset
97 summary(plantData)
98
99 # what type of data do I have?
100 class(plantData)
101
102 # Column names of the dataset
103 colnames(plantData)
104
105 # Count the number of rows in your dataset
106 nrow(plantData)
107
108 # Printing whole dataset in the console (usable for small
109 # datasets)
110 plantData
111
112 [green] # Chunk 6: check your data : [green] R Markdown [green]
113
114 R is free software and comes with ABSOLUTELY NO WARRANTY.
115 You are welcome to redistribute it under certain conditions.
116 Type 'license()' or 'licence()' for distribution details.
117
118 R is a collaborative project with many contributors.
119 Type 'contributors()' for more information and
120 'citation()' on how to cite R or R packages in publications.
121
122 Type 'demo()' for some demos, 'help()' for on-line help, or
123 'help.start()' for an HTML browser interface to help.
124 Type 'q()' to quit R.
125
126 > |
```

Environment is empty

Files Plots Packages Help Viewer Presentation

R: Row and Column Names Find in Topic

row+colnames [base] R Documentation

Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

```
rownames(x, do.NULL = TRUE, prefix = "row"
rownames(x) <- value

rownames(x, do.NULL = TRUE, prefix = "row"
rownames(x) <- value
```

Where to write the code?

Console? Not good for reproducibility.

Console

→

RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

it_v3.rmd Evomics_2024_R_solution_ggplot.md RNaseq main - growth analysis 2.Rmd

Knit on Save ABC Knit Run Outline

Source Visual

```
96 # Summary of the dataset
97 summary(plantData)
98
99 # what type of data do I have?
100 class(plantData)
101
102 # Column names of the dataset
103 colnames(plantData)
104
105 # Count the number of rows in your dataset
106 nrow(plantData)
107
108 # Printing whole dataset in the console (usable for small
109 datasets)
110 plantData
111
112 [green] # Chunk 6: check your data : R Markdown
```

Console Terminal Background Jobs R 4.2.1

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Environment History Connections Tutorial

R Global Environment

Environment is empty

Files Plots Packages Help Viewer Presentation

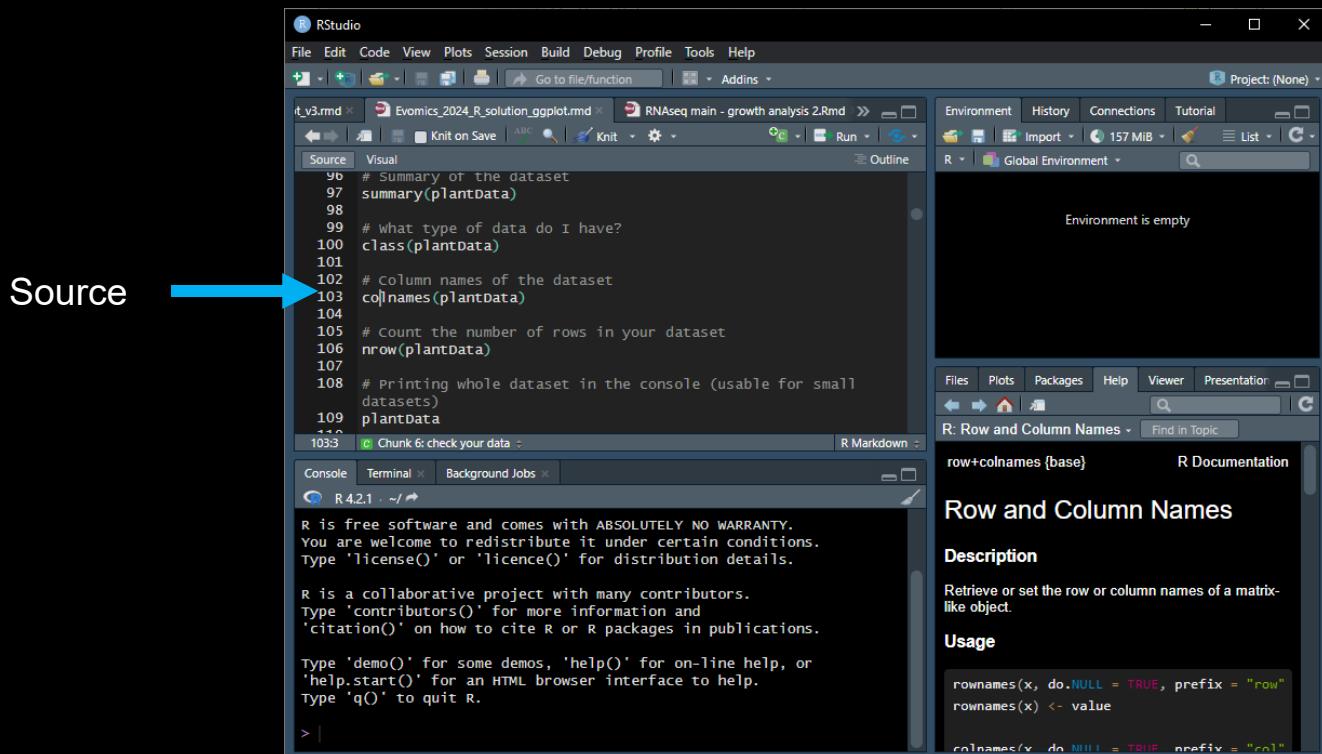
R: Row and Column Names Find in Topic

row+colnames [base] R Documentation

Row and Column Names

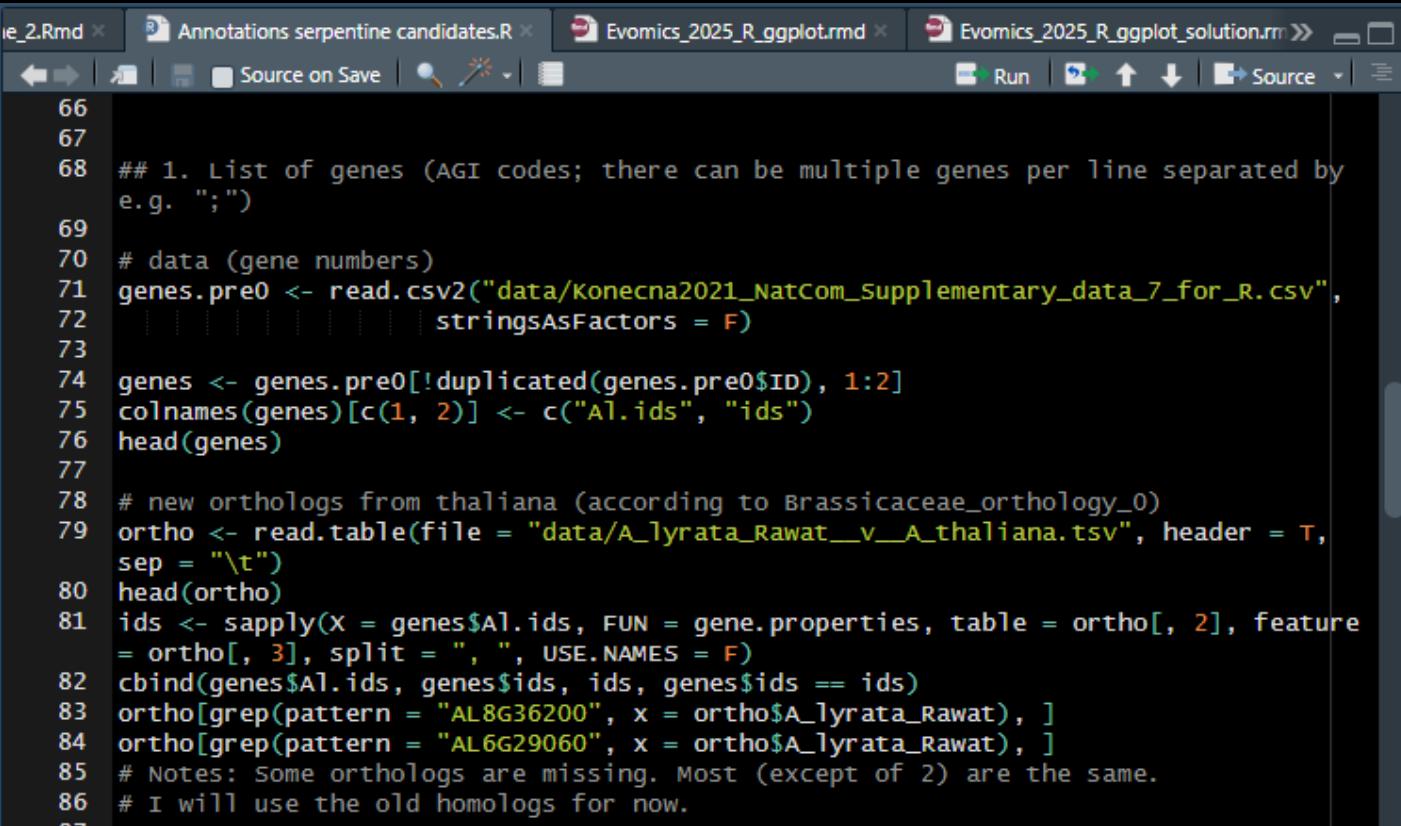
Description

Retrieve or set the row or column names of a matrix-like object.


Usage

```
rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value
```

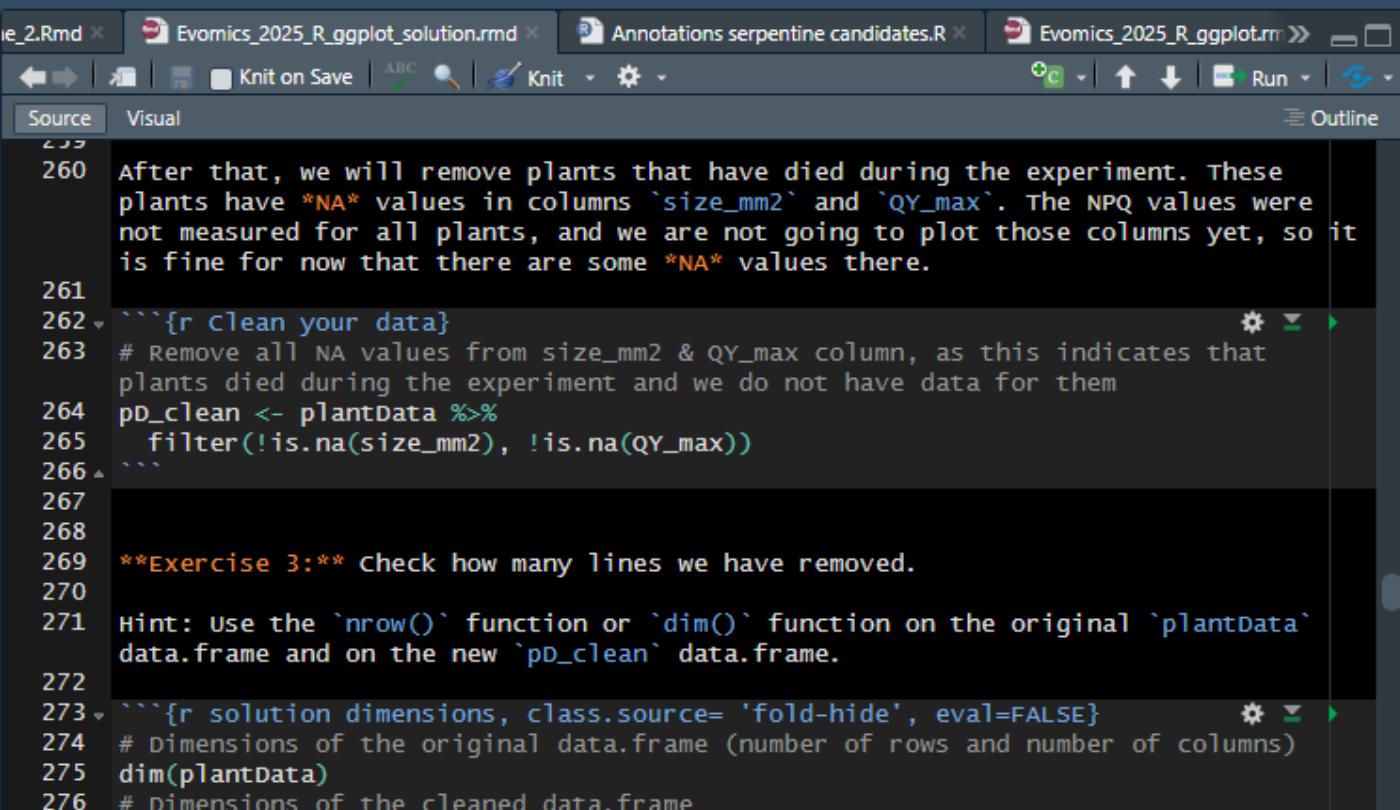
```
rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value
```


Where to write the code?

R Script / R Markdown

Where to write the code?

R Script: Code + # Comments



The screenshot shows the RStudio interface with several tabs open at the top: 'ie_2.Rmd', 'Annotations serpentine candidates.R', 'Evomics_2025_R_ggplot.rmd', and 'Evomics_2025_R_ggplot_solution.rmd'. The main area displays an R script with line numbers 66 to 97. The code reads a CSV file, filters for unique genes, and then reads a TSV file for orthologs. It uses the `sapply` function to apply a function to each gene ID, and then concatenates the results with the original gene data. The code includes several comments starting with '#'. The RStudio toolbar at the top includes icons for back, forward, search, and file operations, along with buttons for 'Run', 'Source', and navigation.

```
66
67
68 ## 1. List of genes (AGI codes; there can be multiple genes per line separated by
69 # e.g. ";")
70 # data (gene numbers)
71 genes.pre0 <- read.csv2("data/Konecna2021_NatCom_Supplementary_data_7_for_R.csv",
72 #                           stringsAsFactors = F)
73
74 genes <- genes.pre0[!duplicated(genes.pre0$ID), 1:2]
75 colnames(genes)[c(1, 2)] <- c("Al.ids", "ids")
76 head(genes)
77
78 # new orthologs from thaliana (according to Brassicaceae_orthology_0)
79 ortho <- read.table(file = "data/A_lyrata_Rawat__v__A_thaliana.tsv", header = T,
80 sep = "\t")
81 head(ortho)
82
83 ids <- sapply(X = genes$Al.ids, FUN = gene.properties, table = ortho[, 2], feature
84 = ortho[, 3], split = ", ", USE.NAMES = F)
85 cbind(genes$Al.ids, genes$ids, ids, genes$ids == ids)
86 ortho[grep(pattern = "AL8G36200", x = ortho$A_lyrata_Rawat), ]
87 ortho[grep(pattern = "AL6G29060", x = ortho$A_lyrata_Rawat), ]
88
89 # Notes: Some orthologs are missing. Most (except of 2) are the same.
90
91 # I will use the old homologs for now.
```

Where to write the code?

R Markdown: Formatted text + ``Code chunks``

The screenshot shows the RStudio interface with the following tabs at the top: 'ie_2.Rmd', 'Evomics_2025_R_ggplot_solution.rmd', 'Annotations serpentine candidates.R', and 'Evomics_2025_R_ggplot.r'. The 'Source' tab is selected. The code editor displays the following R Markdown content:

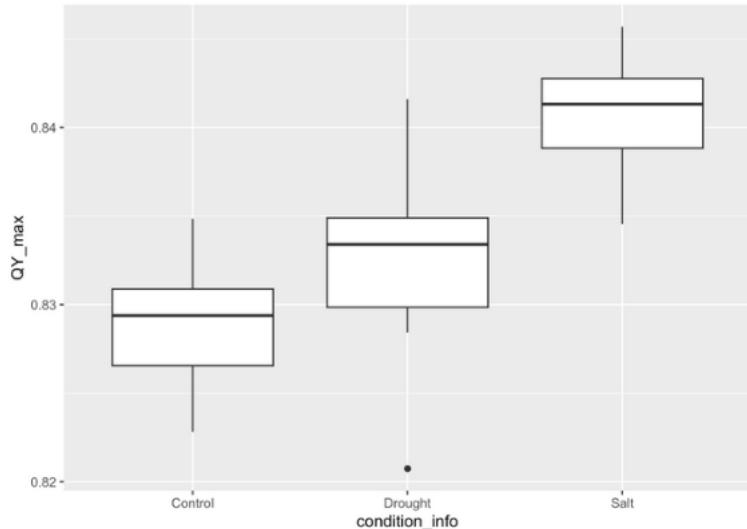
```
260 After that, we will remove plants that have died during the experiment. These
  plants have *NA* values in columns `size_mm2` and `QY_max`. The NPQ values were
  not measured for all plants, and we are not going to plot those columns yet, so it
  is fine for now that there are some *NA* values there.
261
262 ```{r clean your data}
263 # Remove all NA values from size_mm2 & QY_max column, as this indicates that
  plants died during the experiment and we do not have data for them
264 pd_clean <- plantData %>%
265   filter(!is.na(size_mm2), !is.na(QY_max))
266 ```

267
268
269 **Exercise 3:** Check how many lines we have removed.
270
271 Hint: use the `nrow()` function or `dim()` function on the original `plantData`  

  data.frame and on the new `pd_clean` data.frame.
272
273 ```{r solution dimensions, class.source= 'fold-hide', eval=FALSE}
274 # Dimensions of the original data.frame (number of rows and number of columns)
275 dim(plantData)
276 # Dimensions of the cleaned data.frame
```

R Markdown

Can be
“knitted” to
produce report
in html, pdf,
docx, GitHub
md etc.


4.3 Modify your graph aesthetics

We will now make our box plot a bit fancier. Although the defaults often work well, you can modify almost everything within the `ggplot2` package.

Here you can see how to modify various things in the plot.

Hide

```
# Original box plot of QY_max by condition_info
p1 <- ggplot(pD_clean_wt, aes(x=condition_info, y=QY_max)) +
  geom_boxplot()
p1
```


Hide

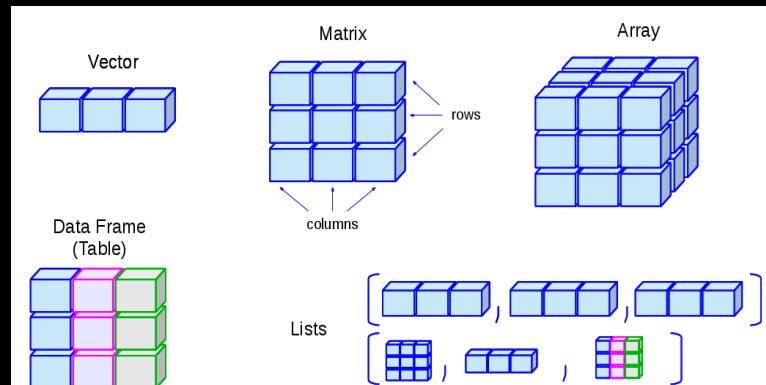
```
# Now let's get fancy with this plot. We'll start with our p1 plot and sequentially add layers to it.
```

```
p1_fancy <- ggplot(pD_clean_wt, aes(x=condition_info, y=QY_max)) +
  geom_boxplot() + # add a boxplot layer (same as before)
  geom_point() + # add points to the boxplot
```


General data structures

- **Vector** - ordered collection of data

```
vector_1 <- c(2, 3, 4, 10)
```


```
vector_2 <- c("potato", "lemonade", "avocado")
```

- **Matrix** - 2D collection of vectors with same data type

- **Array** - multiple dimension collection of vectors

- **Dataframe** - matrix-like with multiple data types (like an excel table with text and numbers)

- **Lists** - ordered collection of any objects (can contain also other lists inside it)

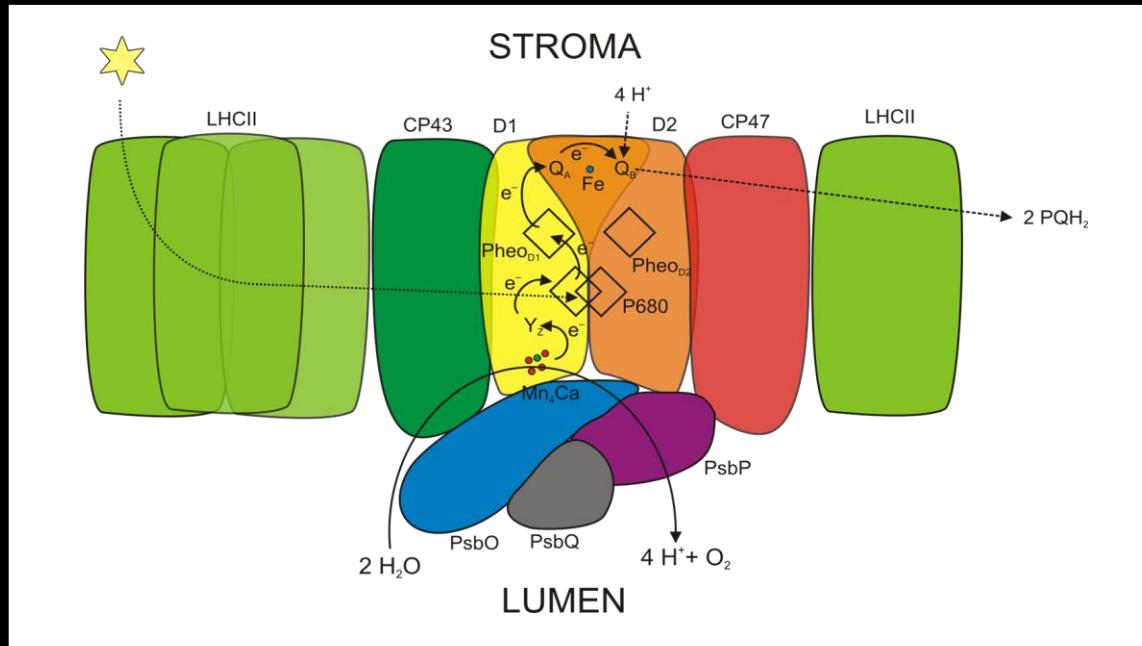
But...

which dataset should we use to try R?

Arabidopsis thaliana mutants *psbo1* and *psbo2*

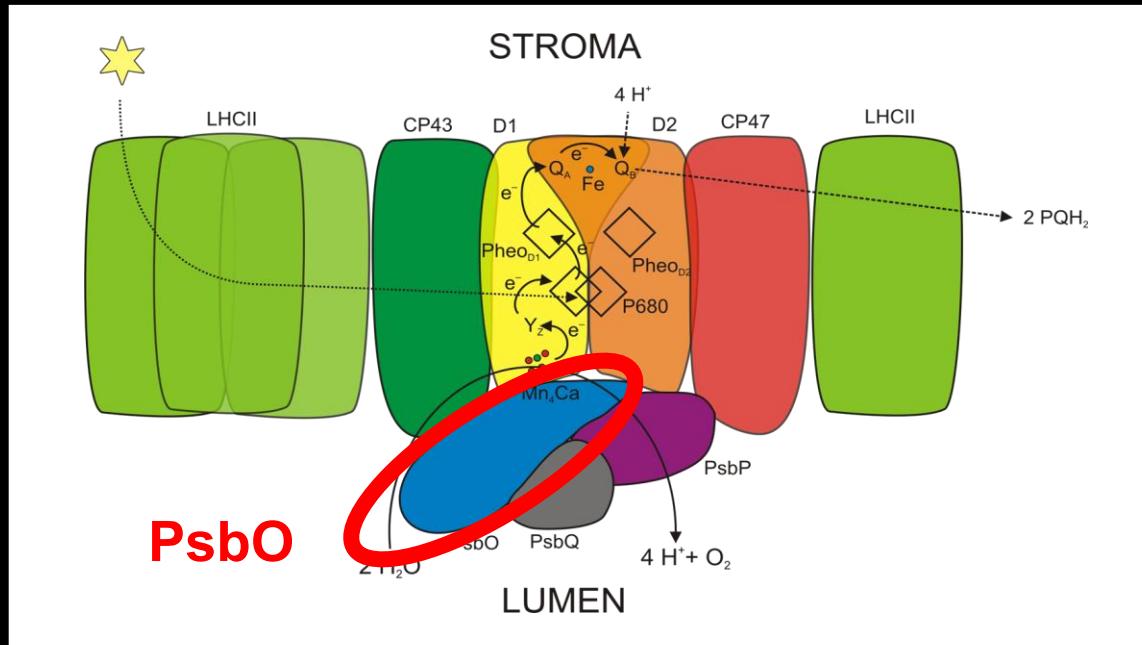
WT

psbo1



psbo2

PsbO protein


- Subunit of photosystem II
- Important for water splitting
- *Arabidopsis*: PsbO1 and PsbO2

Photosystem II

PsbO protein

- Subunit of photosystem II
- Important for water splitting
- *Arabidopsis*: PsbO1 and PsbO2

Photosystem II

Experimental design

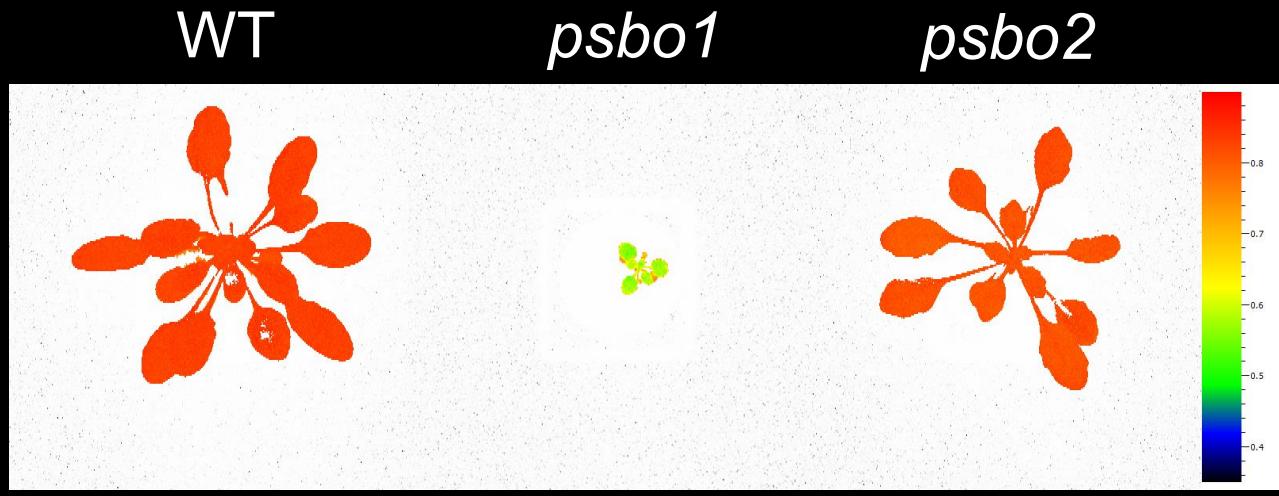
Control

WT
psbo1
psbo2

Drought

WT
psbo1
psbo2

Salt stress


WT
psbo1
psbo2

- water

+ NaCl

Measurement – chlorophyl fluorescence

- Leaf rosette area
- F_v/F_M (QY_max) – maximum quantum yield of photosystem II

Images from FluorCam (PSI) device

Let's start the practical!

Open the Rstudio server by typing in browser:
<your IP>:8787

Remember:

- Practise makes the masters.
- Do sanity checks. Always.
- Use AI, but try to understand, check and improve the code.