
Workshop on Genomics 2026

Mercè Montoliu Nerín

January 13th,2026

What is UNIX?

Operating system

powerful

multi-user

multitasking

Why is it important for
bioinformatics?

Efficiency
and

speed

Handling large
datasets and running
analyses efficiently

Access to powerful
tools and applications

Using scripts
to automate

repetitive tasks

Facilitates sharing and
reproducing analyses

The terminal

Make it comfortable to work in

■ Resize the window

■ Change the font size

■ Open multiple terminal windows (or tabs)

■ Make sure you have the right combination

of colours that work for you.

The terminal

File system organization

/home/Merce

/home/Merce/Genomics

Paths - Absolute vs Relative
Absolute paths

/home/Merce

/home/Merce/Genomics

/home/Merce/bin

. refers to our current location

.. refers to the location above us

File system navigation

pwd - where am I? cd - change directory

File system navigation

pwd - where am I?

/home/Merce

> cd /home/Merce/Genomics

> cd ./Genomics

cd - change directory

File system navigation

pwd - where am I?

/home/Merce/Genomics

> cd /home/Merce

> cd ../

cd - change directory

File system visualization

ls - shows you the contents the

directory you are in

> ls

> ls .

> ls ./

> ls ../ ��

Create, copy, move, and remove files
and folders

mkdir - create new directory

cp - copy file

mv - move file or directory

rm - remove file

"Unix was not designed

to stop its users from

doing stupid things, as

that would also stop

them from doing clever

things." - Doug Gwyn

Symbolic links

Data Analyses

Analysis1 Analysis2
seq.fastq

seq.fastq seq.fastq

> ln -s /home/Merce/Genomics/Data/seq.fastq \

/home/Merce/Genomics/Analyses/Analysis1/

> ln -s /home/Merce/Genomics/Data/seq.fastq .

If we are already inside the folder Analysis1:

ln -s /path/to/file link

create a symlink of file

Manual

man command - manual of the command

> man ls 🏴🏳🏴🏳
ls -l formatted list

ls -h “human” formatted list

ls -lh combination of flags

Explore file content

wc - word count (-l lines, -c characters, -w words)

less - visualize file contents in your terminal screen (press q to exit)

cat - prints contents of your file as standard output in your terminal

head - visualize the first 10 lines of a file

tail - visualize the last 10 lines of a file

A bit more advanced file-handling
commands

cat - prints contents of your file as standard output in your terminal

cat fileA fileB >> fileC

cat fileA > fileC

cat fileB >> fileC

cat fileA | command > output.txt

redirect to a command concatenate files

A bit more advanced file-handling
commands

sort - puts in certain order a series of lines in our file

sort -r fileA sorts in reverse order

sort -n fileA sorts lines in fileA numerically

sort -k 2 fileA sort fileA by column 2

sort -k 2nr fileA sort fileA by column 2, numerically and in reverse order

sort -V fileA sort lines in fileA numerically natural.

sort -u fileA sort lines and removes duplicates -> sort fileA | uniq

A bit more advanced file-handling
commands

Are these two files different?

diff - can tell us if there are differences between two files

diff -q fileA fileB

“Files fileA and fileC differ”

diff fileA fileB

prints differences

A bit more advanced file-handling
commands

Splitting a file

split - split a given file into multiple files (default 1000)

split -l 20 fileA

produce x number of files from fileA, each containing 20 lines.

cut - extract specific parts of a file

cut -c 2 fileA

extract specific columns from a file

Text editors

Nano - The simpler option of text editor. All commands within the nano
text editor are given by pressing the Control-key, usually represented as ^

^S save current file

^O save to (a different file)

^X exit from nano

Text editors

Vim - a highly configurable text editor built to make creating and changing
any kind of text very efficient

i start insert mode (you can start typing after where your cursor is)

ESC exits insert mode (also Ctrl + C)

:w save file without exiting

:q exit file (if there are unsaved changes, it fails)

:wq save and exit

:q! exit without saving changes

Text editors

emacs - a text editor characterized by its extensibility and configurability.
Some essential commands commands get activated by typing Control + X,
then the command (while holding the control key), but there is a wide
range of key combinations to be used to move and edit the text

Ctrl + x + s save file

Ctrl + x + c exit editor (if not saved, it ask if you want to save, then type

"yes")

Bash scripts

Bash scripts - Variables

We can save variables under almost any name.

Variables can be string type:

evomics="Workhop_on_genomics_2026"

data="genome_assembly_file.fasta"

path="/home/genomics/workshop_materials/unix"

Integer type:

num=5

or float type:

pi=3.14

We can refer to the variables

using a dollar sign:

$evomics

${evomics}

Bash scripts - for loops

Bash scripts - while loops

Bash scripts - Stay informed!

If we want to print messages to the standard output while the script is running we can do that

using the echo command. This is specially useful when running a long pipeline of multiple

commands, so that we can keep track of the stage that is currently running.

Bash scripts - Some tricks!

What my family and friends
think I do

What my supervisor thinks I do

What I actually do

Cheat-sheet

Cheat-sheet

Rubber duck

Now it is your turn to practice!
And become each other’s ducks!

Bioinformatic Files

Parsing and Editing

Regular Expressions

Regular expressions (or RegEx) are like special codes used to search for patterns in text.

Regular Expressions

The dot (.) represents a single character, any single character. It can be a digit, a letter, a symbol,

and even a space.

If we want to match our sequence "ATG", but this time we want to include the next nucleotide, we can

do that with "ATG.", in this case, the character after 'ATG' was a 'T', so we find 'ATGT':

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACG

TAGCATCAAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCAT

CAAATCTAGCATTA

Regular Expressions

The star (*) means "zero or more occurrences of the previous character."

We can combine it with the dot in the following way ".*". So we match zero or more occurrences of any

character.

If you wanted to find all sequences that start with "ATG" and end with "TAA", you could use a regular

expression like "ATG.*TAA", which means "find 'ATG', followed by zero or more of any character,

followed by 'TAA'":

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC

AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATATCTAGCATTAACGTAGTA

Regular Expressions

The plus (+) means "one or more occurrences of the previous character".

We can combine it with the dot in the following way ".+". So we match one or more occurrences of any

character.

If you wanted to find all sequences that start with "ATG" and end with "TAA", you could use a regular

expression like "ATG.+TAA", which means "find 'ATG', followed by one or more of any character,

followed by 'TAA'”:

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC

AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATATCTAGCATTAACGTAGTA

Regular Expressions

The plus (+) means "one or more occurrences of the previous character".

But, what would happen if we have this sequence? Can we use ATG.+TAA to match it?

ATAGCATCAAATGTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC

AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTC

"ATG.*TAA" would be able to match it, but not "ATG.+TAA", as it requires that there is at least one

character in between 'ATG' and 'TAA'

Regular Expressions

The question mark (?) matches zero or one time the previous character

If we want to match our sequence starting with "ATG" and ending with TAA, and we know sometimes

there is a T after ATG, but sometimes not, we can do that with "ATGT?TAA", in this case, the character

after 'ATG' can be a T, or can be nothing, and both the following sequences would be matched:

ATAGCATCAAATGTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC

AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTC

ATAGCATCAAATGTTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCAT

CAAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATT

Regular Expressions

The curly brackets ({}) can reference the amount of times we expect the previous character to

occur. It has three main configurations:

{m} - previous character exactly m number of times

{m,n} - previous character m to n number of times

{m,} - previous character m or more number of times

If we want to find 3 ‘A’ in a row, we could use “A{3}”

ATAGCATCATAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTAAAAATAGCATCATATCTAG

We can also specify that we want to find 'A' a minimum of 3 times and a maximum of 5 with "A{3,5}",

then we would match:

ATAGCATCATAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTAAAAATAGCATCATATCTAG

(We could get the same result in this specific sequence, by using "A{3,}")

Regular Expressions

The caret (^) is used to match the beginning of the line.

So that if we want to match sequences that start with "ATG", we can use ^ATG.

For example, in the following sequences:

ATGATAGCTTAACATTTACGTAGTAGCTATAGCTATT

GTCATGAGCTATTAGCATCACATCTAGCACGTTCATG

ATGCTATGAAGTCTACTTTATAGCATCAAATCTAGTA

The regular expression ^ATG matches ATG only in the first and third lines because they begin with

"ATG"

Regular Expressions

The dollar sign ($) is used to match the end of a line or string.

If we want to match sequences that end with "TAA", we can use "TAA$".

For example, in the following sequences:

TATAGCTAAAGTCTACTTTATAATCAATGATAGCTTAA

ATGAGCTATTAGCATCACATCTAGCAGTCATGAGCTAT

GTAGCATTTACGTAGTAGCTATAGCTATGCTAAGAAGT

The regular expression TAA$ matches TAA only in the first line because it ends with "TAA"

Regular Expressions

Square brackets ([]) are used to define a set of characters to match.

For example, [ACGT] matches any single character that is A, C, G, or T.

If we want to find sequences where "ATG" is followed by a C or G, we can use ATG[CG].

In the sequence:

ATAGCATCAAATGCTAACATTTACGTAGTAGCTATAGCTATTACGTATGGCTACTTTATAGCATCAAATCT

The regular expression ATG[CG] matches both ATGC and ATGG.

Regular Expressions

The pipe (|) means "or" and allows you to specify alternative patterns.

For instance, ATG|TAA matches either "ATG" or "TAA"

In the sequences:

ATGACGACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTTAAATAG

TCTAGCATGACGACGTAGCGCAACAGCTCAACCTCAATAGCTATTACGTAGTGCAATGTACTATTA

ACCTCAGGCTACTTTATATAGCTATTACGTAGAGCATCAAATCTAGCATTTAAATAGCCCGTATCC

The regular expression ATG|TAA matches ATG or TAA when found.

Regular Expressions

Parentheses (()) are used for grouping and capturing.

If we want to capture sequences that follow the pattern "ATG" followed by any two characters and

"TAA," we can use "(ATG..TAA)" to match and capture the sequence “ATGCTTAA”:

ATGCTTAAATGCCCAGTAA

Captured groups can be referenced later in the same regular expression or used in programming

languages. To find repeated sequences like "ATGTACTAA", you can use:

(ATGTACTAA).*\1

It would match in the following sequence:

GTAAATGTACTAACAGTAACGTAGCGATGTACTAAACCTCAATAG

Regular Expressions

The backslash (\) is used as an escape character to treat special characters literally.

For example, if you want to match a literal dot, use "\." instead of "."

If we want to find "A.T" as it appears (with the dot), we can use "A\.T"

A.TGACTTAAG.A.T

The regular expression "A\.T" matches A.T twice in the sequence.

The backslash is also used to represent special characters that are not written literally. For example, \n

represents a new line, and \t represents a tab, \s matches any whitespace, \d any digit, and \w any word.

grep

The command grep will print the lines matching a given pattern.

grep PATTERN file

grep -e PATTERN file (Pattern uses regex)

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

grep

Find a specific sequence within our sequences:

grep "AGGGG" file.fasta

-> will print only the first sequence:

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

grep

Find sequence headers only:

grep ">" file.fasta

-> will print all fasta headers:

>contig1

>contig2

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

grep

Count number of sequences:

grep ">" file.fasta | wc -l

-> will count how many lines contain ">", which will match with the number of sequences: 2

we can also use the flag -c in grep to do the same:

grep -c ">" file.fasta

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

grep

Print the DNA sequences with no headers:

grep -v ">" file.fasta

-> will print all lines that do not contain ">":

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

sed
sed ("stream editor") is a tool that can parse a file line by line, and transform text, using a compact

programming language that can fit in one line. Sed is a powerful tool with a big array of possible

commands, but the most common one is the substitution, in which we find a pattern and substitute it

for another string.

sed 's/patternA/patternB/' file.txt

sed

Modify the fasta header to contain "sequence" instead of "contig":

sed 's/contig/sequence/' file.fasta

We will obtain the entire file with the replacement:

>sequence1 assembled 2025 a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>sequence2 assembled 2025 b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
>contig1 assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

sed

Substitute spaces for underscores, in order to avoid problems with other programs:

In this case we add the flag "g" at the end, to make sure it replaces each occurrence even if there is
multiple within the same line:

sed 's/ /_/g' file.fasta

We will obtain the entire file with the replacements:

>sequence1_assembled_2025_a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>sequence2_assembled_2025_b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
>contig1 assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

sed

Simplify a fasta header:

sed 's/ .*//' file.fasta

We use regular expressions to match the first space we find in a line, followed by any character (.), any
number of times (*)

We will obtain the entire file with the replacement:

>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
>contig1 assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

sed

Simplify a fasta header:

sed 's/ .*//' file.fasta

We use regular expressions to match the first space we find in a line, followed by any character (.), any
number of times (*)

We will obtain the entire file with the replacement:

>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
>contig1 assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

AWK

AWK is a language designed for text processing, like sed and grep. AWK is a standard feature of most

Unix-like operating systems. AWK reads one line at a time, searching for a specific pattern to execute

the desired action. It requires a condition, and an action:

awk condition {action} file.txt

AWK is a language fieldaware (column aware):

$0 refers to the whole line

$1, $2, $3 ... refers to columns 1, 2, 3 ...

AWK

Print only the lines containing genes in contig1:

awk '$1="contig1" {print}' file.bed

We would get the following printed out:

contig1 20 1305 gene1 . +

contig1 46748563 gene4 . -

Understanding awk with a simple BED file:

contig1 20 1305 gene1 . +

contig1 46748563 gene4 . -

contig2 12395387 gene6 . -

contig3 546 3524 gene9 . +

AWK

Count how many genes we have in our file:

awk '$1="contig"' file.bed | wc -l

or we can create a counter after each condition is met, in this case finding the word contig in column 1.
And we use the function END to mark that an extra action is done when all lines are finished being
parsed:

awk '$1="contig" {count++} END {print count}' file.bed

both these commands will print: 4

Understanding awk with a simple BED file:

contig1 20 1305 gene1 . +

contig1 46748563 gene4 . -

contig2 12395387 gene6 . -

contig3 546 3524 gene9 . +

AWK

We can also use the function BEGIN to add an action before we start parsing the lines in our file:

awk 'BEGIN {print "We have these many genes:"} $1="contig" {count++} END
{print count}' file.bed

This command will print:

We have these many genes:

4

Understanding awk with a simple BED file:

contig1 20 1305 gene1 . +

contig1 46748563 gene4 . -

contig2 12395387 gene6 . -

contig3 546 3524 gene9 . +

AWK

Finally, we can combine information in multiple columns to create our conditions.

Print out the gene names of all genes that are larger than 2000 bp:
We need can use the information in column 2 and 3, which marks the start and end of each gene, and
we will print the information in column 4 (gene name) if column 3 - column 2 is larger than 2000:

awk '($3 - $2 > 2000) {print $4}' file.bed

It will print:

gene4

gene6

Understanding awk with a simple BED file:

contig1 20 1305 gene1 . +

contig1 46748563 gene4 . -

contig2 12395387 gene6 . -

contig3 546 3524 gene9 . +

Extra slides

stdin, stdout, stderr

command stdin if it works: prints in our terminal the stdout
if it fails: prints in our terminal the stderr

command stdin > stdout if it works: stdout is redirected to a file
if it fails: prints in our terminal the stderr

command2 stdin2 > stdout stdout is redirected to a file and rewrites its
contents

command2 stdin2 >> stdout stdout is redirected to a file and appended
after its contents

stdin, stdout, stderr

command stdin if it works: prints in our terminal the stdout
if it fails: prints in our terminal the stderr

command file1 > output.txt if it works: stdout is redirected to a file
if it fails: prints in our terminal the stderr

command2 file2 > output.txt stdout is redirected to a file and rewrites its
contents

command2 file2 >> output.txt stdout is redirected to a file and appended
after its contents

stdin stdout

stdin stdout

stdin stdout

stdin, stdout, stderr

command file1 2> errors.txt if it works: prints in our terminal the stdout
if it fails: stderr is redirected to a file

command file1 &> output.txt redirects both stdout and stderr to a file

command file1 > output.txt 2> errors.txt

stdin stdout&stderr

stdin stdout stderr

stdin stderr

redirects both stdout and stderr to a
separate file each.

