Workshop on Genomics 2026

unix

Mercé Montoliu Nerin

January 13th, 2026

What is UNIX?
powerful

_ multi-user
Operating system

multitasking

S Why is it important for
bioinformatics?
Handling large
Facilitates sharing and datasets and running
reproducing analyses analyses efficiently
Efficiency
and
speed

Using scripts
to automate
repetitive tasks

Access to powerful
tools and applications

. The terminal

Make it comfortable to work in

m Resize the window

m Change the font size
m Open multiple terminal windows (or tabs)

m Make sure you have the right combination

of colours that work for you.

» -
M
B
"
I
P e
1 -
pae W
i
o
L i
» -
et
e
e |
| e—
bo—
e =

drwxr-xr-x@ 342

drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
drwxr-xr-x@
—Iw-r——r-—@
drwxr-xr-x@

13

drwxr-xr-x@ 430

2pples-MacBo

k

apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple
apple

0.local@applel

The terminal

B&iag
staff
staff
staff
staff
staff
staff
staff
staff
staff
B&iag
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff

Boda Joan i Josie 22 de desembre de 2020

potential_cover_images
Anellament_divulgacio
Leia

Hercules

Castells

Concurs_TGN
Imatges_baldrigues
SaCella_2019

TFM

Public

Photos

Veus procel
Magnetoreception in Birds
pmau_popgen

Herencia

xavi TFM
Comandes—pressupostos
Tesi

Pares

cv
calo_pillars_hercules
GIzquierdo_PhD

seafan
Fotos_ocells_text_Borja
Lobsters_Josie

Camera Uploads
World_bird_list_JFerrer
Seqiiéncies-2

Prizes

Protocols
Postdoc_Milan
papers_reviewed

Icon?
Joan_Josie_life_paperwork
Screenshots

File Edit View Playback Window

rackhanl

B

User Guides: htep://m. uppaax.uu.
FAQ: http://waw. uppeax. uu. se/support/ foq

Write to supporteuppnax.uu.se, f you have questions or comments

ce]s 1s
assembly_check filter
inspector:
[rontol{uerackhan merce]$ cd annotation/
[rontoliuerackhan. annotation]$ 1s

maker_bopts.ctl naker_opts.ctl RMAdata STAR index
o protease Ryt

$ <o
[rontoliuerackhand assenbies]s 1s

anas xlx
mito_

xlsx

pseudogenes .xlsx

021 helitron_rep.bed ~Saito_sels

011 nito_rep.bed
011 mito_rep.

plcations_v2

011_nito
O1Lniton2.

011 nito12. fasta.nin
011_nito12. fasta.nog
011_nito12. fasta.nos

011 nitos fasta.ntf
011 nito#. fasta.nto

011 nitos.fasta.ndo
o

012 nitos. fasta.nin
011 nitos. fasta.nog

Sat 13 May 15:29

011 mit09. fasta.not
011 o9 fasta. s

012 mitod fasta.ntf
012 09 fasta.nto

. File system organization

A

Is pwd cp cat

Genomics

9 /home/Merce

/home/Merce/Genomics

Paths - Absolute vs Relative

Absolute paths

root

//\\ 9 /home/Merce

/home/Merce/Genomics

home usr tmp

/// /\ RN 9 /home/Merce/bin
s pwd cp cat User2 n

Genomics

. refers to our current location

. refers to the location above us

File system navigation

pwd - where am |7 cd - change directory

. File system navigation

pwd - where am 1? / .\
home . .
/home/Merce
\ // /\

& ==

cd - change directory

= Es
N4

> cd /home/Merce/Genomics

> cd ./Genomics

. File system navigation

pwd - where am 1? / \
home . .
/home/Merce/Genomics ///

& =
=

cd - change directory

File system visualization
root

Is - shows you the contents the / .\
home . .

usr
& galan
wl

directory you are in

. Create, copy, move, and remove files
and folders

"Unix was not designed
mkdir - create new directory
to stop its users from

_ fil . e

Cp - copy tiie doing stupid things, as
mv - move file or directory that would also stop
rm - remove file them from doing clever

things." - Doug Gwyn

root

Symbolic 1links /
/ \\
m home
In -s /path/to/file link

A1 o

ls pwd cp cat Merce User2

create a symlink of file

/ \

Genomics

/ \

> 1n -s /home/Merce/Genomics/Data/seq.fastqg \

Anal
/home/Merce/Genomics/Analyses/Analysis1/ DEIE nanses
If we are already inside the folder Analysis1: seq.fastq

Analysis1 Analysis2
> 1n -s /home/Merce/Genomics/Data/seq.fastq .

/ N\

seq.fastq seq.fastq

Manual

man command - manual of the command

> »

Is -l formatted list

Is -h “human” formatted list

Is -lh combination of flags

Explore file content

wc - word count (- lines, -c characters, -w words)

less - visualize file contents in your terminal screen (press g to exit)
cat - prints contents of your file as standard output in your terminal
head - visualize the first 10 lines of a file

tail - visualize the last 10 lines of a file

The character | (pipe) is used to concatenate commands, so that we can run one command after the other,

avoiding the creation of intermediate files.

commandl input | command2 > output

Instead of :

commandl input > outputl

command2 outputl > output2

Using pipe, the output of running command1 on a given input gets directly piped into command2, and we obtain an

output of these two consecutive commands, generating only one output.

' A bit more advanced file-handling
commands

cat - prints contents of your file as standard output in your terminal
redirect to a command concatenate files

cat fileA | command > output.txt cat fileA fileB >> fileC

cat | grep

cat fileA > fileC

grep cat fileB >> fileC

A bit more advanced file-handling
commands

sort - puts in certain order a series of lines in our file

sort -r fileA sorts in reverse order

sort -n fileA sorts lines in fileA numerically

sort -k 2 fileA sort fileA by column 2

sort -k 2nr fileA sort fileA by column 2, numerically and in reverse order
sort -V fileA sort lines in fileA numerically natural.

sort -u fileA sort lines and removes duplicates -> sort fileA | uniq

A bit more advanced file-handling
commands

Are these two files different?

diff - can tell us if there are differences between two files

diff -q fileA fileB

“Files fileA and fileC differ”

Corporate needs you to find the differences

between this picture and this picture.

diff fileA fileB

prints differences

d They're the same picture.

A bit more advanced file-handling
commands

Splitting a file
split - split a given file into multiple files (default 1000)
split -1 20 fileA

produce x number of files from fileA, each containing 20 lines.

cut - extract specific parts of a file

cut -c 2 fileA

extract specific columns from a file

Text editors

Nano - The simpler option of text editor. All commands within the nano
text editor are given by pressing the Control-key, usually represented as #

S save current file
O save to (a different file)

AX exit from nano

Text editors

Vim - a highly configurable text editor built to make creating and changing
any kind of text very efficient

i start insert mode (you can start typing after where your cursor is)

ESC exits insert mode (also Ctrl + C)

‘W save file without exiting
:q exit file (if there are unsaved changes, it fails)
‘'W(Q save and exit

:q! exit without saving changes

Text editors

emacs - a text editor characterized by its extensibility and configurability.
Some essential commands commands get activated by typing Control + X,
then the command (while holding the control key), but there is a wide
range of key combinations to be used to move and edit the text

Ctrl + x + s save file

Ctrl + x + ¢ exit editor (if not saved, it ask if you want to save, then type

"yeS")

Bash scripts

Shell scripts often have the suffix . sh

Shell scripts must be executable chmod 755 or chmod +x
Comments can be written in scripts with a #

Variables can be used to shorten long paths

Shell loops can be used to process lots of files

\ can be used to wrap long commands across multiple lines

#!/bin/bash must be the first line, it specifies interpreter

Bash scripts - Variables

We can save variables under almost any name.

Variables can be string type:
evomics="Workhop_on_genomics_2026"
data="genome_assembly_file.fasta"

path="/home/genomics/workshop_materials/unix"

Integer type: We can refer to the variables
num=>5 using a dollar sign:
or float type: Sevomics

pi=3.14 S{evomics}

Bash scripts - for loops

Loop over files inside a directory: Loop over files that we stored inside a variable:
for file in ./unix/working_directory/xfastq files="filel
do file2
commands $file file3
done file4"

for file in $files
do
commands $file

done

Bash scripts - while loops

while loops

while read line
do
command S$Sline

done

We can pipe the command 1s -1 to this script to run the

command on each of the files listed.

Bash scripts - Stay informed!

If we want to print messages to the standard output while the script is running we can do that
using the echo command. This is specially useful when running a long pipeline of multiple

commands, so that we can keep track of the stage that is currently running.

for file in ./unix/working_directory/xfastq
do
echo "Command 1 is running on $file"
commandl $file
echo "Command 2 is running on $file"

command2 $file

done

Bash scripts - Some tricks!

for file in ./unix/working_directory/*xfastq
do

file_name=$(basename $file ".fastq")

commandl $file -out ${file_name}_commandl. fastq

done

It is the same as:

for file in ./unix/working_directory/xfastq
do

file_name=$(basename $file ".fastq")

commandl $file -out "$file_name"_commandl. fastq

done

think | do

D

stack overflow

G

Cheat-sheet

pwd show current path / directory o tar -xzf archive.tar.gz uncompress tar.gz
g 1s list directory € tar -czf archive.tar.gz archive compress
-4 cd dir change directory to dir & 3 archive to tar.gz
+ © » 9gzip compress .gz
B cd - goiihome > 0 gunzip uncompress .gz
g cd - change to previous directory _EI E
5 current directory O ¥ chmod +x makes file executable
= parent directory ; g_ (-r readable, -w writable)
: mkdir dir create directory dir _ @ wget web-address-to-file download file
- cp filel dir/ copy filel to directory dir + curl -0 web-address-to-file into current dir

mv filel dir/ move filel to directory dir 2
B v filel file2 rename filel to file2 QL’ ssh user@server connect to cluster
(0]
z rm file1l delete file1
- deistaRdiEectonRain =i Ctrl + C halts current command

E_’ Ctrl + Shift + C copy (linux)

g wc count () Cmd + C (mac)
.4 (-1 lines, -w words, -c characters) g Ctrl + Shift + V paste (linux)
"; tail file output last 10 lines of file o3 Cmd + V (mac)
L head file output first 10 lines of file Ctrl + W erases one word
3 less file visualise contents of file I’j n Ctrl + U erases whole line
g— cat file output file to standard output g 'g Ctrl + A go to beginning of line
O sort sort rows 2 @© Ctrl +E go to end of line
@ uniq keep unique rows ; E exit log out of current session
g diff fileA fileB differences? ﬁ 8 history prints your past commands
Y cut -c 2 cut column 2 man command manual for command

Cheat-sheet

Rubber duck

©0e® 000000 0PCO 00PN © 20000000000 o -
o® 0o .ooooo.“ﬁ.'oo—o“m‘-‘.‘»lor-oo. o= =
o » —_——ee—

ERRERR RN

_—
-
-
.
-

Now it 1s your turn to practice!
And become each other’'s ducks!

1'i'

Bioinformatic Files

Parsing and Editing

FastQ

FastQ format is a text file in which each entry is composed of a set of four lines:

Line 1 begins with @ and is followed by the sequence identifier.

Line 2 is the raw sequence nucleotide letters

Line 3 is a + character alone (in some cases, it may be followed again by the sequence identifier)

Line 4 encodes the quality values for each letter in the sequence (Line 2 and 4 must be the same length)

For example:

@A00428:110:HKIFMDSXX:3:1101:28248:1000 1:N:0:TGCTTCCA+NTCGATCG
ANCTCACGCTCATCAATAAATTCTGTAAACAAGCACAATTTTCCTCCCACTCTGTTTCCCAACTACTTCCCACCCTGTGAAGCTGGCGGAAACATCCTGAT
GAAGCACAAAGTATTTCTGGCCCCCGGAGCTGCCCTGGGTCACTGACCAC

e
F#FFF
FF

FastA

FastA format is a text file in which each entry is composed of a set of two lines:
Line 1 begins with > and is followed by the sequence identifier.
Line 2 is the sequence nucleotide letters.

For example:

>NC_054070.1 Falco naumanni 1isolate bFalNaul chromosome 17, bFalNaul.pat, whole genome shotgun
sequence

aaccctaagagcctgagtctaaccctaaccctcaccctaagagcctgagtctaaccctcaccctaagagectgagtctaaccctaacccgaagagectga

BED

BED format is a text file in which each entry is composed of one line with genomic coordinates and any associated annotations.

A BED file contains a minimum of three columns, with the first three columns being the chromosome, start, and stop coordinates of the
regions considered.

The start coordinate is zero-based, and the stop coordinate is non-inclusive.

For example:

NC_054069.1 1172 4897 -8209981 + (CTAACC)n Simple_repeat L 4516
(0] 18193412

In this file, the first three columns refer to the genomic region, and the remaining columns provide additional annotations specific to this
region.

GTF/GFF

TF or GFF formats are text files in which each entry is composed of one line, used for describing genes and other features of DNA, RNA and protein sequences.

9]

Both formats contain 9 columns, which are tab-separated.

Column 1 contains the seqlD, which gives the name of the sequence.

Column 2 contains the source, which is the procedure that generated the feature.

Column 3 contains the type of feature, such as 'gene' or 'exon.

Column 4 contains the start position of the feature, which is 1-based (different from BED format).
Column 5 contains the stop position of the feature.

Column 6 contains the score, which gives the confidence from the source in the annotated feature.

Column 7 contains the strand, which can be '+' - or '?' for an unknown orientation.

Column 8 contains the phase, which will be 0, 1 or 2 for CDS features or ' for anything else.

Column 9 contains attributes, which are semicolon separated and provide additional information about the feature. The format and information contained in this
column differs between GFF3 and GTF formats.

For example, a GFF file may look like this:

NC_054069.1 RefSeq region 1 8214878 . +
ID=NC_054069.1:1..8214878;Dbxref=taxon:148594;Name=16;chromosome=16;collected-by=Diego Rubolinij;collection-date=2016-
06-25;country=Italy: Materaj;dev-stage=juvenile;gbkey=Src;genome=chromosome;isolate=bFalNaul;lat-1lon=40.67 N 16.60
E;mol_type=genomic DNA;sex=female;specimen-voucher=P51P2 - H187058 (nest 2016-P51);tissue-type=blood

VCF

VCF format is a text file in which each entry is composed of one line and is used for storing sequence variation.

A VCEF file generally starts with a header that provides metadata describing the content of the file, which is denoted by starting with # and special keywords denoted
by ##.

After the header follows the body of the VCF file, which contains a mandatory 8 columns, and unlimited optional columns.
Column 1 contains the name of the sequence where the variant is located, usually the chromosome.

Column 2 contains the position of the variant, which is 1-based.

Column 3 contains the identifier of the variant, which will be " if unknown.

Column 4 contains the reference sequence at the variant position.

Column 5 contains a list of alternative alleles at the variant position.

Column 6 contains the quality score associated with the inference of the given alleles.

Column 7 contains a flag giving information on filters that the variant has failed to pass, or PASS if the variant has passed filters.

Column 8 contains a list of fields with information describing the variant. The fields may vary depending upon the method of variant detection, with fields separated
by semicolons.

Column 9 is optional, but included if there are sample columns included in the VCF. This column provides a list of fields describing the information contained in the
samples.

After column 9 is an unlimited number of columns describing the samples described in the file.

For example, a VCF file including one sample:

NC_054069.1 86611 52190671 = A G . PASS NS=93;AF=0.038;SF=0,1 GT:DP:AD:GQ:GL
0/0:49:49,0:40:-0,-15.74,-125.17

Regular Expressions

Regular expressions (or RegEXx) are like special codes used to search for patterns in text.

Special characters in RegEx

We can match any character using regular expressions, except those that have a special

meaning in RegEx.

The below listed characters are special characters in RegEx:

+ k ? {} 2

0 [] | \

HOW TO REGEX

STEP 1: OPEN YOUR FAVORITE EDITOR

STEP 2: LET YOUR CAT PLAY ON YOUR KEYBOARD

/M[A-Z0-9_\.-

-

Regular Expressions

The dot (.) represents a single character, any single character. It can be a digit, a letter, a symbol,

and even a space.

If we want to match our sequence "ATG", but this time we want to include the next nucleotide, we can

do that with "ATG.", in this case, the character after 'ATG' was a 'T', so we find 'ATGT":

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACG
TAGCATCAAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCAT
CAAATCTAGCATTA

Regular Expressions

The star (*) means "zero or more occurrences of the previous character."

We can combine it with the dot in the following way ".*". So we match zero or more occurrences of any

character.

If you wanted to find all sequences that start with "ATG" and end with "TAA", you could use a regular
expression like "ATG. *TAA", which means "find 'ATG', followed by zero or more of any character,

followed by "TAA™:

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC
AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATATCTAGCATTAACGTAGTA

Regular Expressions

The plus (+) means "one or more occurrences of the previous character".

We can combine it with the dot in the following way ".+". So we match one or more occurrences of any

character.

If you wanted to find all sequences that start with "ATG" and end with "TAA", you could use a regular
expression like "ATG.+TAA", which means "find 'ATG', followed by one or more of any character,

followed by "TAA™:

ATAGCATCAAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC
AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATATCTAGCATTAACGTAGTA

Regular Expressions

The plus (+) means "one or more occurrences of the previous character".

But, what would happen if we have this sequence? Can we use ATG.+TAA to match it?

ATAGCATCAAATGTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC
AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTC

"ATG.*TAA" would be able to match it, but not "ATG.+TAA", as it requires that there is at least one
character in between 'ATG' and 'TAA'

Regular Expressions

The question mark (?) matches zero or one time the previous character

If we want to match our sequence starting with "ATG" and ending with TAA, and we know sometimes
there is a T after ATG, but sometimes not, we can do that with "ATGT?TAA", in this case, the character

after 'ATG' can be a T, or can be nothing, and both the following sequences would be matched:

ATAGCATCAAATGTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCATC
AAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTC

ATAGCATCAAATGTTAACATTTACGTAGTAGCTATAGCTATTACGTAGGGCTACTTTATAGCATCAAATCTAGCATCTACGTAGCAT
CAAATCTAGCACGTACGTAGTAGCTCATGCTATTACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATT

Regular Expressions

The curly brackets ({}) can reference the amount of times we expect the previous character to
occur. It has three main configurations:

{m} - previous character exactly m number of times

{m,n} - previous character m to n number of times

{m,} - previous character m or more number of times

If we want to find 3 ‘A’ in a row, we could use “A{3}”

ATAGCATCATAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTAAAAATAGCATCATATCTAG

We can also specify that we want to find 'A" a minimum of 3 times and a maximum of 5 with "A{3,5}",

then we would match:

ATAGCATCATAATGTAGCATTTACGTAGTAGCTATAGCTATTACGTAGGGCTAAAAATAGCATCATATCTAG

(We could get the same result in this specific sequence, by using "A{3, }")

Regular Expressions

The caret (") is used to match the beginning of the line.

So that if we want to match sequences that start with "ATG", we can use *ATG.

For example, in the following sequences:

ATGATAGCTTAACATTTACGTAGTAGCTATAGCTATT
GTCATGAGCTATTAGCATCACATCTAGCACGTTCATG
ATGCTATGAAGTCTACTTTATAGCATCAAATCTAGTA

The regular expression *ATG matches ATG only in the first and third lines because they begin with

IIATG"

Regular Expressions

The dollar sign (S) is used to match the end of a line or string.

If we want to match sequences that end with "TAA", we can use "TAAS".

For example, in the following sequences:

TATAGCTAAAGTCTACTTTATAATCAATGATAGCTTAA
ATGAGCTATTAGCATCACATCTAGCAGTCATGAGCTAT
GTAGCATTTACGTAGTAGCTATAGCTATGCTAAGAAGT

The regular expression TAA$ matches TAA only in the first line because it ends with "TAA"

Regular Expressions

Square brackets ([]) are used to define a set of characters to match.

For example, [ACGT] matches any single character thatis A, C, G, or T.

If we want to find sequences where "ATG" is followed by a C or G, we can use ATG[CG].

In the sequence:

ATAGCATCAAATGCTAACATTTACGTAGTAGCTATAGCTATTACGTATGGCTACTTTATAGCATCAAATCT

The regular expression ATG[CG] matches both ATGC and ATGG.

Regular Expressions

The pipe (|) means "or" and allows you to specify alternative patterns.

For instance, ATG | TAA matches either "ATG" or "TAA"

In the sequences:

ATGACGACGTAGCGCAACAGCTCAACCTCAGGCTACTTTATAGCATCAAATCTAGCATTTAAATAG
TCTAGCATGACGACGTAGCGCAACAGCTCAACCTCAATAGCTATTACGTAGTGCAATGTACTATTA
ACCTCAGGCTACTTTATATAGCTATTACGTAGAGCATCAAATCTAGCATTTAAATAGCCCGTATCC

The regular expression ATG|TAA matches ATG or TAA when found.

Regular Expressions

Parentheses (()) are used for grouping and capturing.

If we want to capture sequences that follow the pattern "ATG" followed by any two characters and

"TAA," we can use "(ATG. .TAA)" to match and capture the sequence “ATGCTTAA”:

ATGCTTAAATGCCCAGTAA

Captured groups can be referenced later in the same regular expression or used in programming
languages. To find repeated sequences like "ATGTACTAA", you can use:

(ATGTACTAA) . *\1

It would match in the following sequence:

GTAAATGTACTAACAGTAACGTAGCGATGTACTAAACCTCAATAG

Regular Expressions

The backslash (\) is used as an escape character to treat special characters literally.

For example, if you want to match a literal dot, use "\ ." instead of "."

If we want to find "A.T" as it appears (with the dot), we can use "A\ . T"

A.TGACTTAAG.A.T

The regular expression "A\.T" matches A.T twice in the sequence.

The backslash is also used to represent special characters that are not written literally. For example, \n

represents a new line, and \t represents a tab, \s matches any whitespace, \d any digit, and \w any word.

Qo

The command grep will print the lines matching a given pattern.
grep PATTERN file

grep -e PATTERN file (Pattern uses regex)

Understanding grep with a simple fasta file:
>contig1

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

(GREPANEEDLEJHAYSTACK4HX{j

"" ¢ “o '. o= ;_ 1"‘
e
"I ":.lull\llt’yl I I
wr ®

Understanding grep with a simple fasta file:

g r e p >contigT

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Find a specific sequence within our sequences:

grep "AGGGG" file.fasta

-> will print only the first sequence:

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

Understanding grep with a simple fasta file:
g r e p >contigT
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Find sequence headers only:
grep ">" file.fasta
-> will print all fasta headers:

>contigl

>contig2

Understanding grep with a simple fasta file:
g r e p >contigT
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Count number of sequences:

grep ">" file.fasta | wc -1

-> will count how many lines contain ">", which will match with the number of sequences: 2

we can also use the flag -c in grep to do the same:

grep -c ">" file.fasta

Understanding grep with a simple fasta file:
g r e p >contigT
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Print the DNA sequences with no headers:
grep -v ">" file.fasta
-> will print all lines that do not contain ">":

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

sed

sed ("stream editor") is a tool that can parse a file line by line, and transform text, using a compact
programming language that can fit in one line. Sed is a powerful tool with a big array of possible
commands, but the most common one is the substitution, in which we find a pattern and substitute it

for another string.

sed 's/patternA/patternB/' file.txt

WE DON'T*MAKE TYPOS WE JUST
SED S/TYPO/HAPPY. LITTI.rE ACCIDENTS/'

Understanding sed with a simple fasta file:
E;eacj >contig1l assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG
Modify the fasta header to contain "sequence" instead of "contig":
sed 's/contig/sequence/' file.fasta

We will obtain the entire file with the replacement:

>sequencel assembled 2025 a
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>sequence2 assembled 2025 b
ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
E;eacj >contig1l assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT

>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Substitute spaces for underscores, in order to avoid problems with other programs:

In this case we add the flag "g" at the end, to make sure it replaces each occurrence even if there is
multiple within the same line:

sed 's/ /_/g' file.fasta
We will obtain the entire file with the replacements:

>sequencel_assembled_2025_a
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>sequence2_assembled_2025_b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
Sed >contig1l assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Simplify a fasta header:
sed 's/ .*//' file.fasta

We use regular expressions to match the first space we find in a line, followed by any character (.), any
number of times (*)

We will obtain the entire file with the replacement:

>contig1
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>contig2
ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Understanding sed with a simple fasta file:
Sed >contig1l assembled a

AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>contig2 assembled b

ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

Simplify a fasta header:
sed 's/ .*//' file.fasta

We use regular expressions to match the first space we find in a line, followed by any character (.), any
number of times (*)

We will obtain the entire file with the replacement:

>contig1
AATCTAGCATTTACGTAGTAGCTAAAGCTAAACCTCAGGGGCTACTTTAT
>contig2
ATTTACGTAGCATCAAATCTAGCATTTACGTAGTAGCTAAAGCTATTACG

AWK

AWK is a language designed for text processing, like sed and grep. AWK is a standard feature of most
Unix-like operating systems. AWK reads one line at a time, searching for a specific pattern to execute

the desired action. It requires a condition, and an action:

awk condition {action} file.txt

AWK is a language fieldaware (column aware):
$0 refers to the whole line

$1, $2, $3 ... refers to columns 1, 2, 3 ...

Understanding awk with a simple BED file:

AWK contigl 20 1305 genel . +

contigl 46748563 (gened4 . -

contig2 12395387 dgene6 . -
contig3 546 3524 gene9 . +

Print only the lines containing genes in contig1:

awk 'S1="contig1" {print}' file.bed

We would get the following printed out:
contigl 20 1305 genel . +
contigl 46748563 gened . -

Understanding awk with a simple BED file:

AWK contigl 20 1305 genel . +

contigl 46748563 (gened4 . -

contig2 12395387 dgene6 . -
contig3 546 3524 gene9 . +

Count how many genes we have in our file:
awk '$1="contig"' file.bed | wc -1

or we can create a counter after each condition is met, in this case finding the word contig in column 1.
And we use the function END to mark that an extra action is done when all lines are finished being
parsed:

awk 'S1="contig" {count++} END {print count}' file.bed

both these commands will print: 4

Understanding awk with a simple BED file:

AWK contigl 20 1305 genel . +

contigl 46748563 (gened4 . -

contig2 12395387 dgene6 . -
contig3 546 3524 gene9 . +

We can also use the function BEGIN to add an action before we start parsing the lines in our file:

awk 'BEGIN {print "We have these many genes:"} $1="contig" {count++} END
{print count}' file.bed

This command will print:
We have these many genes:
4

Understanding awk with a simple BED file:

AWK contigl 20 1305 genel . +

contigl 46748563 (gened4 . -

contig2 12395387 dgene6 . -
contig3 546 3524 gene9 . +

Finally, we can combine information in multiple columns to create our conditions.

Print out the gene names of all genes that are larger than 2000 bp:
We need can use the information in column 2 and 3, which marks the start and end of each gene, and
we will print the information in column 4 (gene name) if column 3 - column 2 is larger than 2000:

awk '($3 - $2 > 2000) {print $4}' file.bed
It will print:
gene4

geneb

Time to put into practice everything you learned!

Inside the folder /home /genomics /workshop_materials/unix_tutorial,you will find a folder called data. It contains a dataset that includes:
= genome_assembly.fasta

= sequencing_reads.fastq
= variant_analysis.vcf

= annotation.gff

Extra slides

Inputs and outputs

stdin It stands for standard input, and is used for taking text as an input.

stdout It stands for standard output, and is used to text output of any command you typein

the terminal, and then that output is stored in the stdout stream.

stderr It stands for standard error. It is invoked whenever a command faces an error, then that

error message gets stored in this data stream.

command stdin

command stdin > stdout

command?2 stdin2 > stdout

command?2 stdin2 >> stdout

stdin, stdout, stderr

if it works: prints in our terminal the stdout
if it fails: prints in our terminal the stderr

if it works: stdout is redirected to a file
if it fails: prints in our terminal the stderr

stdout is redirected to a file and rewrites its
contents

stdout is redirected to a file and appended
after its contents

stdin, stdout, stderr

command stdin if it works: prints in our terminal the stdout
if it fails: prints in our terminal the stderr

command file1 > output.txt if it works: stdout is redirected to a file
stdin stdout if it fails: prints in our terminal the stderr

command2 file2 > output.txt Stdout is redirected to a file and rewrites its
stdin stdout contents

command?2 file2 >> output.txt sfdout is redirected to a file and appended
stdin stdout after its contents

stdin, stdout, stderr

command file1 2> errors.ixt if it works: prints in our terminal the stdout
stdin stderr if it fails: stderr is redirected to a file

command file1 &> output.txt redirects both stdout and stderr to a file
stdin stdout&stderr

command file1 > output.txt 2> errors.txt redirects both stdout and stderr to a
stdin stdout stderr separate file each.

Key shortcuts

Ctrl+C

Ctrl + Shift +C
Ctrl + Shift +V
Ctrl+W
Ctrl+U
Ctrl+A
Ctrl+E

Typeexit

halts current command

copy (linux) - Cmd+C (mac)
paste (linux) - Cmd+V (mac)
erases one word in current line
erases whole line

go to begining of line

go to end of line

log out of current session

