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Annotation and Analysis for Diverse Genomes and Transcriptomes
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Development and Applications
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Overview of Trinity CTAT. Given cancer RNA-seq as input, Trinity CTAT provides modules for exploring characteristics of 

the cancer transcriptome (and cancer genome) including both genome-guided and genome-free analyses, targeting bulk or 
single-cell transcriptomes. Interactive visualizations and reports are provided to facilitate downstream analysis and for 
clinical review.

Earlier developments focused on cancer transcriptomics:
Years 2013-2023





-- Introducing -- 

Mega Keychain!



ChatGPT



Art by ChatGPT



Transcriptomics Lecture Outline

1. Intro to transcriptomics 
2. Transcript reconstruction methods
3. Genome-free transcriptomics (eg. for non-model orgs)
4. Expression quantification
5. Differential expression (brief – more details in Rachel’s workshop!)
6. Latest advancements in long read isoform sequencing
7. Overview of single cell transcriptomics
8. Overview of spatial transcriptomics
9. Applications in Cancer Transcriptomics

* Followed by comments on how I’ve recently been using LLMs in my work



Part 1. Intro to Transcriptomics



https://www.simply.science/images/content/biology/genetics/molecular_genetics/conceptmap/Central_Dogma_of_Molecular_Biology.html
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Intro to Transcriptomics
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Adapted from: https://cs.wikipedia.org/wiki/Splicing

Primary mRNA molecules Often Undergo Splicing in Eukaryotes

Primary transcript

Gene in the Genome

Transcription

Intron Splicing,

 5’ Capping, 
and 3’ Polyadenylation

Processed RNA

Protein

Translation



Alternative Splicing – Multiple Products from Single Genes 

• Core regulatory process – diversifies 
the function of genes.

• Generates mRNAs that differ in 
coding sequence and UTRs. Effects:

– Protein isoforms

– Translation efficiency

– Stability

– Localization

– Reading frame changes

• Estimated 90-95% of human genes 
undergo alternative splicing

From Aziz Al’Khafaji, Broad Inst.



From Aziz Al’Khafaji, Broad Inst.

Think of genes as protosentences 



From Aziz Al’Khafaji, Broad Inst.

Think of genes as protosentences 



Fully formed sentences ≈ mature mRNA

From Aziz Al’Khafaji, Broad Inst.



RNA isoform sequencing provides structural insight 

From Aziz Al’Khafaji, Broad Inst.



Extract RNA, 
 … some protocol for processing, ... 

Biological Investigations Empowered by Transcriptomics

Analysis Method
(pick your favorite)

Northern

Dot Blot
Microarray

qRT-PCR
Sanger Sequencing

Other…



Gene expression analyses ignore isoform variation

From Aziz Al’Khafaji, Broad Inst.

?
Need to resolve isoforms for deeper 

insights into cellular functions



Historical Timeline to Modern Transcriptomics (from 1970)

From Cieslik and Chinnaiyan, 
NRG, 2017 

Lots more!

Smith Waterman (1981)

BLAST (1990)

(2011)

Tophat/Cufflinks (2010)

RSEM

Kallisto (2016)

Salmon (2017)

Note: Just a small 
sampling of what’s 
available.

Seurat-v2 (2021)

StringTie  (2015)

minimap2 (2018)

STAR (2013)

SAMtools (2009)

Reverse Transcription (1970)

Northern Blot
Sanger Sequencing

(1977)

Expressed Sequence Tags (1992)

cDNA microarrays (1995)

RNA-Seq (2006-2008) 

Droplet single cell RNA-Seq (2015) 

PacBio IsoSeq (2014)

Direct RNA Seq Nanopore (2018)

SlideSeq-v2 (2021)



Extract RNA, convert to cDNA

Modern Transcriptome Studies Empowered by RNA-seq

Next-gen Sequencer
(pick your favorite)

Millions to Billions of Reads
RNA-seq



Circa 1995

Personal Reflections...



Generating RNA-Seq:  How to Choose?

SOLiD Helicos

*Not all shown at scale

iSeq

Stats circa 2018

For current, see: https://tinyurl.com/wbgcs65

Illumina PacBio ONT

https://tinyurl.com/wbgcs65
https://tinyurl.com/wbgcs65
https://tinyurl.com/wbgcs65


Maybe something fast and portable?

Oxford Nanopore Technology (ONT) Minion



https://sequencing.roche.com/us/en/article-listing/sequencing-platform-technologies.html 

Sequencing by Expansion (SBX) Technology

X-NTPs Xpandomer Synthesis

Xpandomers Travel Through Nanopore Detectors Xpandomer Signals Detected

Backbone Cleavage and 

Xpandomer Expansion
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A Plethora of Biological Sequence Analyses Enabled by RNA-Seq 

From Cieslik and Chinnaiyan,  NRG, 2017 

(ie. mutations)



RNA-Seq is Empowering Discovery at Single Cell Resolution

Wagner, Regev, and Yosef.  NBT 2016 



Spatial Transcriptomics

From “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

Spatial Encoding



A Myriad of Other Specialized 
RNA-seq -based Applications

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)

RNA-Sequencing as your lens towards biological discovery



A Myriad of Other Specialized 
RNA-seq -based Applications

RNA-Protein Interactions

Ribosomal profiling

RNA-RNA interactions

RNA Structuromics

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield 
Nature Reviews Genetics volume 20, pages631–656(2019)



RNA-seq Publication Trend

Paper Counts from PubMed

Spatial RNA-seq

Single-cell RNA-seq

RNA-seq



RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
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RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393
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RNA-seq library enrichment strategies that influence interpretation and analysis.

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393

http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393


Part 2. Transcript Reconstruction Methods



RNA-Seq Challenge: Transcript Reconstruction

Adapted from: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Reconstruct original 
full-length transcripts

(Avg. ~ 2 kb)

(Avg. ~ 300 b)

(~ 75 to 150 b reads, SE or PE)



Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAPStringTie

STAR

Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAPStringTie

STAR

Non-model organisms:
 “I don’t have a 

reference genome!”

Transcript Reconstruction from (short) RNA-Seq Reads



Cufflinks

TopHat

Transcript Reconstruction from (short) RNA-Seq Reads



Cufflinks

TopHat

Transcript Reconstruction from (short) RNA-Seq Reads



Trinity

GMAP

End-to-end Transcriptome-based
RNA-Seq Analysis 
Software Package

Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads

Trinity
Spades-RNA
Oases
SoapDenovoTrans
AbyssTrans
IDBA-Tran
Shannon
BinPacker
Bridger
…

minimap2
GMAP
BLAT
AAT
Spidey
Sim4
…

Stringtie
IsoLasso
Bayesembler
Trip
Traph
CEM
TransComb
Scallop
…

STAR
HISAT2
GSNAP
…

Many tools to choose among:



Part 3. Trinity for Genome-free 
transcriptomics (eg. for non-model orgs)



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs

Manfred 
Grabherr

Moran
Yassour

Younger 
me



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+

Isoforms

Trinity – How it works:

Thousands of disjoint graphs



(isoforms and paralogs)



Butterfly Example 1: 
Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome



Reconstruction of Alternatively Spliced Transcripts

Butterfly’s Compacted
Sequence Graph

Reconstructed Transcripts

Aligned to Mouse Genome

(Reference structure)



Teasing Apart Transcripts of Paralogous Genes

Ap2a1 Ap2a2

Butterfly Example 2:



Teasing Apart Transcripts of Paralogous Genes

Ap2a1 Ap2a2



Strand-specific RNA-Seq is Preferred
Computationally: fewer confounding graph structures in de novo assembly:
                ex.  Forward != reverse complement 
              (GGAA != TTCC)

Biologically: separate sense vs. antisense transcription

Illumina TruSeq Stranded mRNA Kit:



Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe

(fission yeast)



Antisense-dominated Transcription



Trinity is a Highly Effective and 
Popular RNA-Seq Assembler

Nature Biotechnology, 2011

Thousands of routine users.

~20k literature citations

http://trinityrnaseq.github.io

Freely Available, Well-supported, 
Open Source Software



Transcriptome Assembly is Just the End of the Beginning…

~9k Literature Citations



Framework for De novo Transcriptome Assembly and Analysis

1.3 Billion 

Total Reads

86 Million 

Normalized ReadsBowtie & RSEM

EdgeR,

Bioconductor,
& Trinity

Applied to Axolotl for studies of 
limb regeneration

2017



Trinity output: A multi-fasta file

Can visualize using Bandage

https://rrwick.github.io/Bandage/

https://rrwick.github.io/Bandage/
https://rrwick.github.io/Bandage/
https://rrwick.github.io/Bandage/


IGV



Can Examine Transcript Read Support Using IGV

Transcript Sequence as Reference



Bioconductor,

& Trinity

Part 4. Expression Quantification



Slide courtesy of Cole Trapnell
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Slide courtesy of Cole Trapnell
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Normalized Expression Values

• Transcript-mapped read counts are 
normalized for both length of the transcript 
and total depth of sequencing.

• Reported as: Number of RNA-Seq Fragments 

    Per Kilobase of transcript

            per total Million fragments mapped

FPKM
RPKM (reads per kb per M) used with Single-end RNA-Seq reads
FPKM used with Paired-end RNA-Seq reads.



Transcripts per Million (TPM)

iTPM = iFPKM
FPKM
j

å
*1e6

Preferred metric for measuring expression
• Better reflects transcript concentration in the sample.
• Nicely sums to 1 million

TPM

FPKM

Linear relationship between TPM and 
FPKM values.

Both are valid metrics, but best to be consistent.



Transcript length normalization not required for 3’ QuantSeq

Standard full-length RNA-seq with short reads

3’ QuantSeq with short reads

Long read RNA-seq

5’ 3’Expressed Isoform

5’ 3’Expressed Isoform

5’ 3’Expressed Isoform
CPM=“Counts per Million”



Multiply-mapped Reads Confound 
Abundance Estimation

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Isoform A

Isoform B

EM  



Multiply-mapped Reads Confound 
Abundance Estimation

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Isoform A

Isoform B

EM  

Use Expectation Maximization (EM) to find the 
most likely assignment of reads to transcripts.

Performed by: 
• RSEM (genome-free)
• Kallisto, Salmon (alignment-free)

Estimate expression,
Compute likelihood

Adj Model Params,
Proportioning Reads



https://combine-lab.github.io/salmon/

Uses a suffix array
instead of the 
de Bruijn graph

https://combine-lab.github.io/salmon/
https://combine-lab.github.io/salmon/
https://combine-lab.github.io/salmon/
https://combine-lab.github.io/salmon/


Bioconductor,

& Trinity

Part 5. Differential Expression



Differential Expression Analysis Involves

• Counting reads mapped to features

• Statistical significance testing

Gene A

Sample_A Sample_B

Gene B

Fold_Change Significant?

1 2 2-fold

100 200 2-fold

No

Yes

Beware of small counts leading to notable fold changes



Variation Observed Between Technical Replicates

* plot from Brennecke, et al. Nature Methods, 2013

Variation observed is well 
described by models of 

random sampling
(Poisson Distribution)

Poisson shot noise is high for small counts.



Observed RNA-Seq Counts Result from Random 
Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is 
well modeled by the Poisson distribution

(observed read counts)

Mean # fragments

See: http://en.wikipedia.org/wiki/Poisson_distribution



Example: One gene*not* differentially expressed

Example: SampleA(gene) = SampleB(gene) = 4 reads

(k) number of reads observed

d
e

n
si

ty

Distribution of observed counts for single gene
(under Poisson model)

x = log2(SampleA/SampleB)

d
e

n
si

ty

same

2-fold diff

4-fold diff

Dist. of log2(fold change) values

SampleA
SampleB

for a single gene



Sequencing Depth Matters

From: http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for 

and from supplementary text of Busby et al., Bioinformatics, 2013

Poisson distributions for counts based on 2-fold expression differences

No confidence in 2-fold 
difference. Likely 
observed by chance.

High confidence in 2-fold
difference. Unlikely 
observed by chance.

Observed Read Count (k)

P(x=k)
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Greater Depth = More Statistical Power

Reads per 
sample

Sample A
Number of reads

Sample B
Number of reads

P-value (Fishers 
Exact Test)

100,000 1 2 1

1,000,000 10 20 0.099

10,000,000 100 200 8.0e-09

Example:  Single gene, reads sampled at different sequencing depths



Technical vs. Biological Replicates

“We find that the Illumina sequencing data are highly replicable, with relatively little 
technical variation, and thus, for many purposes, it may suffice to sequence each 
mRNA sample only once”   Marioni et al., Genome Research, 2008

RNA-Seq Technical replicates aren’t essential 

(Technical variation is well-modeled by the Poisson distribution)

total_variance = technical_variance + biological_variance

(Total variance well-modeled by negative binomial distribution)

“… at least six biological replicates should be used, rising to at least 12 when it is 
important to identify SDE genes for all fold changes.”  Schurch et al., RNA, 2016

However, biological replicates *ARE* essential



DE analysis requires a counts matrix

Sample Type A, 3 Bio replicates Sample Type B, 3 Bio replicates



Typical output from DE analysis

Transcript_id logFC logCPM PValue FDR

TRINITY_DN876_c0_g1_i1   -7.15049572793027     10.6197708379285   0                      0

TRINITY_DN6470_c0_g1_i1  -7.26777912190146     7.03987604865422   1.687485656951e-287    6.46813252309319e-284

TRINITY_DN5186_c0_g1_i1  -7.85623682454322     9.18570464327063   1.17049180235068e-278  2.99099671894011e-275

TRINITY_DN768_c0_g1_i1   7.72884741150304      9.7514619195169    4.32504881419265e-272  8.28895605240022e-269

TRINITY_DN70_c0_g1_i1    -12.7646078189688     7.86482982471445   3.92853491279431e-253  6.02322972829624e-250

TRINITY_DN1587_c0_g1_i1  -5.89392061881667     9.07366563894607   6.32919557933429e-243  8.08660221852944e-240

TRINITY_DN3236_c0_g1_i1  -7.27029815068473     8.02209568234202   3.64955175271959e-235  3.99678053376405e-232

TRINITY_DN4631_c0_g1_i1  -7.45310693639574     6.91664918183241   4.30540921272851e-229  4.1256583780971e-226

TRINITY_DN5082_c0_g5_i1  -5.33154406167545     10.6977538760467   2.74243356676259e-225  2.33594396920022e-222

TRINITY_DN1789_c0_g3_i1  10.2032564835076      7.32607652700285   1.44273728647186e-213  1.10600240380933e-210

TRINITY_DN4204_c0_g1_i1  4.81030233739325      9.88844409410644   9.27180216086162e-205  6.46160321501501e-202

TRINITY_DN799_c0_g1_i1   -4.22044475626154     6.9937398638711    1.24746518421083e-197  7.96922341846683e-195

TRINITY_DN196_c0_g2_i1   4.60597918494257      9.86878463857276   1.9819997623131e-192   1.16877001368402e-189

TRINITY_DN5041_c0_g1_i1  -4.27126549355785     9.70894399883      1.8930437900069e-185   1.03657669244235e-182

TRINITY_DN1619_c0_g1_i1  -4.47156415953777     9.22535948721718   1.76766063029526e-181  9.03392426122899e-179

TRINITY_DN899_c0_g1_i1   -4.90914328409143     7.93768691394594   1.11054513767547e-180  5.32089939088761e-178

TRINITY_DN324_c0_g2_i1   4.87160837667488      6.84850312231775   2.20092562166991e-179  9.92487989160089e-177

TRINITY_DN3241_c0_g1_i1  -4.77760618069256     7.94111259715689   1.60585457735621e-173  6.83915621667372e-171

TRINITY_DN4379_c0_g1_i1  3.85133572453294      7.23712813663389   3.48140532848425e-164  1.4046554341137e-161

TRINITY_DN1919_c0_g1_i1  4.05998814332136      6.95937301668582   1.8588621194715e-161   7.12501850393425e-159

TRINITY_DN2504_c0_g1_i1  -6.92417817059644     6.20370039359785   2.42022459856956e-160  8.83497227268296e-158

…

Up vs. Down regulated Avg. expression level Significance



Tools for DE analysis with RNA-Seq

See: http://www.biomedcentral.com/1471-2105/14/91

edgeR
ShrinkSeq
DESeq
baySeq
Vsf
Limma/Voom
mmdiff
cuffdiff

ROTS
TSPM
DESeq2
EBSeq
NBPSeq
SAMseq
NoiSeq
Sleuth

(italicized not in R/Bioconductor 
but stand-alone)

Soneson & Delorenzi, 2013
A comparison of methods for differential expression analysis of RNA-seq data

http://www.biomedcentral.com/1471-2105/14/91
http://www.biomedcentral.com/1471-2105/14/91
http://www.biomedcentral.com/1471-2105/14/91
http://www.biomedcentral.com/1471-2105/14/91
http://www.biomedcentral.com/1471-2105/14/91


Part 6. Latest advancements in long read 
isoform sequencing



Some transcripts can be challenging to reconstruct from short reads

• Complex alternative splicing (many isoforms)

• Very long RNAs (ex. Titin – up to 36 kb)

• Transcripts containing repetitive sequences



Example:  NDRG2
77 Isoforms

GENCODE 47 
Counts of Isoforms per Gene

155 genes have >= 100 isoforms

Long Isoform Reads are Essential for Resolving Transcriptome Complexity



Example:  NDRG2
77 Isoforms

GENCODE 47 
Counts of Isoforms per Gene

155 genes have >= 100 isoforms

Long Isoform Reads are Essential for Resolving Transcriptome Complexity



PacBio
Revio

2023

8 million
>1%

https://nanoporetech.com/accuracy

https://www.pacb.com/technology/hifi-sequencing/

Info on error rates for long reads – impressive!!

99% …. 99.9% …..

Q20 Q30

Long reads for Single Cell Transcriptomes!!

:

:

MAS-seq
40-120 million

cDNA reads

Inflection point for LR 
transcriptomics

Aziz Al’Khafaji

(commercially 

Kinnex)

75k
10%

500k
10%

4M
<1%

8M
<1%

Long Read Isoform Sequencing via PacBio MAS-Iso-Seq (Kinnex) 

https://nanoporetech.com/accuracy
https://nanoporetech.com/accuracy
https://nanoporetech.com/accuracy
https://www.pacb.com/technology/hifi-sequencing/
https://www.pacb.com/technology/hifi-sequencing/
https://www.pacb.com/technology/hifi-sequencing/
https://www.pacb.com/technology/hifi-sequencing/
https://www.pacb.com/technology/hifi-sequencing/
https://www.pacb.com/technology/hifi-sequencing/


Standard isoform sequencing is inefficient on the PacBio platform

Total bases:

~200kb

cDNA library

Ligate adapters

Sequence

Passes

From Aziz Al’Khafaji, Broad Inst.

Base calling accuracy increases with 

the number of consensus reads. 

~Q30 (99.9%) @ 10 passes.

CCS read accuracy ~ # passes

200kb total = 20kb / pass

PacBio HiFi Sequencing

Circular Consensus

HiFi Read



HiFi for WGS involves 20kb segments

20kb capacity

99.9% 

accuracy

WGS fragment

From Aziz Al’Khafaji, Broad Inst.

Total bases:

~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus

HiFi Read



Most transcripts are <5kb and get >60 

passes. Wasted sequencing potential!

99.9% 

accuracy

2kb

cDNA

From Aziz Al’Khafaji, Broad Inst.

Total bases:

~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus

HiFi Read



Of the 20kb segment, RNAs only use ~2kb

18kb lost opportunity!

20kb capacity

99.9% 

accuracy

From Aziz Al’Khafaji, Broad Inst.

Total bases:

~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

Circular Consensus

HiFi Read



From Aziz Al’Khafaji, Broad Inst.

Total bases:

~200kb

cDNA library

Ligate adapters

Sequence

Passes

Standard isoform sequencing is inefficient on the PacBio platform

Multiplexed Array Sequencing (MAS-Seq)

~20kb size

>15-fold increase in throughput

PacBio HiFi Sequencing

Circular Consensus

HiFi Read

Al’Khafaji et al., NBT 2024



Technical validation using RNA isoform standards

SIRVS serve as truth dataset to evaluate MAS-seq’s ability to accurately 

identify RNA isoforms.

SIRVs (Spike-in RNA Variant Control Mixes) are synthetic gene isoforms

From Aziz Al’Khafaji, Broad Inst.



Long-read sequencing accurately identify RNA isoform standards

(short-read) (long-read)

Reads Sequenced from SIRV IsoformsFrom Aziz Al’Khafaji, Broad Inst.



Transcript Reconstruction from (Long) RNA-Seq Reads

RNA-Bloom2
Rattle
…

minimap2
GMAP
…LRAA

Isoquant
Bambu
Mandalorian

Flames
Cupcake
Isoseq

Tama
Flair
Talon

…

minimap2
GMAP
…

RNA-seq Long Reads (not drawn to scale)



LRAA algorithm for isoform identification and quantification 

for bulk and single-cell long-read transcriptomics

https://github.com/MethodsDev/LongReadAlignmentAssembler/wiki 

https://github.com/MethodsDev/LongReadAlignmentAssembler/wiki


Pilot Study to Survey Long Reads and Isoform Structures
Across Humans and Non-human Primates

Colon Liver Lung Muscle

Male

16 days X

7 months X X

1 year X X X

14 months X X

9 years X

Female

2 days X X

1 month X

Colon Liver Ovary Testis

Male

42 days X X X

Female

36 days X X X

Colon Liver Lung

Male

7 months X X X

Female

1 year X X

Human Rhesus Macaque Marmoset

Bulk Kinnex of Primate Tissue in Collaboration with the GTEx Consortium



Thousands of tissue-specific genes expressed



The PON3 gene, a member of the paraoxonase 
family, encodes a protein that associates with high-
density lipoprotein (HDL) and is involved in the 
hydrolysis of lactones and the inhibition of low-density 
lipoprotein (LDL) oxidation.

Example: Paraoxonase3 Isoform Expression in Liver

LRAA Primate Isoform Structures

Kinnex Isoform Expression Evidence



Example: Tsukushi (TSKU) Isoform Expression in Liver

The TSKU gene, encoding the protein Tsukushi, plays a 
role in cholesterol homeostasis and is released in 
response to non-alcoholic fatty liver disease (NAFLD). It 
impacts systemic cholesterol homeostasis, reducing 
circulating HDL cholesterol, lowering cholesterol efflux 
capacity, and decreasing cholesterol-to-bile acid 
conversion in the liver. 

LRAA Primate Isoform Structures

Kinnex Isoform Expression Evidence



Part 7. Overview of Single Cell Transcriptomics



From: https://perkinelmer-appliedgenomics.com/2022/02/15/single-cell-rna-seq-intro/

The Quintessential “Fruit Smoothie Metaphor”
 for Bulk RNA-seq

vs.



Lafzi et al., Nat Protocols, 2018

Step 1: Break down tissue to single cells (or nuclei)

Can also extract and sequence nuclei instead of whole cells – popular in neurobiology



Plate-based methods
Low throughput

Smart-seq2 Method: Get reads covering the 
full length of the RNA molecule.

Picelli et al., Nature Protocols, 2014

Examples of Different Popular Classes of Single Cell Sequencing

Droplet-based methods

From Potter, Nature Reviews Nephrology, 2018

Lafzi et al., Nat Protocols, 2018

Unique Molecular Identifier (UMI)



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 

along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 

along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method

3’ counting ==  gene expression
                       !=  transcript expression



Based on  Ding et al., NBT 2020

Single Cell Transcriptome Sequencing Methods

Many reads 

along  the  

scRNA-seq Methods

~400 cells ea. ~3000 cells ea.

# UMIs

# Genes

Averaged counts of UMIs and Genes per cell by method



https://www.10xgenomics.com/platforms/chromium

10x Genomics Chromium Single Cell Transcriptome Sequencing

~80k cells/run

https://www.10xgenomics.com/platforms/chromium


Analysis Workflow for Single Cell Transcriptomics

- Align reads to the reference genome

- Collapse PCR duplicates (by UMIs)

- Build a {Gene X Cell} UMI counts matrix 



Andrews, 2021, review

Single Cell Transcriptomics Data Processing Workflow

Gene ‘count’ matrices  for single cell data tend to be 
very large and very  sparse

      eg. 25k genes x 100k cells

(almost all zeros – no reads detected)

Various processing needed:

- Which cells are ‘good’ cells? vs dying/stressed cells, 
doublets,  or empty droplets?

- possibly remove confounding cell cycle signatures 
from expression data.

- Multiple experiments/replicates - batch correction 
or harmonization?



Andrews, 2021, review

In Silico Removal of Ambient RNA
(by Cellbender)

Phenomenology of ambient RNA       

Cell Markers and Read Quantities by Cell Type

Before After

Cell-type markers

Cell 
Clusters



Andrews, 2021, review

In Silico Removal of Ambient RNA
(by Cellbender)

Phenomenology of ambient RNA       

CellBender

https://github.com/broadinstitute/CellBender

https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender


Andrews, 2021, review

Metrics for Filtering Cells – Keep the Good Ones

Cells ranked by #UMIs

Histogram of #UMIs per cell Histogram of #genes per cell

Gene count vs. UMI count

Exclude cells with high 
mitochondrial RNA content

Filter cells based on #genes, #UMIs, and %Mito RNA



Andrews, 2021, review

Batch Correction for Single Cell Transcriptomes

Plot your cells and paint by batch to examine this.
Batch correction methods are available 

No batch correction Batch correction



Andrews, 2021, review

Aligned using Seurat via canonical correlation analysis (CCA) 

Peripheral blood mononuclear cells (PBMCs) +/- stimulation

Unaligned Aligned
Cell Types

Integrating scRNA-seq data sets based on common sources of variation

Butler et al., Nature Biotech, 2018

Unaligned Aligned Cell Types

Mouse and human pancreas islet cells



Andrews, 2021, review

Dimensionality reduction via

t-SNE, UMAP, etc 

Finally, Single Cell Data Exploration and Biological Discovery

• Cell clustering
• Defining cell types
• Biomarker Discovery  

• Cell state continuities 
• Differentiation trajectories



Popular Software Packages for Single Cell Transcriptome Studies

From 
Rahul Satija’s 

lab

F. Alexander Wolf, Philipp Angerer & Fabian J. Theis,

Genome Biology, 2018; 
Isaac Virshup: lead developer since 2019



Gene expression ≠ transcript expression

Gene X

Gene Y Gene Z

Cells

G
e

n
e
s

scRNA-seq

From Aziz Al’Khafaji, Broad Inst.

But – long isoform reads to the rescue!!



Long read scRNA-seq (Kinnex) of tumor infiltrating CD8 T cells

CD45 epitope 

expression

Al’Khafaji et al., Nature Biotechnology, 2023

(by CITE-seq)

CD45 T-cell Marker Isoform expression resolved via long reads

Perform MAS-Iso-seq on the 10x sc libraries to get long isoform reads at single cell resolution 



Tabula Muris Tabula Drosophila

Cataloguing Cell Types and Building Cell Atlases



https://www.humancellatlas.org/

Characterize the ~37 trillion cells in the human body

Initially targeting 18 biological networks of organs and tissues

HCA is a global initiative of > 3k members

Currently at >70M across 25k specimens. Cells (Jan, 2026)

https://www.humancellatlas.org/
https://www.humancellatlas.org/
https://www.humancellatlas.org/


From Li, Jin, & Bai, Protein & Cell, 2022

Single cell analysis is revolutionizing cancer research



Clinical Application for Tumor Single Cell Transcriptomics

From Kuksin et al, EJC, 2021



Part 8. Overview of Spatial Transcriptomics



“Starry skies invite space exploration.

In transcriptomics, spatial resolution opens up new worlds too.”



“Starry skies invite space exploration.

In transcriptomics, spatial resolution opens up new worlds too.”



Single Cells vs. Spatial Transcriptomics

Car parts ~ single cells Car ~ tissue

Vs.



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 

and fluorescent tags



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 

and fluorescent tags



Single Molecule Fish (smFISH) Methods for Visualizing RNA Molecules at Sub-cellular Resolution

Target: hunchback RNA in 

Drosophila embryo

Itzkovitz & van Oudenaarden, Nature Methods Supplement, 2011

Long probe, many labels Shorter probes, fewer labels

Target: single transcripts in 

mammalian cells
Target: end-1 gene in 

C.elegans embryos

Many probes, single label ea.

Rolling circle amplification (RCA) of ’padlock probes’.

 Labels hyb to RCA product.

TARGET: ERBB2 (aka. HER2) in 

human fibroblasts
Target: ERBB2 (green) and 

18SrRNA (red)

Branched oligo sets 

that amplify labeling



https://vizgen.com/technology Movie: https://www.youtube.com/watch?v=O0QekKSscjA

MERFISH – smFISH adapted for hundreds to thousands of transcripts

Each transcript target probe has
a unique combination of 

beacon landing pads

• Different fluorescently labeled probes (ie. beacons) are 
hybridized in each round.

• Combinations of colors -> Transcript ID

https://www.youtube.com/watch?v=O0QekKSscjA


https://www.10xgenomics.com/videos/s3lqk4sivj?autoplay=true

10X Genomics Xenium – 100s to 1000s of Targeted RNAs visualized at subcellular resolution

https://www.10xgenomics.com/videos/s3lqk4sivj?autoplay=true


Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH) 

and fluorescent tags



Spatial RNA-seq – 10X Visium HD



Spatial RNA-seq – 10X Visium HD



Longo, NRG, 2021

Integration of Single Cell and Spatial Transcriptomes



Slide-Tags: integrated single nuclei and spatial transcriptomics

Russell et al., Nature 2023, PMID: 38093010

In situ hybridization
(Allen Mouse Brain Atlas)

Spatial Expression of Marker Genes

UMAP and cell types, 

expression-based clustering

Cells plotted according to 

spatial coordinates, colored 
by cell types



Slide-Tags commercialized as ‘Trekker’ by Curio Bioscience

Video: https://curiobioscience.com/curio-trekker/ 

https://curiobioscience.com/curio-trekker/
https://curiobioscience.com/curio-trekker/
https://curiobioscience.com/curio-trekker/


Part 9. Applications in Cancer Transcriptomics



Extract RNA, convert 
to cDNA

RNA-Seq Empowers Transcriptome Studies of Cancer

Sequencer
(pick your favorite)

Nature Reviews Genetics 19, p93–109 (2018)



Cancer Transcriptome Analysis Toolkit (CTAT)

Cancer RNA-Seq

Viruses & 
Microbes

Mutations

LncRNAsTranscript
Expression

Alternative
 SplicingFusion 

Transcripts

Single Cell Tumor 
HeterogeneityTranscript 

Reconstruction

+

CTAT-Mutations

STAR-Fusion
TrinityFusion
FusionInspector

slncky

+Kraken
+Centrifuge

inferCNV

+
CTAT-Splicing

Newest:  CTAT-LR-Fusion



bcr

Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

BCR

ABL1



Oncogenic driver BCR::ABL1 fusion found in 95% of 

Chronic Myelogenous Leukemia (CML) patients

bcr

BCR

Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

BCR

ABL1

ABL1

Can detect BCR::ABL1 
via its fusion transcript:

BCR ABL1



Diagnostics and Therapeutics Involving Oncogenic 
Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)
– Chronic Myelogenous Leukemia (CML) cases (95% of cases)
– Treatable with tyrosine kinase inhibitors

SS18—SSX
– Synovial sarcoma (~100% of cases)

TMPRSS2-ERG
– Prostate cancers (50% of cases)

EML4-ALK
– Non small cell lung carcinoma (4% of cases)
– anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome

DNAJB1-PRKACA
– Fibrolamellar hepatocellular carcinoma (FL-HCC), 

100% of cases, but a rare cancer. 

FGFR3-TACC3
– ~8% of glioblastoma patients

305 COSMIC Fusions



Diagnostics and Therapeutics Involving Oncogenic 
Fusion Transcripts in Cancer
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SS18—SSX
– Synovial sarcoma (~100% of cases)

TMPRSS2-ERG
– Prostate cancers (50% of cases)

EML4-ALK
– Non small cell lung carcinoma (4% of cases)
– anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome

DNAJB1-PRKACA
– Fibrolamellar hepatocellular carcinoma (FL-HCC), 

100% of cases, but a rare cancer. 

FGFR3-TACC3
– ~8% of glioblastoma patients

305 COSMIC Fusions



Paired-end Illumina RNA-
Seq

General Approaches to Fusion Transcript Discovery 



Align reads to the genome,
Identify discordant pairs and junction/split reads.

Chr-A

Chr-B

/2

/1

Spanning frag

/1

/2

Junction read

Paired-end Illumina RNA-
Seq

General Approaches to Fusion Transcript Discovery 



Align reads to the genome,
Identify discordant pairs and junction/split reads.

Chr-A

Chr-B

/2

/1

Spanning frag

/1

/2

Junction read

De novo RNA-seq assembly

Align transcripts to genome, 
Identify Fusion Transcripts

Chr-A

Chr-B

Paired-end Illumina RNA-
Seq

General Approaches to Fusion Transcript Discovery 



Accuracy assessment of fusion transcript detection via read-mapping and de novo 

fusion transcript assembly-based methods

Genome Biology volume 20, Article number: 213 (2019)

Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9


Accuracy assessment of fusion transcript detection via read-mapping and de novo 

fusion transcript assembly-based methods

Genome Biology volume 20, Article number: 213 (2019)

Targeted in silico characterization of fusion transcripts in tumor 
and normal tissues via FusionInspector

Cell Rep Methods.  2023 May 8;3(5):100467. 

Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9
https://www.sciencedirect.com/science/article/pii/S2667237523000863?via%3Dihub


Accuracy assessment of fusion transcript detection via read-mapping and de novo 

fusion transcript assembly-based methods

Genome Biology volume 20, Article number: 213 (2019)

Targeted in silico characterization of fusion transcripts in tumor 
and normal tissues via FusionInspector

Cell Rep Methods.  2023 May 8;3(5):100467. 

Adapting TrinityFusion and FusionInspector to Long Read Fusion Detection

Adapt to Long Reads

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9
https://www.sciencedirect.com/science/article/pii/S2667237523000863?via%3Dihub


New Addition to our Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion
(borrows general approach from TrinityFusion and FusionInspector, adapted for LR)

Quickly Identify Fusion Candidate (ctat-minimap2)(1)

TrinityFusion-
like

4x faster



New Addition to our Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion
(borrows general approach from TrinityFusion and FusionInspector, adapted for LR)

Rigorous minimap2-alignment, capture precise breakpoints

Make mini-fusion contigs

(2)

FusionInspector-
like

Quickly Identify Fusion Candidate (ctat-minimap2)(1)

TrinityFusion-
like

4x faster



CTAT-LR-Fusion Interactive Reports for Visualization and Analysis

Gene A Gene B

Long Fusion reads

Short Fusion reads

Ref. Annotations

(PacBio)

(Illumina) (short reads via FusionInspector)



Single Cell MAS-Iso-seq Applied to T-cell Enriched Melanoma Patient Sample

~   20M PacBio MAS-Iso-seq reads
~ 200M Illumina 10x 3’ reads

~ 7k Total cells (10% cancer cells)

Long and Short scRNA-seq

Cancer
cells Normal

T-cells



Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4 



Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells Identified with NUTM2A-AS1::RP11-203L2.4 Cells expressing NUTM2A-AS1::RP11-203L2.4 



Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells Identified with NUTM2A-AS1::RP11-203L2.4 Cells expressing NUTM2A-AS1::RP11-203L2.4 

8 full-length
fusion isoforms

5 sets of isoform 
breakpoints



Patient 1: 
• 54M PacBio Isoform reads
• 35M Illumina 10x 3’ reads
• ~500 cells (20% cancer)
• 4 cancer-specific fusions detected

¾ only 
via long 
reads

UMAP: All cells

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing



Patient 1: 
• 54M PacBio Isoform reads
• 35M Illumina 10x 3’ reads
• ~500 cells (20% cancer)
• 4 cancer-specific fusions detected

¾ only via 
long reads

UMAP: All cells UMAP: Tumor cells only

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing



April, 2025



In Summary

• Many applications for RNA-seq, technology continues to evolve.

• Analysis can involve reference genomes or be genome-free via de novo 
transcriptome assembly – Trinity can help.

• Quantification involves counting reads and considering read-mapping 
uncertainty

• Long reads now available for applications previously limited to short reads, 
involve far less read mapping uncertainty, and enable isoform rather than gene 
expression analyses.

• Single cell and spatial transcriptomics studies are revolutionizing our 
understanding of tissue complexity, diversity of cell types, and cellular 
interactions - particularly in studies of cancer.

• Massive resources being built - whole organism cell atlases and high-resolution 
spatial maps, and new software tools and algorithms developed for leveraging 
long reads in bulk, single cell, and spatial studies.





Favorite tools for leveraging AI - Coding



Favorite tools for leveraging AI – Learning and Writing

• ChatGPT
• Claude.io
• Gemini



Favorite tools for leveraging AI – Learning and Writing

NotebookLM

• Upload papers
• Auto-slide decks
• Makes podcasts!
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