

Transcriptomics

Brian Haas, Ph.D.
Broad Institute

Workshop on Genomics, Cesky Krumlov, January 2026

Intro to Brian Haas

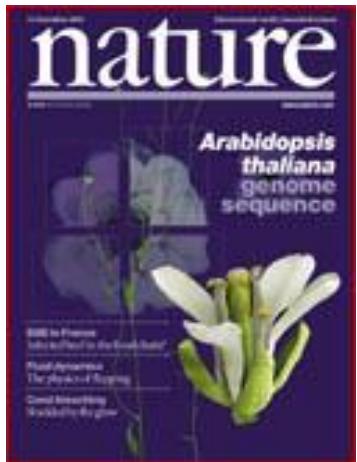
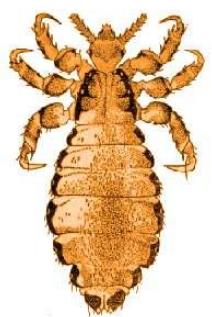
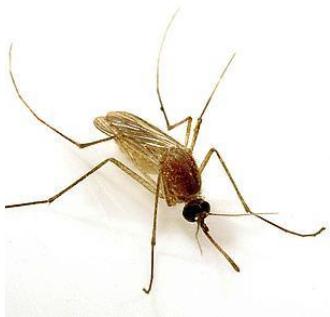
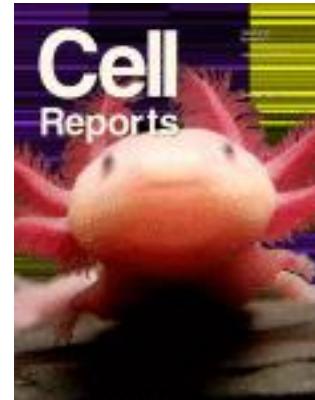
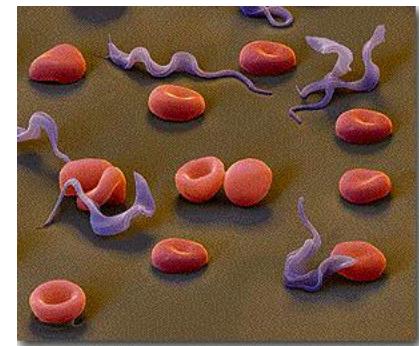
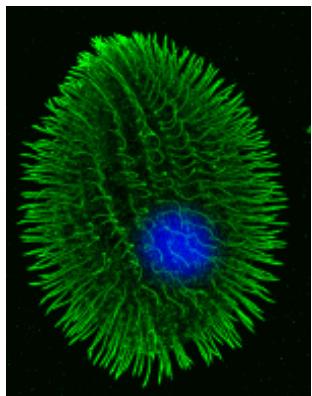
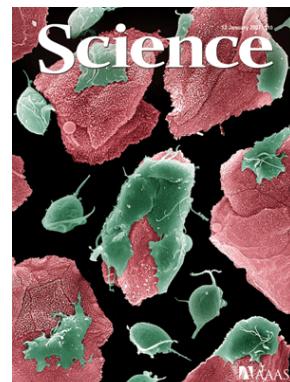
Education and Career History

BS,MS Molecular Bio
DNA Repair
SUNY Albany, New York
1991-1999

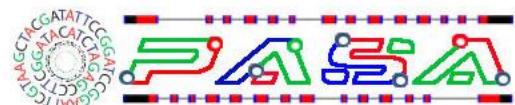
The Institute for Genomic Research
Rockville, Maryland, USA
(1999-2007)
Bioinformatics Analyst & Engineer
MS. Computer Science / Johns Hopkins

BROAD
INSTITUTE
Cambridge, Massachusetts, USA
2007-current
Computational Biologist / Manager /
Principal Computational Scientist
Ph.D. Bioinformatics / Boston University

Annotation and Analysis for Diverse Genomes and Transcriptomes



My Favorite Activity – Bioinformatics Tool Development and Applications



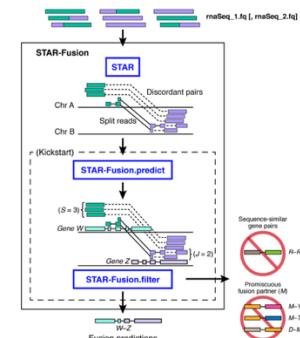
NAR, 2003

Bioinformatics, 2004

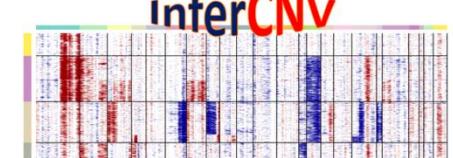
EvidenceModeler
Genome Biology, 2008

Chimera Slayer
Genome Research, 2011

Nature Biotech, 2011
Nature Protocols, 2013



STAR-Fusion
Genome Biology, 2019



FusionInspector
Cell Reports Methods, 2023

My Favorite Activity – Bioinformatics Tool

Development and Application

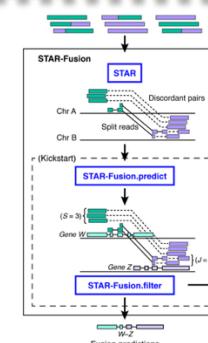
NAR, 2003

Bioinformatics, 2004

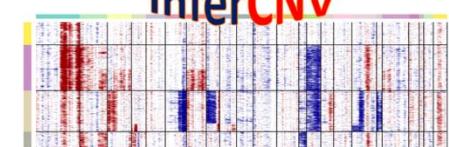
EvidenceModeler
Genome Biology, 2008

Chimera Slayer
Genome Research, 2011

Nature Biotech, 2011
Nature Protocols, 2013



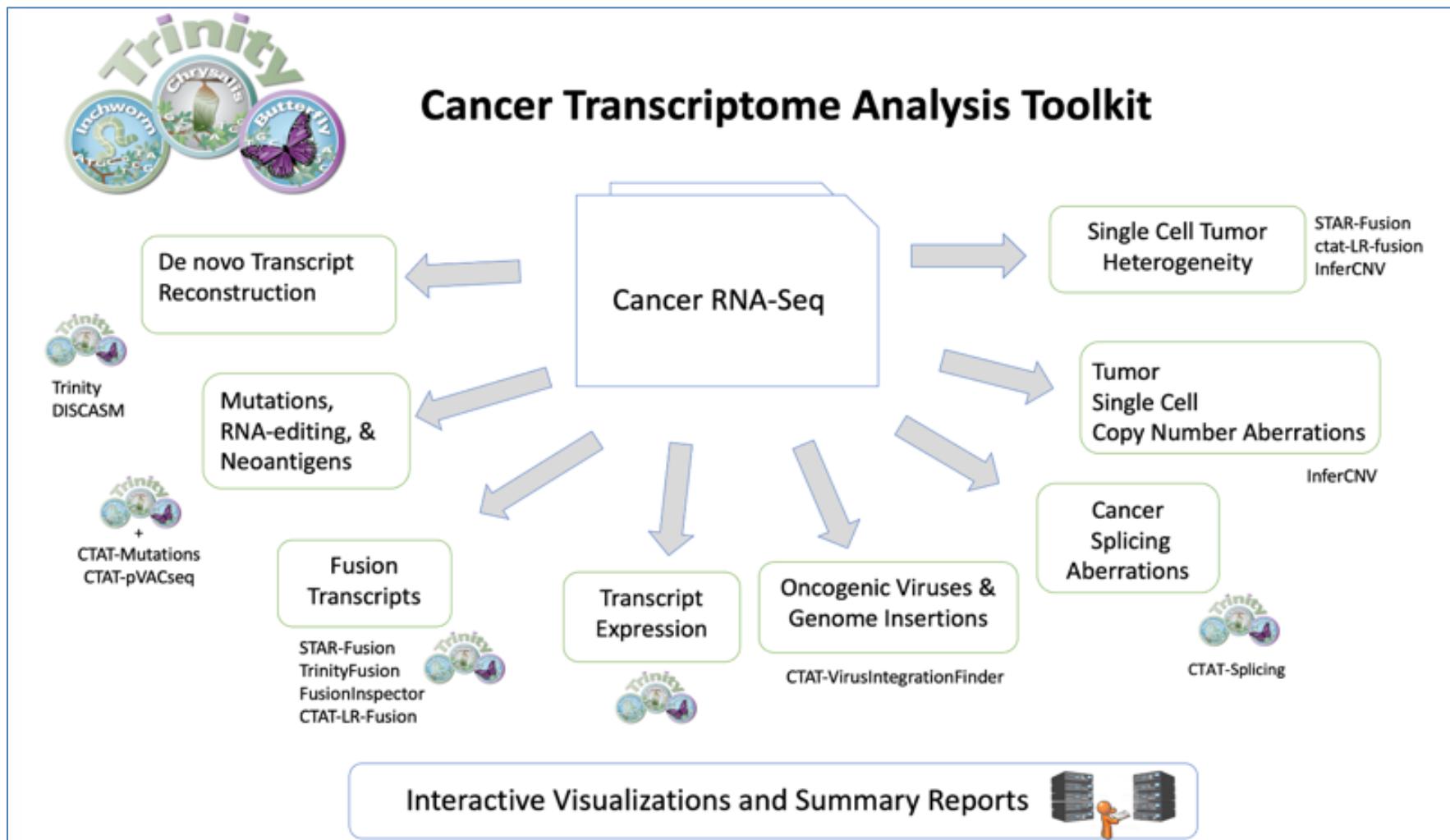
STAR-Fusion
Genome Biology, 2019



FusionInspector
Cell Reports Methods, 2023

Earlier developments focused on cancer transcriptomics:

Years 2013-2023



Overview of Trinity CTAT. Given cancer RNA-seq as input, Trinity CTAT provides modules for exploring characteristics of the cancer transcriptome (and cancer genome) including both genome-guided and genome-free analyses, targeting bulk or single-cell transcriptomes. Interactive visualizations and reports are provided to facilitate downstream analysis and for clinical review.

This certificate attests that

Brian Haas

having completed ten years of faithful service
in the halls, taverns, and computational chambers
of Český Krumlov has this evening been formally knighted
into the Order of the Molekulys and is henceforth known as

Sir Brian, Master of the Genome Forge

bestowed this day (17th January 2026) by decree of

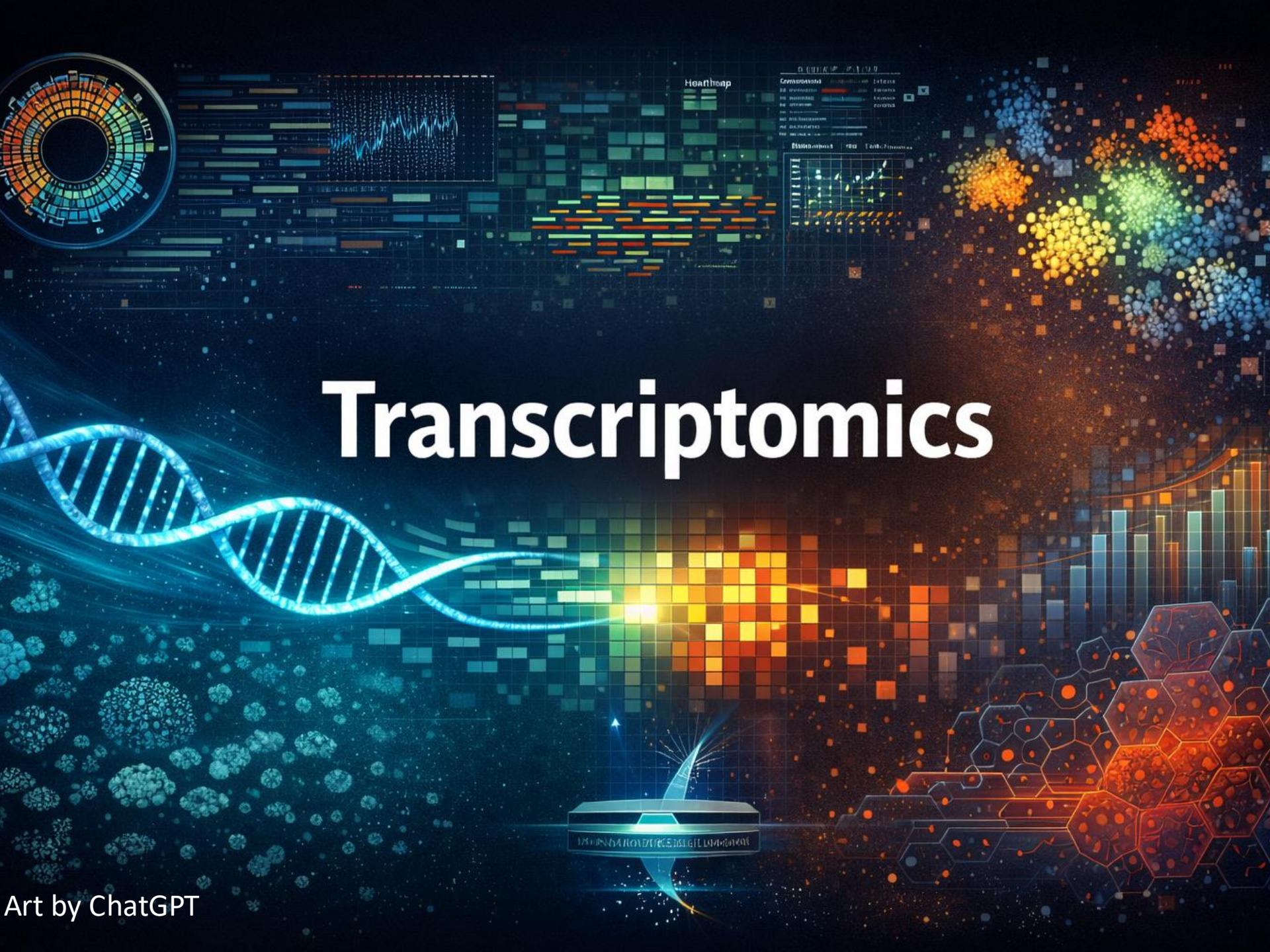
Lord Scott of the Molekulys
and the assembled Faculty of the Workshop on Genomics

-- Introducing --

Mega Keychain!

ChatGPT

Transcriptomics



Transcriptomics Lecture Outline

- 1. Intro to transcriptomics
- 2. Transcript reconstruction methods
- 3. Genome-free transcriptomics (eg. for non-model orgs)
- 4. Expression quantification
- 5. Differential expression (brief – more details in Rachel's workshop!)
- 6. Latest advancements in long read isoform sequencing
- 7. Overview of single cell transcriptomics
- 8. Overview of spatial transcriptomics
- 9. Applications in Cancer Transcriptomics

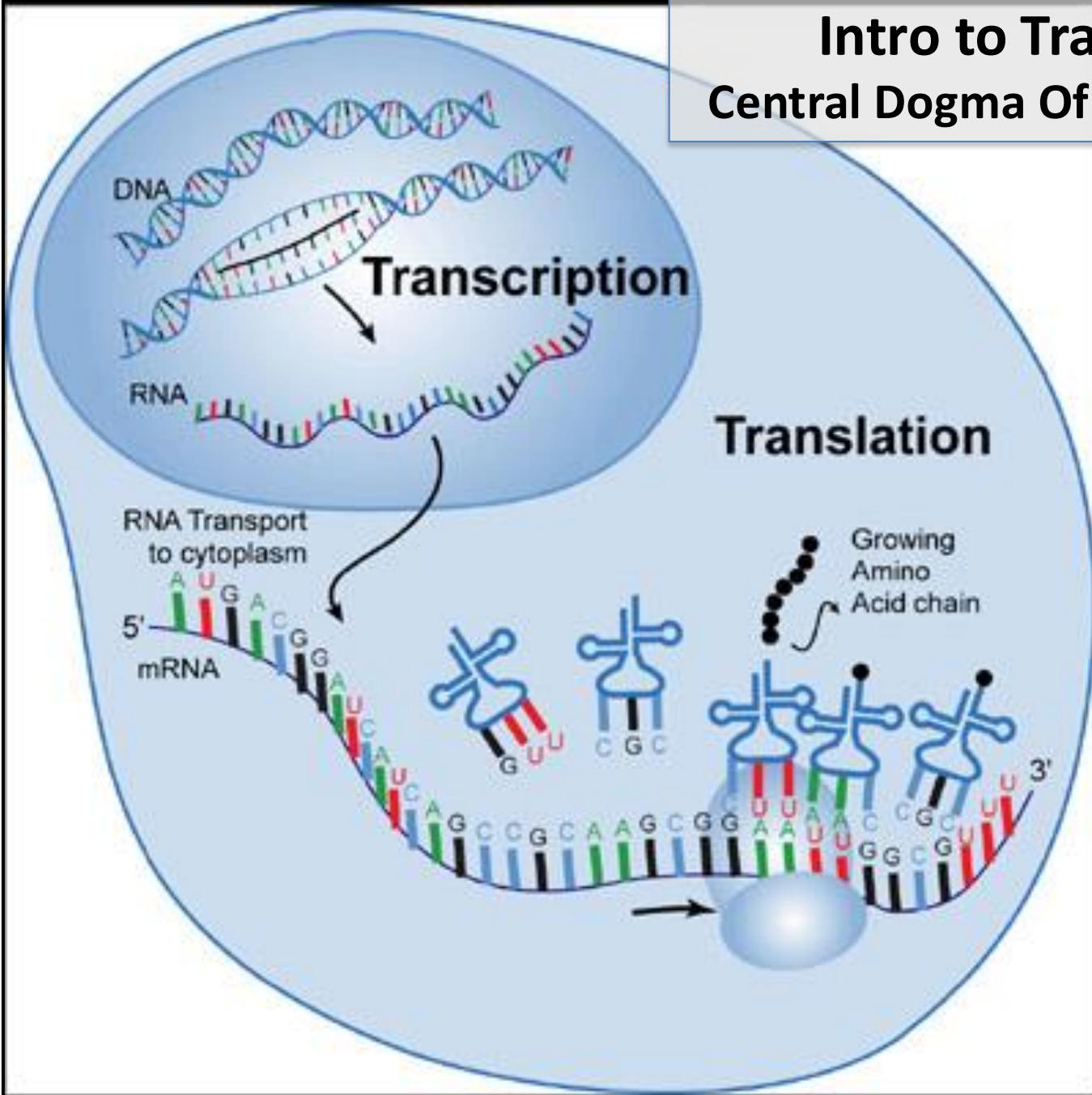
Break?

** Followed by comments on how I've recently been using LLMs in my work*

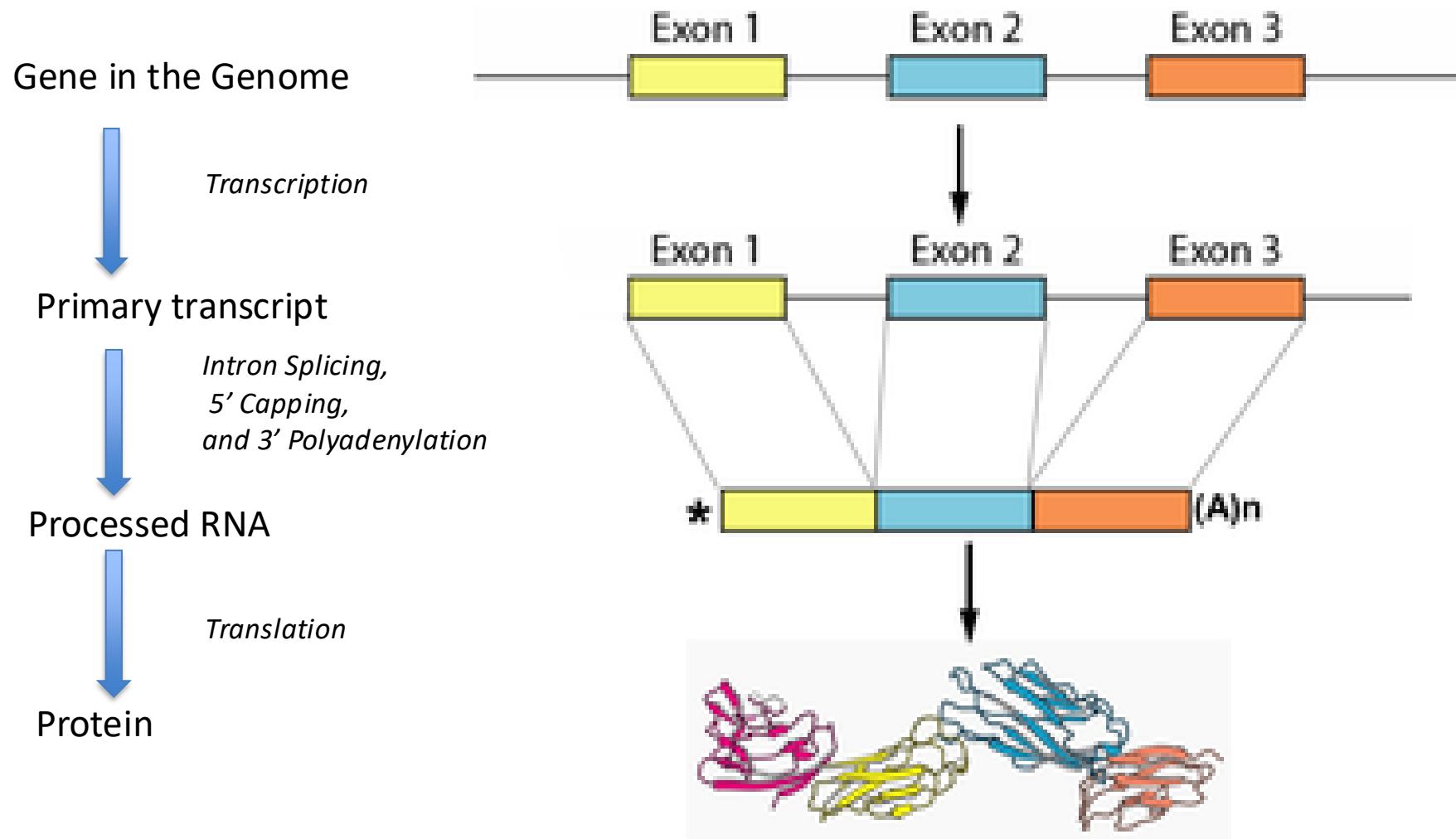
Part 1. Intro to Transcriptomics

Intro to Transcriptomics

Central Dogma Of Molecular Biology

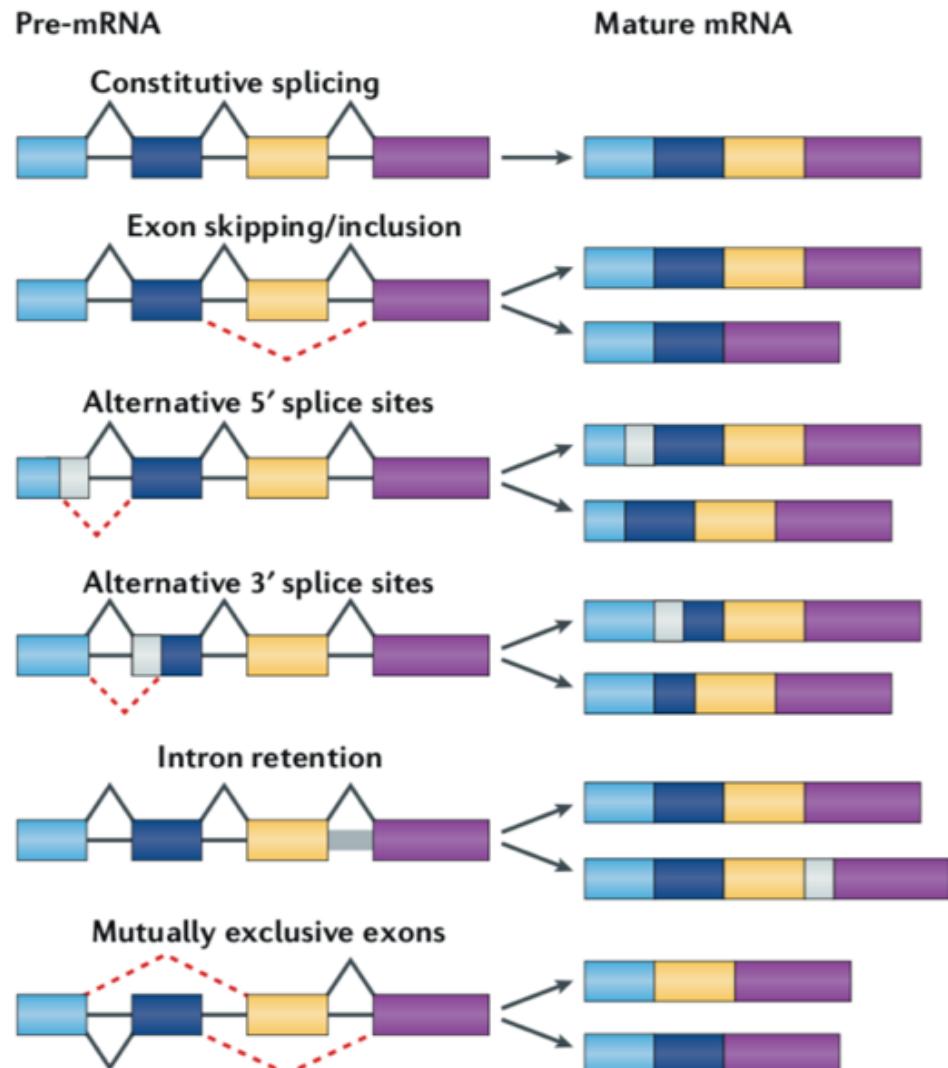


Primary mRNA molecules Often Undergo Splicing in Eukaryotes



Alternative Splicing – Multiple Products from Single Genes

- Core regulatory process – diversifies the function of genes.
- Generates mRNAs that differ in coding sequence and UTRs. Effects:
 - Protein isoforms
 - Translation efficiency
 - Stability
 - Localization
 - Reading frame changes
- Estimated 90-95% of human genes undergo alternative splicing



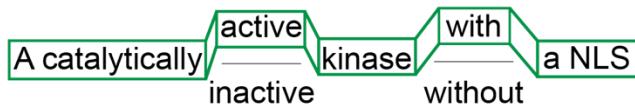
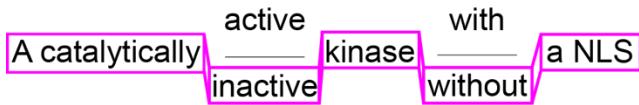
Think of genes as protosentences

Gene: A catalytically active kinase with a NLS
inactive without

Think of genes as protosentences

Gene: A catalytically active kinase with a NLS
inactive without

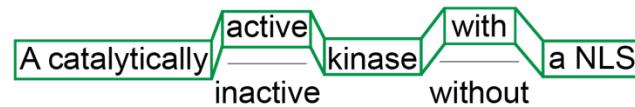
Alternative splicing



Fully formed sentences ≈ mature mRNA

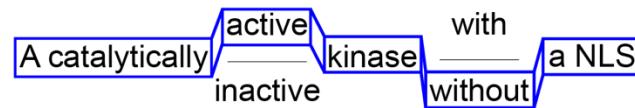
Gene: A catalytically active kinase with a NLS
inactive without

Alternative splicing



Transcripts

A catalytically active kinase with a NLS



A catalytically active kinase without a NLS

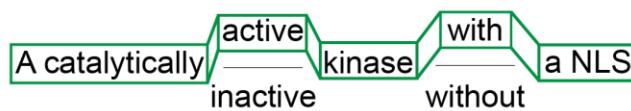
A catalytically inactive kinase with a NLS

A catalytically inactive kinase without a NLS

RNA isoform sequencing provides structural insight

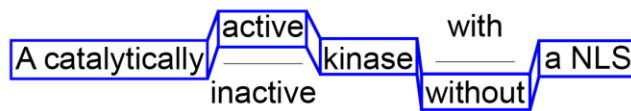
Gene: A catalytically active kinase with a NLS
inactive kinase without

Alternative splicing

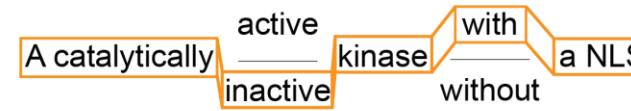


Transcripts

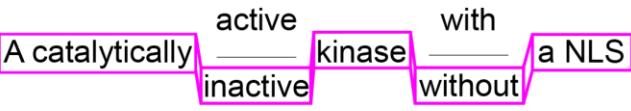
A catalytically active kinase with a NLS



A catalytically active kinase without a NLS

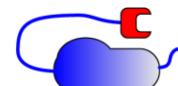
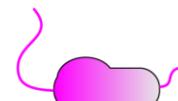


A catalytically inactive kinase with a NLS



A catalytically inactive kinase without a NLS

Proteins

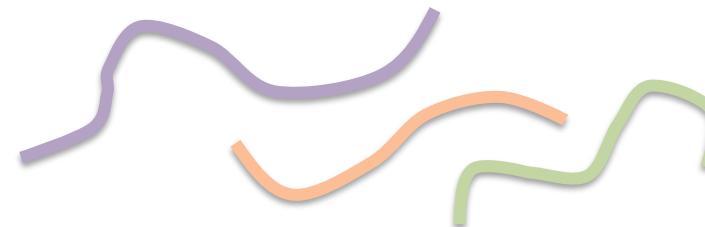


Cellular function

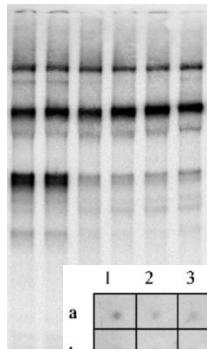
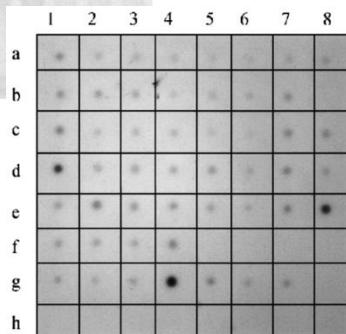
Biological Investigations Empowered by Transcriptomics



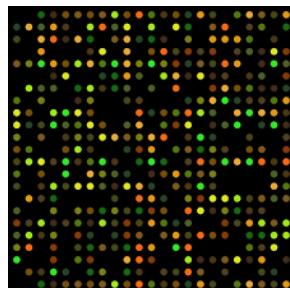
Extract RNA,
... some protocol for processing, ...



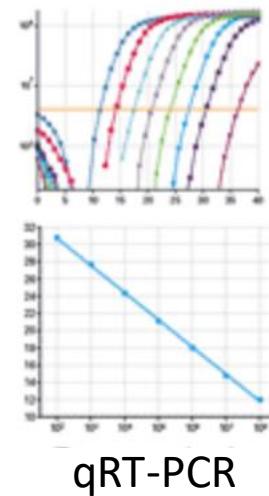
Northern



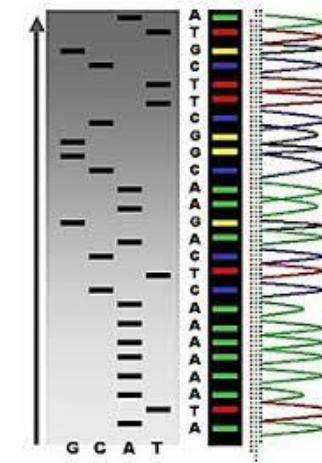
Dot Blot



Microarray



qRT-PCR



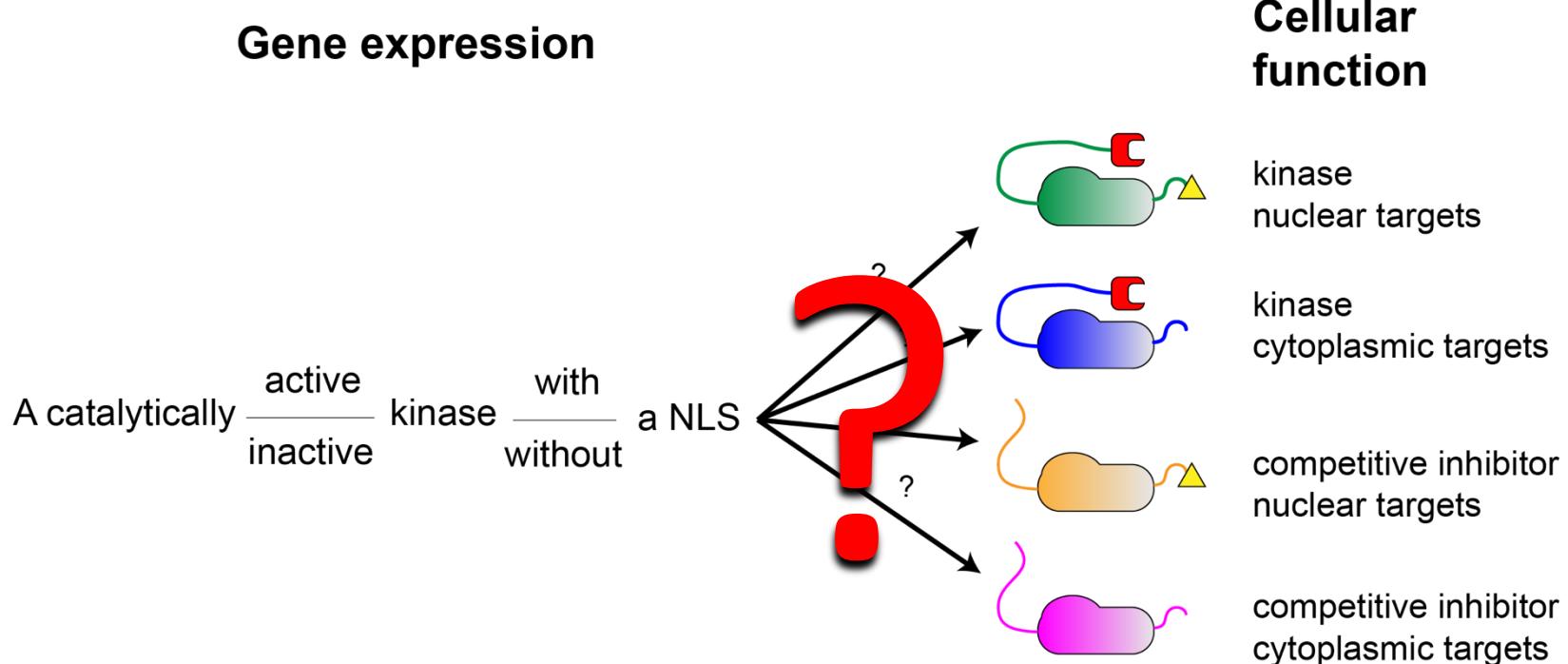
Sanger Sequencing

Other...

MinION MkI: portable, real time biological analyses

MinION

Gene expression analyses ignore isoform variation



Need to resolve isoforms for deeper insights into cellular functions

Historical Timeline to Modern Transcriptomics (from 1970)

Reverse Transcription (1970)

Northern Blot
Sanger Sequencing
(1977)

Expressed Sequence Tags (1992)

cDNA microarrays (1995)

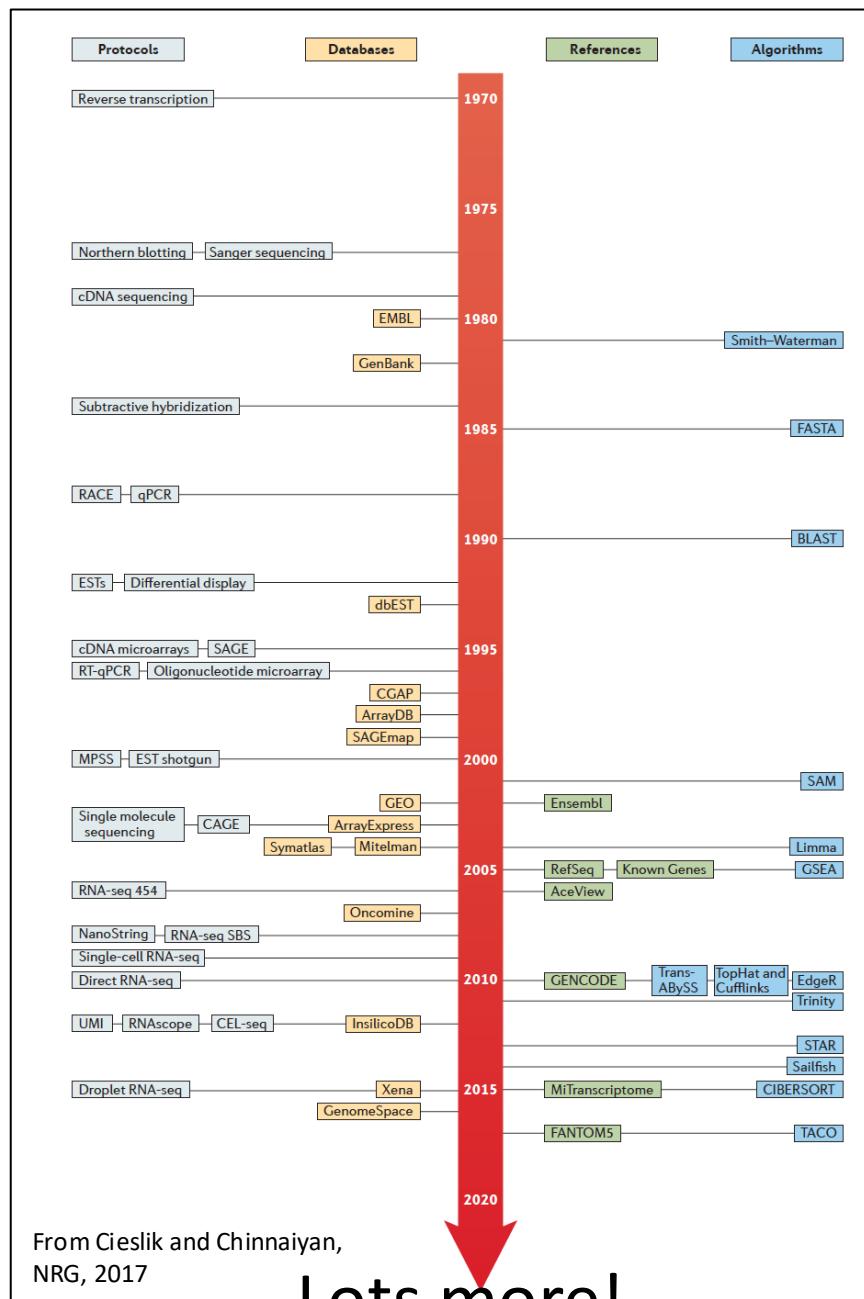
RNA-Seq (2006-2008)

PacBio IsoSeq (2014)

Droplet single cell RNA-Seq (2015)

Direct RNA Seq Nanopore (2018)

SlideSeq-v2 (2021)



Note: Just a small sampling of what's available.

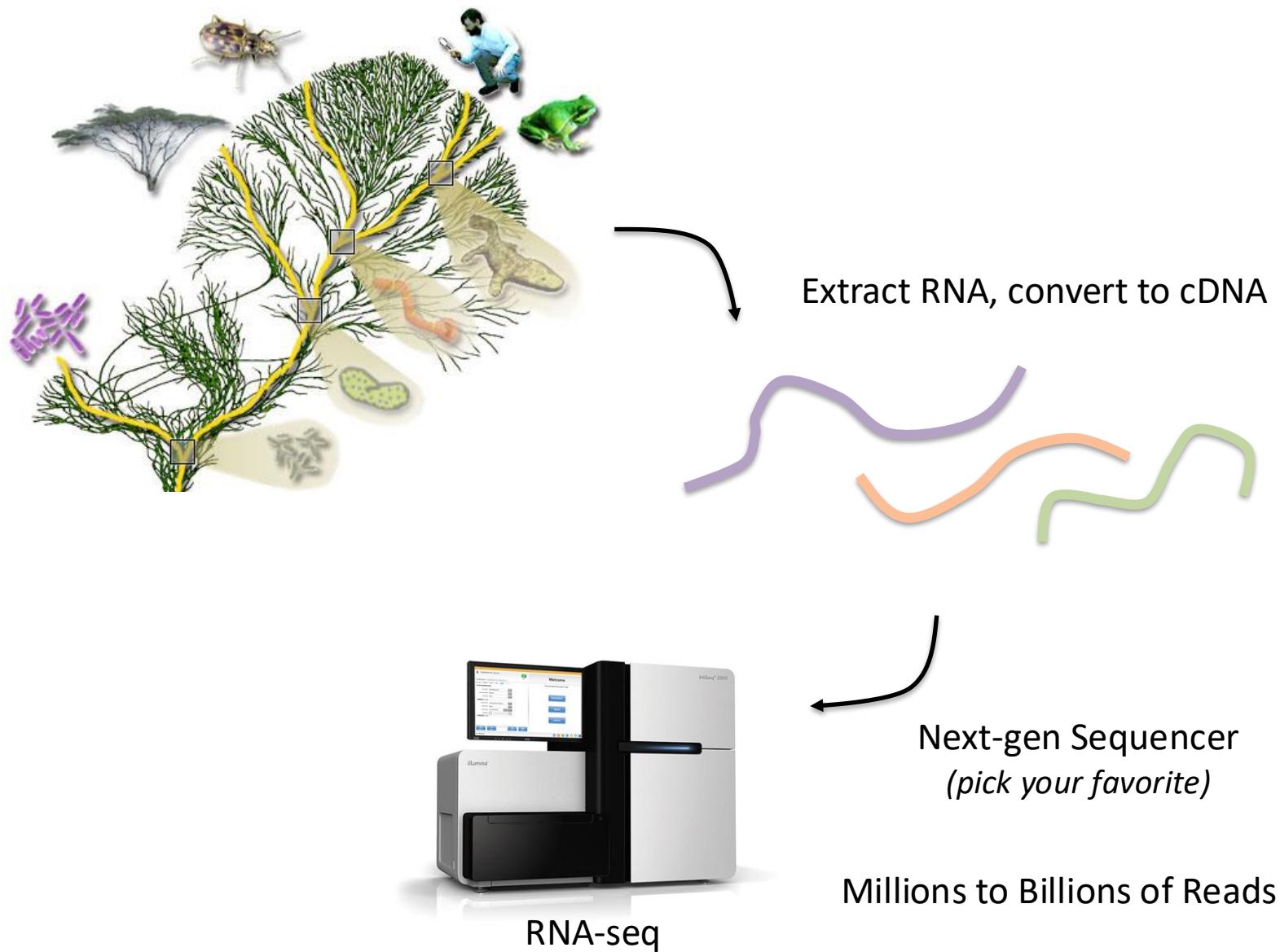
Smith Waterman (1981)

BLAST (1990)

SAMtools (2009)
Tophat/Cufflinks (2010)

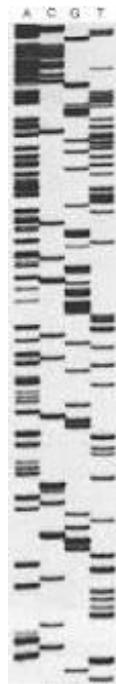
STAR (2013)
StringTie (2015)
Kallisto (2016)
Salmon (2017)
minimap2 (2018)
Seurat-v2 (2021)

Modern Transcriptome Studies Empowered by RNA-seq



Personal Reflections...

Circa 1995



Generating RNA-Seq: *How to Choose?*

Platform	iSeq Project Firefly 2018	MinSeq	MiSeq	Next Seq 550	HiSeq 2500 RR	Hiseq 2500 V3	HiSeq 2500 V4	HiSeq 4000	HiSeq X	Nova Seq S1 2018	Nova Seq S2	Nova Seq S4	5500 XL	318 HiQ 520	Ion 530	Ion Proton P1	PGM HiQ 540	RS P6-C4	Sequel	R&D end 2018	Smidg ION RnD	Mini ION R9.5	Grid ION X5	PromethION RnD	PromethION theoretical	QiaGen Gene Reader	BGI SEQ 500	BGI SEQ 50	#	
Reads: (M)	4	25	25	400	600	3000	4000	5000	6000	3300	6600	20000	1400	3-5	15-20	165	60-80	5.5	38.5	--	--	--	--	--	--	400	1600	1600	--	
Read length: (paired-end*)	150*	150*	300*	150*	100*	100*	125*	150*	150*	150*	150*	150*	60	200	200	400	400	200	15K	12K	32K	--	--	--	--	--	--	100*	50	--
Run time: (d)	0.54	1	2	1.2	1.125	11	6	3.5	3	1.66	1.66	1.66	7	0.37	0.16	--	0.16	4.3	--	--	--	2	2	2	--	--	--	1	0.4	--
Yield: (Gb)	1	7.5	15	120	120	600	1000	1500	1800	1000	2000	6000	180	1.5	7	10	12	12	5	150	4	8	40	2400	11000	80	200	8	--	
Rate: (Gb/d)	1.85	7.5	7.5	100	106.6	55	166	400	600	600	1200	3600	30	5.5	50	--	93.75	2.8	--	--	--	4	20	1200	5500	--	200	20	--	
Reagents: (\$K)	0.1	1.75	1	5	6.145	23.47	29.9	--	--	--	--	--	10.5	0.6	--	1	1.2	2.4	--	1	--	0.5	1.5	--	--	0.5	--	--	--	
per-Gb: (\$)	100	233	66	50	51.2	39.1	31.7	20.5	7.08	18	15	5.8	58.33	--	--	100	--	200	80	6.6	--	62.5	37.5	20	4.3	--	--	--	--	
hg-30x: (\$)	12000	28000	8000	5000	6144	4692	3804	2460	849.6	1800	1564	700	7000	--	--	12000	--	24000	9600	1000	--	7500	4500	2400	500	--	600	--		
Machine: (\$)	30K	49.5K	99K	250K	740K	690K	690K	900K	1M	999K	999K	999K	595K	50K	65K	243K	242K	695K	350K	350K	--	--	125K	75K	75K	--	200K	--		

#Page maintained by <http://twitter.com/albertvilella> <http://tinyurl.com/ngslytics> #Editable version: <http://tinyurl.com/ngsspecsshared>

#curl "https://docs.google.com/spreadsheets/d/1GMMfhLyLk0-q8Xklo3YxlWaZA5vVmuhU1kg41g4xLkXc/export?gid=4&format=csv" | grep -v '^#' | grep -v '^"' | column -t -s\|, less -S

Stats circa 2018

For current, see: <https://tinyurl.com/wbgcs65>

Illumina

PacBio

ONT

*Not all shown at scale

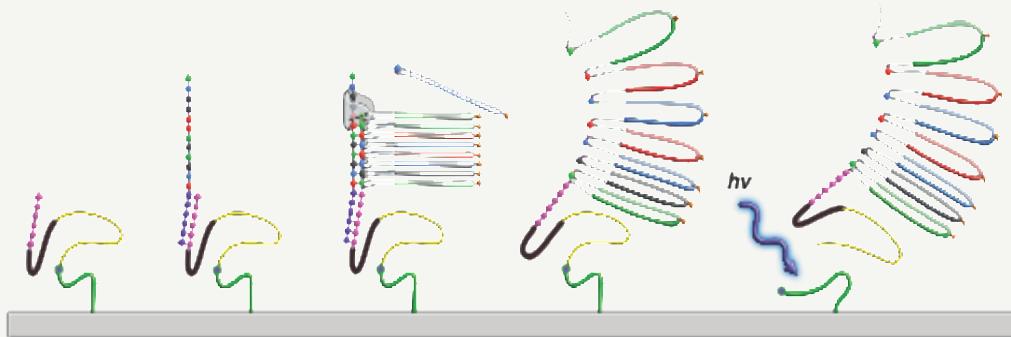
Maybe something fast and portable?

Oxford Nanopore Technology (ONT) Minion

Sequencing by Expansion (SBX) Technology

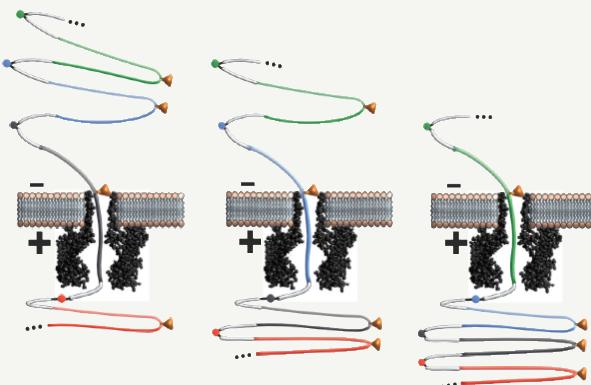
X-NTPs

Xpandomer Synthesis

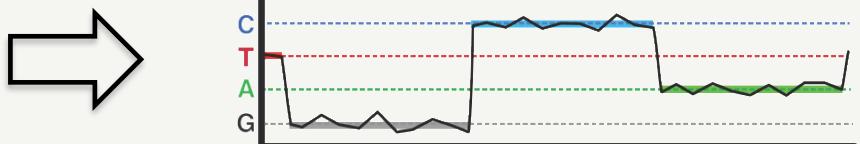


Backbone Cleavage and Xpandomer Expansion

Xpandomers Travel Through Nanopore Detectors



Xpandomer Signals Detected



Lab Sets Guinness World Record for DNA Sequencing Speed

Oct 17, 2025 | Company News | ★★★★★

Teams complete whole human genome sequencing and analysis in under four hours, demonstrating potential for same-day NICU workflows.

Broad Clinical Labs, in collaboration with Roche Sequencing Solutions and Boston Children's Hospital, has achieved official recognition from Guinness World Records for the fastest DNA sequencing technique, completing sequencing and analysis of a whole human genome in less than four hours.

A Plethora of Biological Sequence Analyses Enabled by RNA-Seq

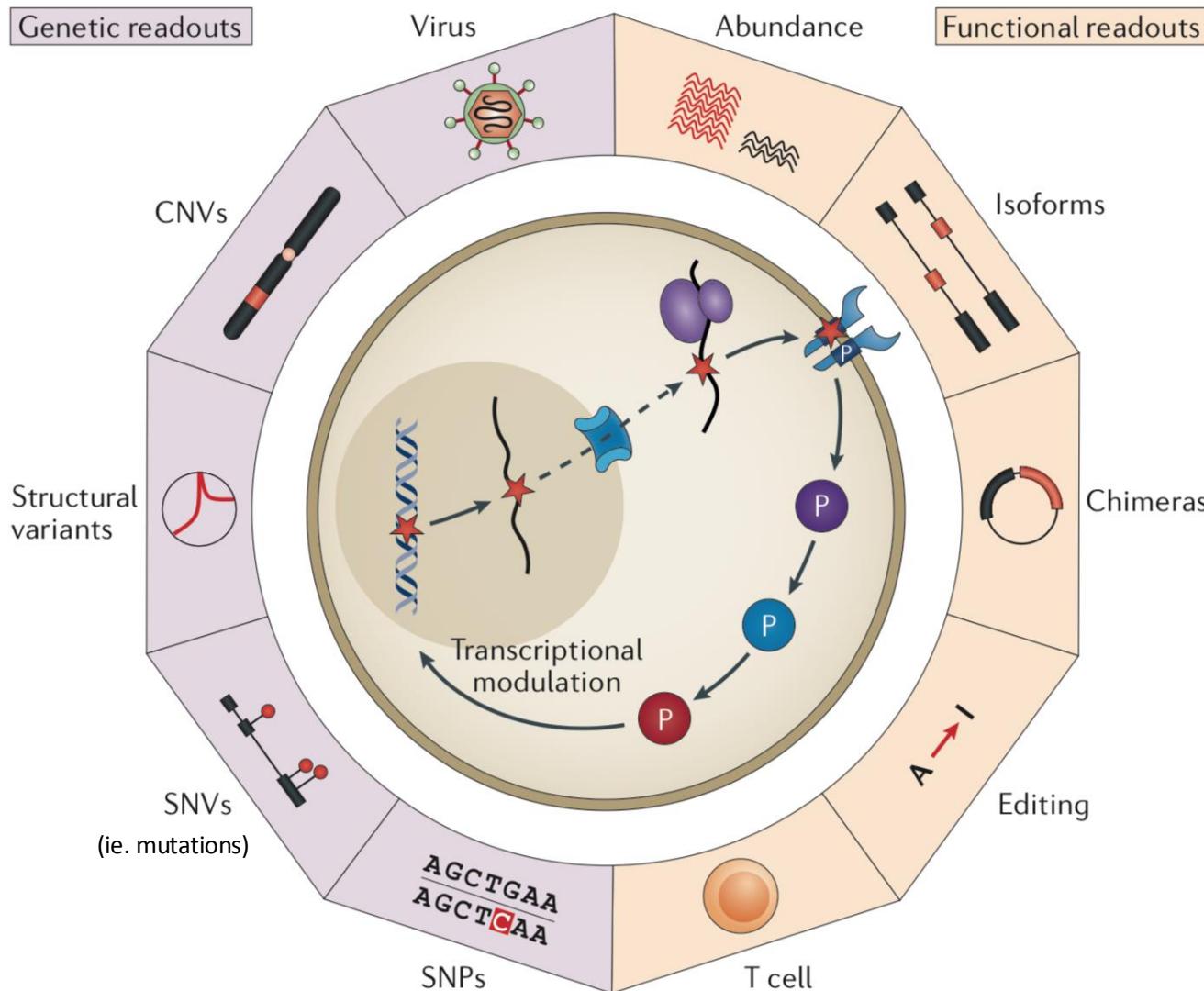
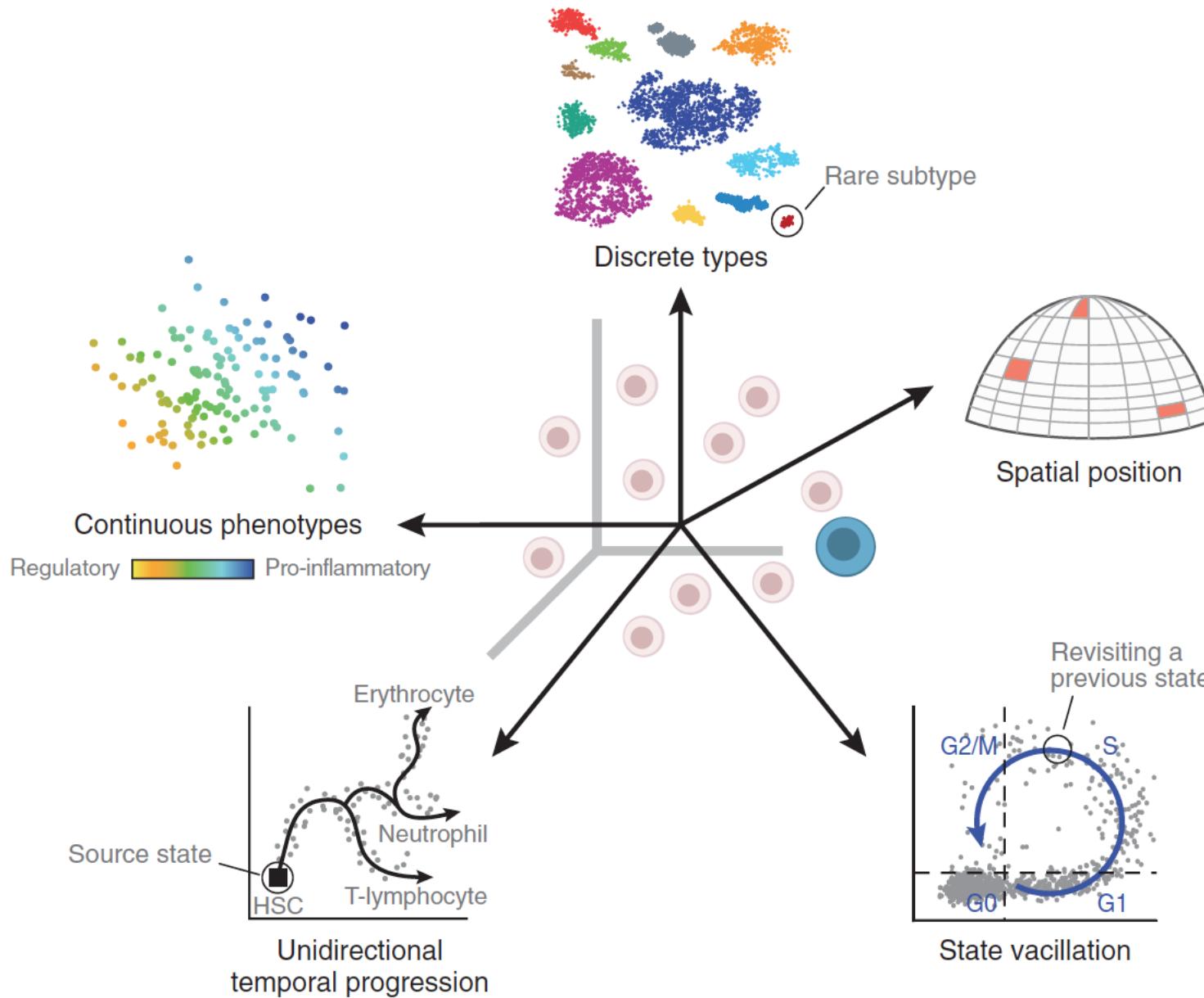


Figure 2 | Transcriptome profiling for genetic causes and functional phenotypic readouts.

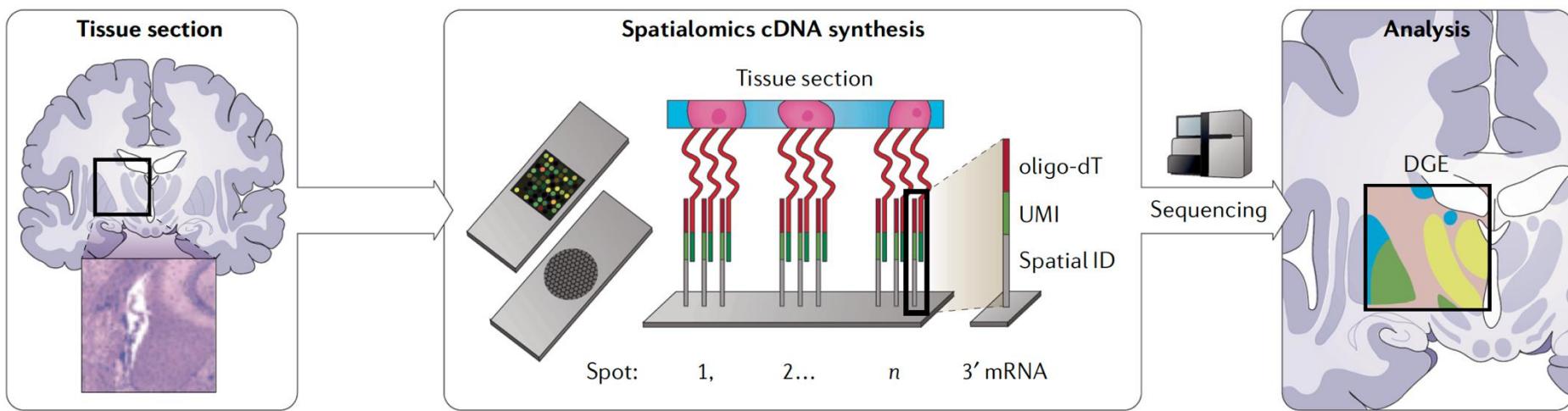
From Cieslik and Chinnaiyan, NRG, 2017

RNA-Seq is Empowering Discovery at Single Cell Resolution



Spatial Transcriptomics

Spatial Encoding



A Myriad of Other Specialized RNA-seq -based Applications

RNA-Sequencing as your lens towards biological discovery

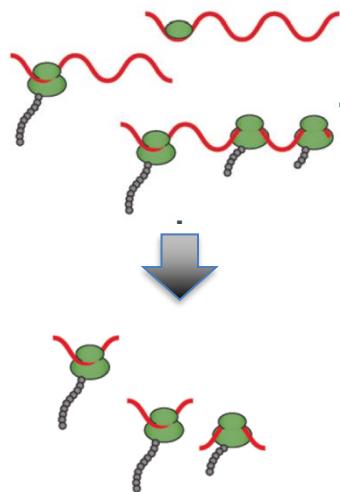
⚡ UV crosslink ⚡ Biotin

⌚ RNase V1 ⌚ RNase S1
(digests (digests
dsRNA) ssRNA)

Adapted from "RNA sequencing: the teenage years"
Rory Stark, Marta Grzelak & James Hadfield
Nature Reviews Genetics volume 20, pages631–656(2019)

A Myriad of Other Specialized RNA-seq -based Applications

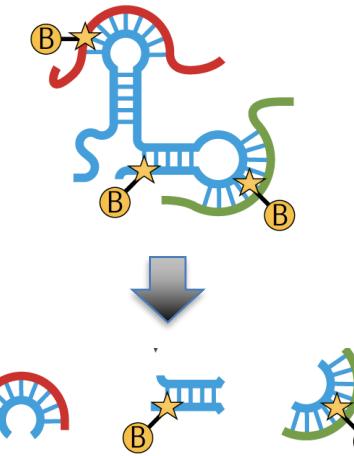
Ribosomal profiling



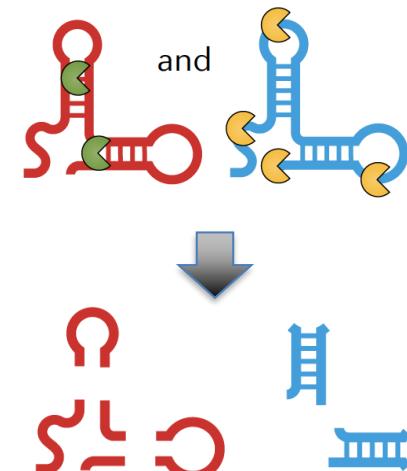
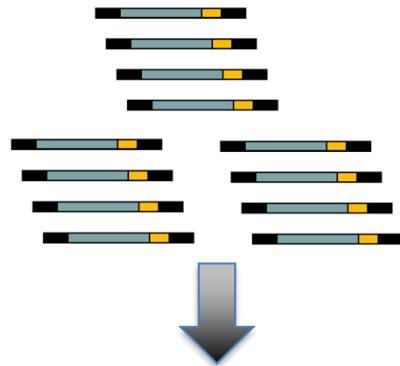
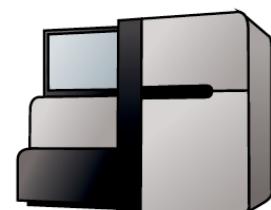
RNA-Protein Interactions



RNA-RNA interactions



RNA Structuromics



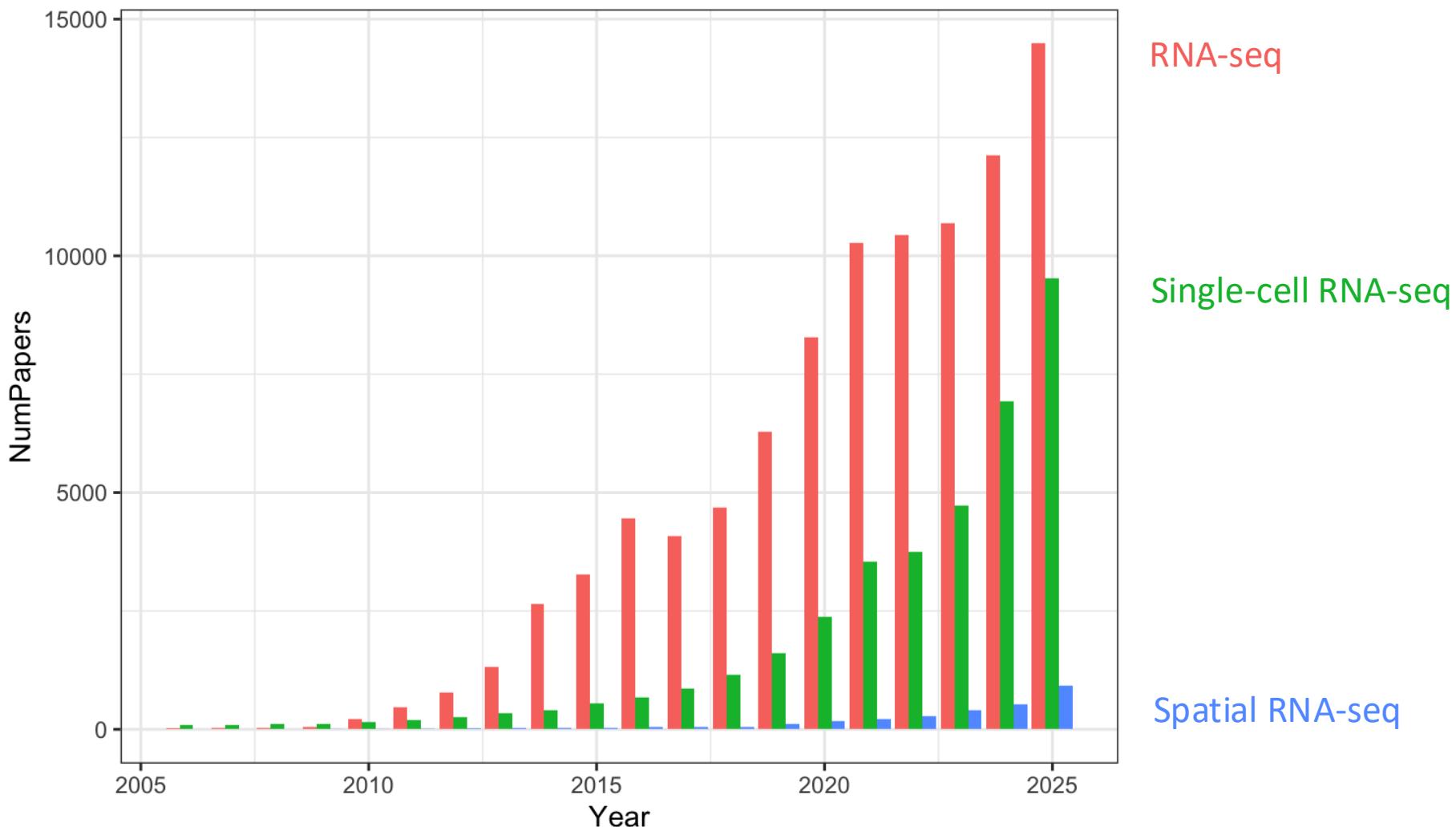
UV crosslink Biotin

RNase V1
(digests
dsRNA) RNase S1
(digests
ssRNA)

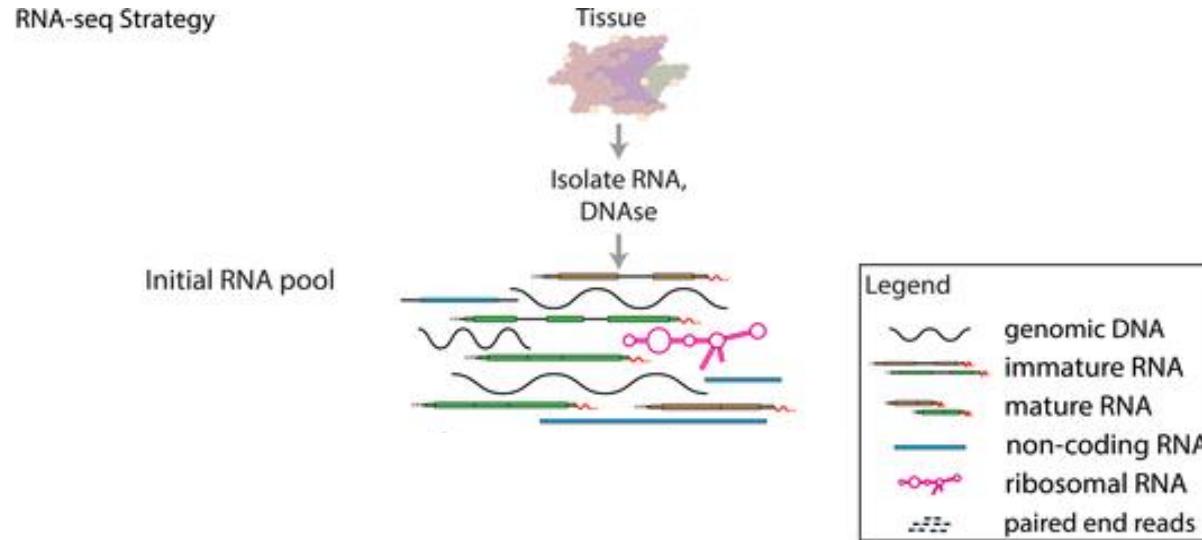
Adapted from "RNA sequencing: the teenage years"
Rory Stark, Marta Grzelak & James Hadfield
Nature Reviews Genetics volume 20, pages631–656(2019)

RNA-seq Publication Trend

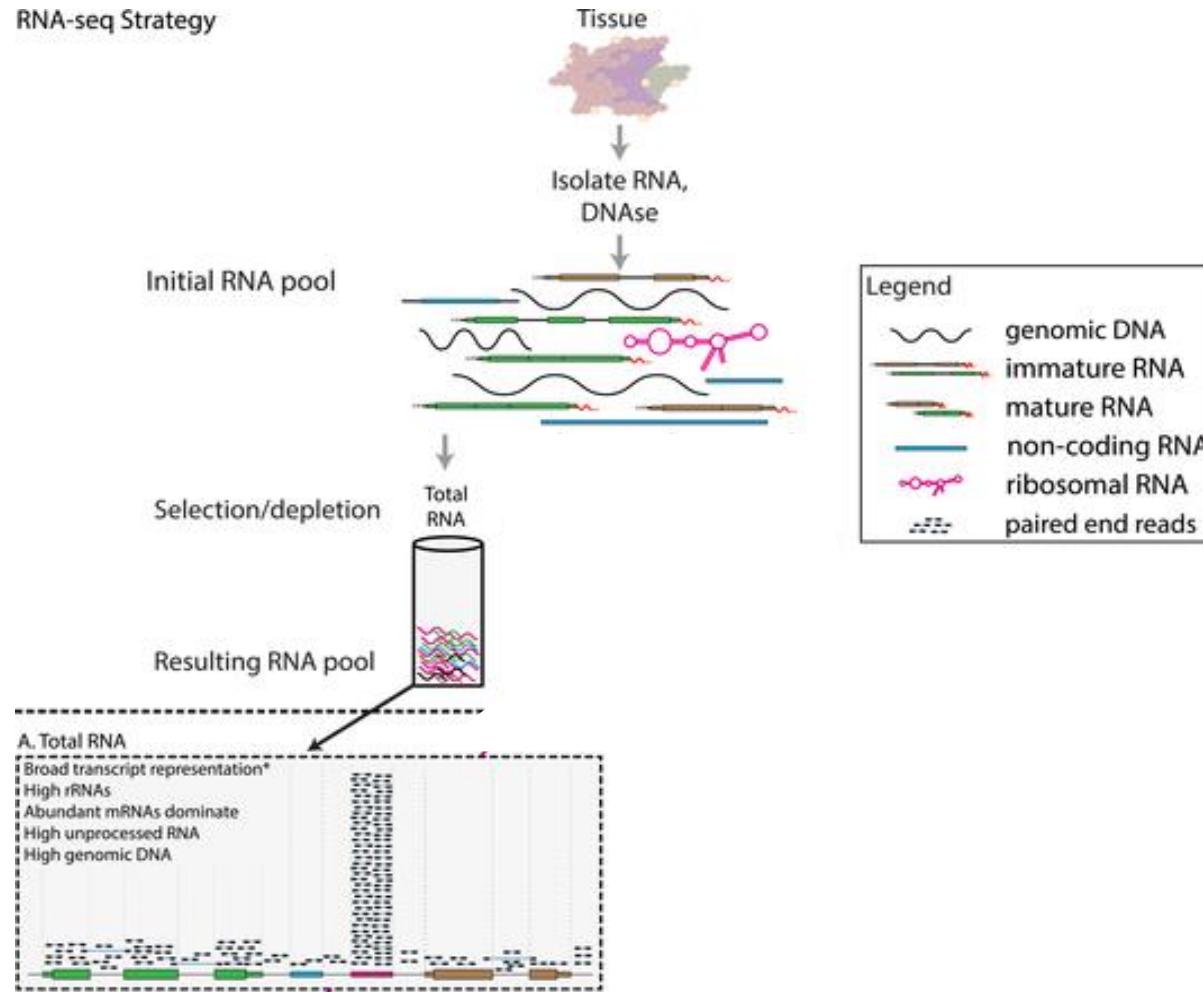
Paper Counts from PubMed



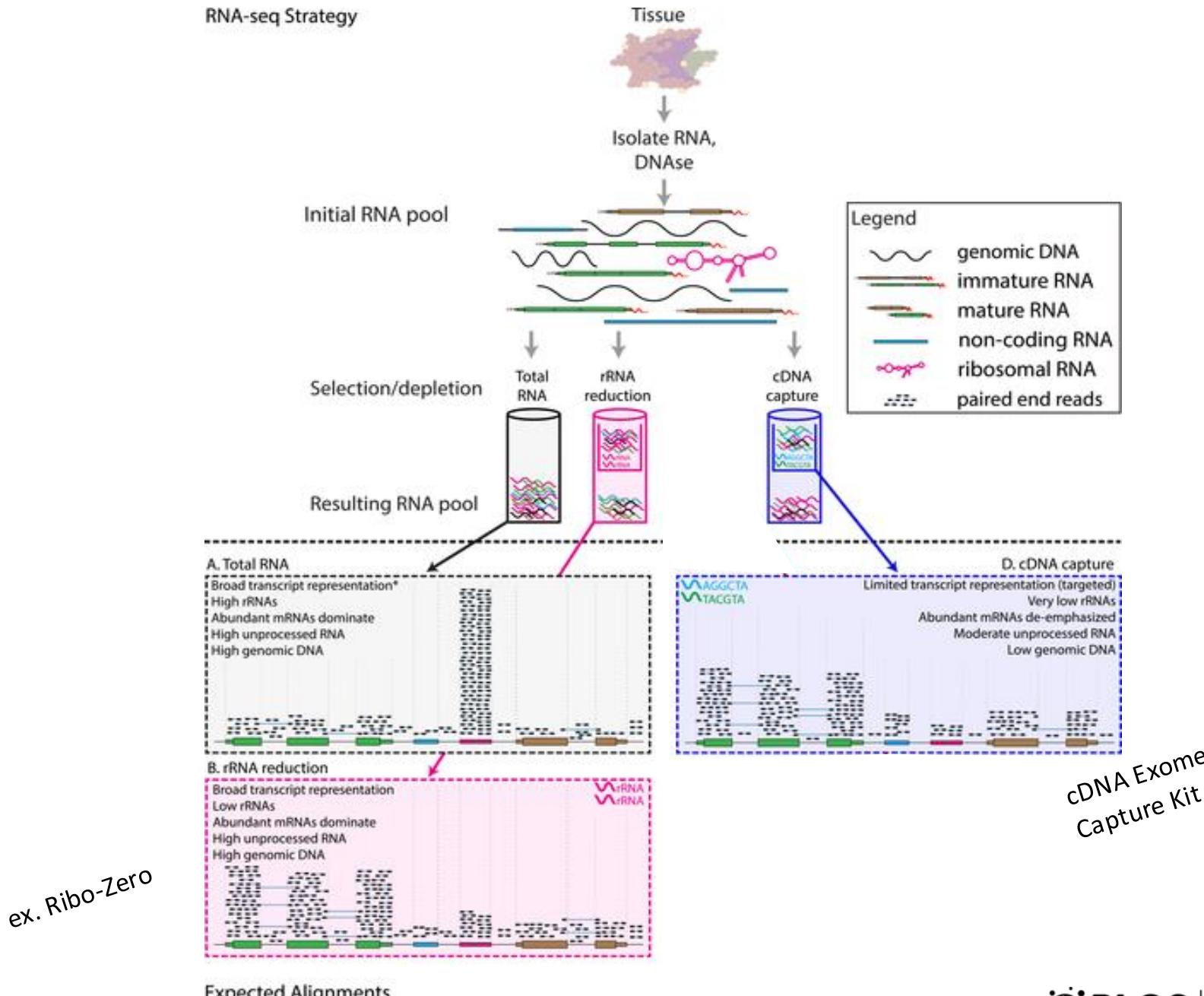
RNA-seq library enrichment strategies that influence interpretation and analysis.



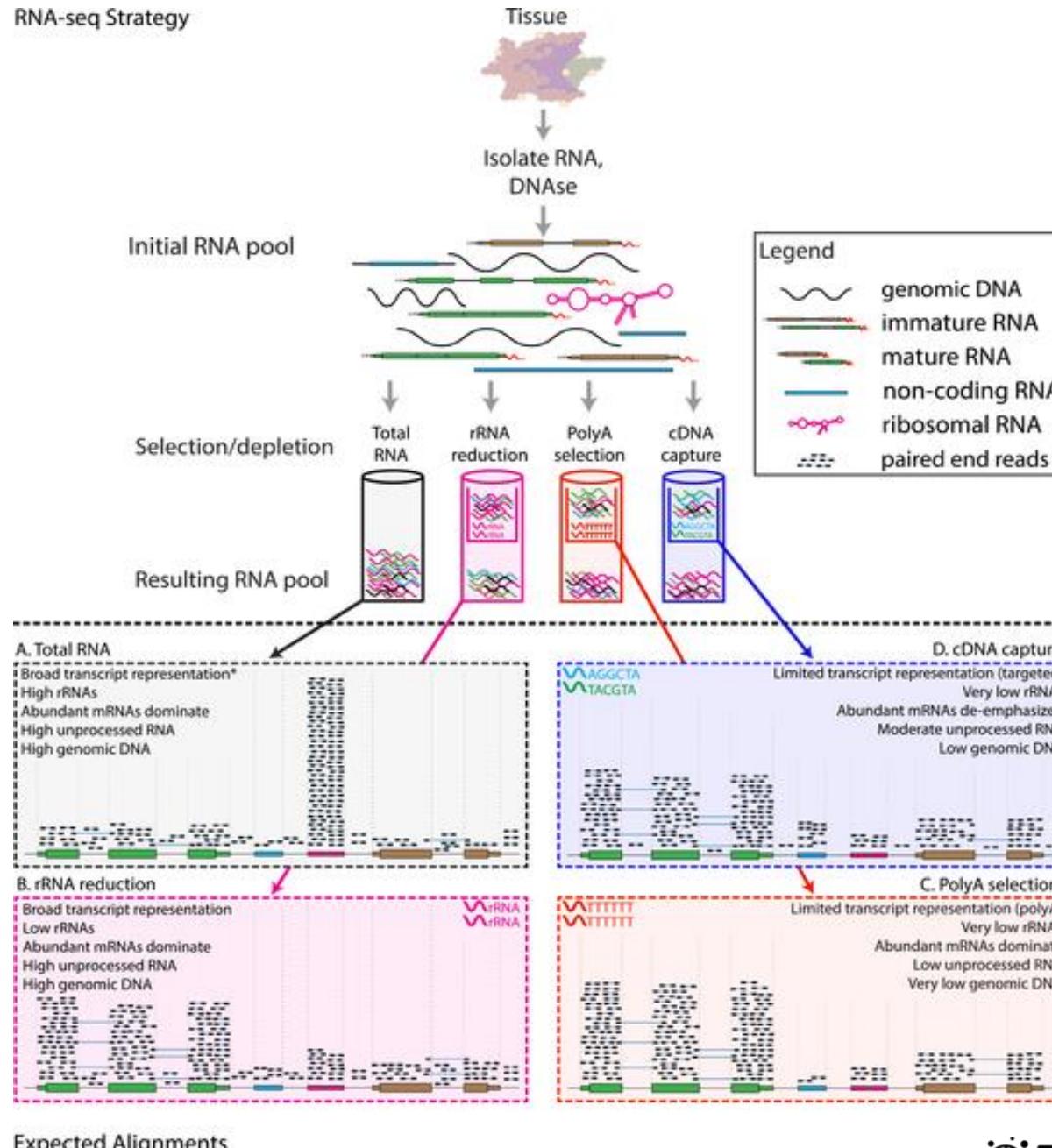
RNA-seq library enrichment strategies that influence interpretation and analysis.



RNA-seq library enrichment strategies that influence interpretation and analysis.

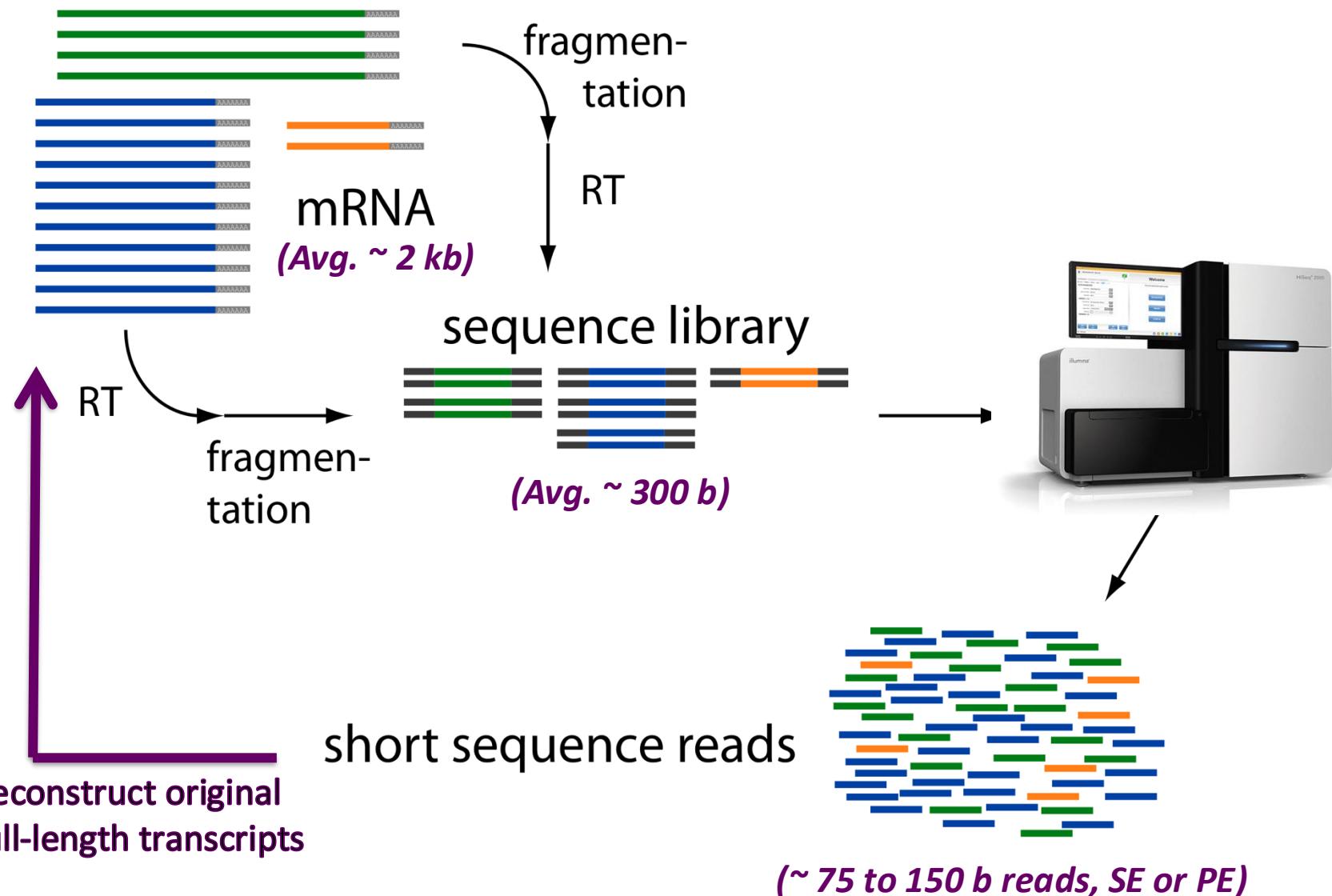


RNA-seq library enrichment strategies that influence interpretation and analysis.

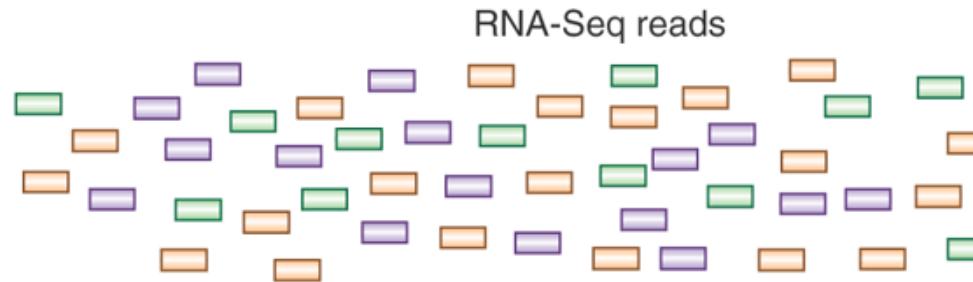


Part 2. Transcript Reconstruction Methods

RNA-Seq Challenge: Transcript Reconstruction

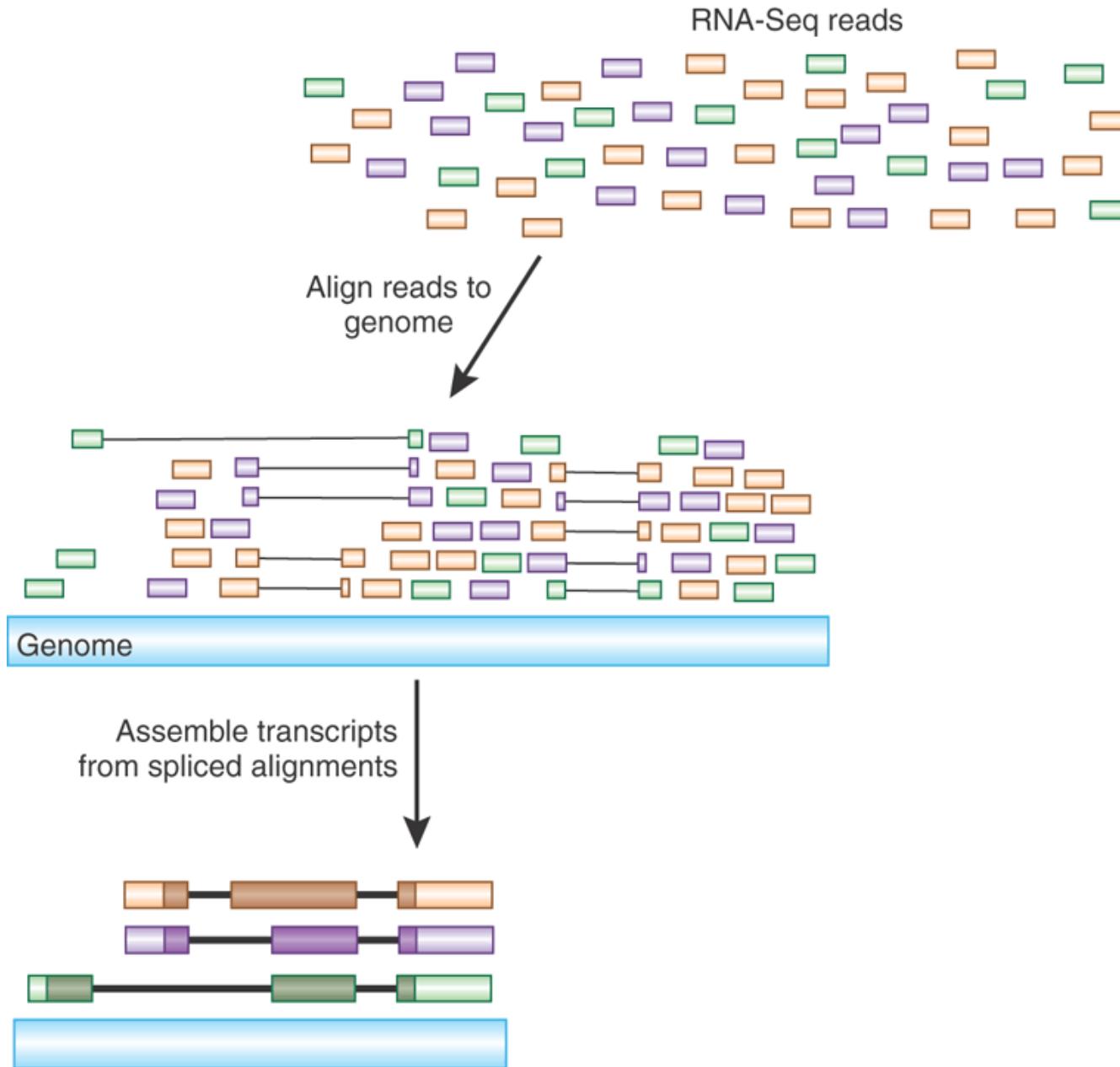


Transcript Reconstruction from (short) RNA-Seq Reads

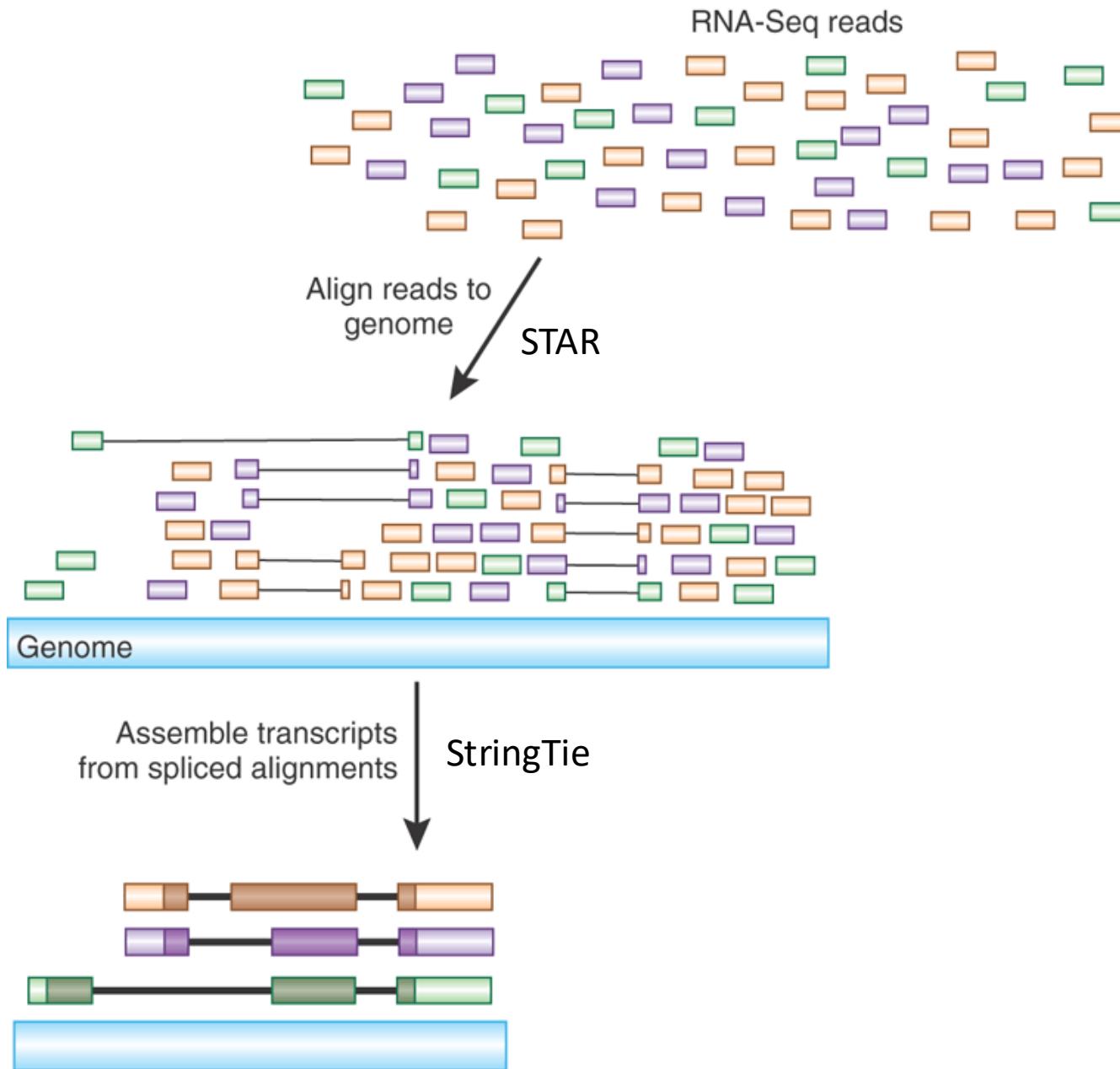


Transcript Reconstruction from (short) RNA-Seq Reads

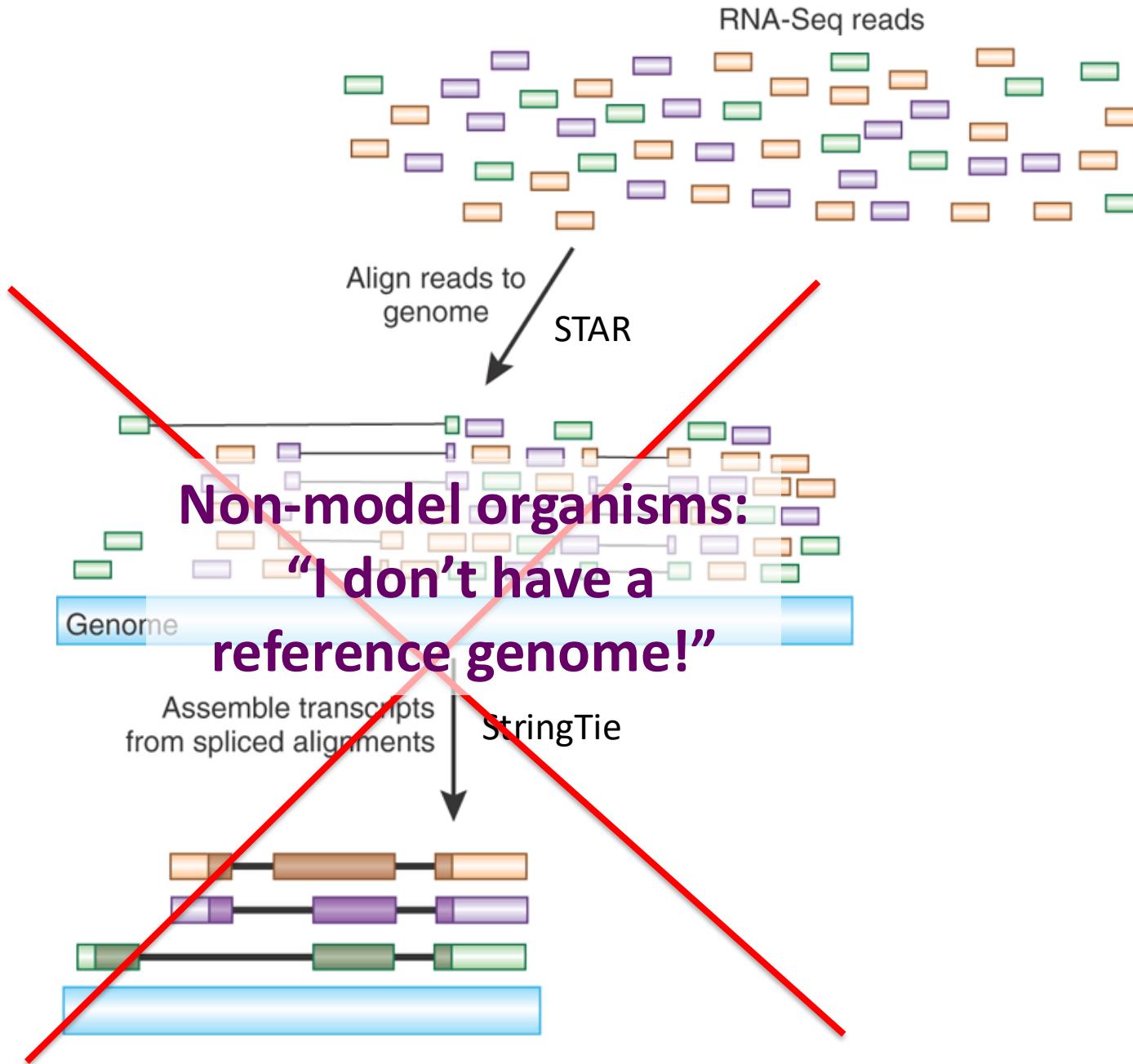
Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads

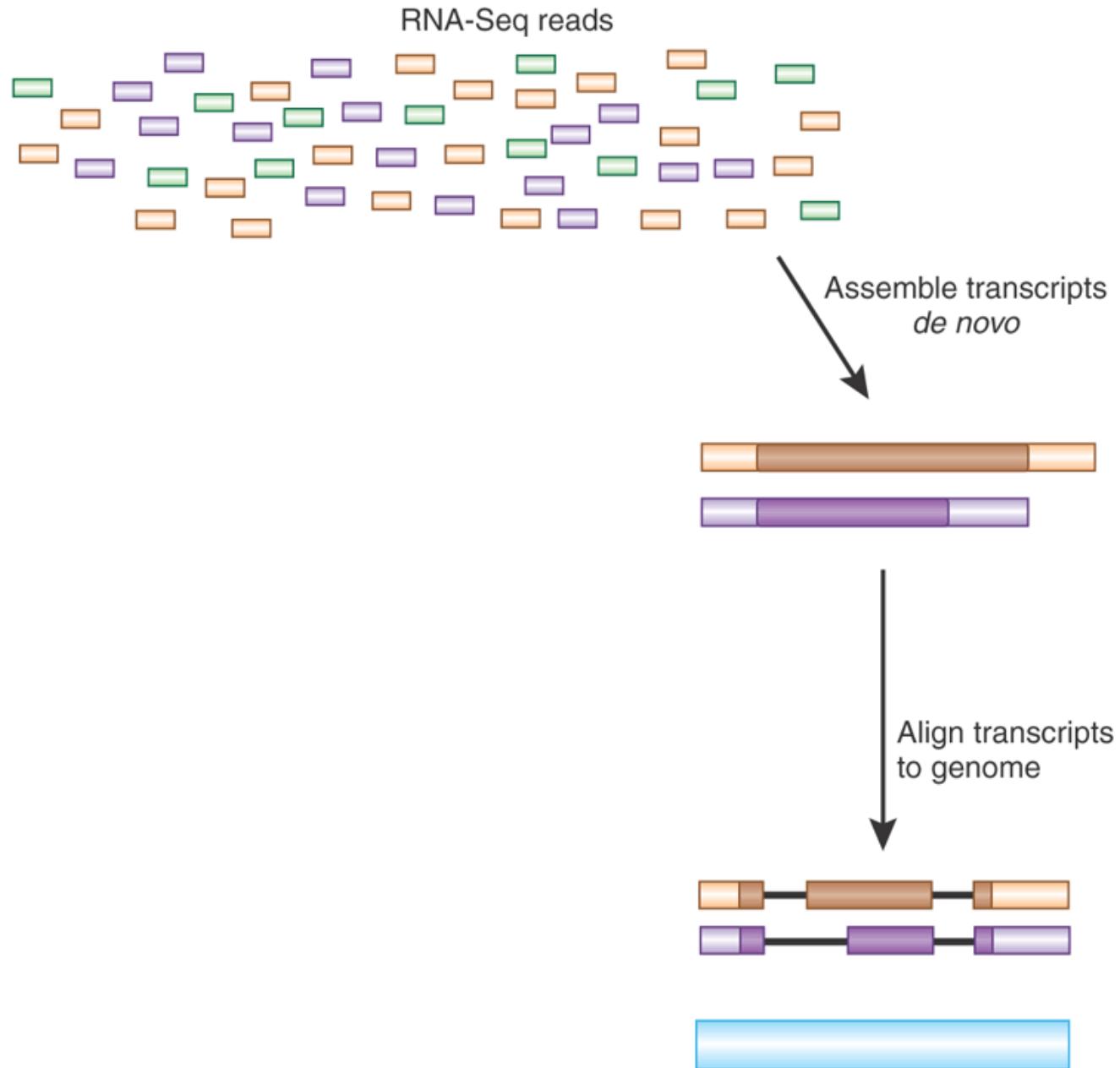


Transcript Reconstruction from (short) RNA-Seq Reads

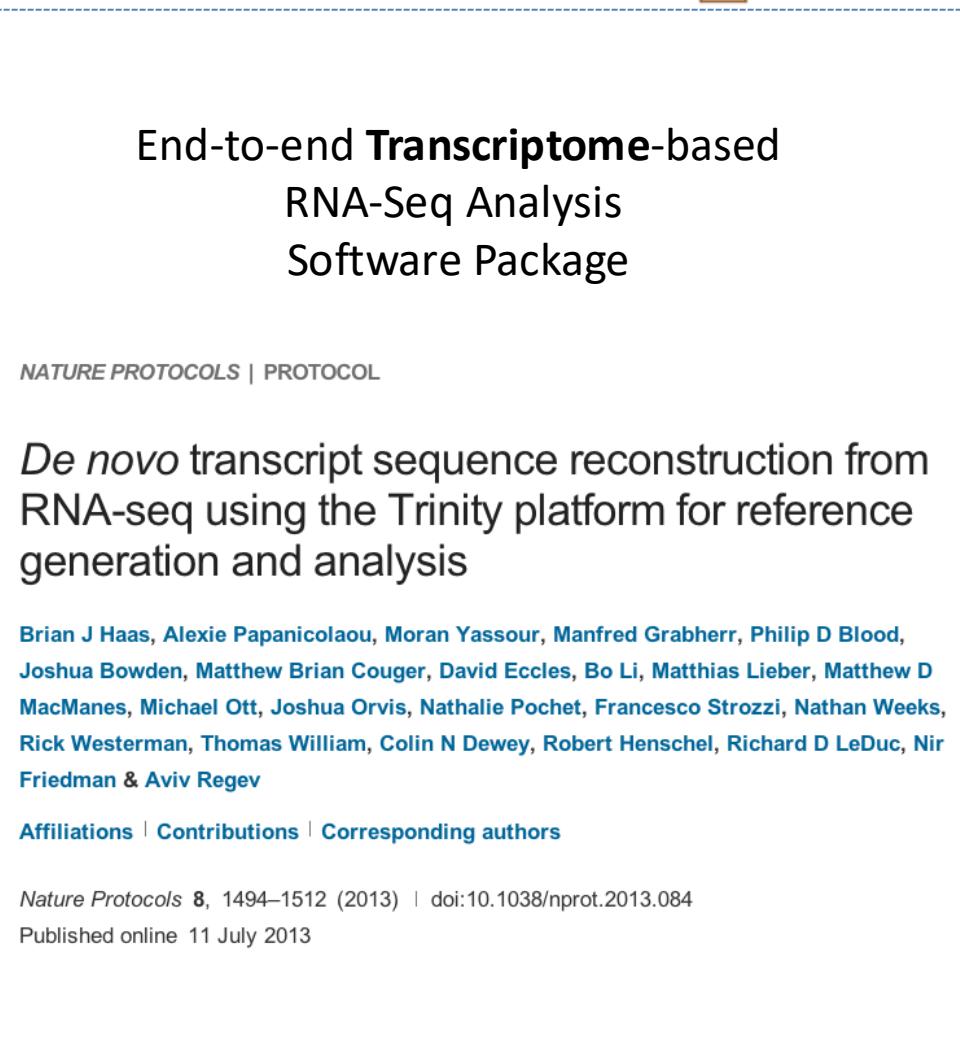
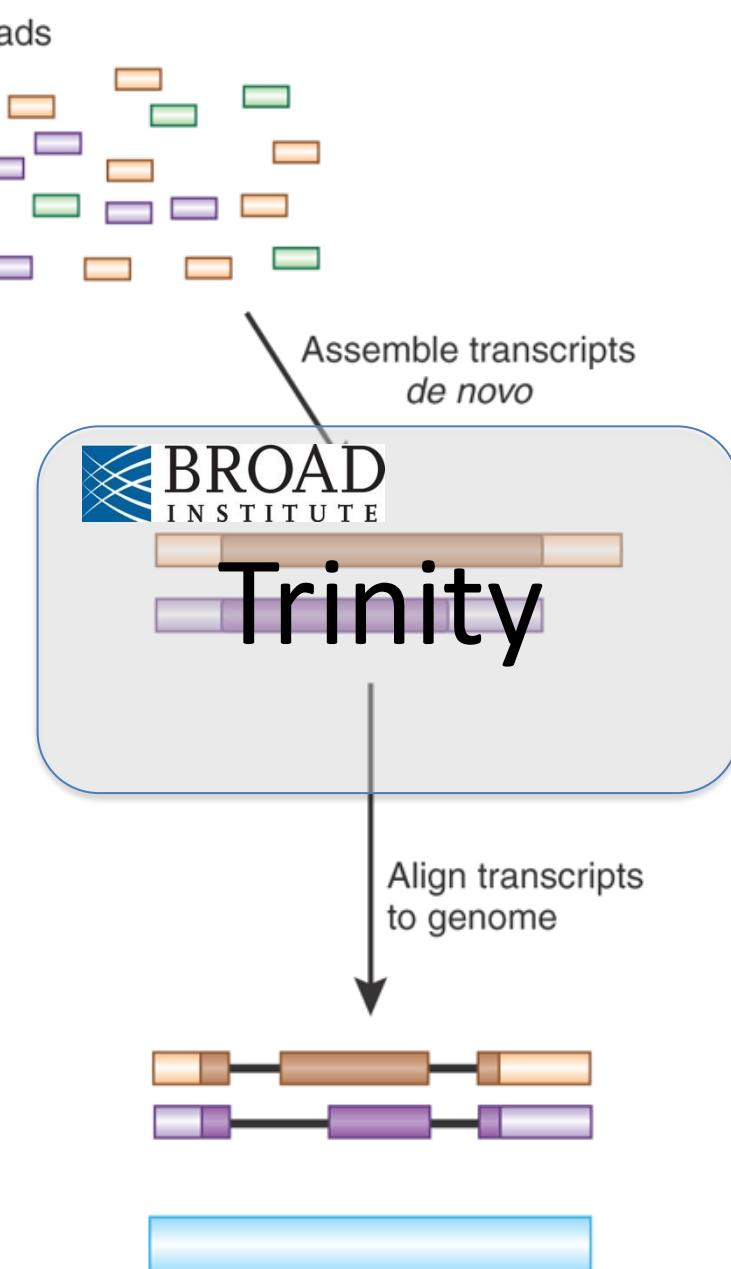


Transcript Reconstruction from (short) RNA-Seq Reads

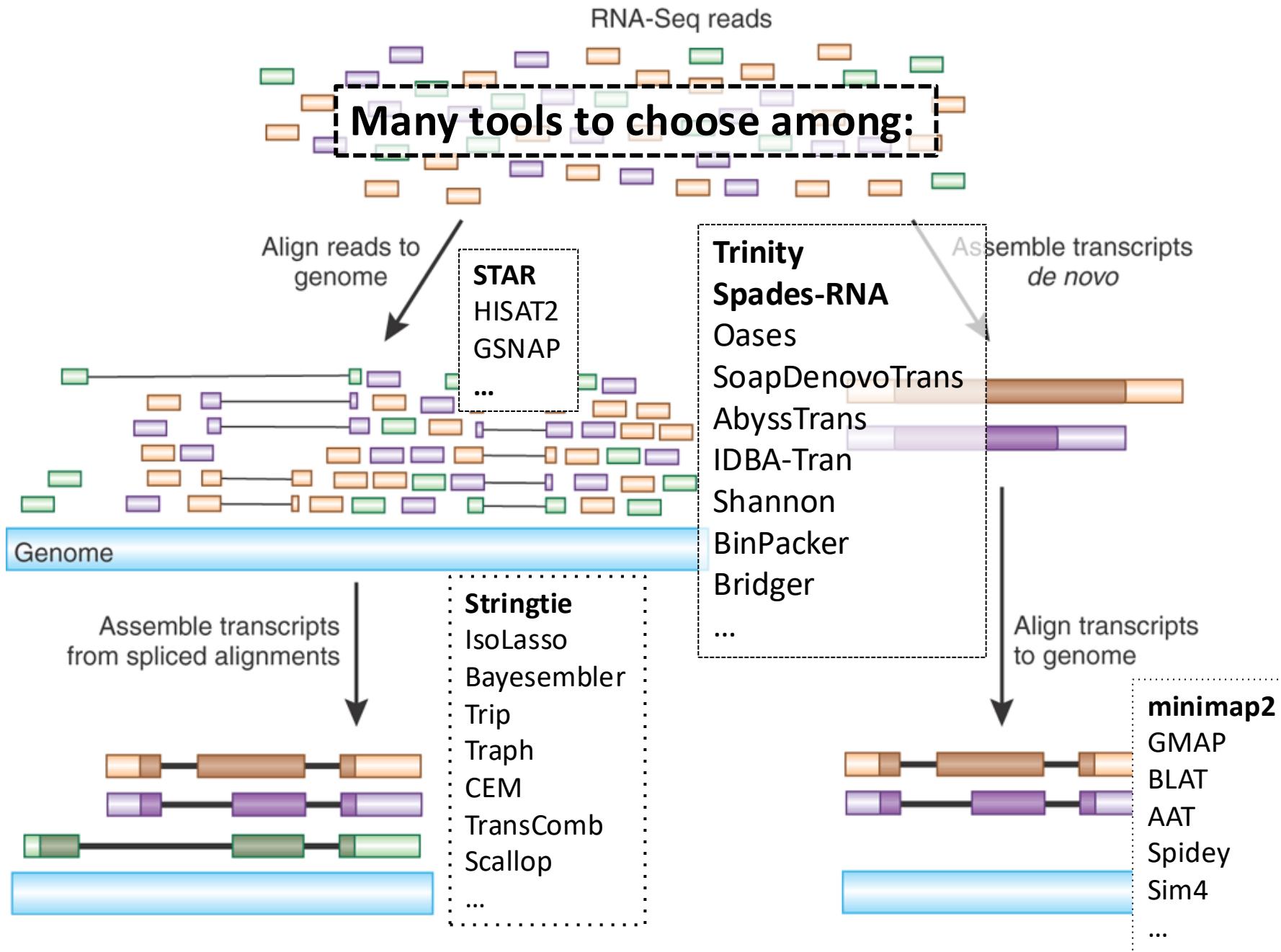
Transcript Reconstruction from (short) RNA-Seq Reads



Transcript Reconstruction from (short) RNA-Seq Reads

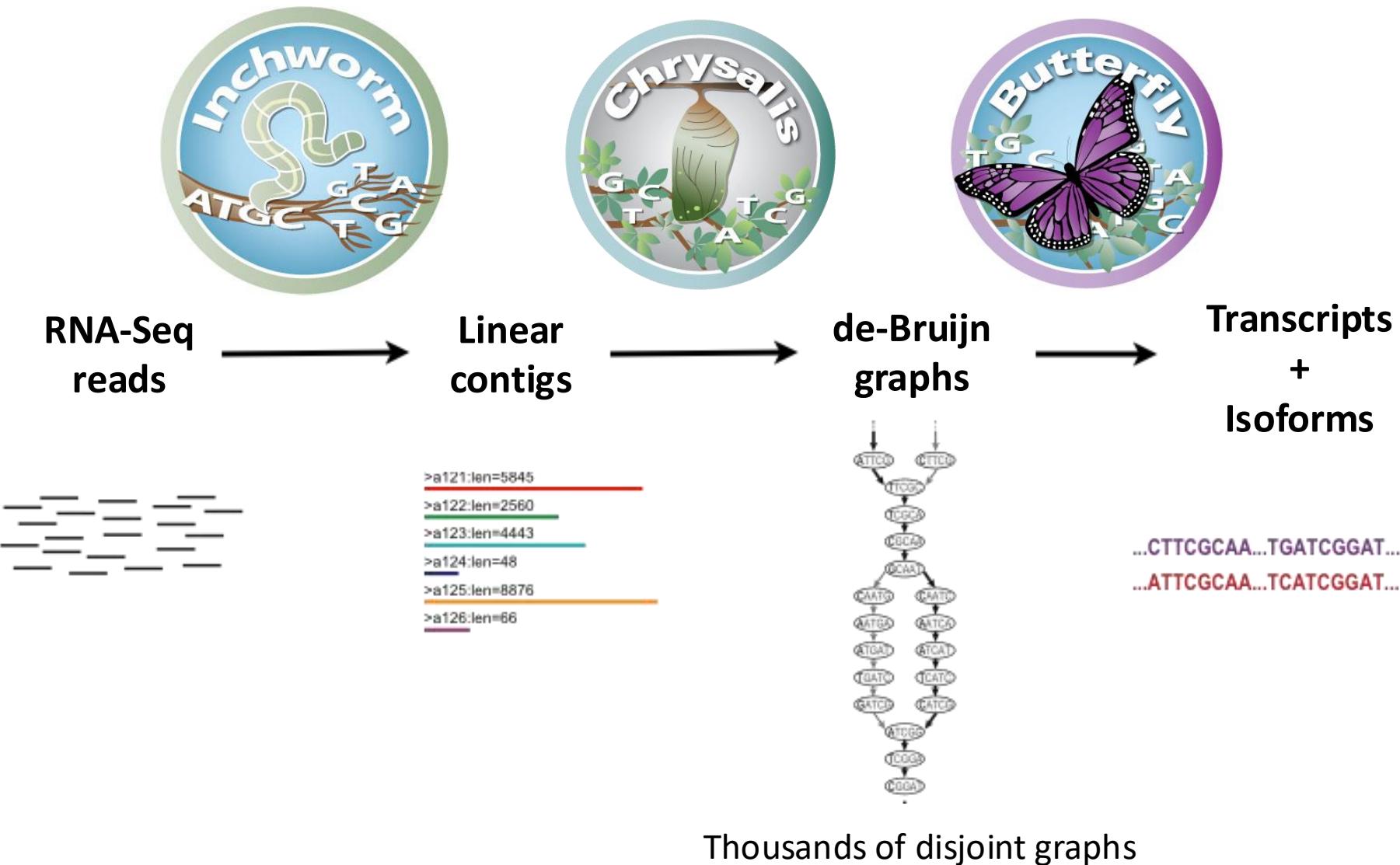


Transcript Reconstruction from (short) RNA-Seq Reads



Part 3. Trinity for Genome-free transcriptomics (eg. for non-model orgs)

Trinity – How it works:



Trinity – How it works:

Younger
me

Manfred
Grabherr

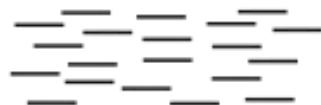
Moran
Yassour

RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+
Isoforms



>a121:len=5845
>a122:len=2560
>a123:len=4443
>a124:len=48
>a125:len=8876
>a126:len=66

...CTTCGCAA...TGATCGGAT...
...ATTCGCAA...TCATCGGAT...

Thousands of disjoint graphs

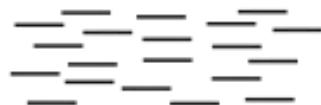
Trinity – How it works:

RNA-Seq
reads

Linear
contigs

de-Bruijn
graphs

Transcripts
+
Isoforms

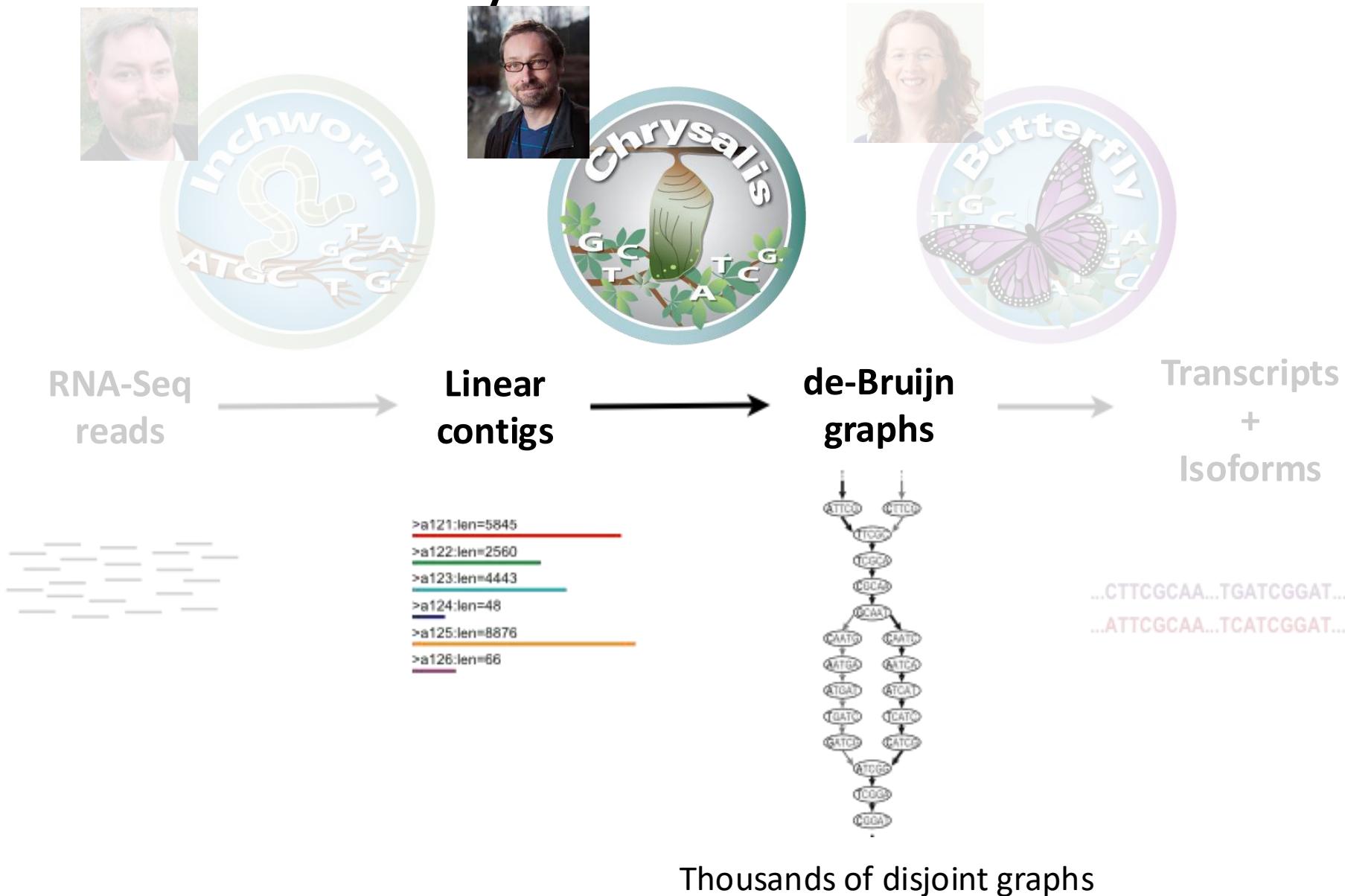


>a121:len=5845
>a122:len=2560
>a123:len=4443
>a124:len=48
>a125:len=8876
>a126:len=66

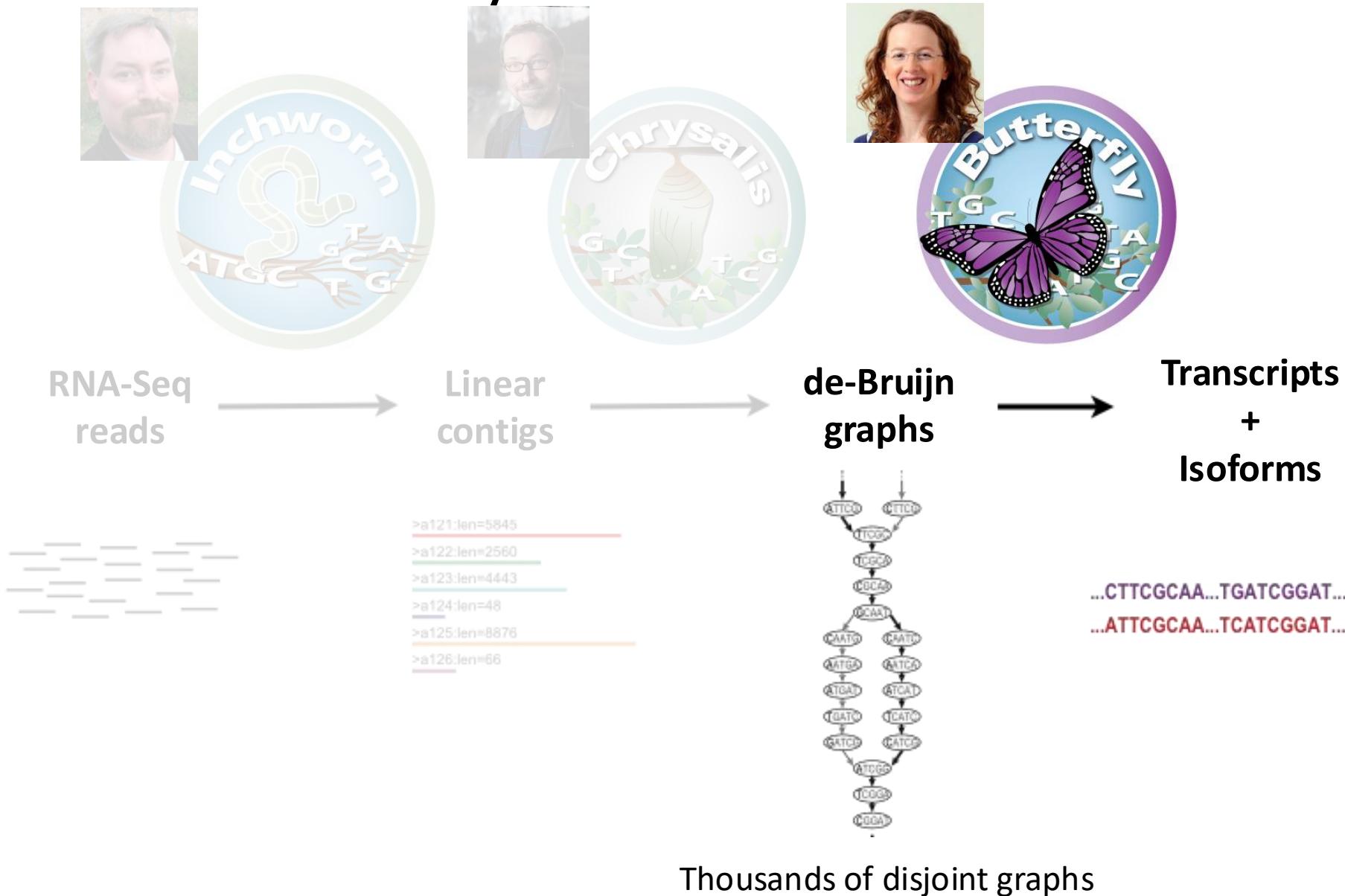
...CTTCGCAA...TGATCGGAT...
...ATTCGCAA...TCATCGGAT...

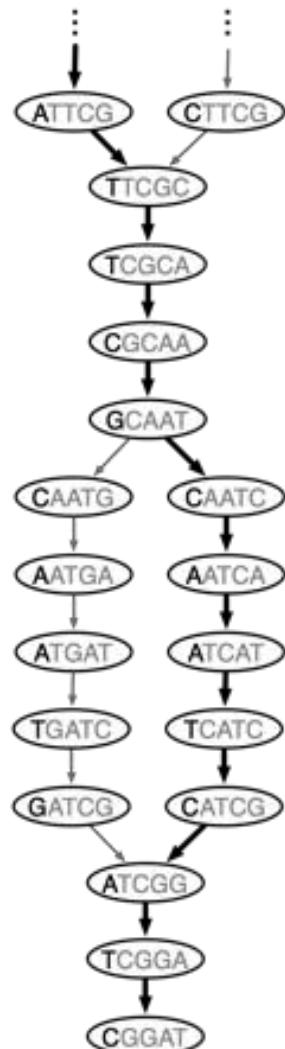
Thousands of disjoint graphs

Trinity – How it works:



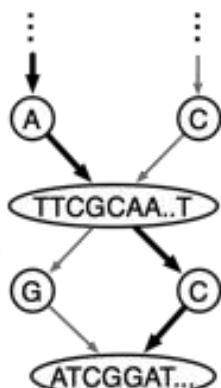
Trinity – How it works:





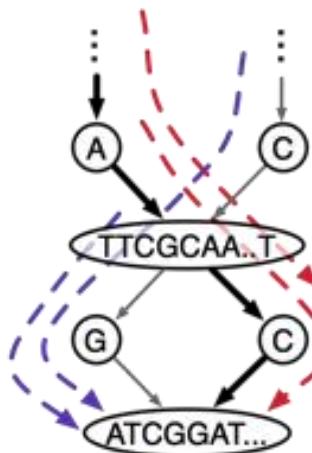
de Bruijn
graph

Butterfly



compacting

finding paths



extracting
sequences

..CTTCGCAA..TGATCGGAT...
..ATTCGCAA..TCATCGGAT...

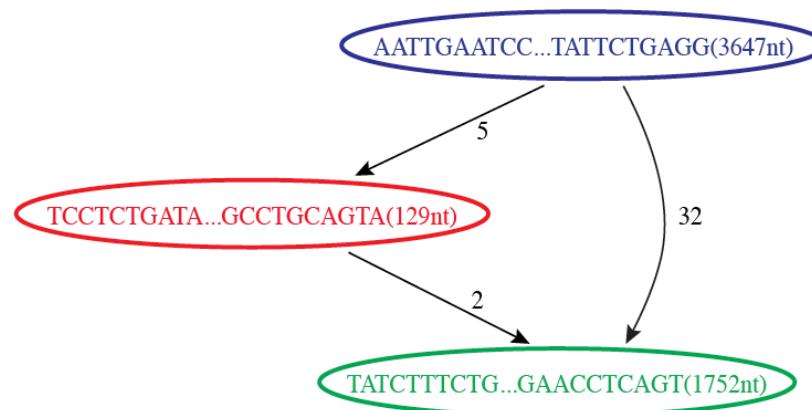
compact
graph

compact
graph with
reads

sequences
(isoforms and paralogs)

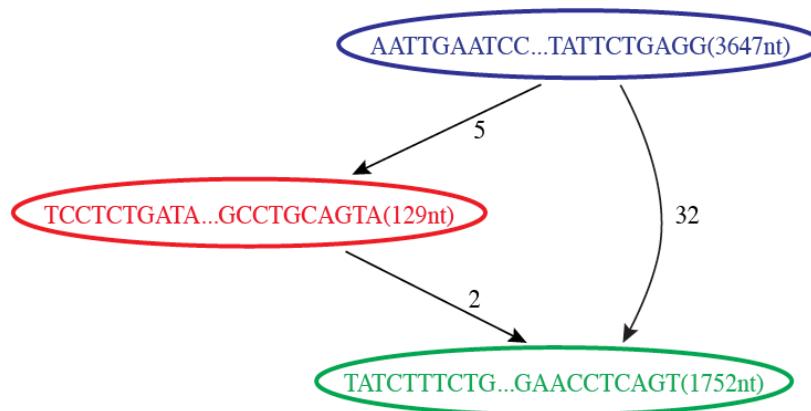
Butterfly Example 1: Reconstruction of Alternatively Spliced Transcripts

Butterfly's Compacted
Sequence Graph



Reconstruction of Alternatively Spliced Transcripts

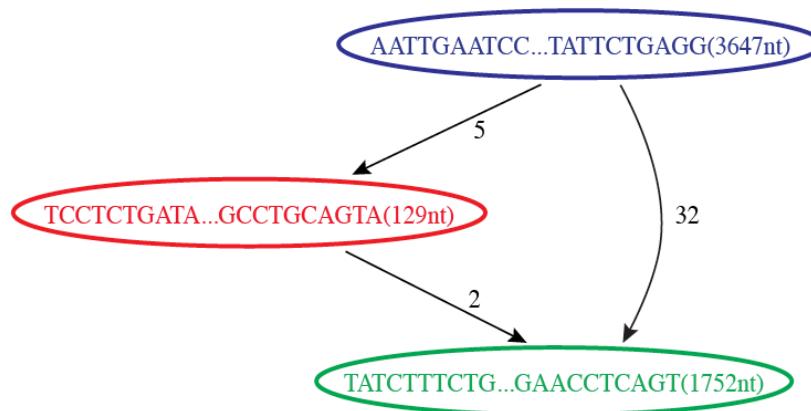
Butterfly's Compacted
Sequence Graph



Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

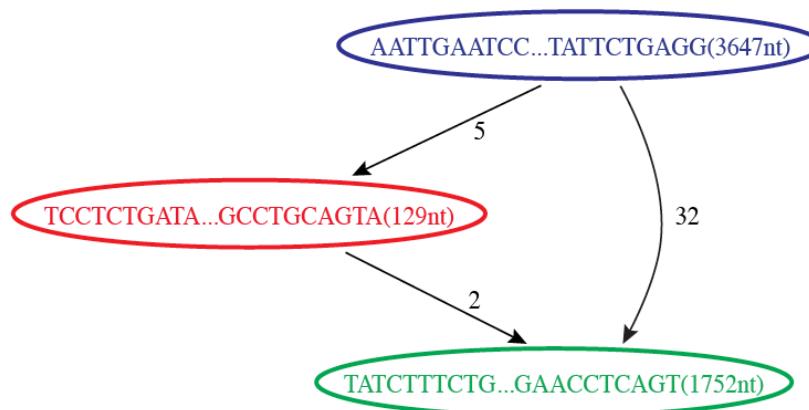
Butterfly's Compacted
Sequence Graph



Reconstructed Transcripts

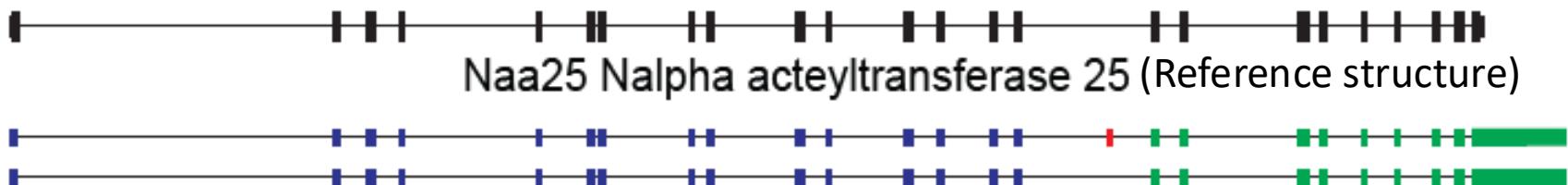
Reconstruction of Alternatively Spliced Transcripts

Butterfly's Compacted Sequence Graph



Reconstructed Transcripts

Aligned to Mouse Genome



Butterfly Example 2: Teasing Apart Transcripts of Paralogous Genes

Teasing Apart Transcripts of Paralogous Genes

chr7:148,744,197-148,821,437

NM_007459; Ap2a2 adaptor protein complex AP-2, alpha 2 subunit

chr7:52,150,889-52,189,508

NM_001077264; Ap2a1 adaptor protein complex AP-2, alpha 1 subunit



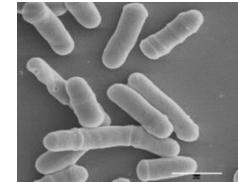
Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly:
ex. Forward != reverse complement
(GGAA != TTCC)

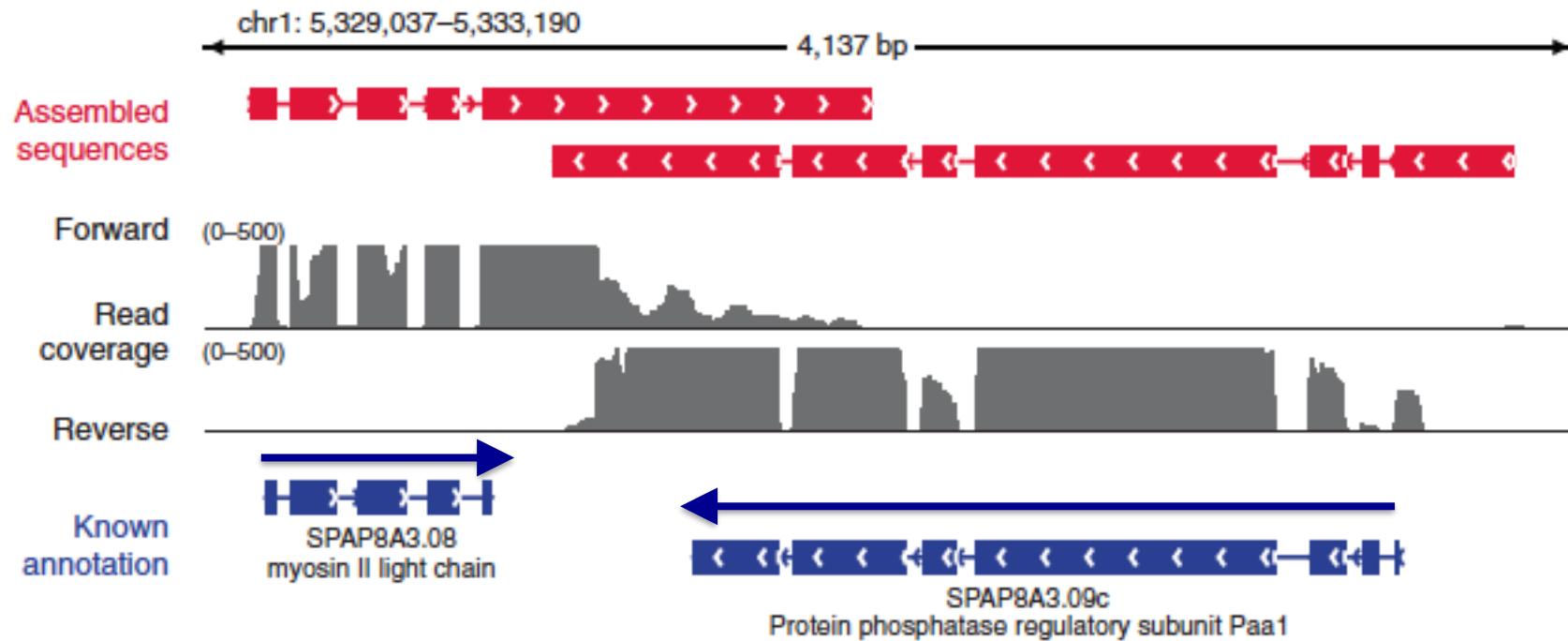
Biologically: separate sense vs. antisense transcription

Illumina TruSeq Stranded mRNA Kit:

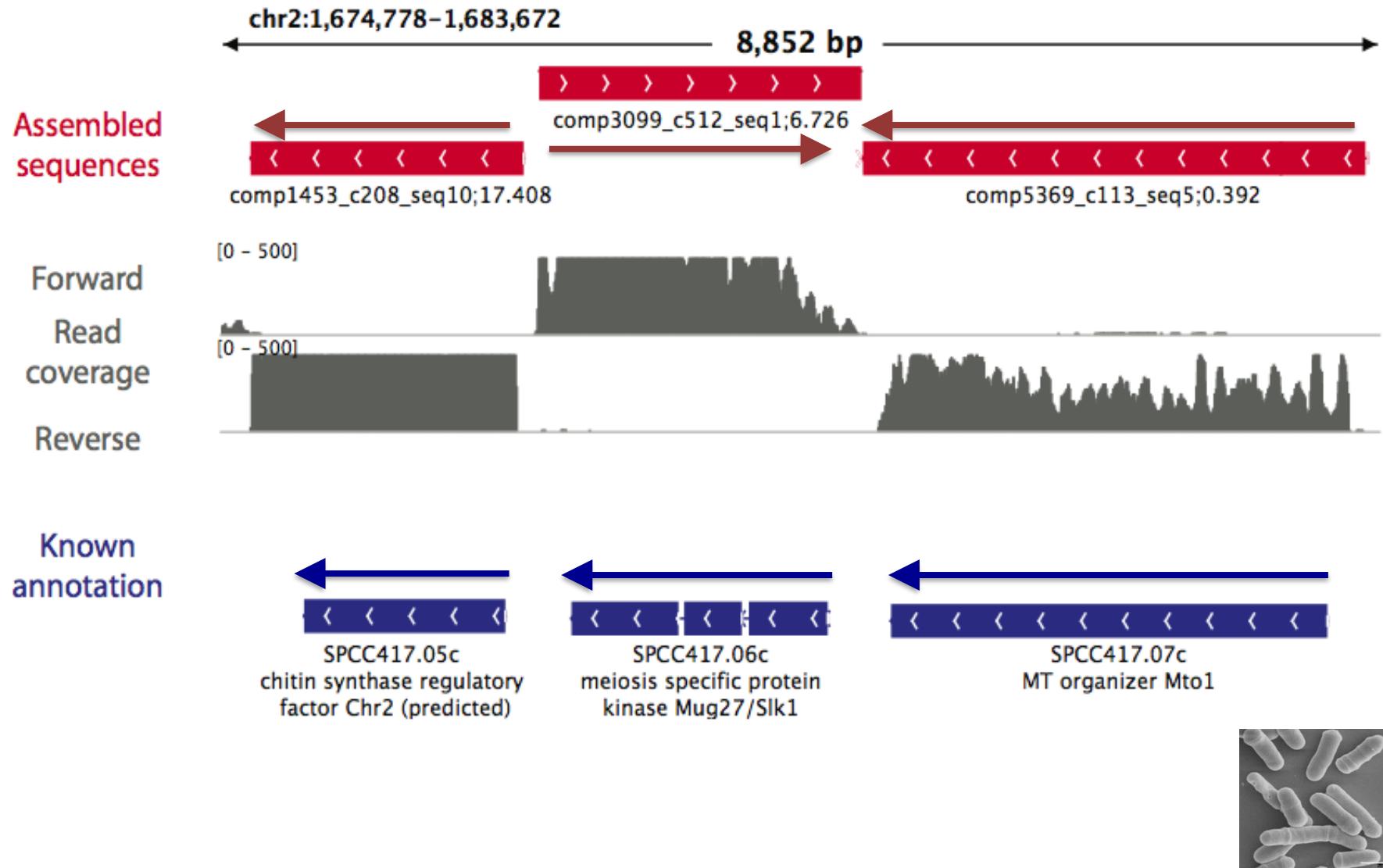
Overlapping UTRs from Opposite Strands



Schizosaccharomyces pombe
(fission yeast)



Antisense-dominated Transcription



Trinity is a Highly Effective and Popular RNA-Seq Assembler

Nature Biotechnology, 2011

Thousands of routine users.

~20k literature citations

Freely Available, Well-supported, Open Source Software

<http://trinityrnaseq.github.io>

Transcriptome Assembly is Just the End of the Beginning...

NATURE PROTOCOLS | PROTOCOL

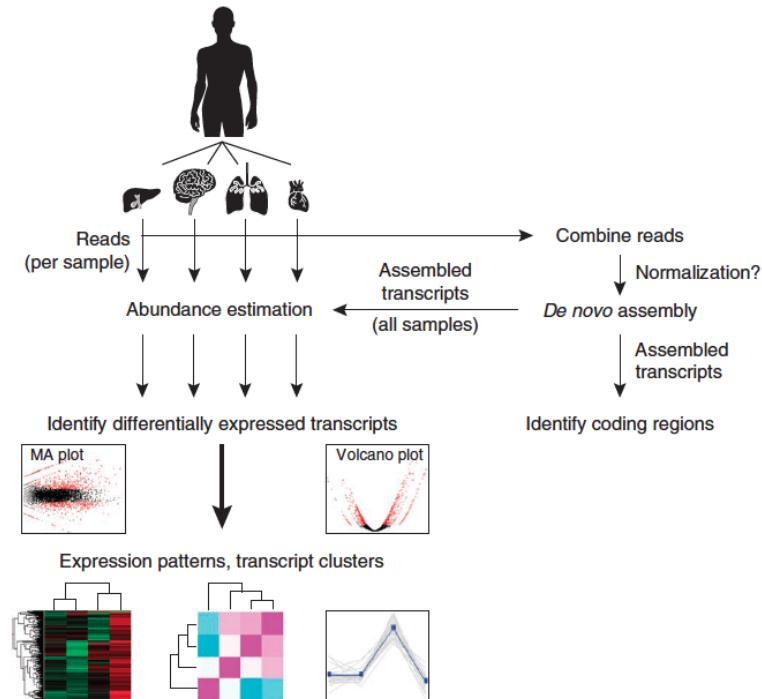
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis

Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan Weeks, Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D LeDuc, Nir Friedman & Aviv Regev

[Affiliations](#) | [Contributions](#) | [Corresponding authors](#)

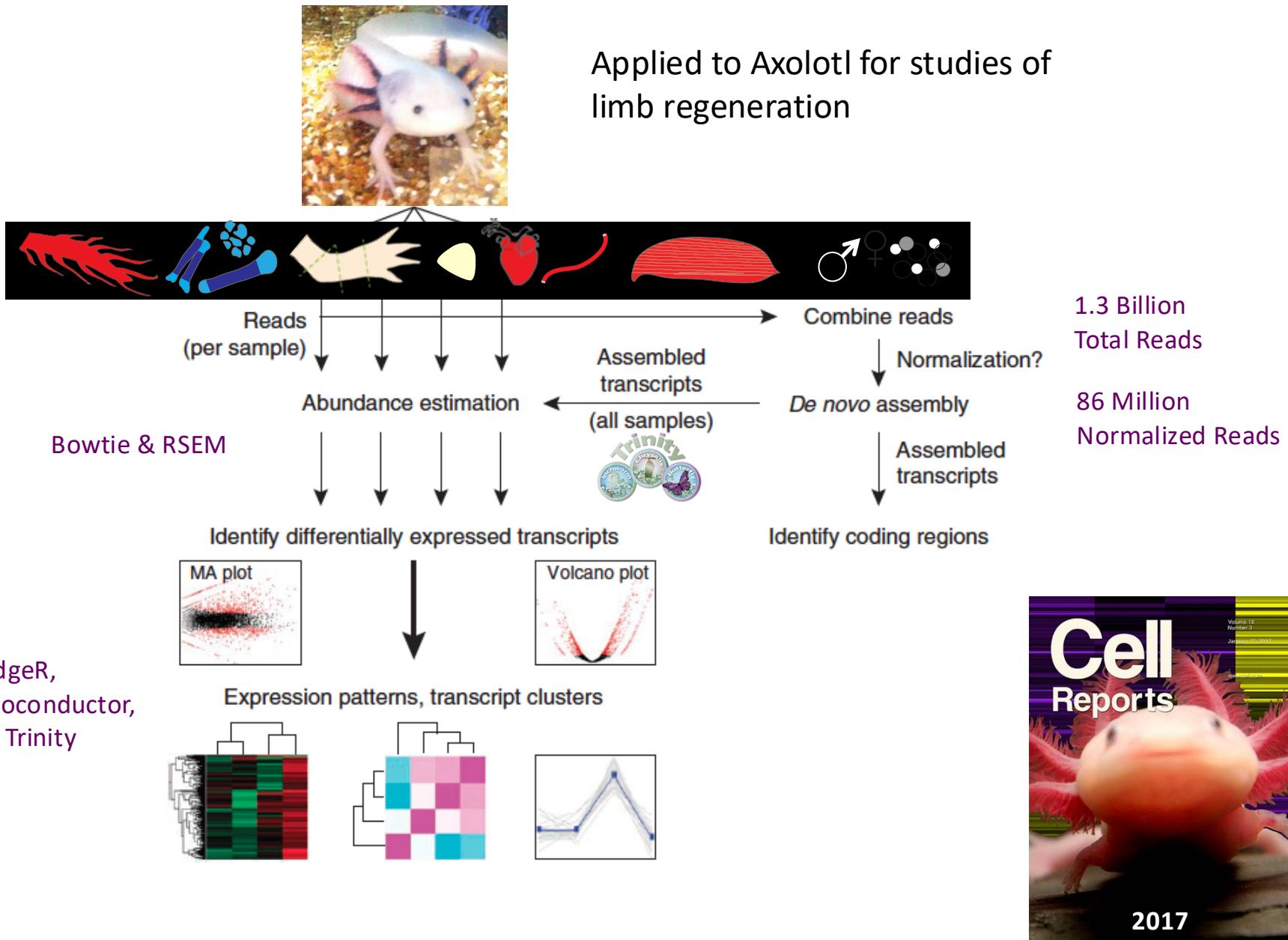
Nature Protocols 8, 1494–1512 (2013) | doi:10.1038/nprot.2013.084

Published online 11 July 2013



~9k Literature Citations

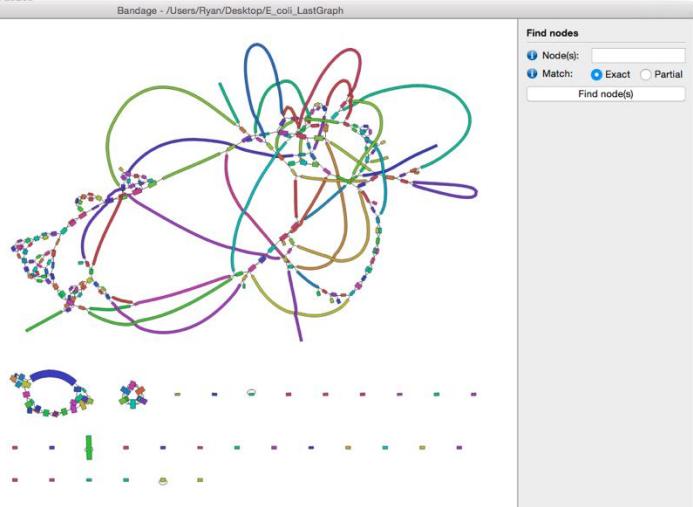
Framework for De novo Transcriptome Assembly and Analysis



Trinity output: A multi-fasta file

Can visualize using Bandage

<https://rrwick.github.io/Bandage/>



IGV

www.broadinstitute.org/igv/

igv Integrative Genomics Viewer ALGML

- Home
- Downloads
- Documents
 - Hosted Genomes
 - FAQ
 - IGV User Guide
 - File Formats
 - Release Notes
 - Credits
- Contact

Search website

search

[Broad Home](#)

[Cancer Program](#)

BROAD
INSTITUTE

© 2012 Broad Institute

Home

Integrative Genomics Viewer

What's New

July 3, 2012. Soybean (*Glycine max*) and Rat (rn5) genomes have been updated.

April 20, 2012. IGV 2.1 has been released. See the [release notes](#) for more details.

April 19, 2012. See our new [IGV paper](#) in *Briefings in Bioinformatics*.

Overview

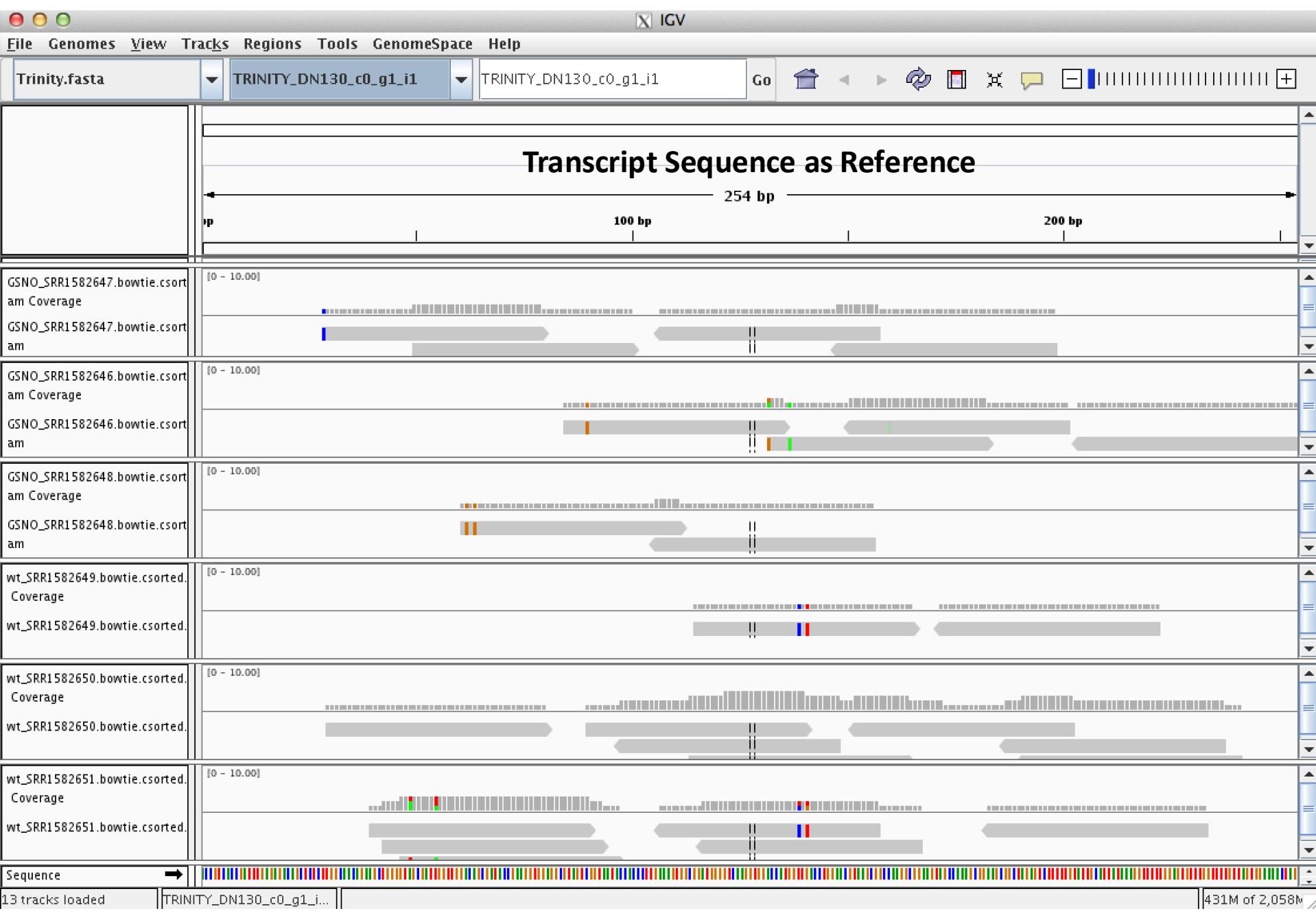
Citing IGV

To cite your use of IGV in your publication:

James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. [Integrative Genomics Viewer](#). *Nature Biotechnology* 29, 24–26 (2011), or

Helga Thorvaldsdóttir, James T. Robinson, Jill P. Mesirov. [Integrative Genomics Viewer \(IGV\): high-performance genomics data visualization and exploration](#).

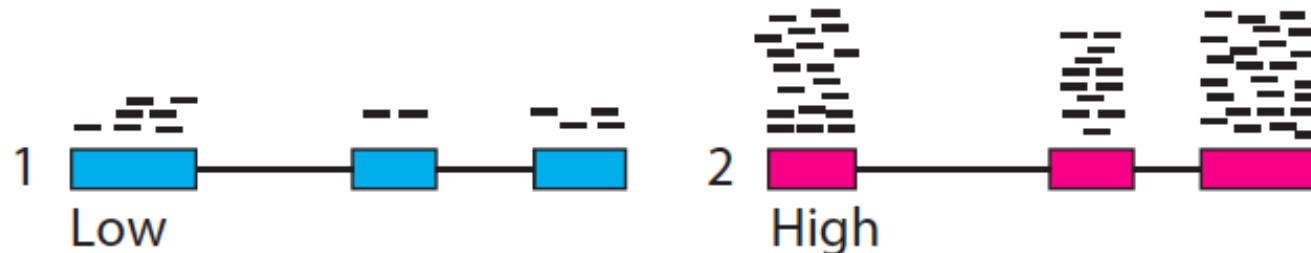
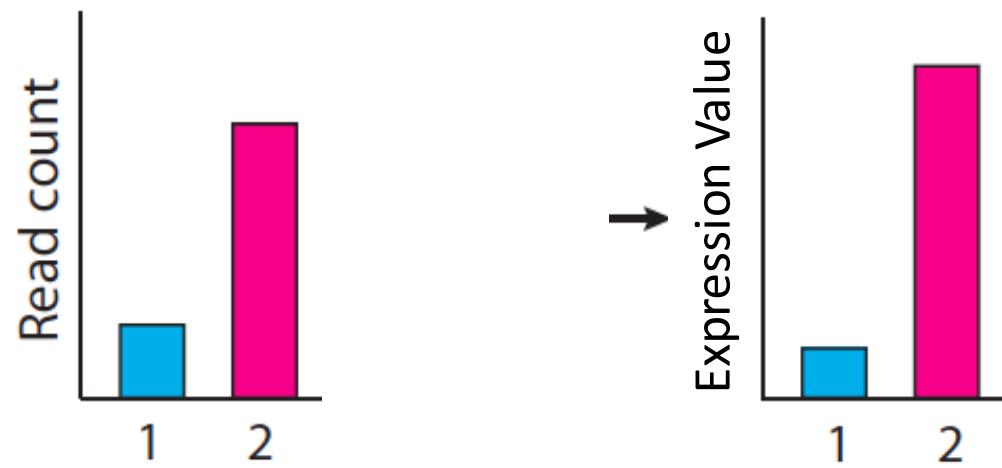
Can Examine Transcript Read Support Using IGV



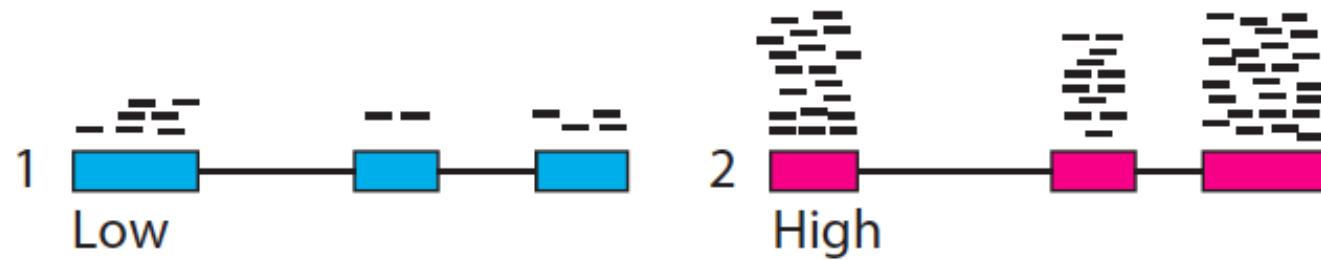
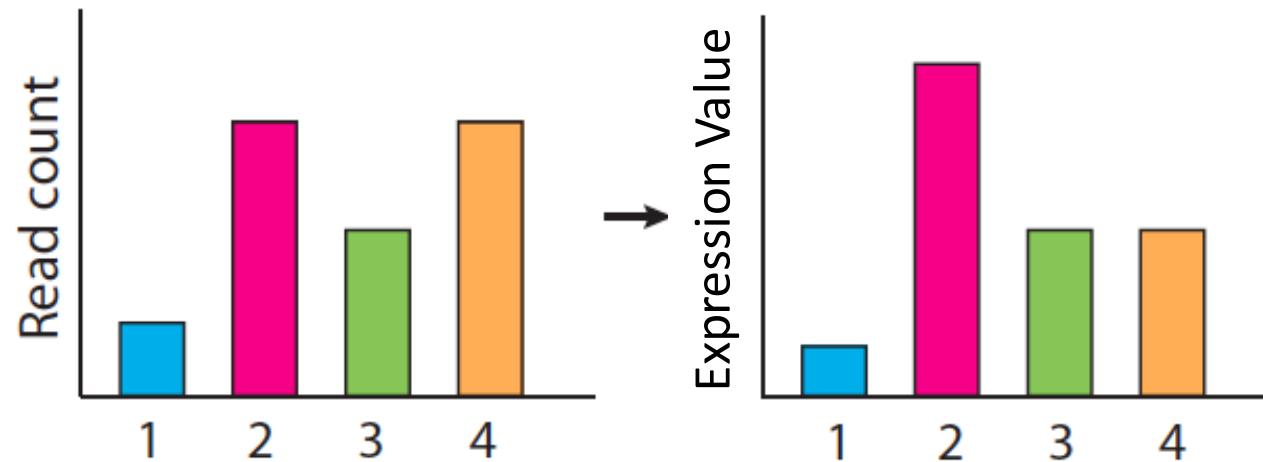
Part 4. Expression Quantification



Calculating expression of genes and transcripts



Calculating expression of genes and transcripts



Normalized Expression Values

- Transcript-mapped read counts are normalized for both length of the transcript and total depth of sequencing.
- Reported as: Number of RNA-Seq **F**ragments **P**er **K**ilobase of transcript per total **M**illion fragments mapped

FPKM

RPKM (reads per kb per M) used with Single-end RNA-Seq reads
FPKM used with Paired-end RNA-Seq reads.

Transcripts per Million (TPM)

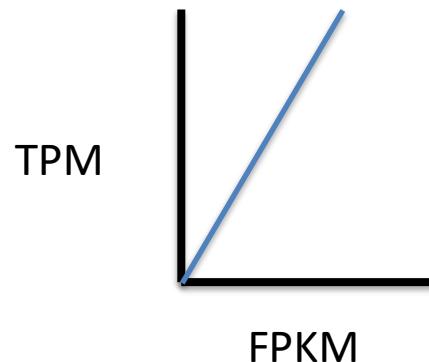
$$TPM_i = \frac{FPKM_i}{\sum_j FPKM_j} * 1e6$$

Preferred metric for measuring expression

- Better reflects transcript concentration in the sample.
- Nicely sums to 1 million

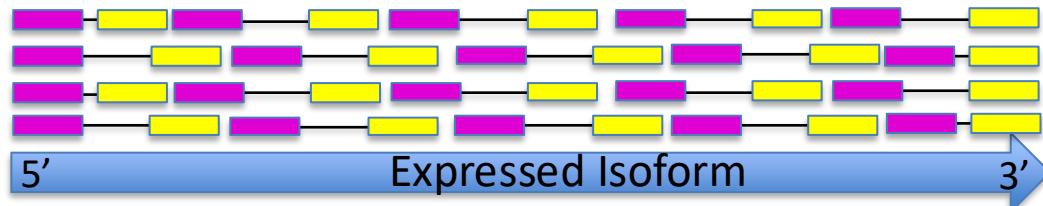
Linear relationship between TPM and FPKM values.

Both are valid metrics, but best to be consistent.



Transcript length normalization not required for 3' QuantSeq

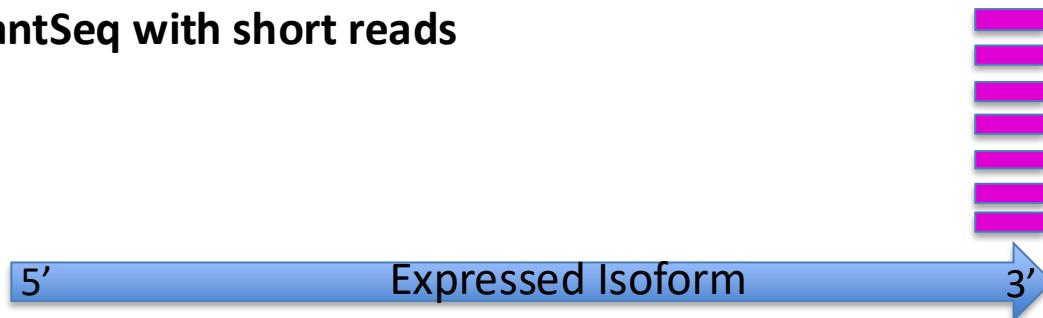
Standard full-length RNA-seq with short reads



Length Normalization:

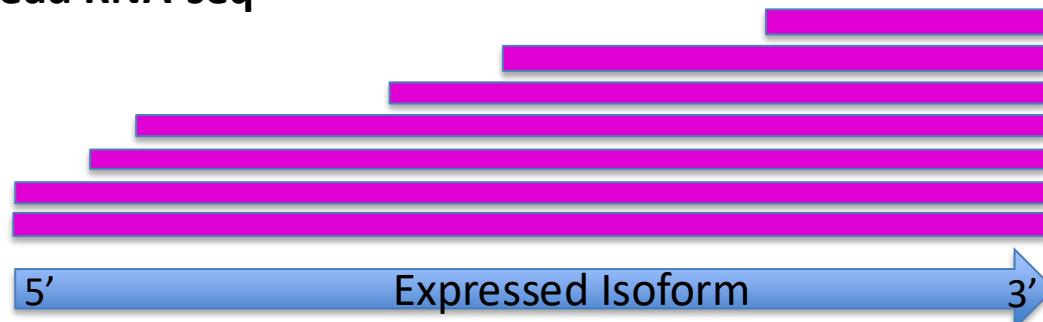
✓ Yes (TPM / FPKM)

3' QuantSeq with short reads



✗ No (CPM / Counts)

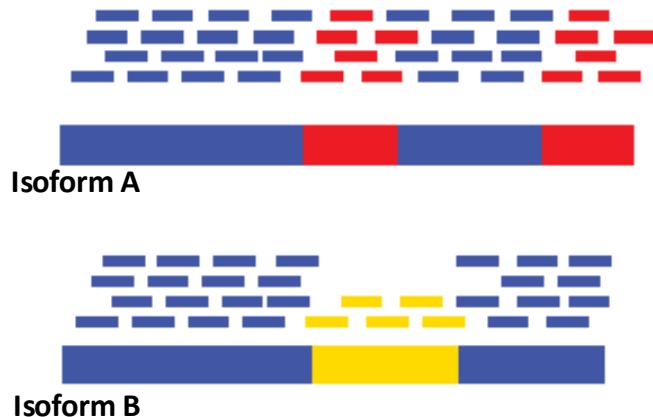
Long read RNA-seq



✗ No (CPM / Counts)

CPM="Counts per Million"

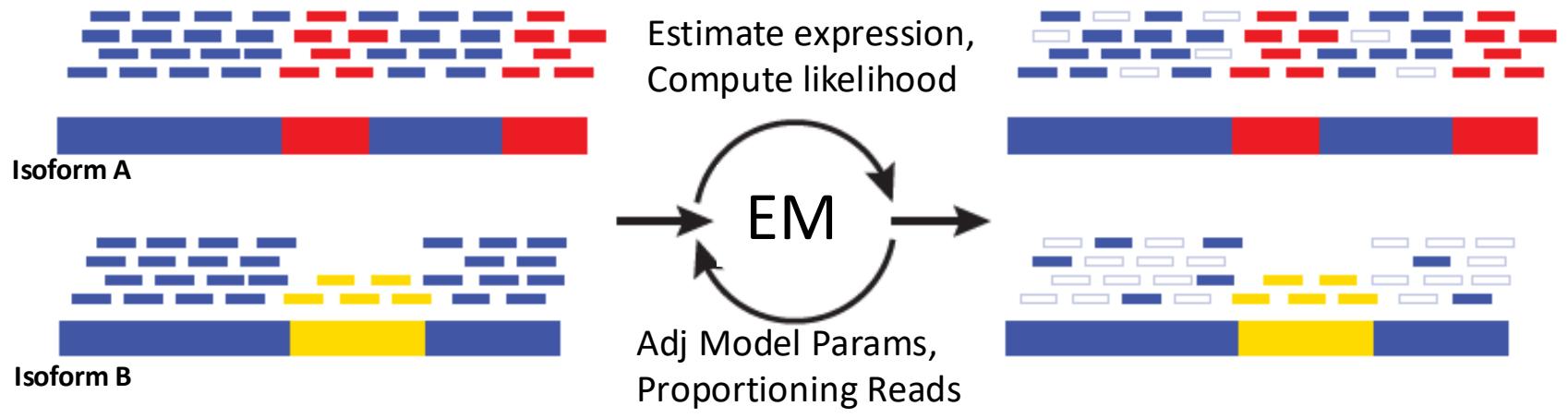
Multiply-mapped Reads Confound Abundance Estimation



Blue = multiply-mapped reads

Red, Yellow = uniquely-mapped reads

Multiply-mapped Reads Confound Abundance Estimation

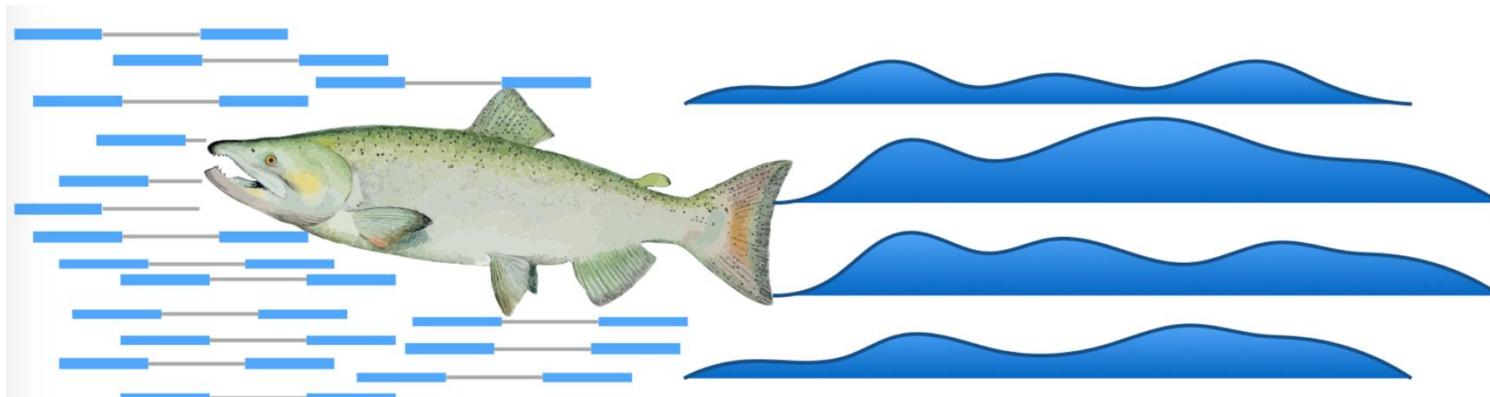


Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Use Expectation Maximization (EM) to find the most likely assignment of reads to transcripts.

Performed by:

- RSEM (genome-free)
- Kallisto, Salmon (alignment-free)



Salmon —*Don't count . . . quantify!*

Uses a suffix array
instead of the
de Bruijn graph

 nature|methods

Altmetric: 210 Citations: 42 [More detail >>](#)

Brief Communication

Salmon provides fast and bias-aware quantification of transcript expression

Rob Patro , Geet Duggal, Michael I Love, Rafael A Irizarry & Carl Kingsford

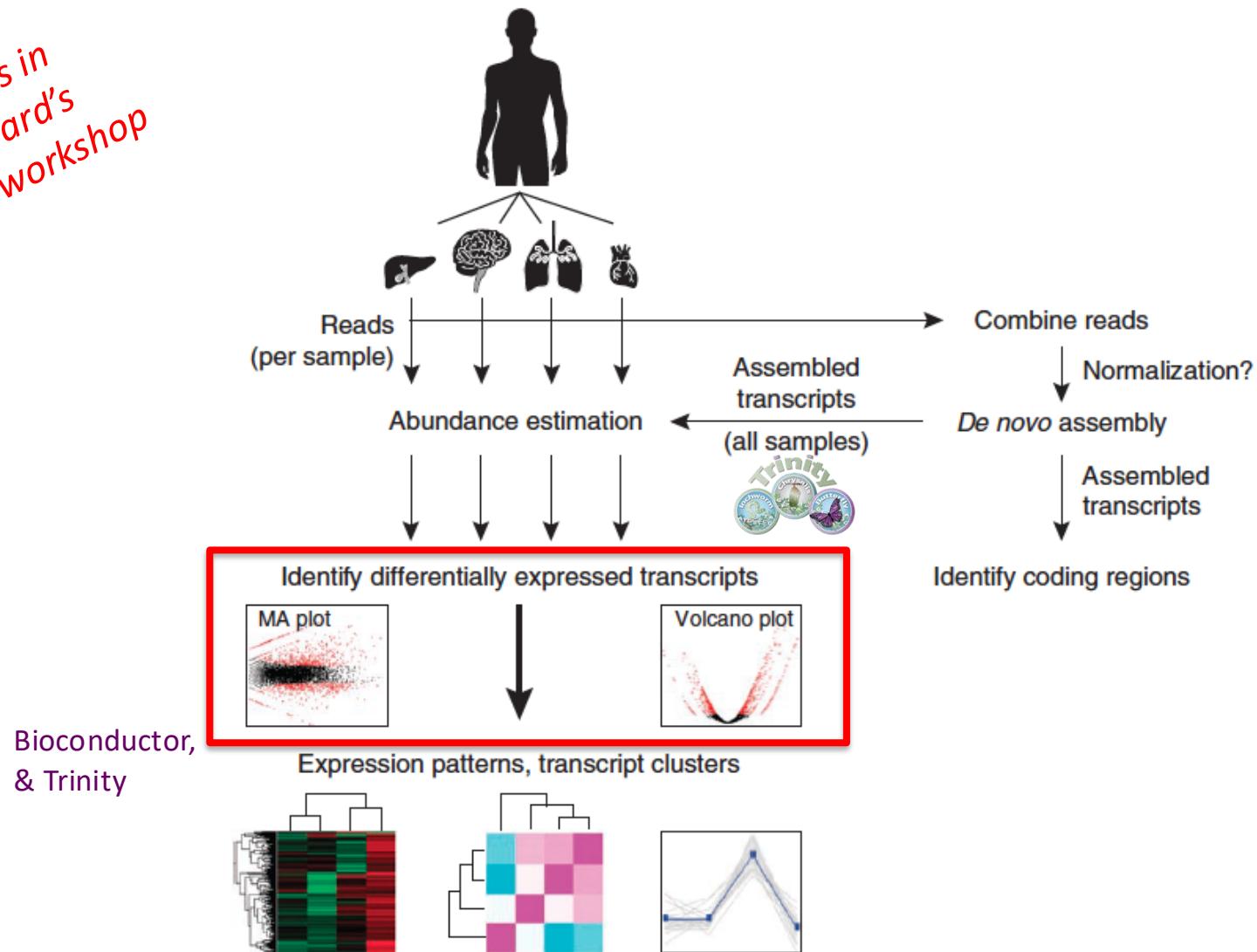
Nature Methods **14**, 417–419 (2017)
doi:10.1038/nmeth.4197 [Download Citation](#)

Received: 29 August 2016
Accepted: 22 January 2017
Published online: 06 March 2017

<https://combine-lab.github.io/salmon/>

Part 5. Differential Expression

More specifics in
Rachel Steward's
afternoon workshop



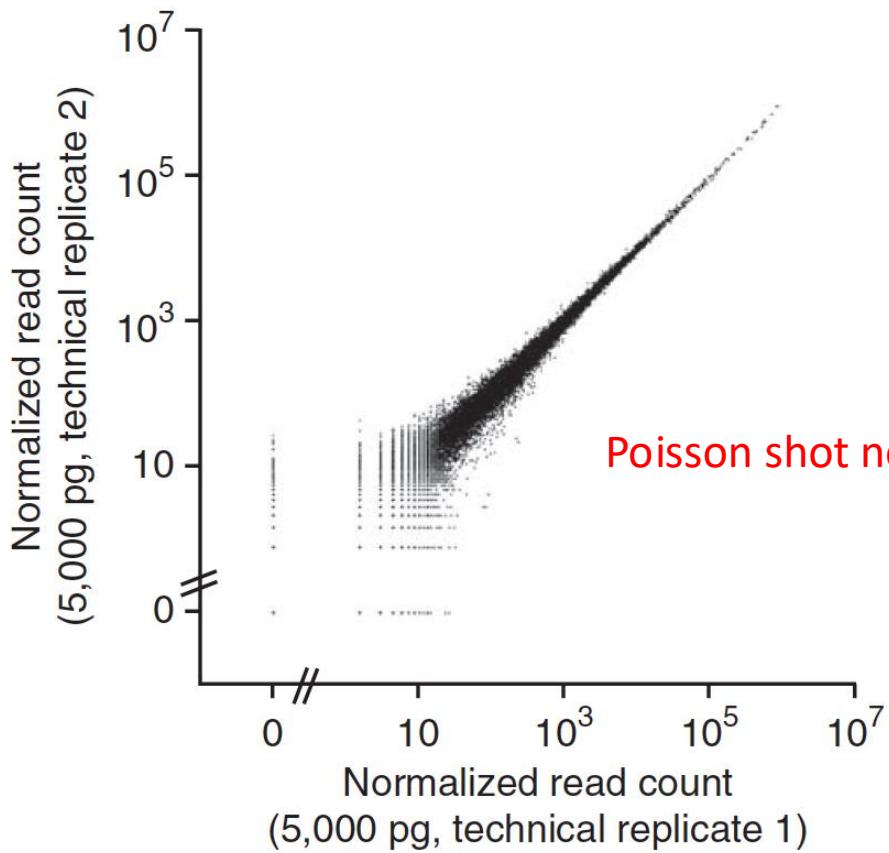
Differential Expression Analysis Involves

- Counting reads mapped to features
- Statistical significance testing

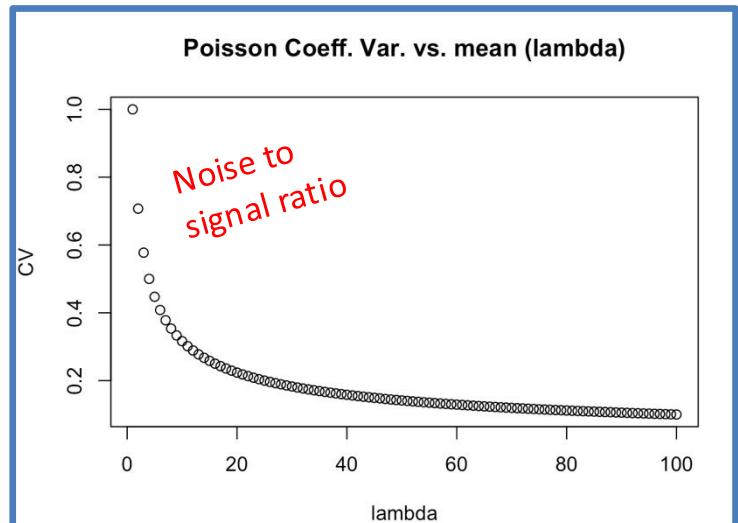
Beware of small counts leading to notable fold changes

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	No
Gene B	100	200	2-fold	Yes

Variation Observed Between Technical Replicates



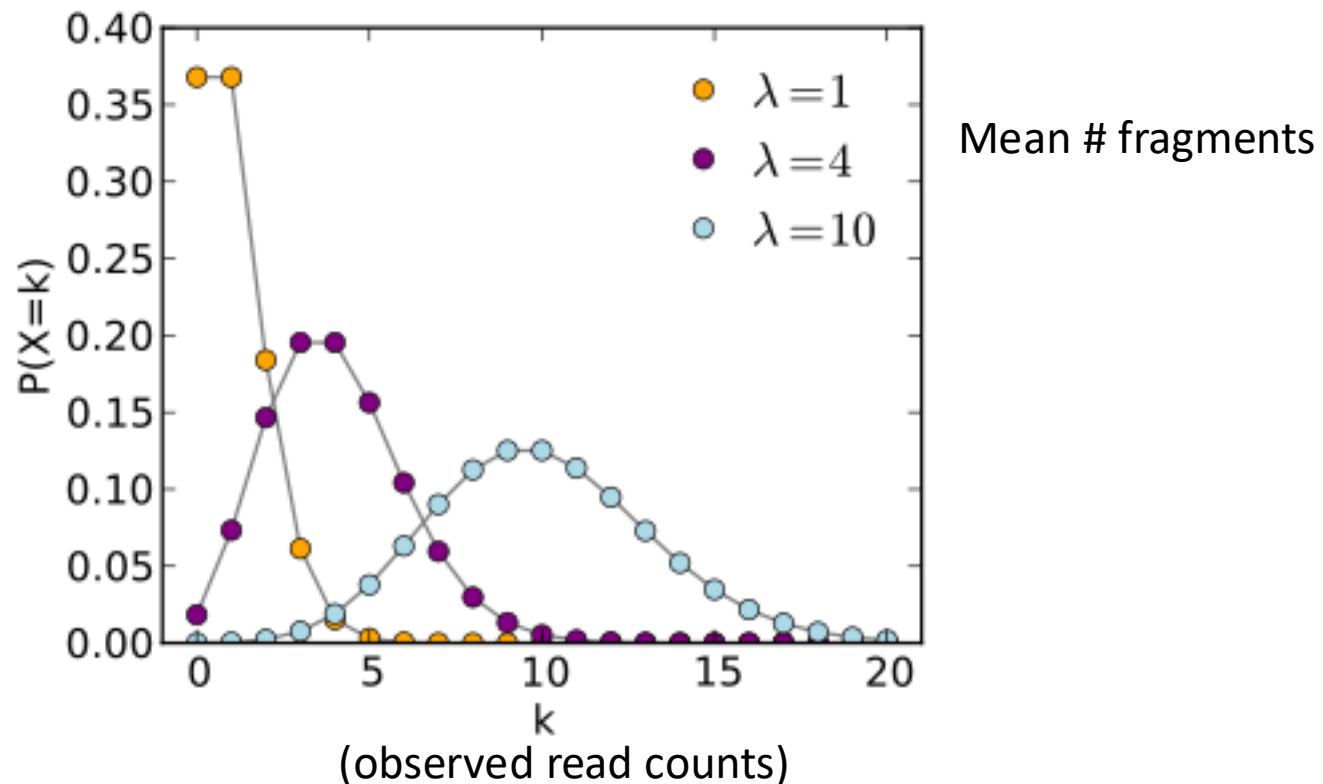
Variation observed is well described by models of random sampling (Poisson Distribution)



* plot from Brennecke, et al. Nature Methods, 2013

Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

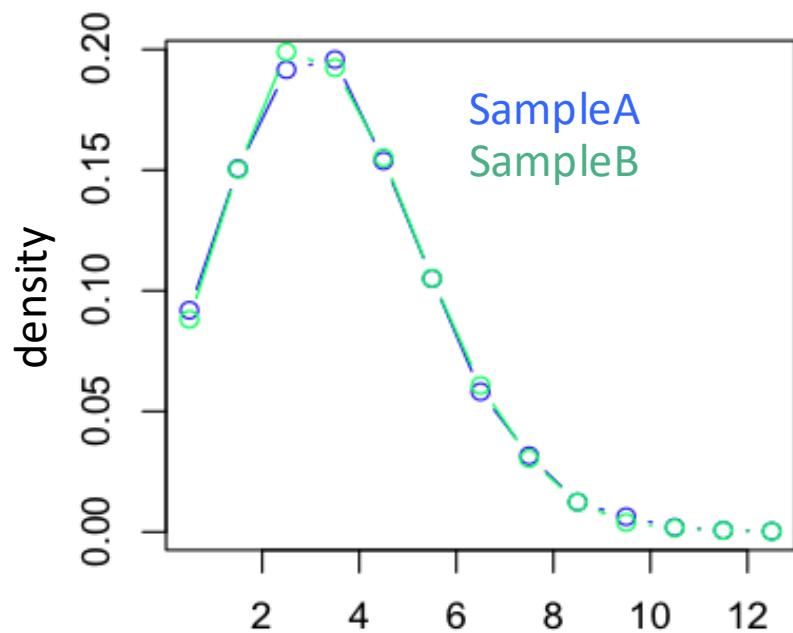
Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution



Example: One gene*not* differentially expressed

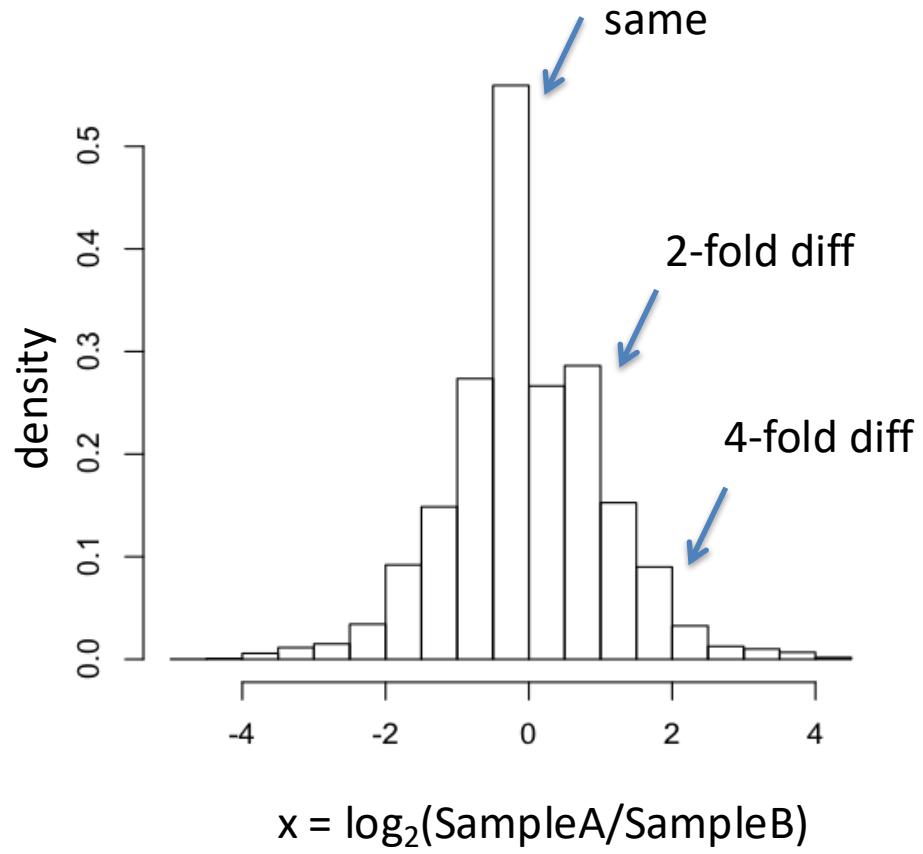
Example: SampleA(gene) = SampleB(gene) = 4 reads

Distribution of observed counts for single gene
(under Poisson model)



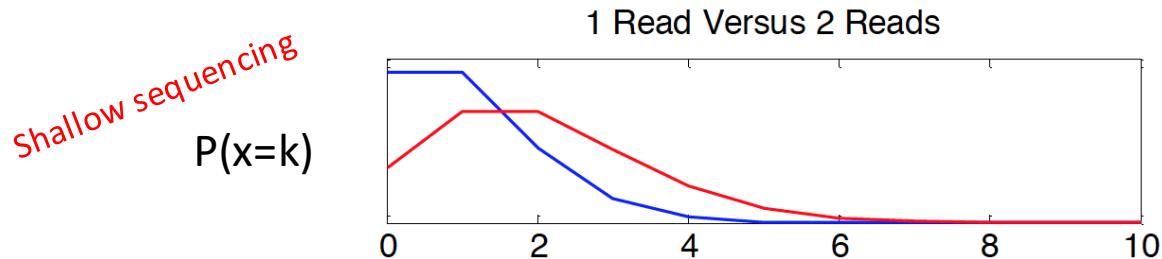
(k) number of reads observed
for a single gene

Dist. of $\log_2(\text{fold change})$ values



Sequencing Depth Matters

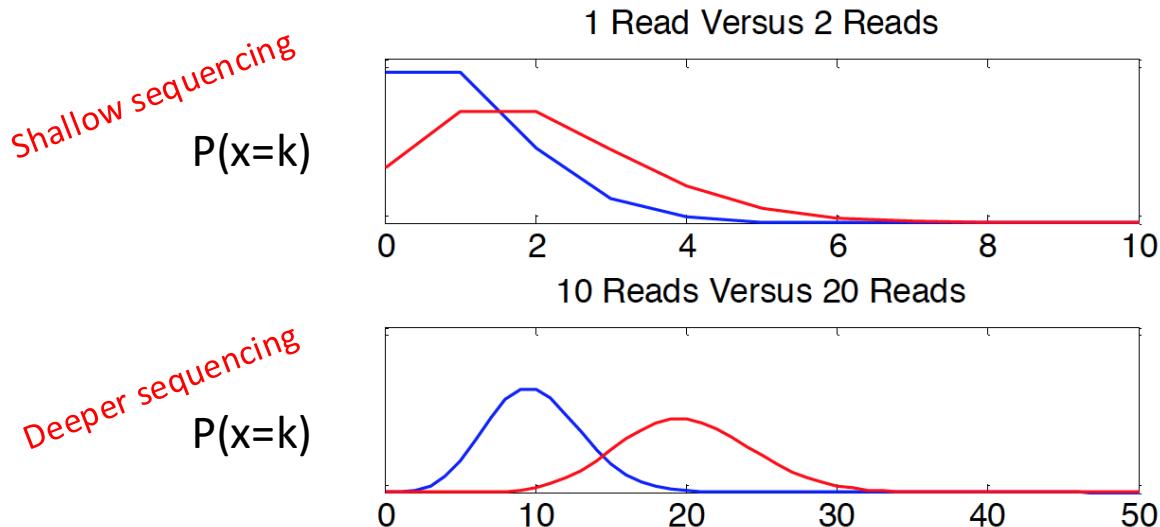
Poisson distributions for counts based on **2-fold** expression differences



No confidence in 2-fold difference. Likely observed by chance.

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences



No confidence in 2-fold difference. Likely observed by chance.

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences



No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per sample	Sample A Number of reads	Sample B Number of reads	P-value (Fishers Exact Test)
100,000	1	2	1
1,000,000	10	20	0.099
10,000,000	100	200	8.0e-09

Technical vs. Biological Replicates

RNA-Seq Technical replicates aren't essential

(Technical variation is well-modeled by the Poisson distribution)

“We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice **to sequence each mRNA sample only once**” *Marioni et al., Genome Research, 2008*

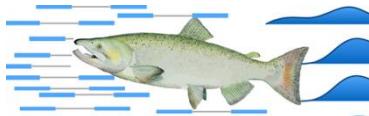
However, biological replicates *ARE* essential

`total_variance = technical_variance + biological_variance`

(Total variance well-modeled by negative binomial distribution)

“**... at least six biological replicates should be used**, rising to at least 12 when it is important to identify SDE genes for all fold changes.” *Schurch et al., RNA, 2016*

DE analysis requires a counts matrix



Transcript_ID	Sample Type A, 3 Bio replicates			Sample Type B, 3 Bio replicates		
TR24 c0_g1_i1	90.00	67.00	85.00	36.00	35.00	34.00
TR2779 c0_g1_i1	186.00	137.00	217.00	147.00	186.00	197.00
TR127 c1_g1_i1	9.00	23.00	16.00	2.00	0.00	1.00
TR2107 c1_g1_i1	59.00	65.00	47.00	6.00	6.00	7.00
TR2011 c5_g1_i1	11.00	4.00	4.00	8.00	5.00	7.00
TR4163 c0_g1_i1	368.00	422.00	425.00	172.00	216.00	210.00
TR5055 c0_g2_i1	36.00	17.00	27.00	4.00	7.00	3.00
TR1449 c0_g1_i1	196.00	230.00	207.00	66.00	113.00	91.00
TR1982 c2_g1_i1	7.00	7.00	6.00	4.00	3.00	8.00
TR1859 c3_g1_i1	0.00	0.00	1.00	0.00	0.00	0.00
TR1492 c0_g1_i2	1895.00	1906.00	1921.00	1104.00	1263.00	1319.00
TR1122 c0_g1_i1	2.00	3.00	0.00	3.00	0.00	0.00
TR2278 c0_g1_i1	497.00	610.00	598.00	333.00	406.00	413.00
TR4084 c0_g1_i1	95.00	148.00	86.00	77.00	111.00	127.00
TR4761 c0_g1_i1	2089.00	1746.00	1875.00	155.00	174.00	165.00
TR3638 c0_g1_i1	647.00	676.00	712.00	117.00	184.00	174.00
TR2090 c0_g1_i1	0.00	0.00	0.00	22.00	0.00	0.02
TR3854 c0_g1_i1	1878.00	1734.00	1864.00	1775.00	2173.00	2151.00
TR131 c0_g1_i1	32.00	28.00	31.00	1001.00	1233.00	1208.00
TR5075 c0_g1_i1	13.00	22.00	21.00	6.00	8.00	10.00
TR2182 c3_g2_i6	1.44	2.70	3.84	3.35	0.00	0.00
TR3788 c0_g1_i1	17.00	30.00	22.00	91.00	132.00	125.00
TR4859 c0_g1_i1	6.00	12.00	8.00	4.00	1.00	3.00
TR2487 c0_g1_i1	386.00	383.00	424.00	689.00	866.00	806.00
TR2122 c0_g2_i2	145.00	135.00	136.00	155.00	157.00	201.00
TR4277 c0_g1_i1	4466.00	4701.00	4284.00	118.00	134.00	164.00
TR4669 c0_g2_i1	0.00	0.00	0.00	209.00	0.00	217.50
TR3091 c0_g1_i1	22.00	17.00	19.00	250.00	308.00	284.00

Typical output from DE analysis

Transcript_id	logFC	logCPM	PValue	FDR
TRINITY_DN876_c0_g1_i1	-7.15049572793027	10.6197708379285	0	0
TRINITY_DN6470_c0_g1_i1	-7.26777912190146	7.03987604865422	1.687485656951e-287	6.46813252309319e-284
TRINITY_DN5186_c0_g1_i1	-7.85623682454322	9.18570464327063	1.17049180235068e-278	2.99099671894011e-275
TRINITY_DN768_c0_g1_i1	7.72884741150304	9.7514619195169	4.32504881419265e-272	8.28895605240022e-269
TRINITY_DN70_c0_g1_i1	-12.7646078189688	7.86482982471445	3.92853491279431e-253	6.02322972829624e-250
TRINITY_DN1587_c0_g1_i1	-5.89392061881667	9.07366563894607	6.32919557933429e-243	8.08660221852944e-240
TRINITY_DN3236_c0_g1_i1	-7.27029815068473	8.02209568234202	3.64955175271959e-235	3.99678053376405e-232
TRINITY_DN4631_c0_g1_i1	-7.45310693639574	6.91664918183241	4.30540921272851e-229	4.1256583780971e-226
TRINITY_DN5082_c0_g5_i1	-5.33154406167545	10.6977538760467	2.74243356676259e-225	2.33594396920022e-222
TRINITY_DN1789_c0_g3_i1	10.2032564835076	7.32607652700285	1.44273728647186e-213	1.10600240380933e-210
TRINITY_DN4204_c0_g1_i1	4.81030233739325	9.88844409410644	9.27180216086162e-205	6.46160321501501e-202
TRINITY_DN799_c0_g1_i1	-4.22044475626154	6.9937398638711	1.24746518421083e-197	7.96922341846683e-195
TRINITY_DN196_c0_g2_i1	4.60597918494257	9.86878463857276	1.9819997623131e-192	1.16877001368402e-189
TRINITY_DN5041_c0_g1_i1	-4.27126549355785	9.70894399883	1.8930437900069e-185	1.03657669244235e-182
TRINITY_DN1619_c0_g1_i1	-4.47156415953777	9.22535948721718	1.76766063029526e-181	9.03392426122899e-179
TRINITY_DN899_c0_g1_i1	-4.90914328409143	7.93768691394594	1.11054513767547e-180	5.32089939088761e-178
TRINITY_DN324_c0_g2_i1	4.87160837667488	6.84850312231775	2.20092562166991e-179	9.92487989160089e-177
TRINITY_DN3241_c0_g1_i1	-4.77760618069256	7.94111259715689	1.60585457735621e-173	6.83915621667372e-171
TRINITY_DN4379_c0_g1_i1	3.85133572453294	7.23712813663389	3.48140532848425e-164	1.4046554341137e-161
TRINITY_DN1919_c0_g1_i1	4.05998814332136	6.95937301668582	1.8588621194715e-161	7.12501850393425e-159
TRINITY_DN2504_c0_g1_i1	-6.92417817059644	6.20370039359785	2.42022459856956e-160	8.83497227268296e-158
...				

Up vs. Down regulated

Avg. expression level

Significance

Tools for DE analysis with RNA-Seq

edgeR	ROTS
ShrinkSeq	TSPM
DESeq	DESeq2
baySeq	EBSeq
Vsf	NBPSeq
Limma/Voom	SAMseq
<i>mmdiff</i>	NoiSeq
<i>cuffdiff</i>	<i>Sleuth</i>

*(italicized not in R/Bioconductor
but stand-alone)*

See: <http://www.biomedcentral.com/1471-2105/14/91>

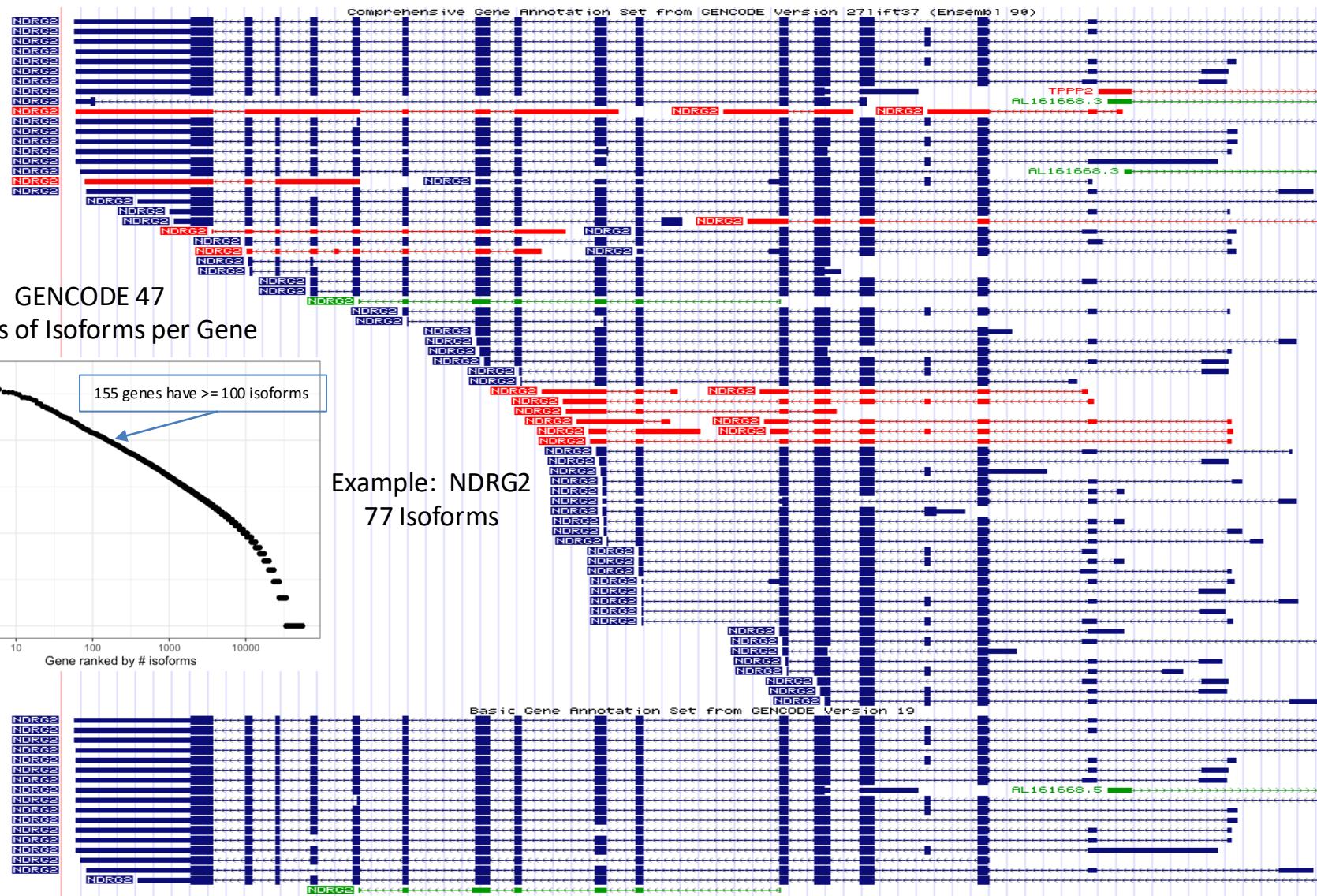
A comparison of methods for differential expression analysis of RNA-seq data
Soneson & Delorenzi, 2013

Part 6. Latest advancements in long read isoform sequencing

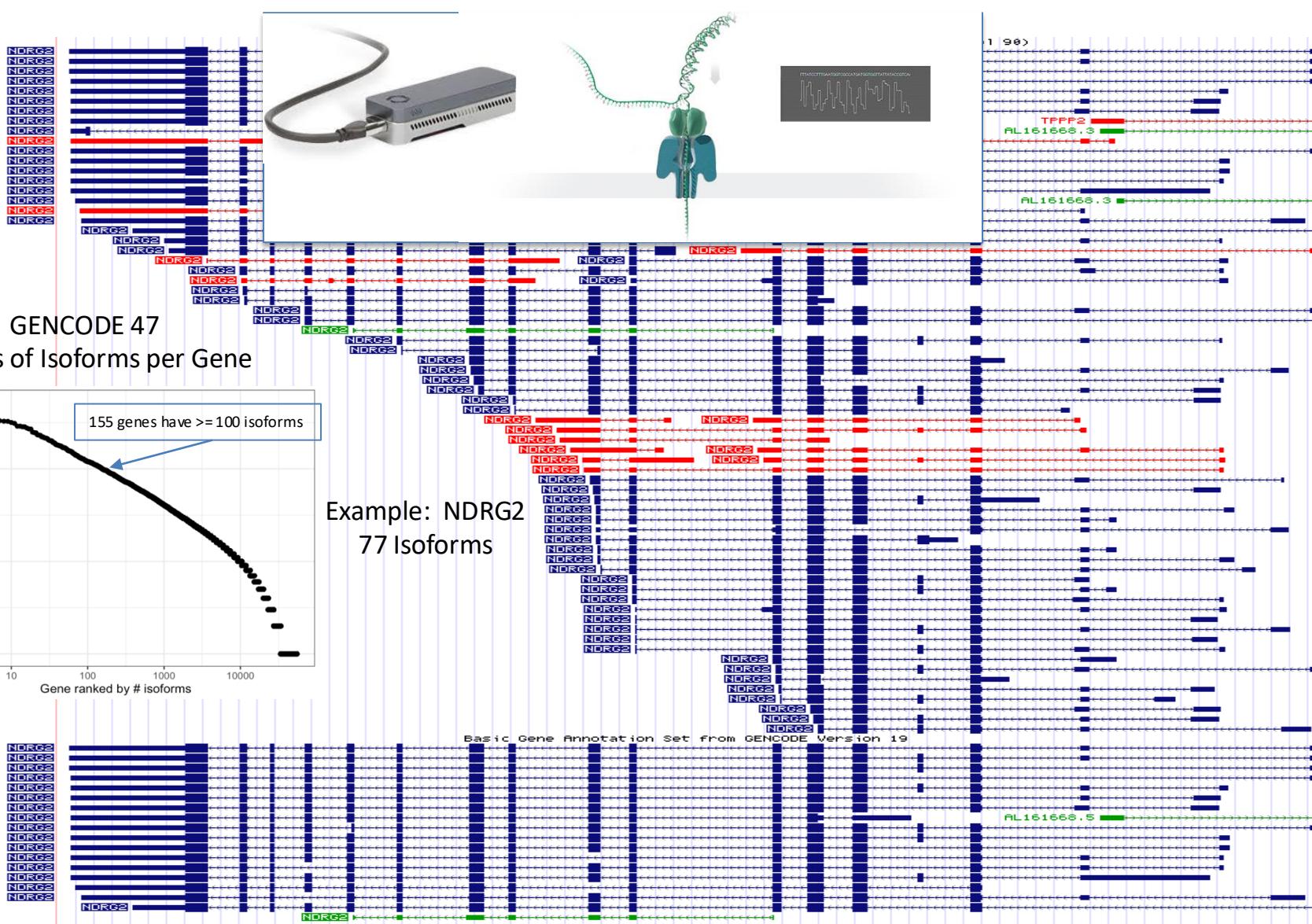
Some transcripts can be challenging to reconstruct from short reads

- Complex alternative splicing (many isoforms)
- Very long RNAs (ex. Titin – up to 36 kb)
- Transcripts containing repetitive sequences

Long Isoform Reads are Essential for Resolving Transcriptome Complexity



Long Isoform Reads are Essential for Resolving Transcriptome Complexity



Long Read Isoform Sequencing via PacBio MAS-Iso-Seq (Kinnex)

Editorial | Published: 12 January 2023

Method of the Year 2022: long-read sequencing

The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing

Long read						
PacBio SMRT sequencing	ONT MinION	PacBio Sequel	ONT GridION	ONT PromethION	PacBio Sequel II	PacBio Revio
2011	2015	2015	2017	2018	2021	2023
Throughput : Error rate:	75k 10%	1-10 million 5-10%	500k 10%	10-30 million 5-10%	30-150 million 5-10%	4M <1%
						8M <1%

Info on error rates for long reads – impressive!!

<https://nanoporetech.com/accuracy>

<https://www.pacb.com/technology/hifi-sequencing/>

99% 99.9%

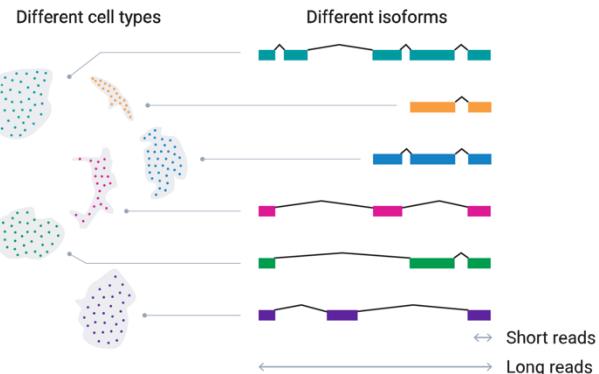
Q20 Q30

Inflection point for LR transcriptomics

Aziz Al'Khafaji

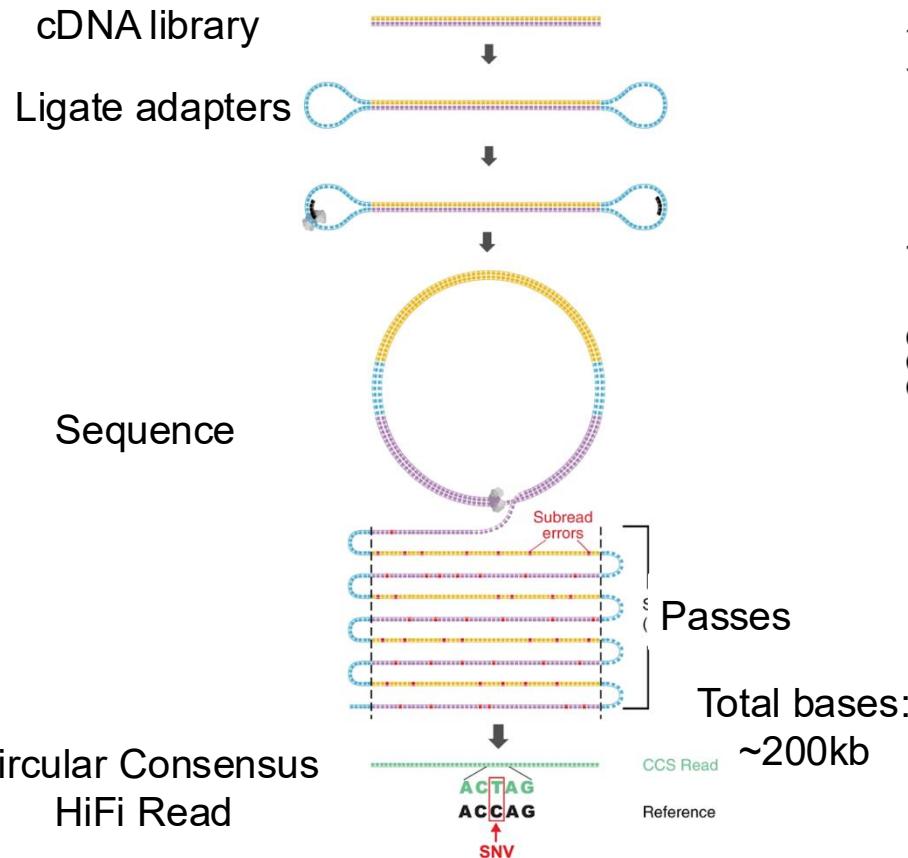
MAS-seq
→
40-120 million
(commercially
Kinnex)
cDNA reads

Long reads for Single Cell Transcriptomes!!

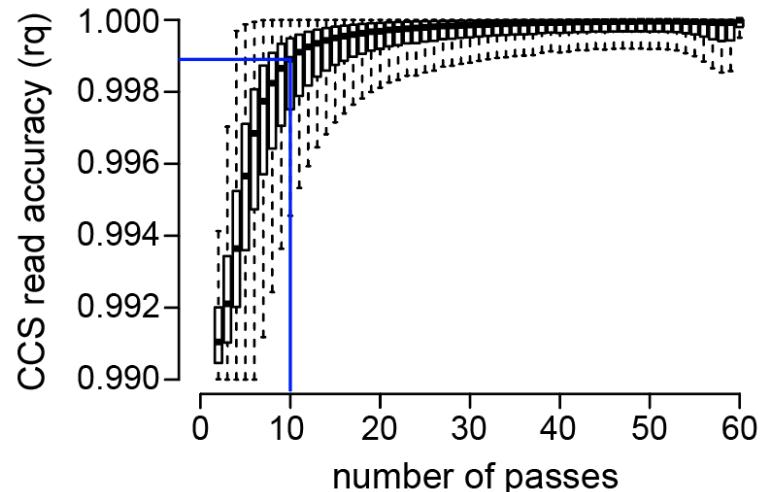


Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing



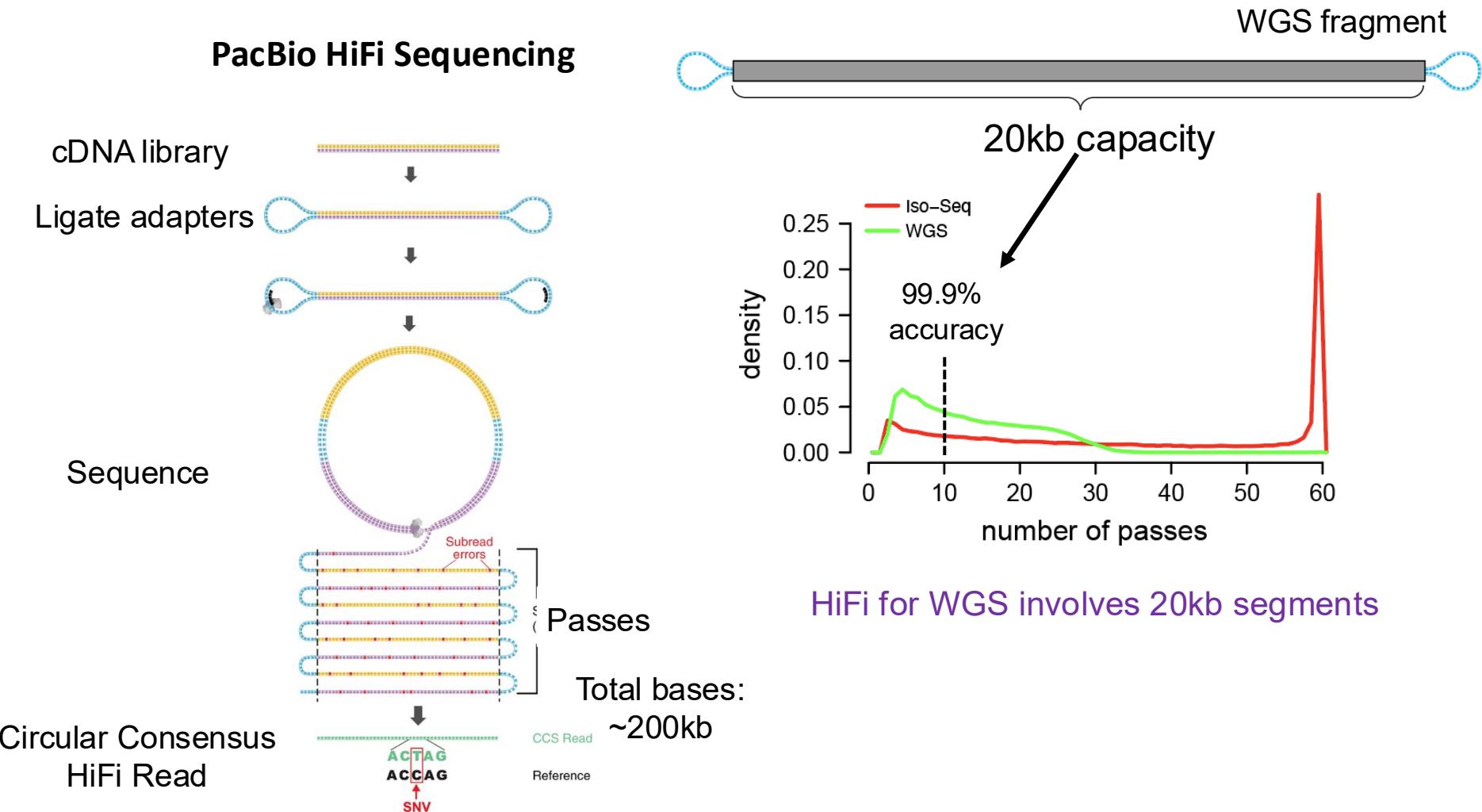
CCS read accuracy $\sim \# \text{ passes}$



Base calling accuracy increases with the number of consensus reads.
~Q30 (99.9%) @ 10 passes.

200kb total = 20kb / pass

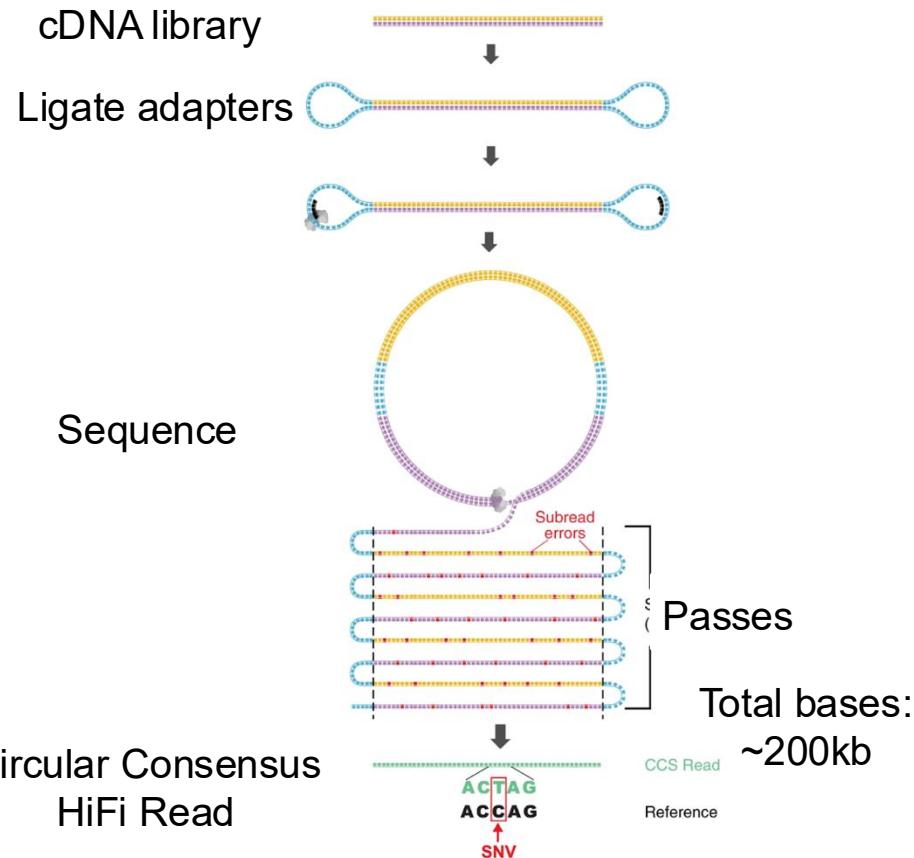
Standard isoform sequencing is inefficient on the PacBio platform



HiFi for WGS involves 20kb segments

Standard isoform sequencing is inefficient on the PacBio platform

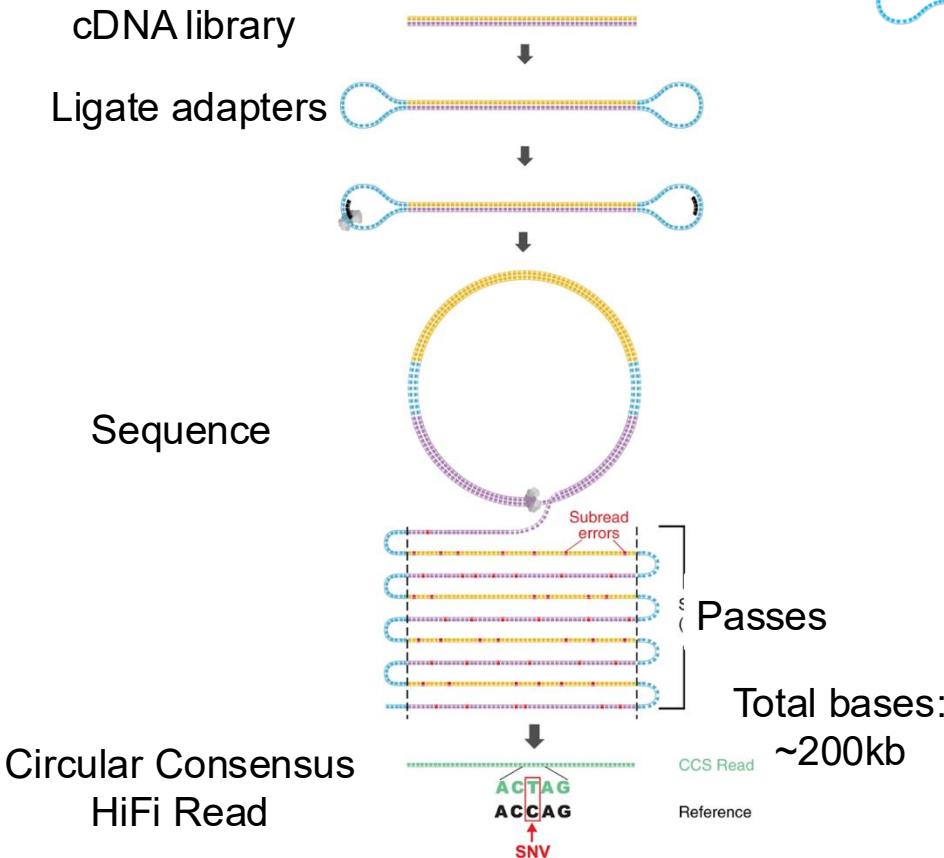
PacBio HiFi Sequencing



Most transcripts are <5kb and get >60 passes. Wasted sequencing potential!

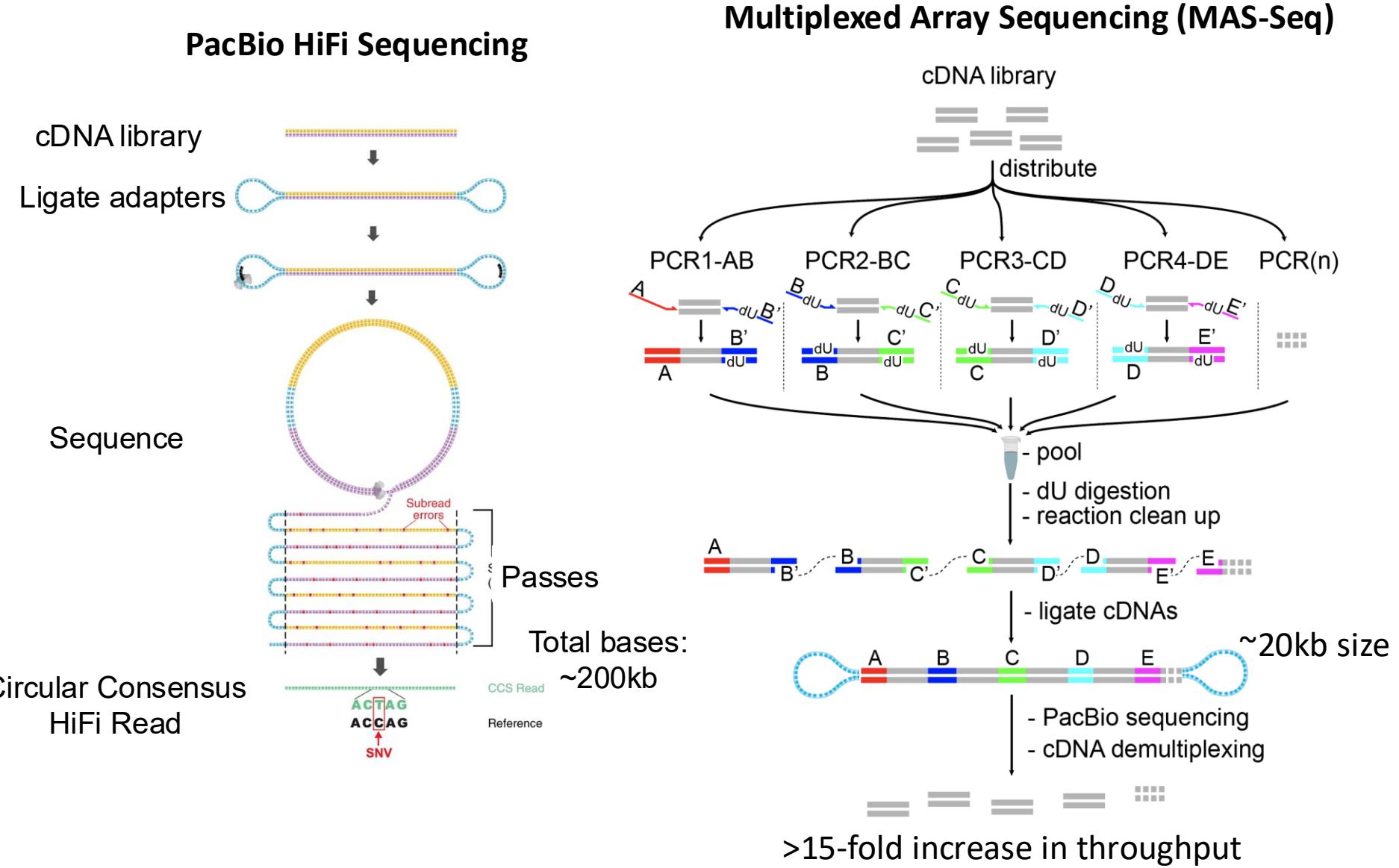
Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing



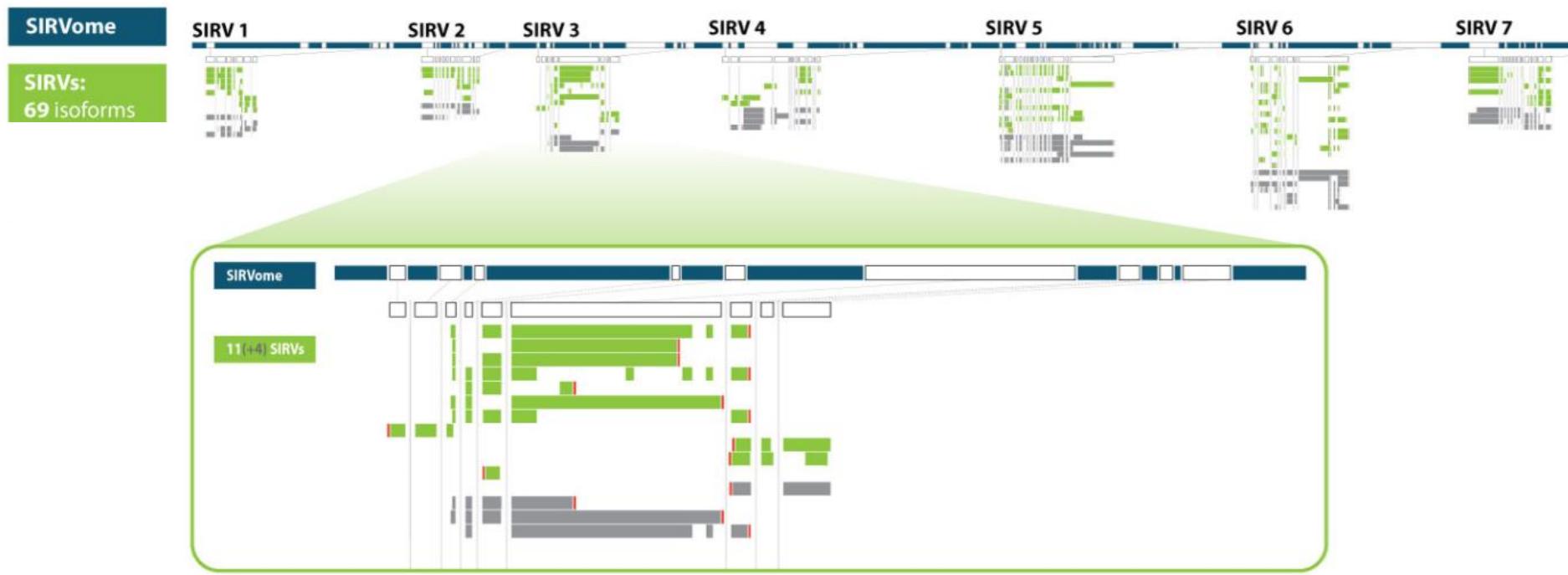
Of the 20kb segment, RNAs only use $\sim 2\text{kb}$

Standard isoform sequencing is inefficient on the PacBio platform



Technical validation using RNA isoform standards

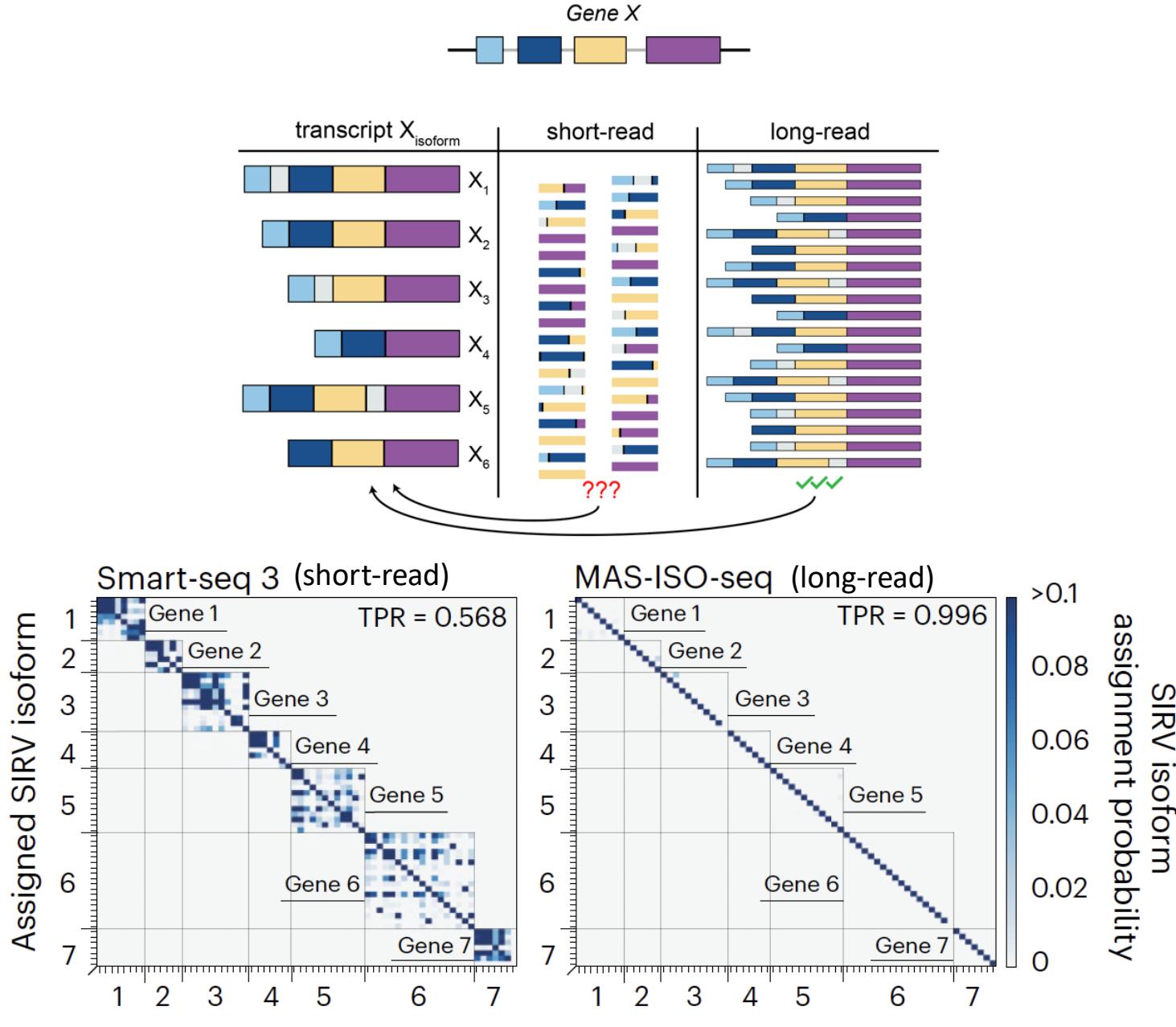
SIRVs (Spike-in RNA Variant Control Mixes) are synthetic gene isoforms



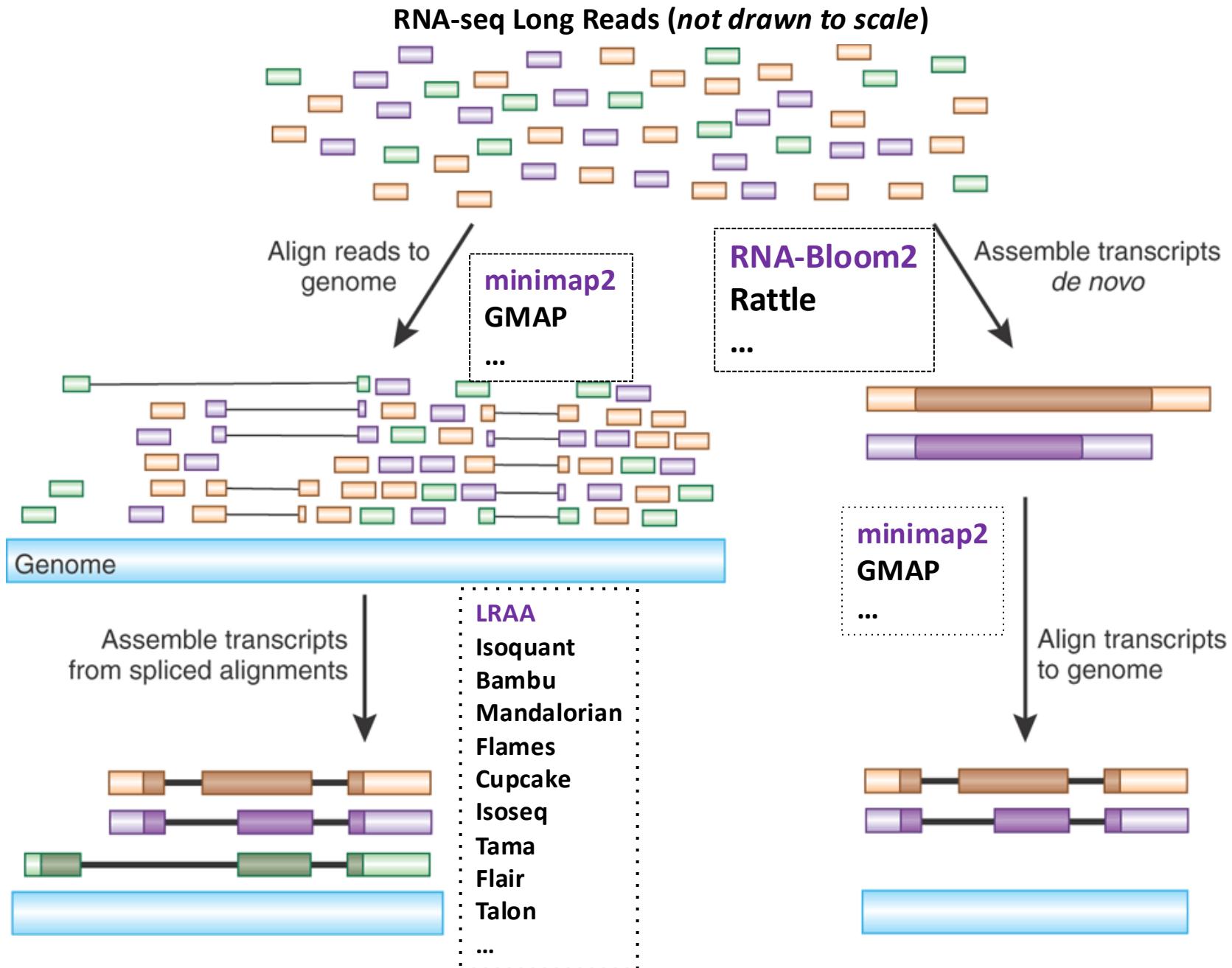
SIRVs serve as truth dataset to evaluate MAS-seq's ability to accurately identify RNA isoforms.

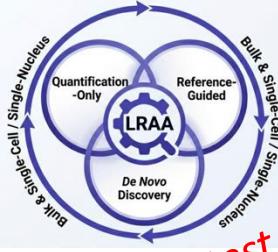
LEXOGEN

Long-read sequencing accurately identify RNA isoform standards



Transcript Reconstruction from (Long) RNA-Seq Reads

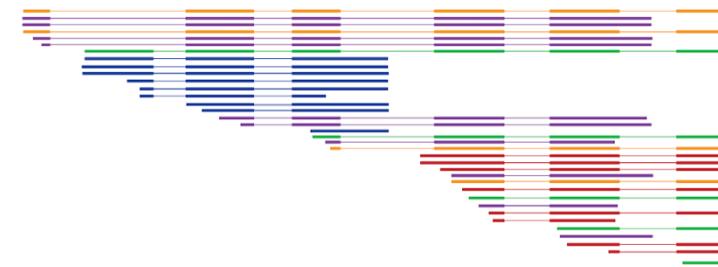




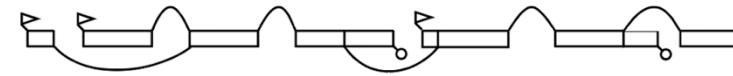
Our latest work

LRAA algorithm for isoform identification and quantification for bulk and single-cell long-read transcriptomics

Long RNA-Seq
Read Alignments

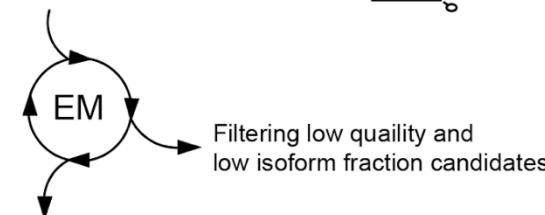


Splice Graph
Construction

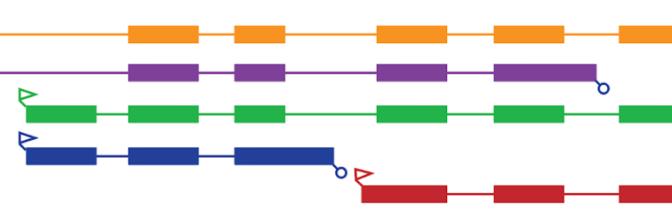


Splice Graph Labeled
Read Paths as Read
Compatibility Classes

Isoform Identification
Coupled to Abundance
Estimation and Filtering

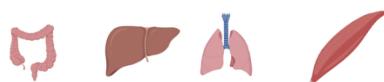


Reported Isoforms



Pilot Study to Survey Long Reads and Isoform Structures Across Humans and Non-human Primates

Human



	Colon	Liver	Lung	Muscle
Male				
16 days		X		
7 months		X		X
1 year		X	X	X
14 months	X		X	
9 years	X			
Female				
2 days	X		X	
1 month				X

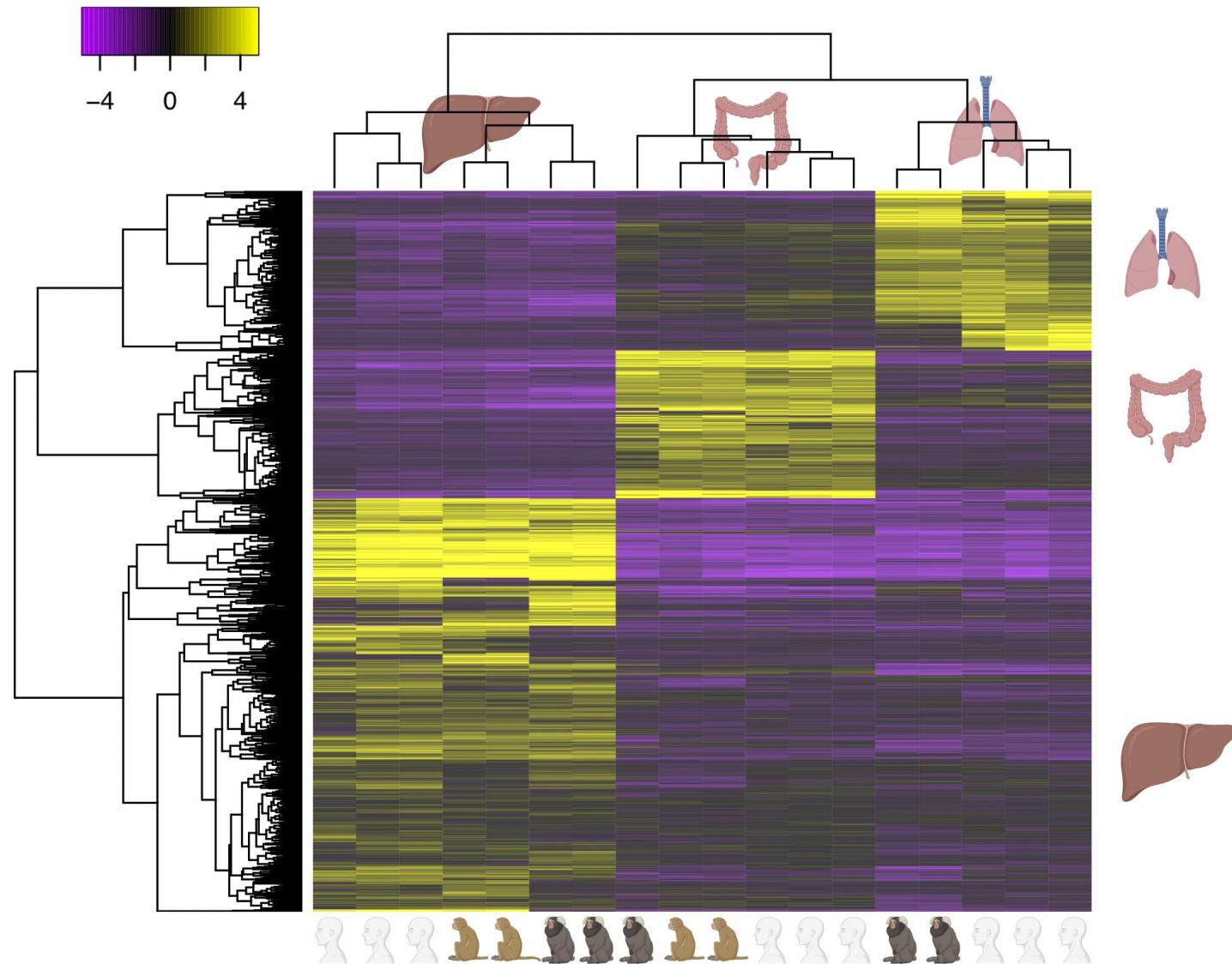
Rhesus Macaque

	Colon	Liver	Ovary	Testis
Male				
42 days	X	X		X
Female				
36 days	X	X	X	

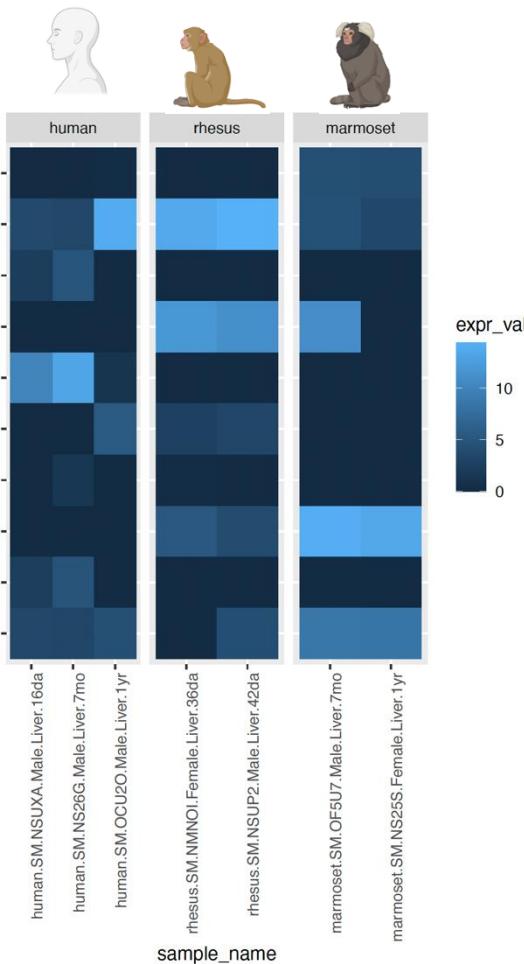
Marmoset

	Colon	Liver	Lung
Male			
7 months	X	X	X
Female			
1 year		X	X

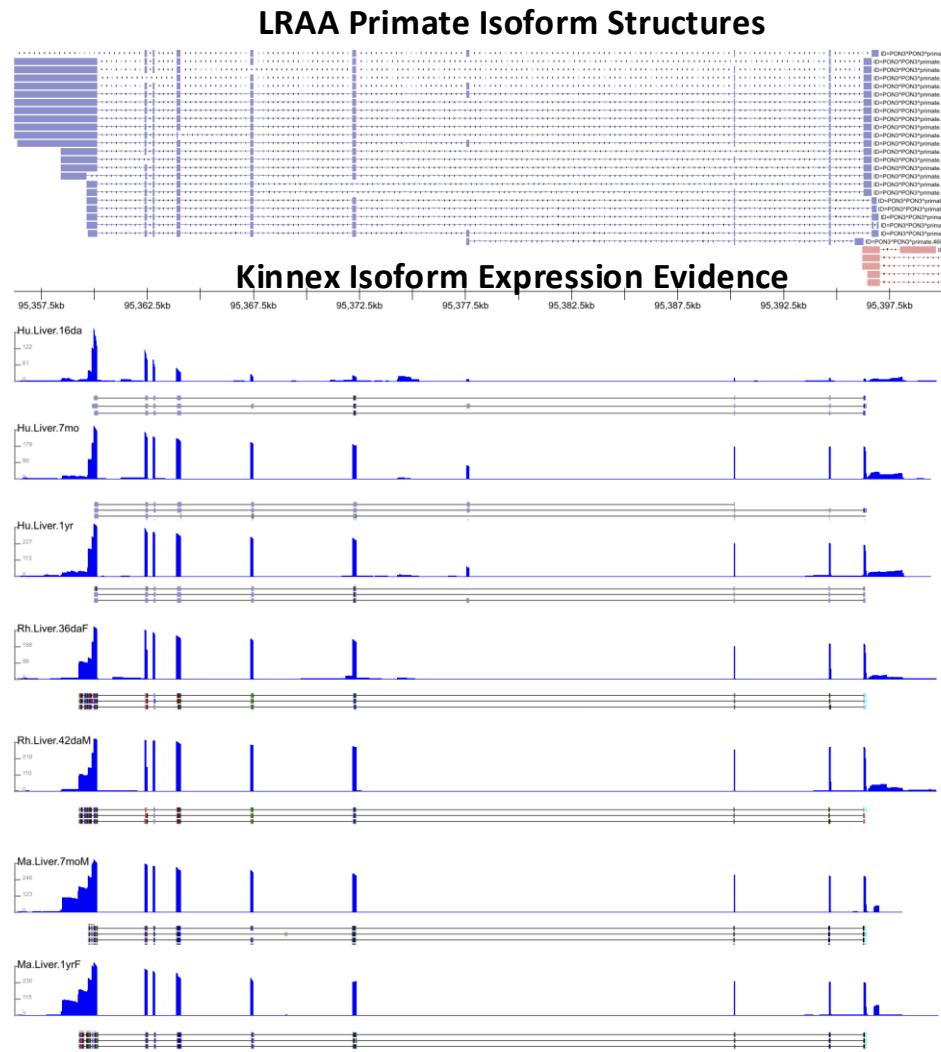
Thousands of tissue-specific genes expressed



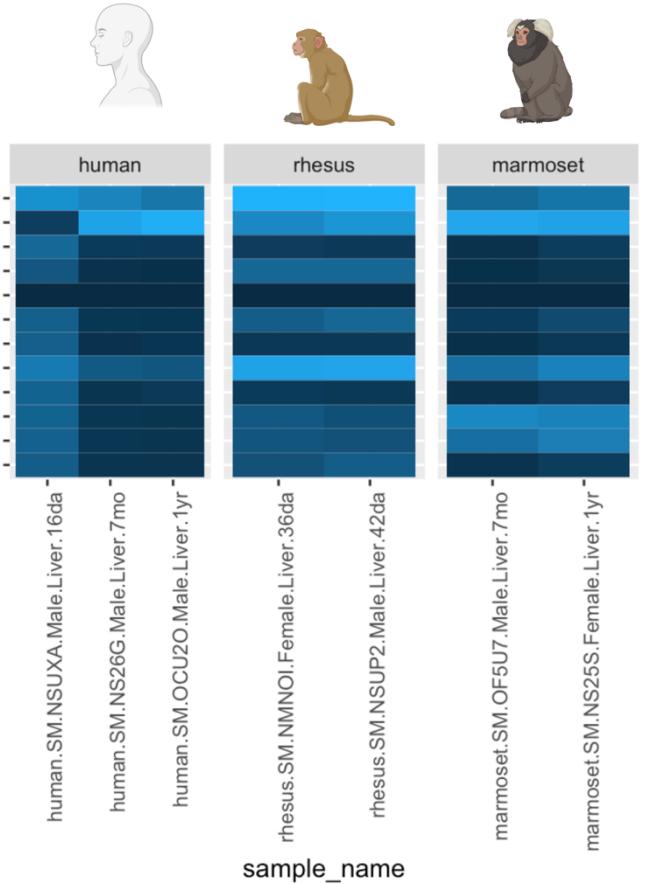
Example: Paraoxonase3 Isoform Expression in Liver



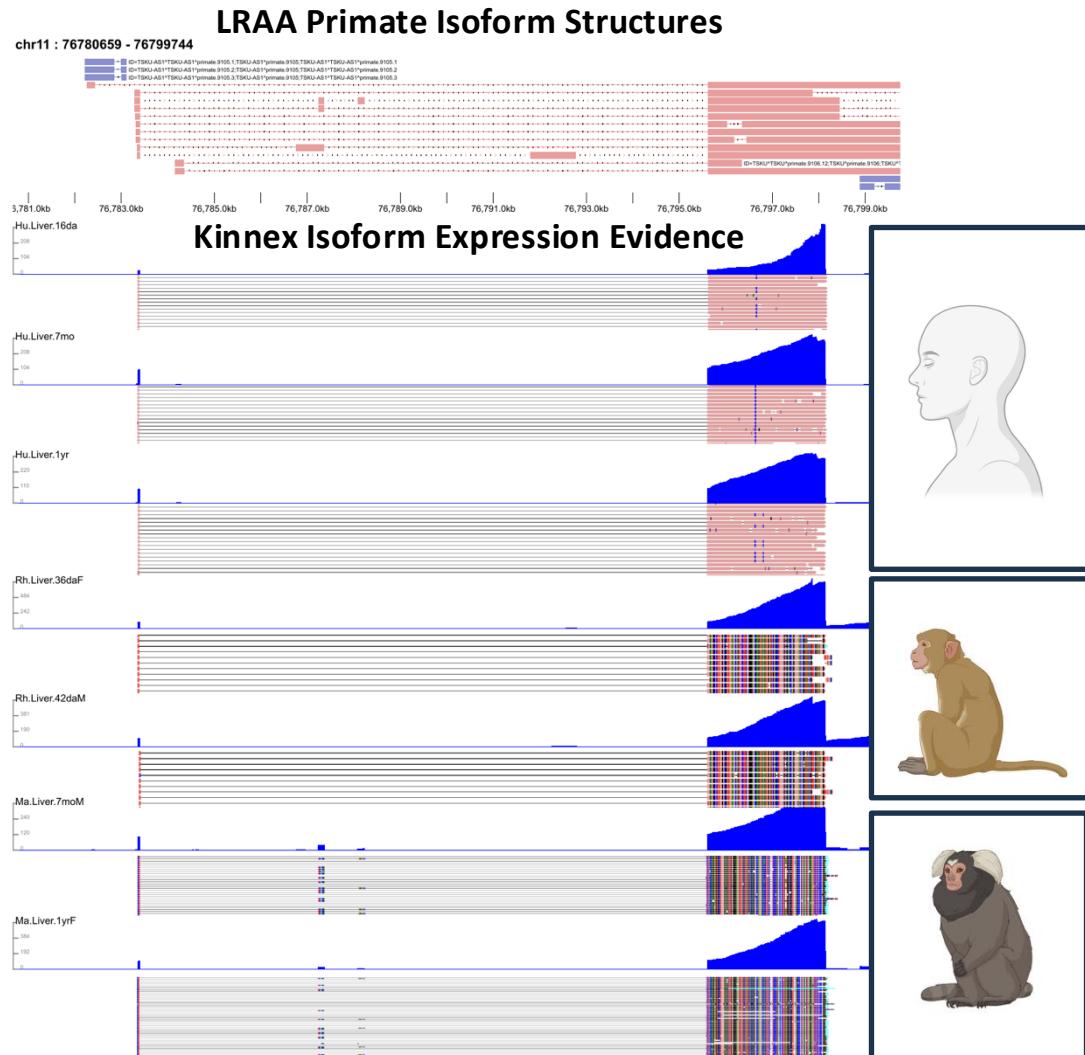
The PON3 gene, a member of the paraoxonase family, encodes a protein that associates with high-density lipoprotein (HDL) and is involved in the hydrolysis of lactones and the inhibition of low-density lipoprotein (LDL) oxidation.



Example: Tsukushi (TSKU) Isoform Expression in Liver



The TSKU gene, encoding the protein Tsukushi, plays a role in cholesterol homeostasis and is released in response to non-alcoholic fatty liver disease (NAFLD). It impacts systemic cholesterol homeostasis, reducing circulating HDL cholesterol, lowering cholesterol efflux capacity, and decreasing cholesterol-to-bile acid conversion in the liver.

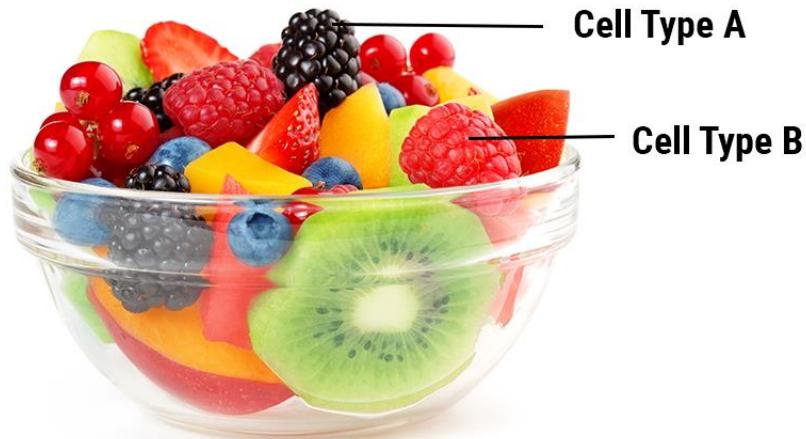


Part 7. Overview of Single Cell Transcriptomics

The Quintessential “Fruit Smoothie Metaphor” for Bulk RNA-seq

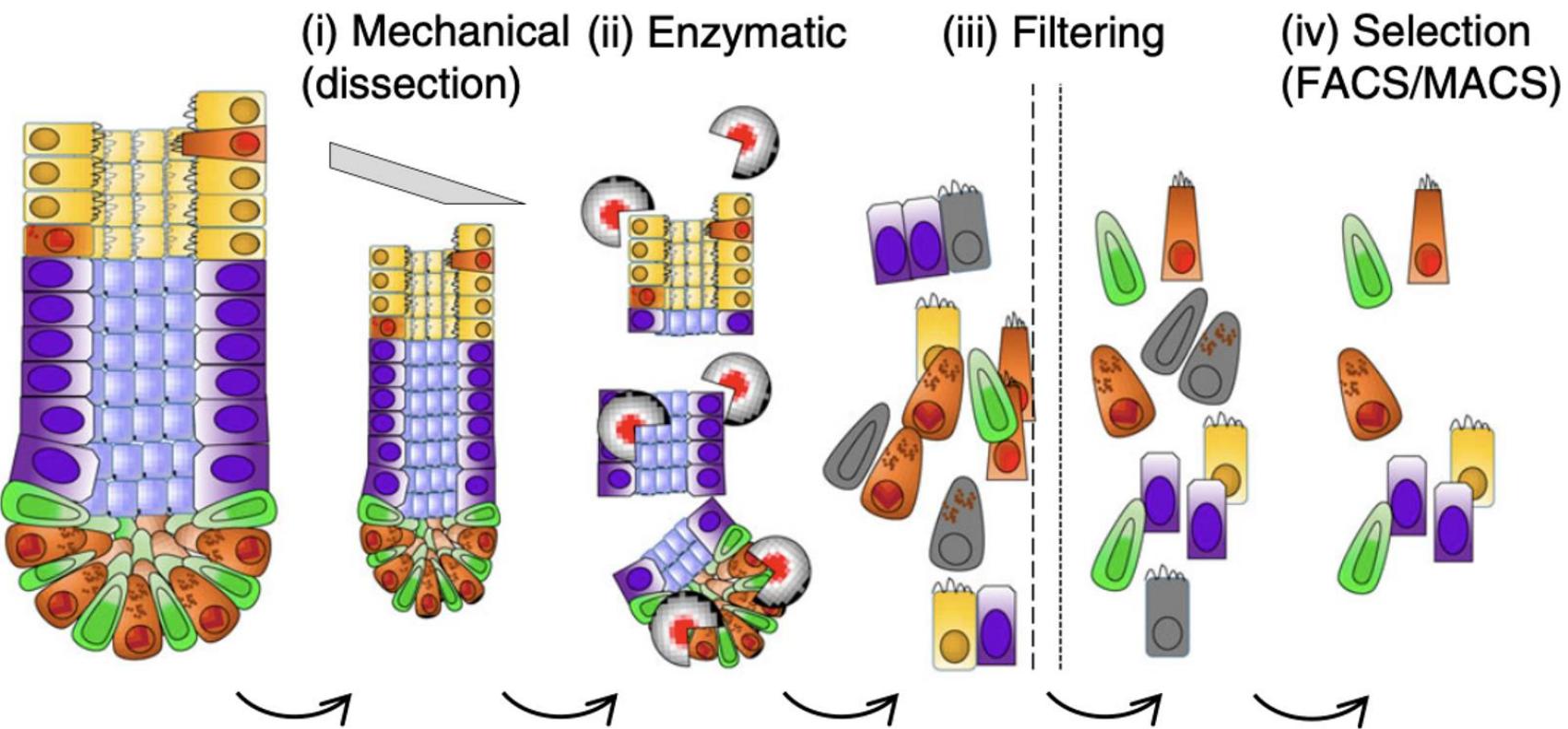
Bulk RNA Seq

vs.



scRNA Seq

Step 1: Break down tissue to single cells (or nuclei)

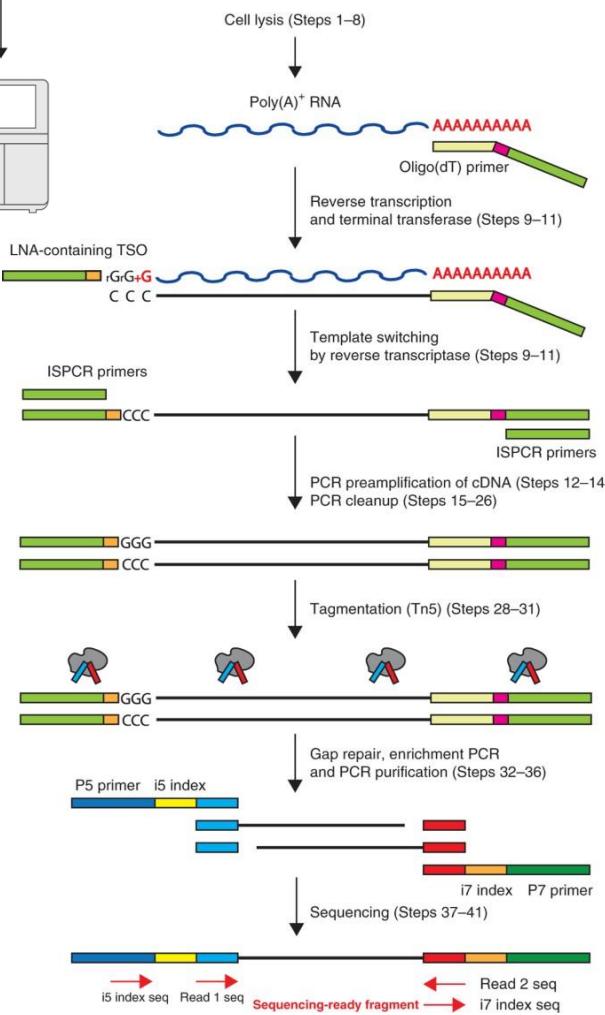


Can also extract and sequence nuclei instead of whole cells – popular in neurobiology

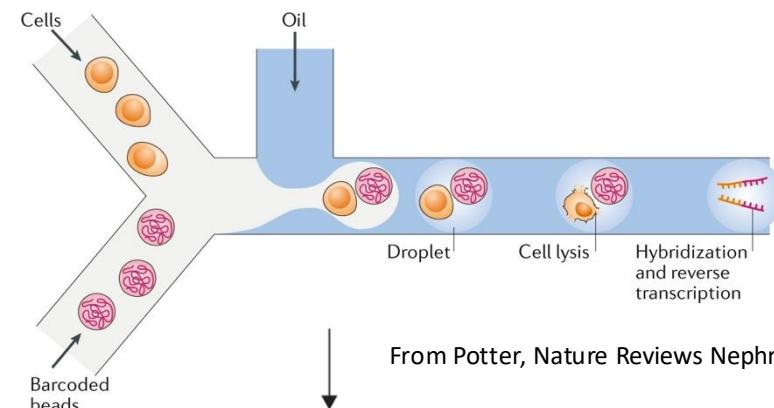
Examples of Different Popular Classes of Single Cell Sequencing

Plate-based methods

Low throughput

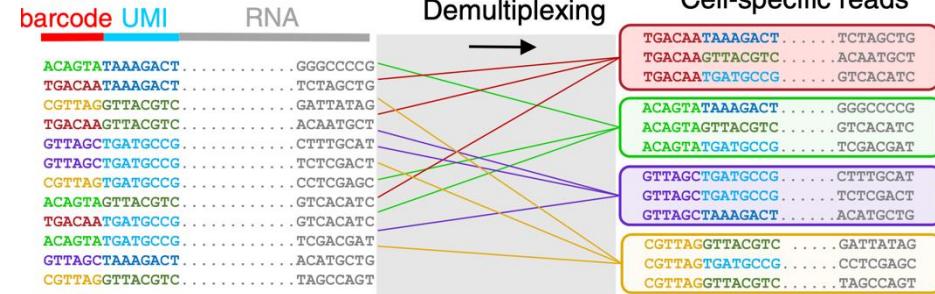


Droplet-based methods



From Potter, Nature Reviews Nephrology, 2018

Cell barcode UMI

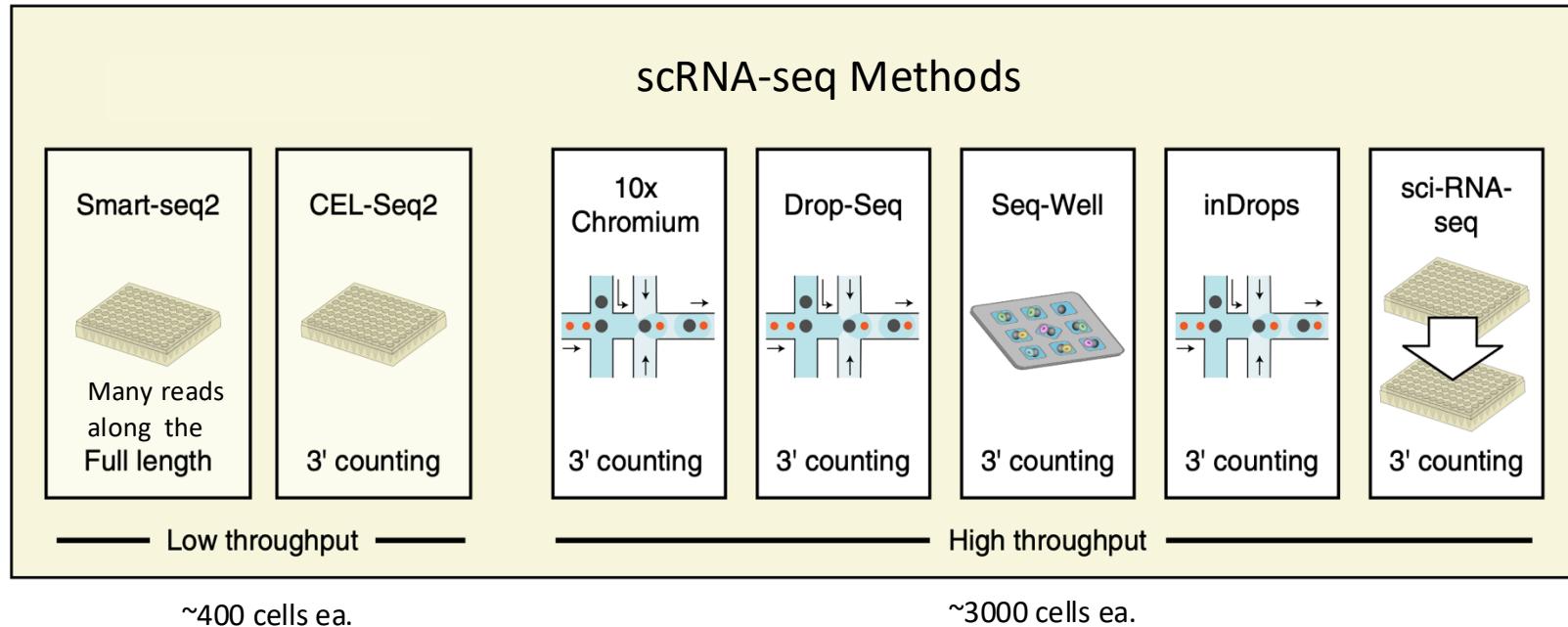


Smart-seq2 Method: Get reads covering the full length of the RNA molecule.

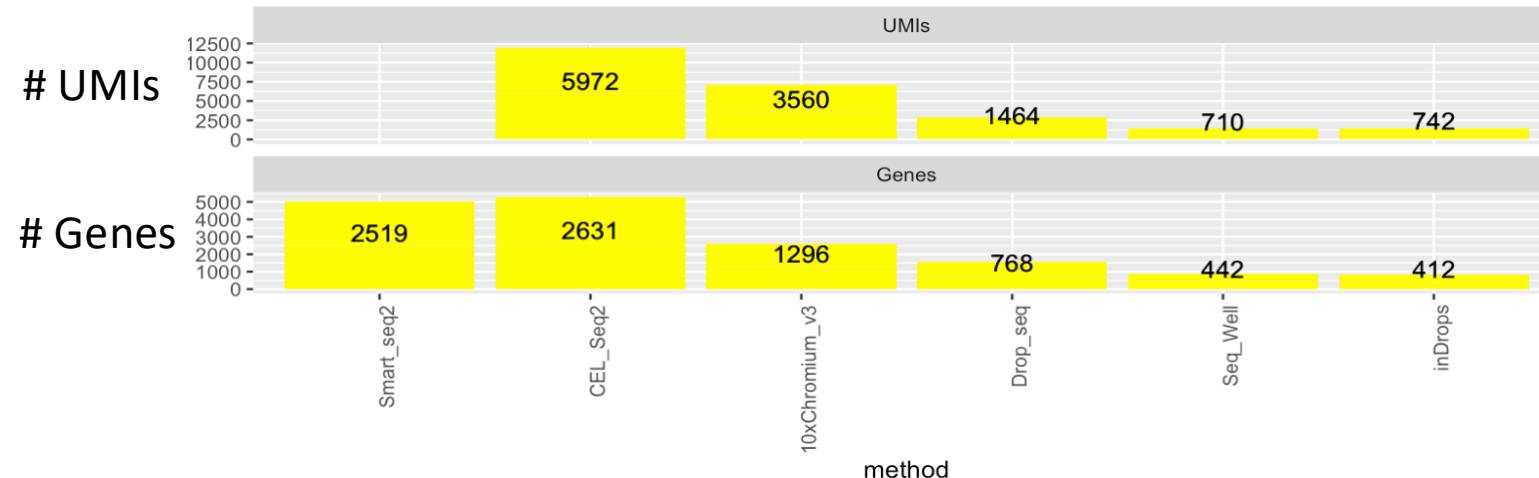
Picelli et al., Nature Protocols, 2014

Lafzi et al., Nat Protocols, 2018

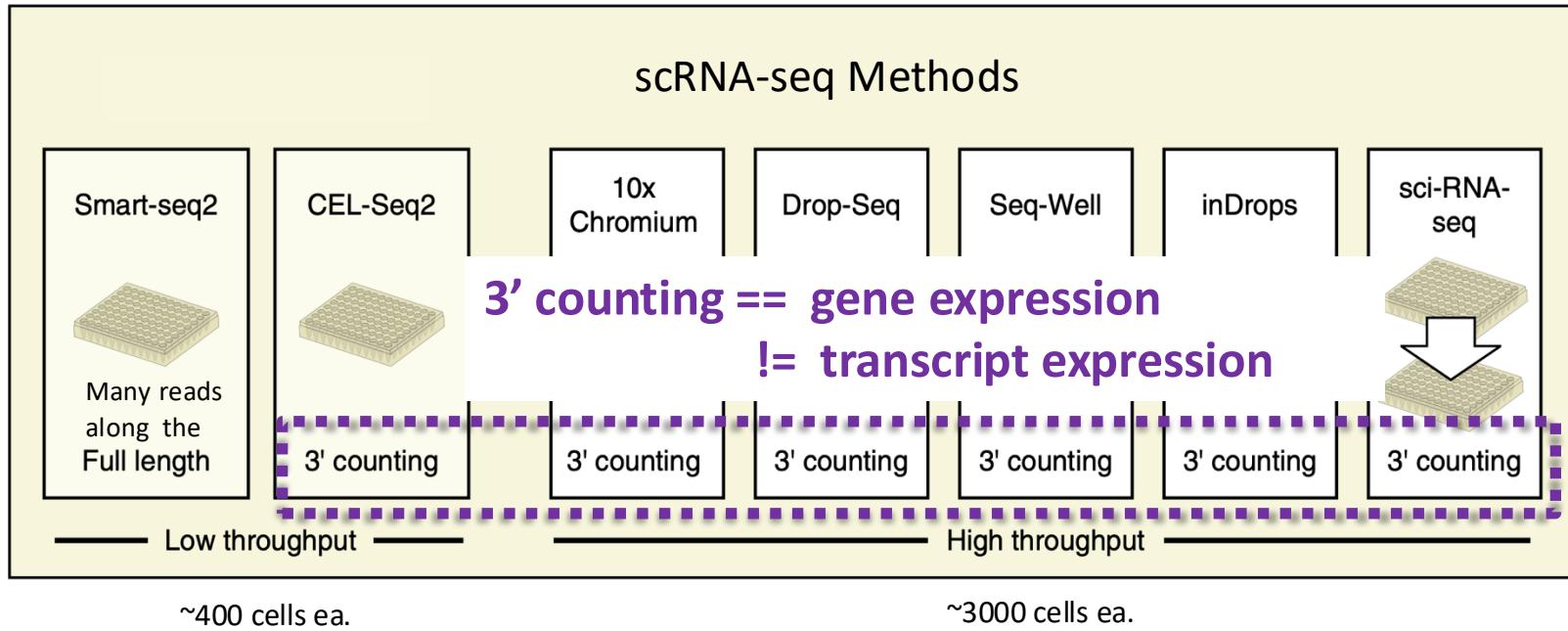
Single Cell Transcriptome Sequencing Methods



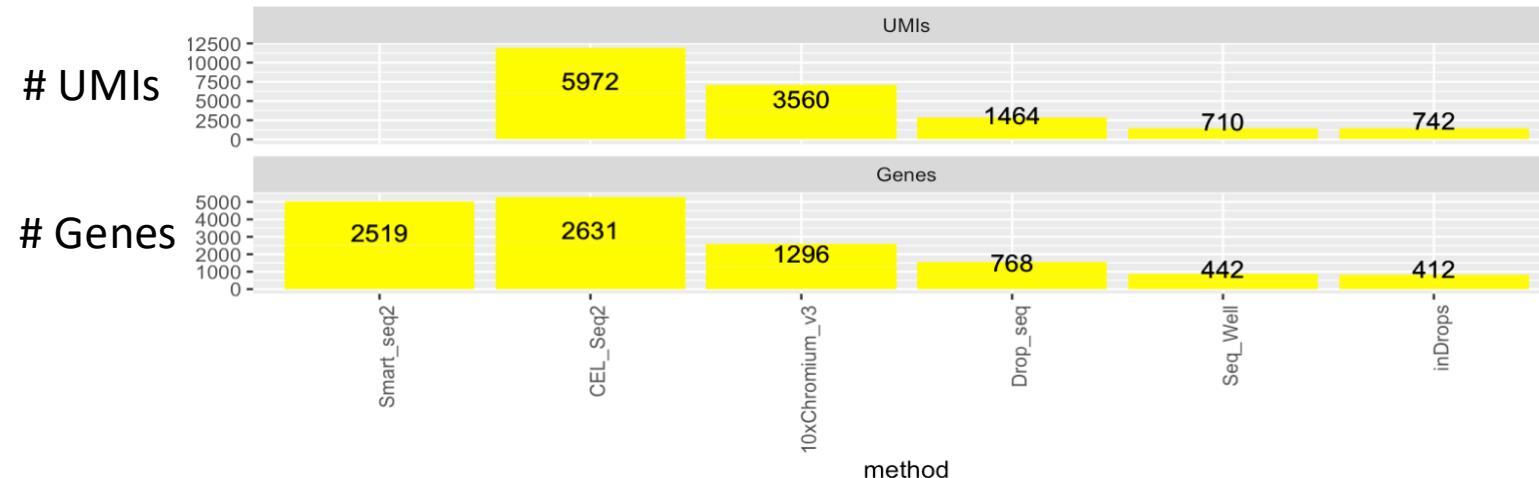
Averaged counts of UMIs and Genes per cell by method



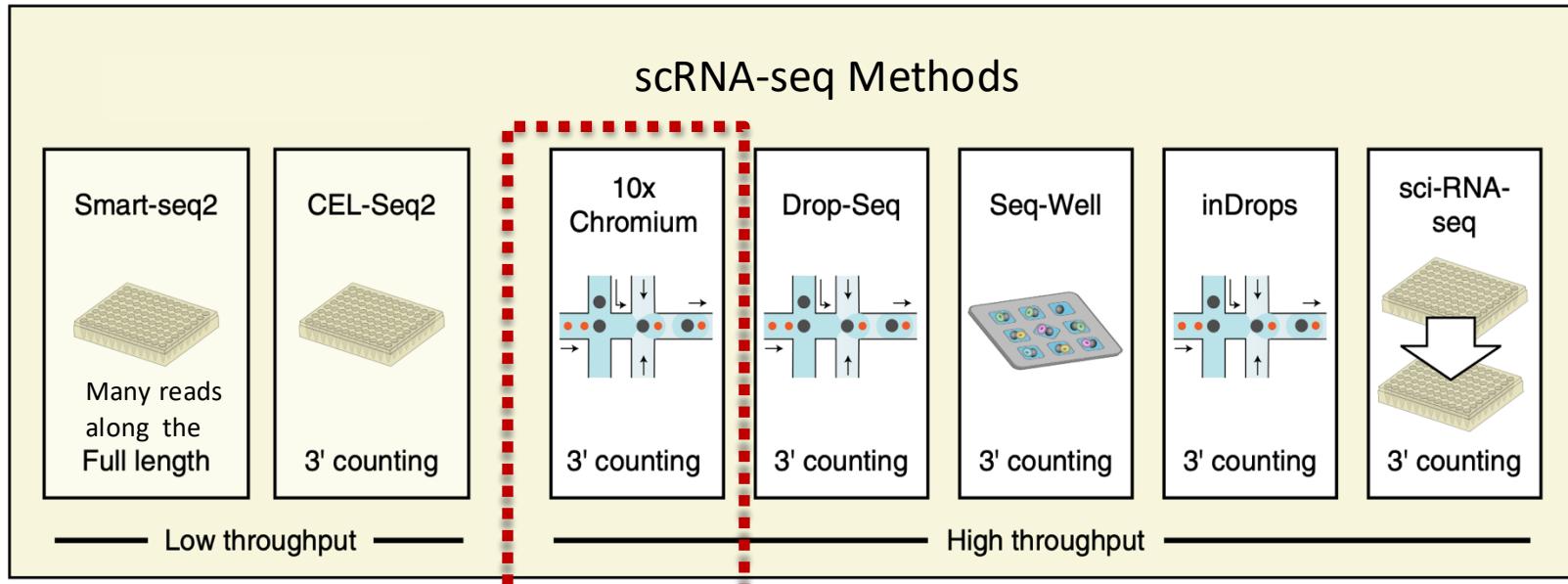
Single Cell Transcriptome Sequencing Methods



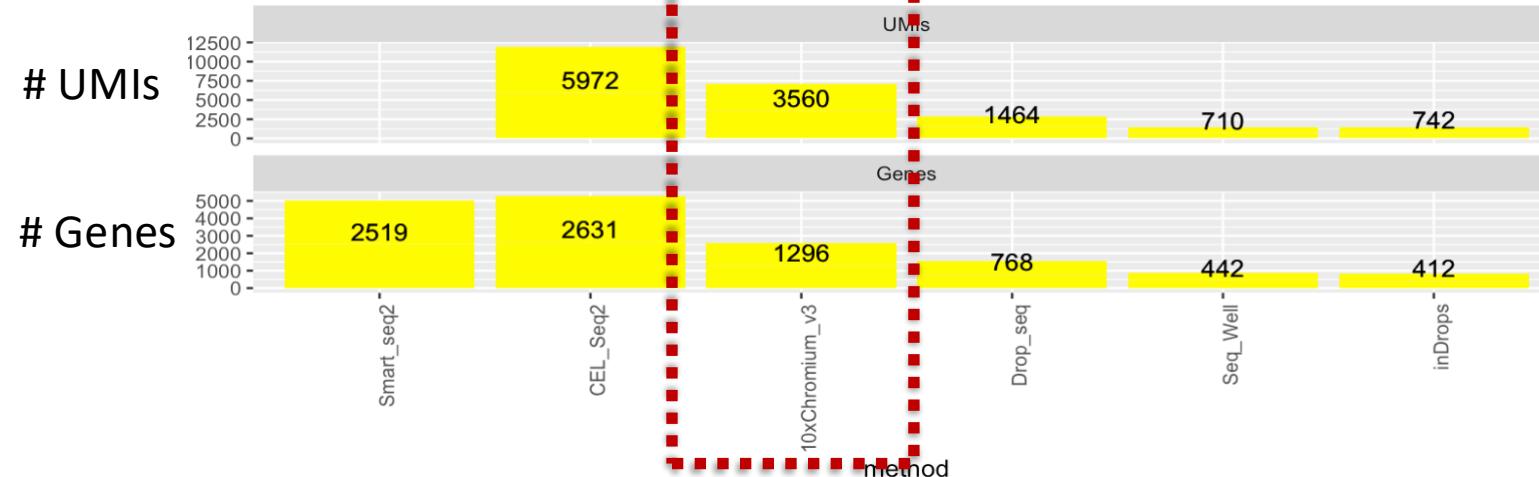
Averaged counts of UMIs and Genes per cell by method



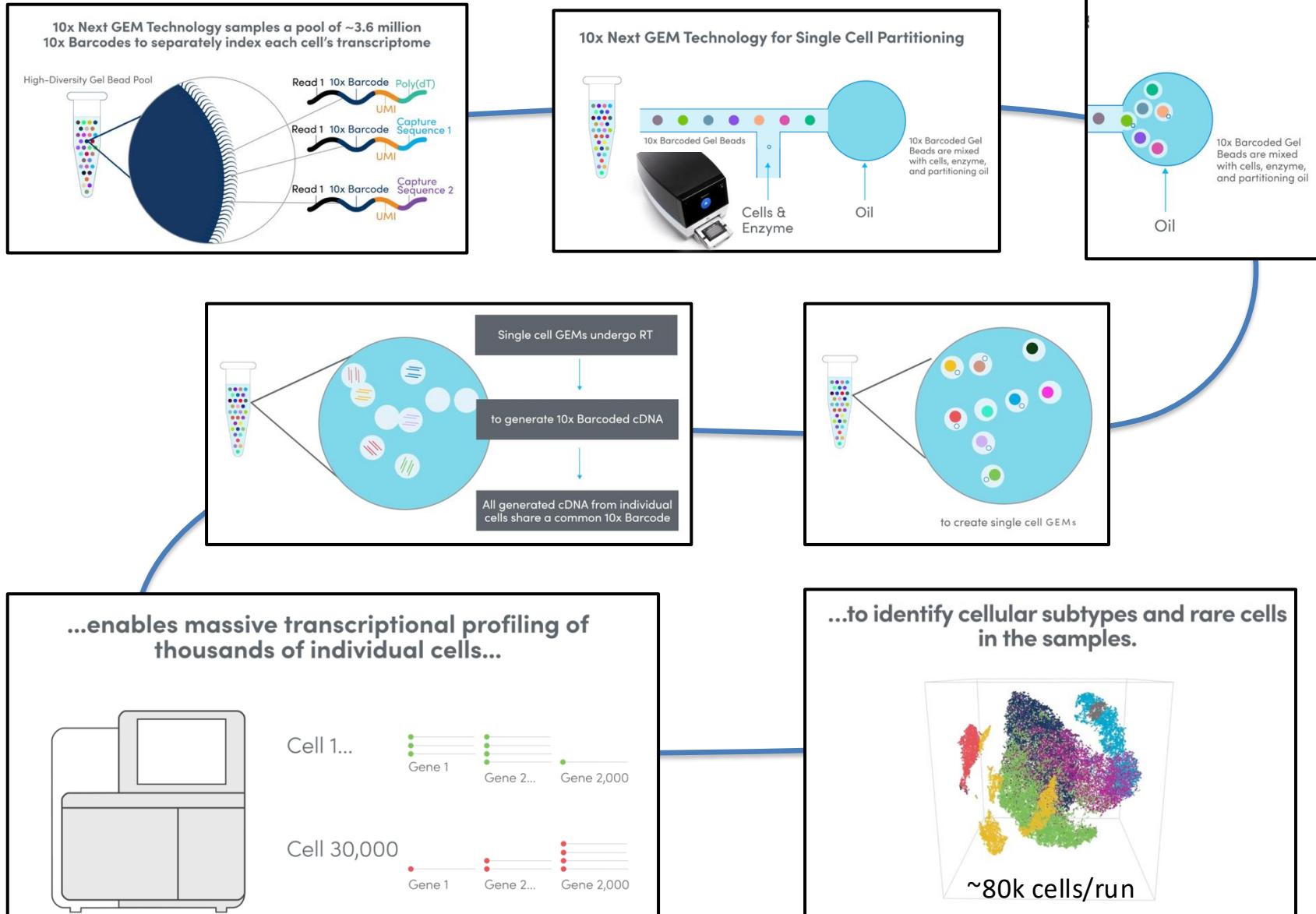
Single Cell Transcriptome Sequencing Methods



Averaged counts of UMIs and Genes per cell by method

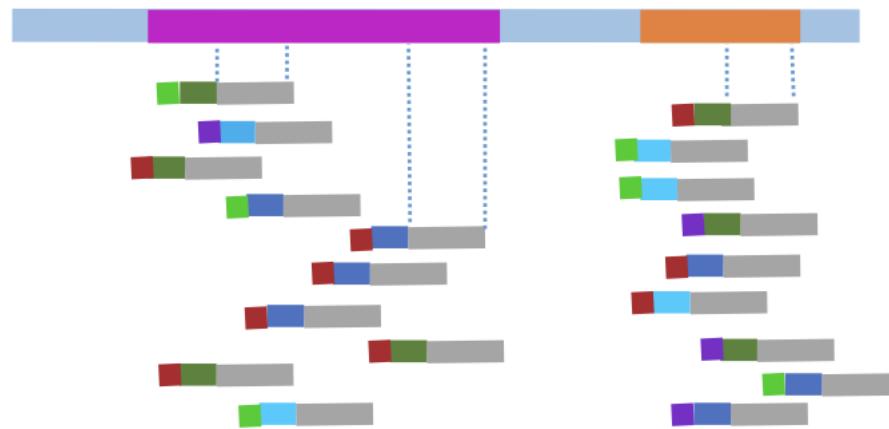


10x Genomics Chromium Single Cell Transcriptome Sequencing



Analysis Workflow for Single Cell Transcriptomics

Reference genome

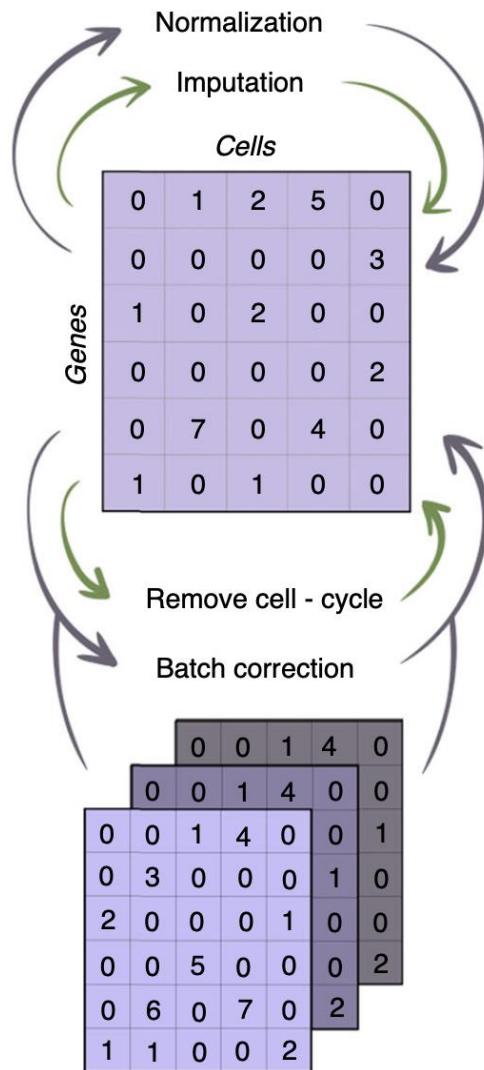


- Align reads to the reference genome
- Collapse PCR duplicates (by UMIs)

	Cell1	Cell2	...	CellN
Gene1	3	2	.	13
Gene2	2	3	.	1
Gene3	1	14	.	18
...
...
...
GeneM	25	0	.	0

- Build a {Gene X Cell} UMI counts matrix

Single Cell Transcriptomics Data Processing Workflow



Gene ‘count’ matrices for single cell data tend to be very large and very sparse

eg. 25k genes x 100k cells

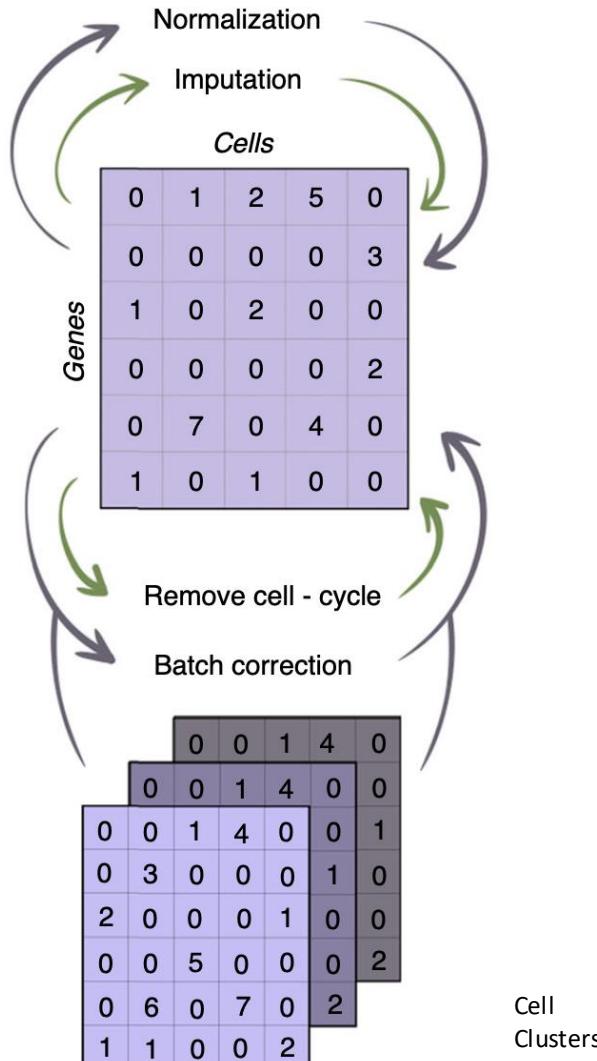
(almost all zeros – no reads detected)

Various processing needed:

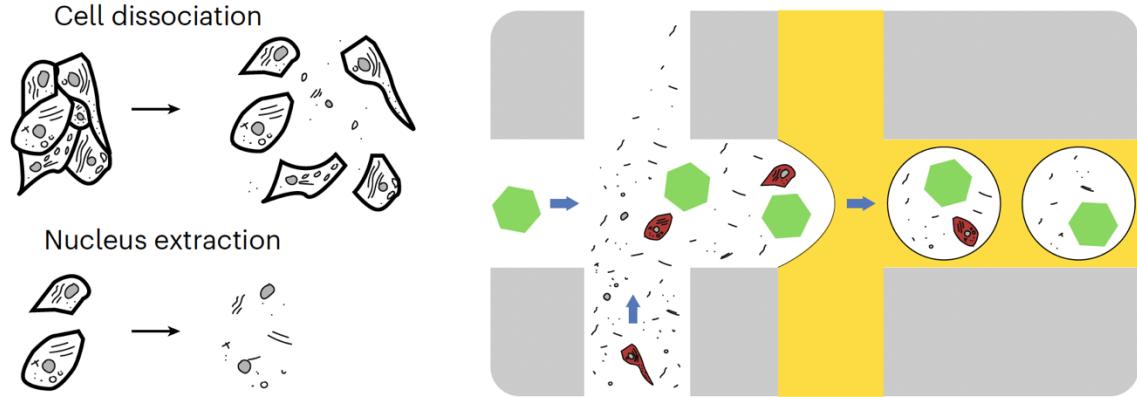
- Which cells are 'good' cells? vs dying/stressed cells, doublets, or empty droplets?
- possibly remove confounding cell cycle signatures from expression data.
- Multiple experiments/replicates - batch correction or harmonization?

In Silico Removal of Ambient RNA

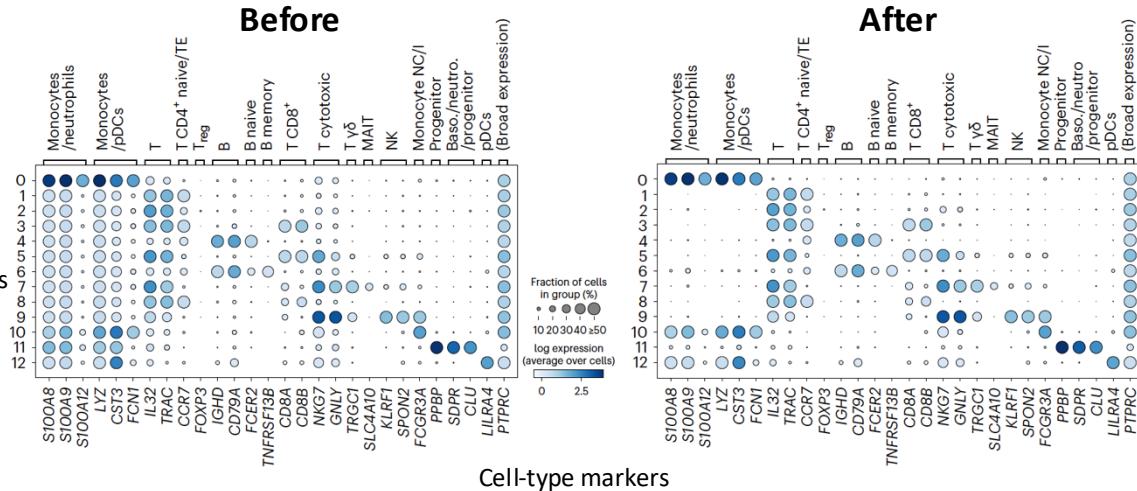
(by Cellbender)



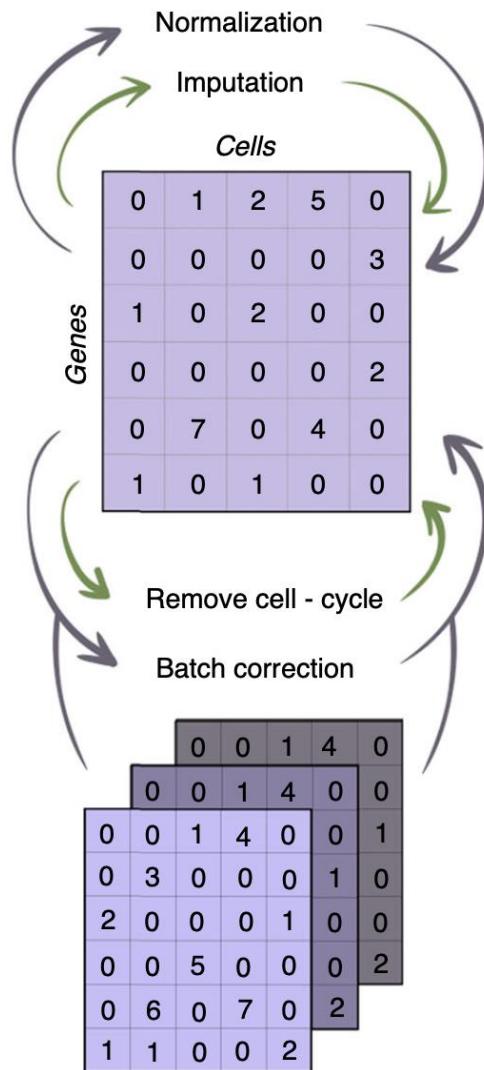
Phenomenology of ambient RNA



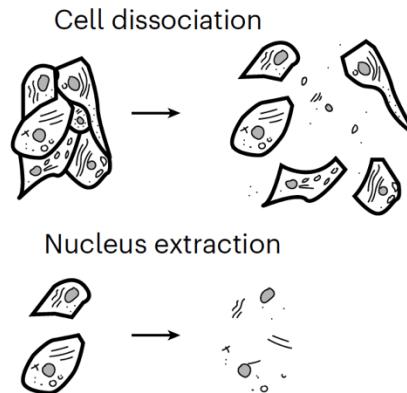
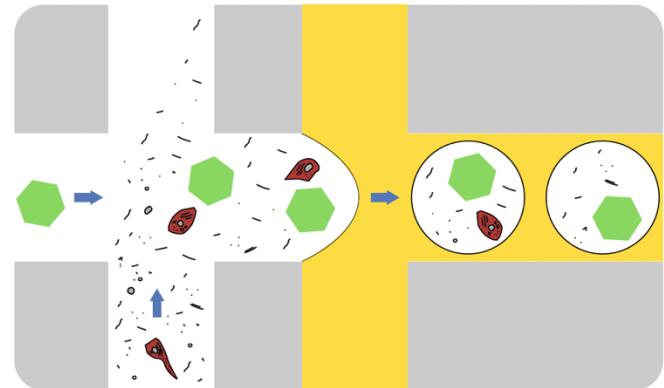
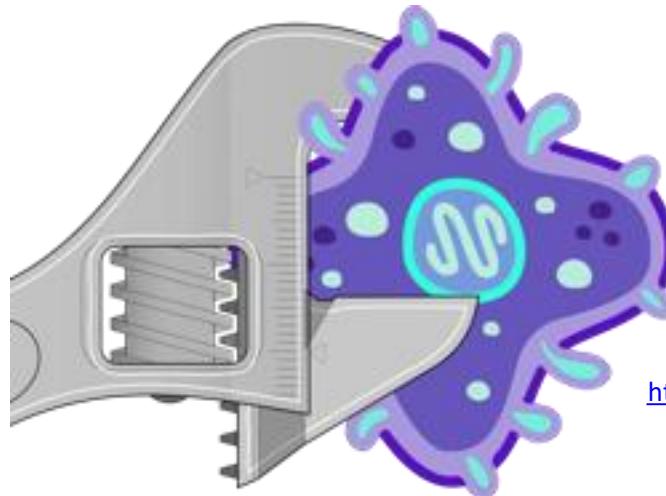
Cell Markers and Read Quantities by Cell Type



In Silico Removal of Ambient RNA (by Cellbender)



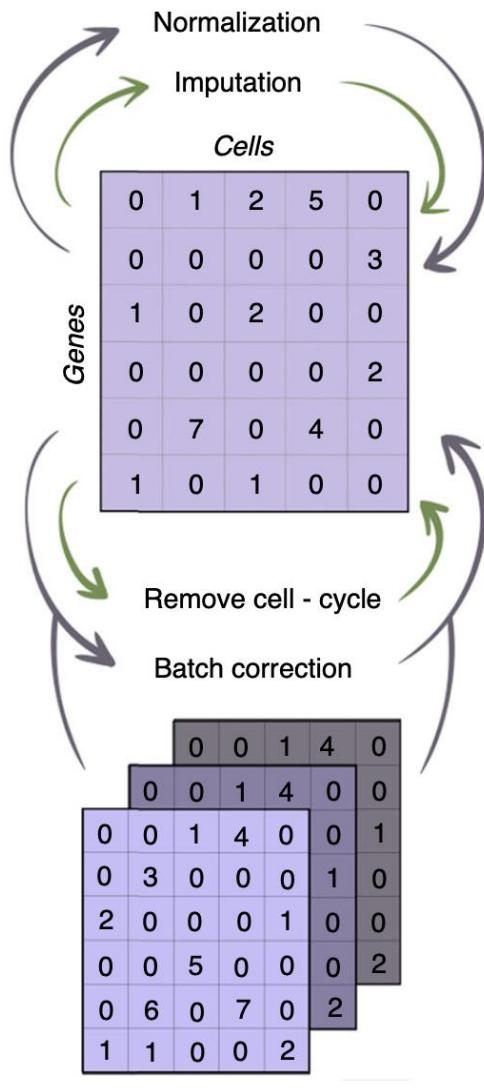
Phenomenology of ambient RNA



CellBender

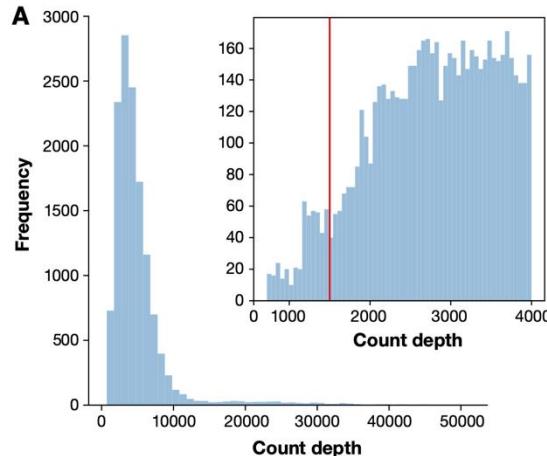
<https://github.com/broadinstitute/CellBender>

Metrics for Filtering Cells – Keep the Good Ones

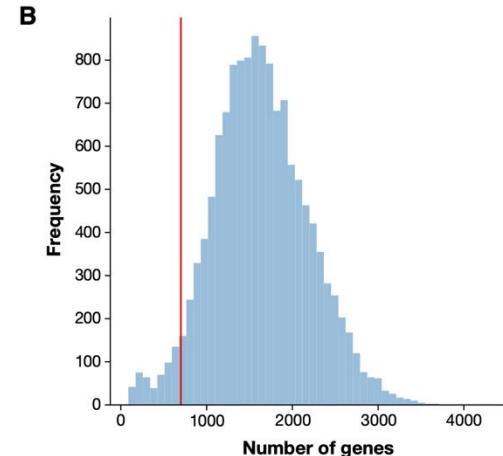


Filter cells based on #genes, #UMIs, and %Mito RNA

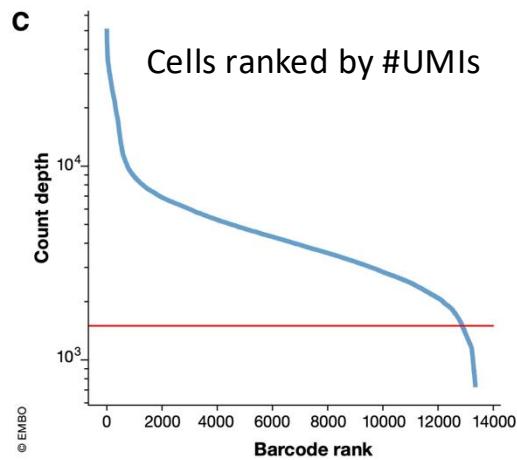
Histogram of #UMIs per cell



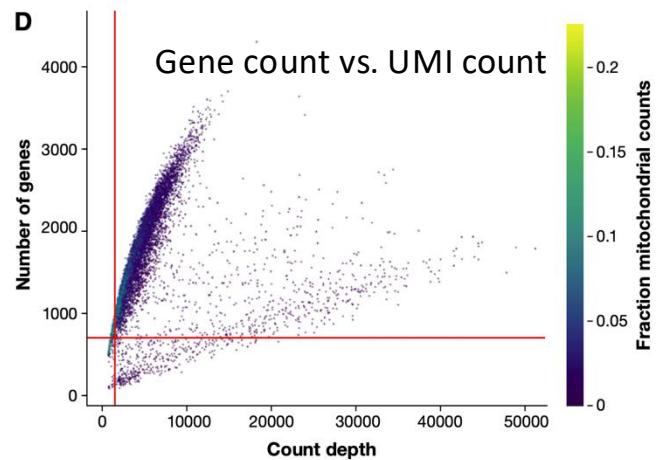
Histogram of #genes per cell



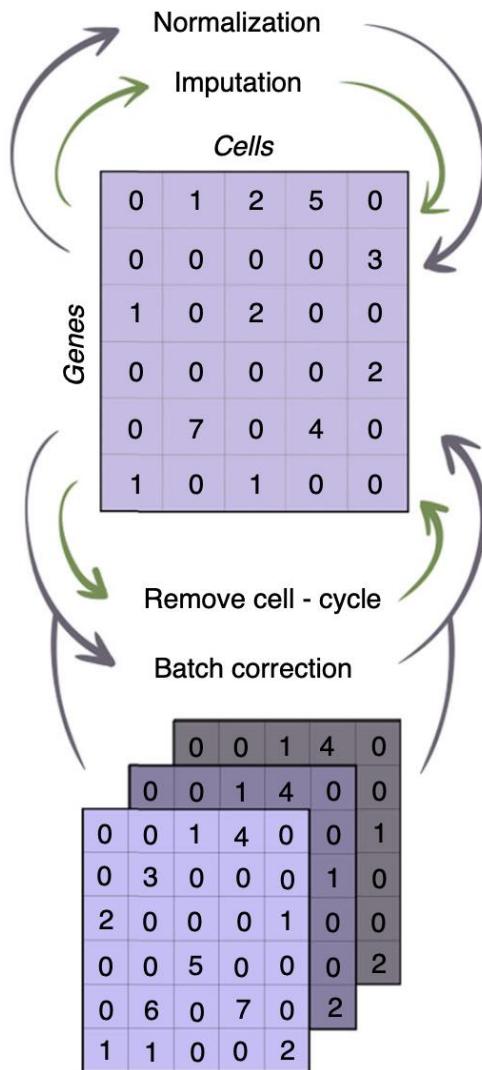
Cells ranked by #UMIs



Gene count vs. UMI count

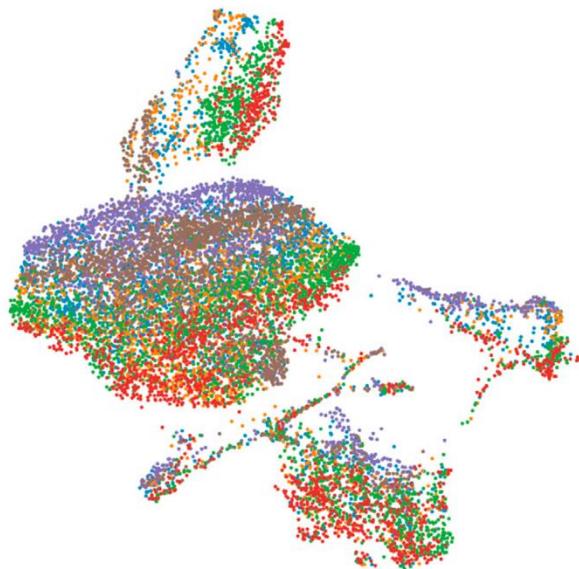


Batch Correction for Single Cell Transcriptomes



Plot your cells and paint by batch to examine this.
Batch correction methods are available

No batch correction



Batch correction

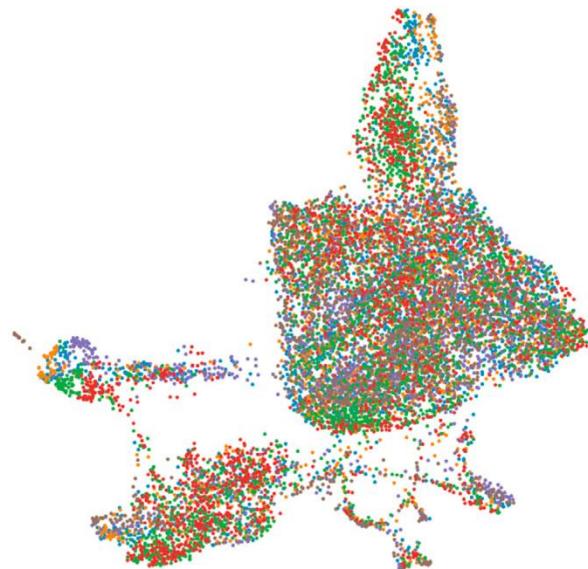
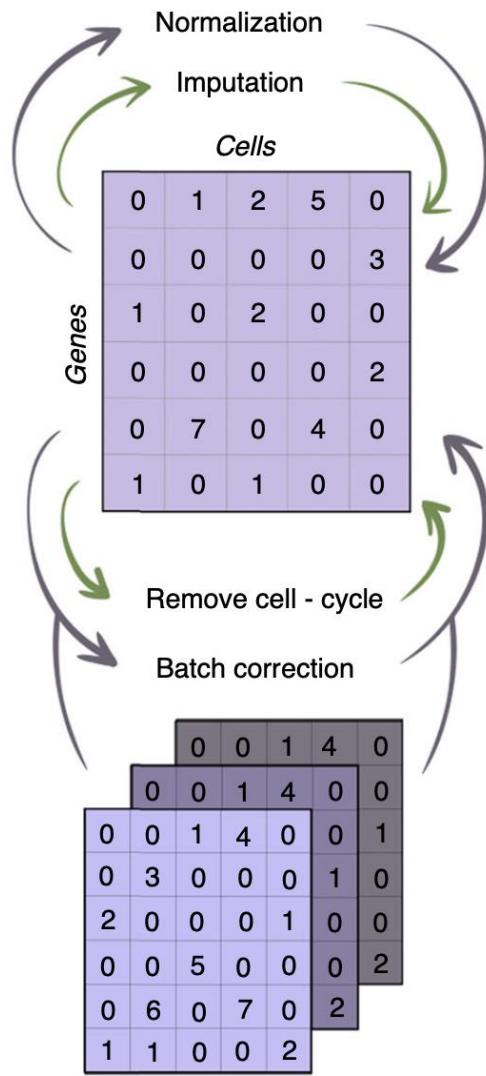


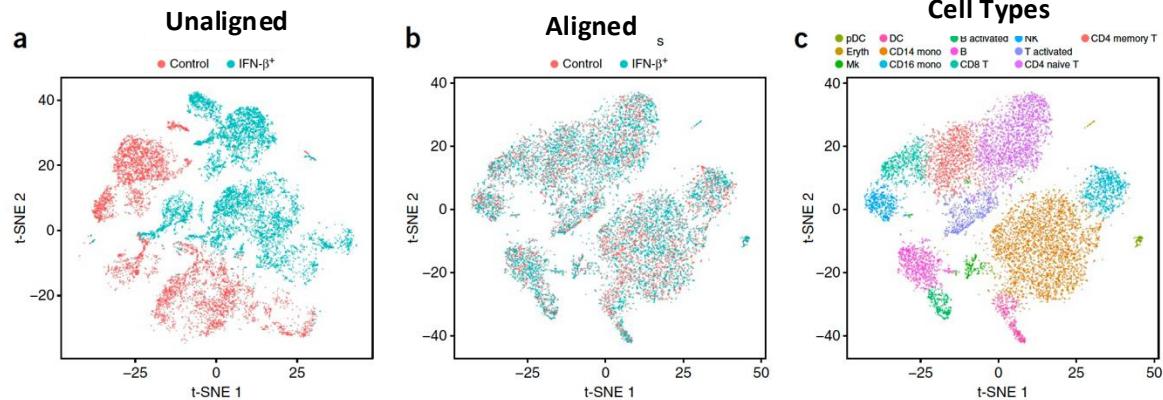
Figure 3. UMAP visualization before and after batch correction.

Cells are coloured by sample of origin. Separation of batches is clearly visible before batch correction and less visible afterwards. Batch correction was performed using ComBat on mouse intestinal epithelium data from Haber *et al* (2017).

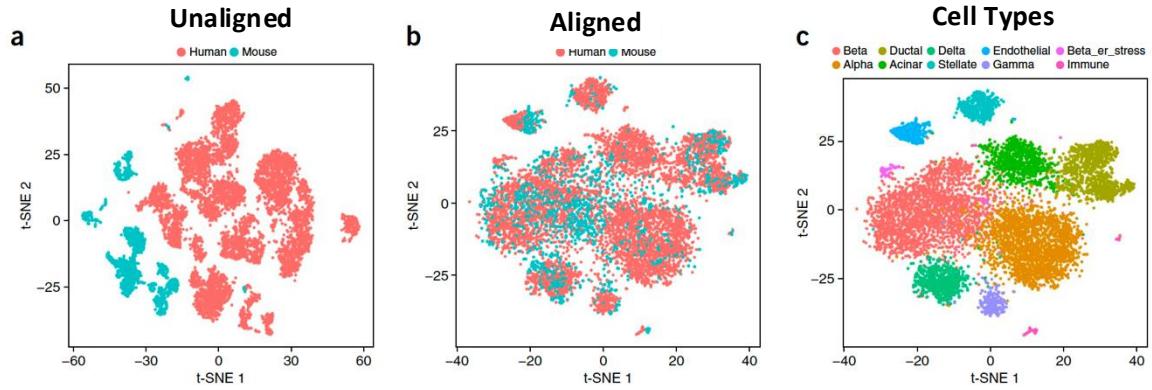
Integrating scRNA-seq data sets based on common sources of variation



Peripheral blood mononuclear cells (PBMCs) +/- stimulation



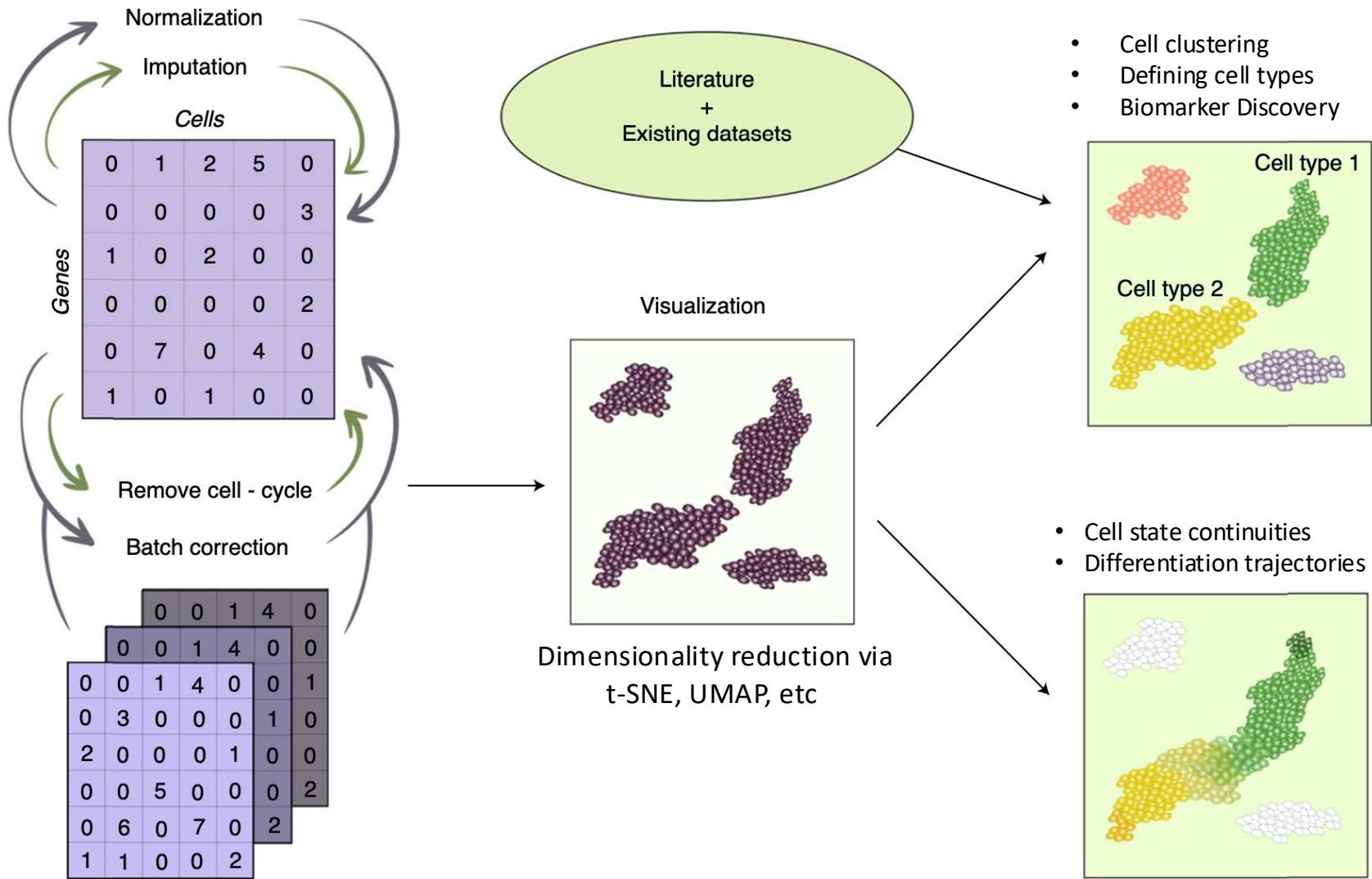
Mouse and human pancreas islet cells



Aligned using Seurat via canonical correlation analysis (CCA)

Butler et al., Nature Biotech, 2018

Finally, Single Cell Data Exploration and Biological Discovery

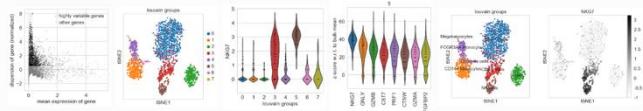


Popular Software Packages for Single Cell Transcriptome Studies

Tutorials

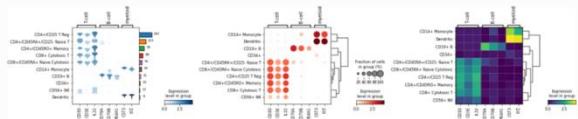
Clustering

For getting started, we recommend Scanpy's reimplementation [\[→ tutorial: pbmc3k\]](#) of Seurat's [^cite_satija15] clustering tutorial for 3k PBMCs from 10x Genomics, containing preprocessing, clustering and the identification of cell types via known marker genes.



Visualization

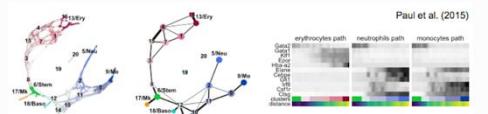
This tutorial shows how to visually explore genes using scanpy. [\[→ tutorial: plotting/core\]](#)



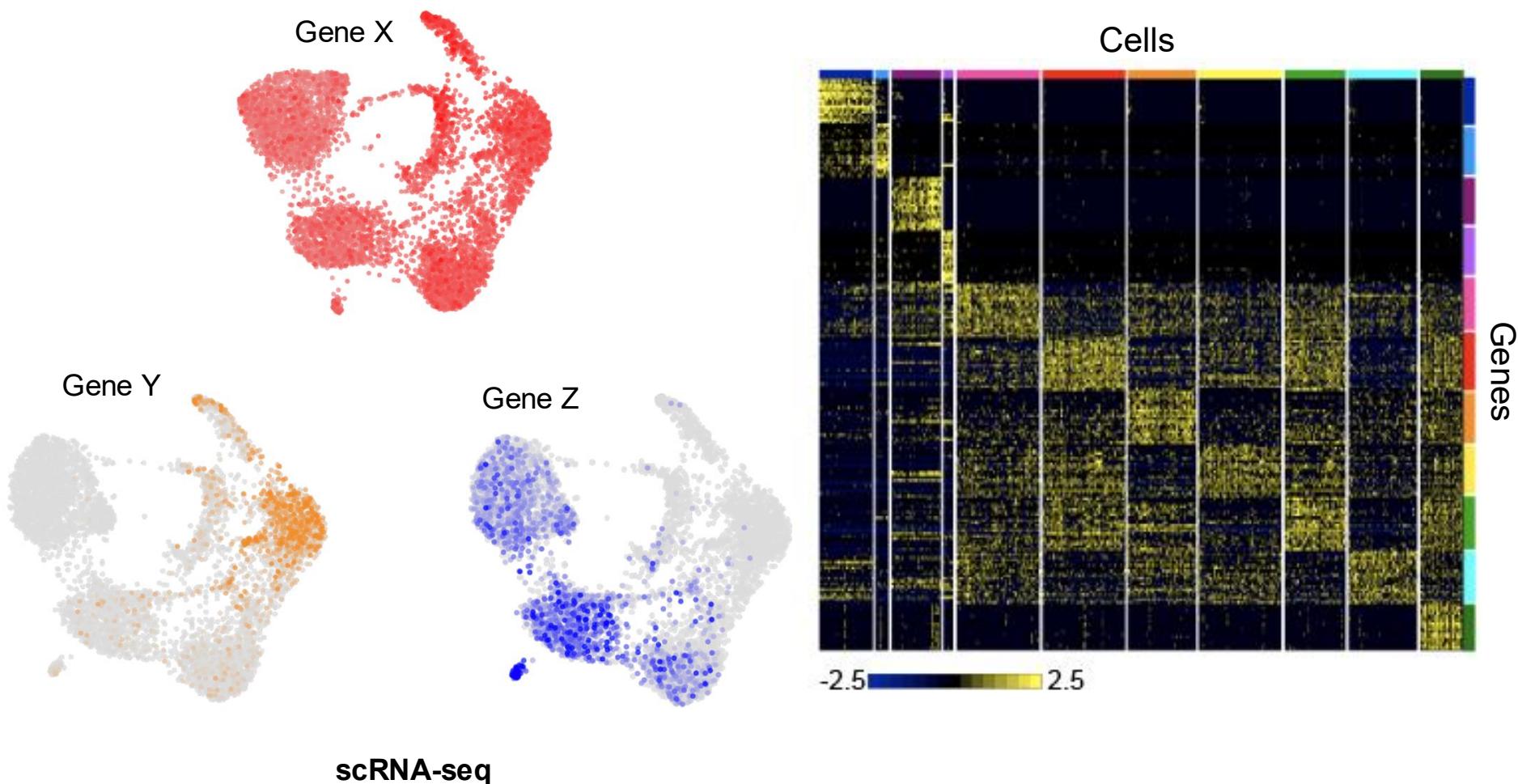
Trajectory inference

Get started with the following example for hematopoiesis for data of [^cite_paul15]:

[\[→ tutorial: paga-paul15\]](#)



Gene expression ≠ transcript expression



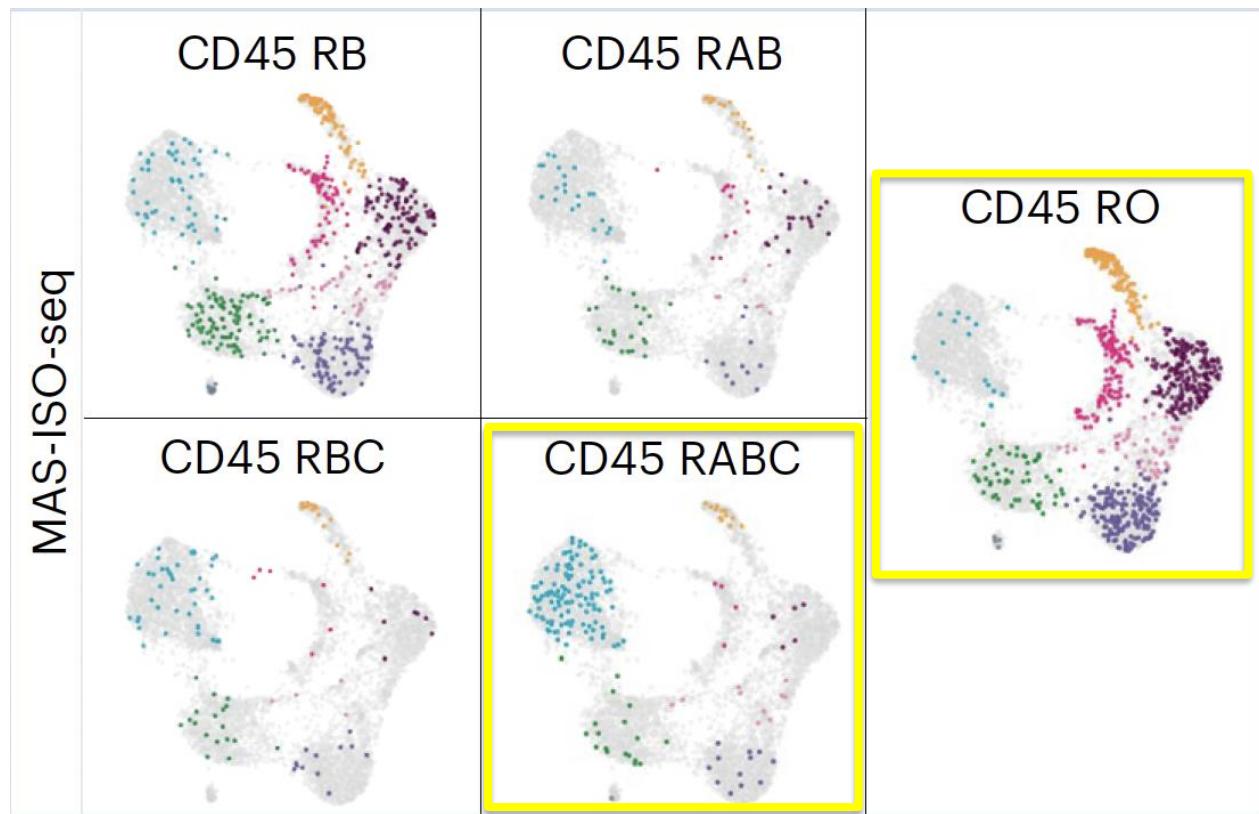
But – long isoform reads to the rescue!!

Long read scRNA-seq (Kinnex) of tumor infiltrating CD8 T cells

CD45 epitope expression

(by CITE-seq)

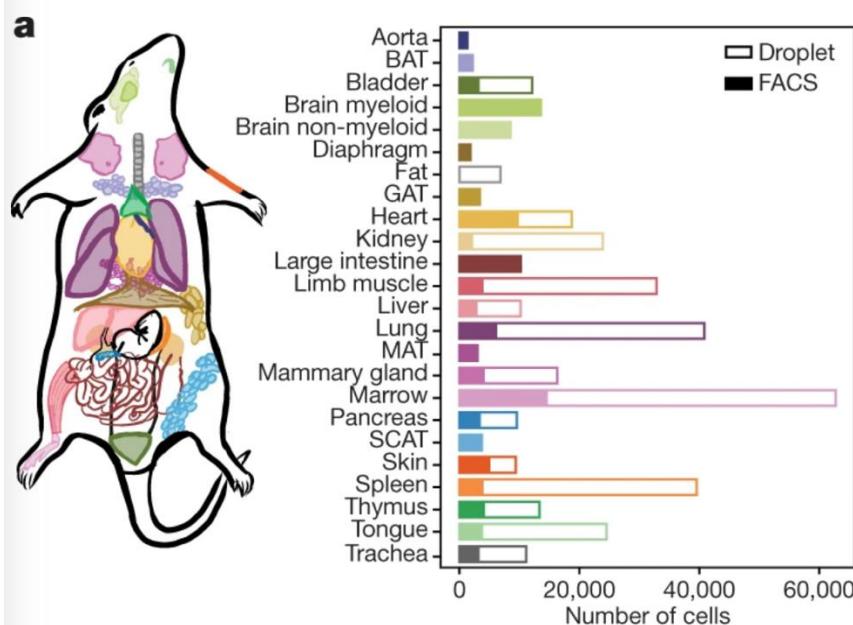
CD45 T-cell Marker Isoform expression resolved via long reads



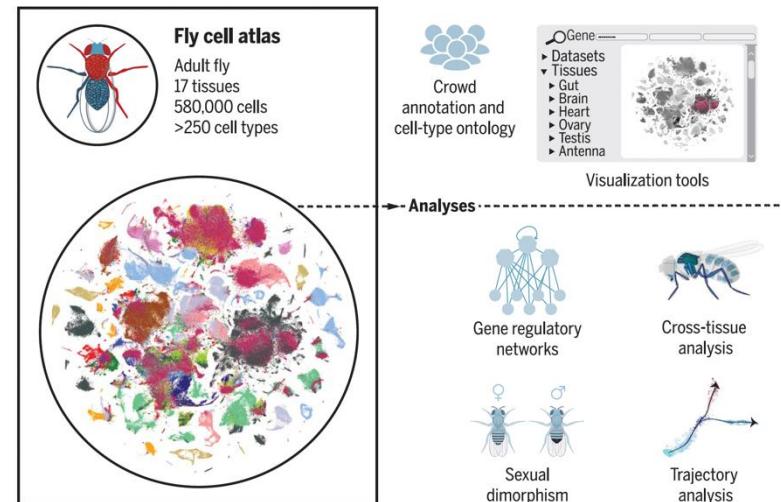
Perform MAS-Iso-seq on the 10x sc libraries to get long isoform reads at single cell resolution

Cataloguing Cell Types and Building Cell Atlases

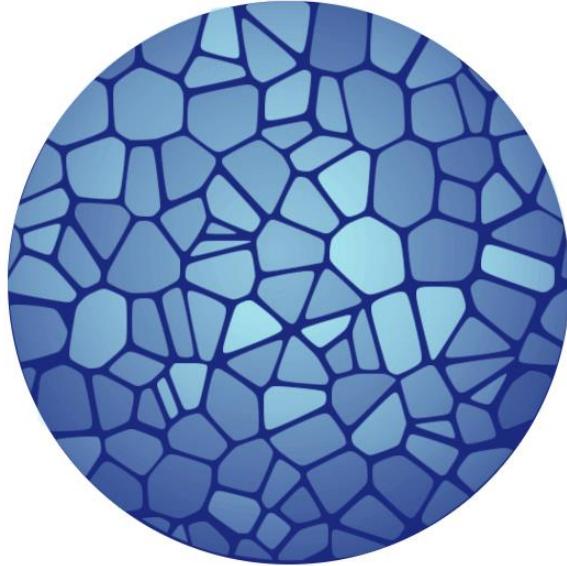
Tabula Muris



Tabula Drosophila



Tabula Drosophila. In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and >250 cell types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body. All data are freely available for visualization and download, with featured analyses shown at the bottom right.



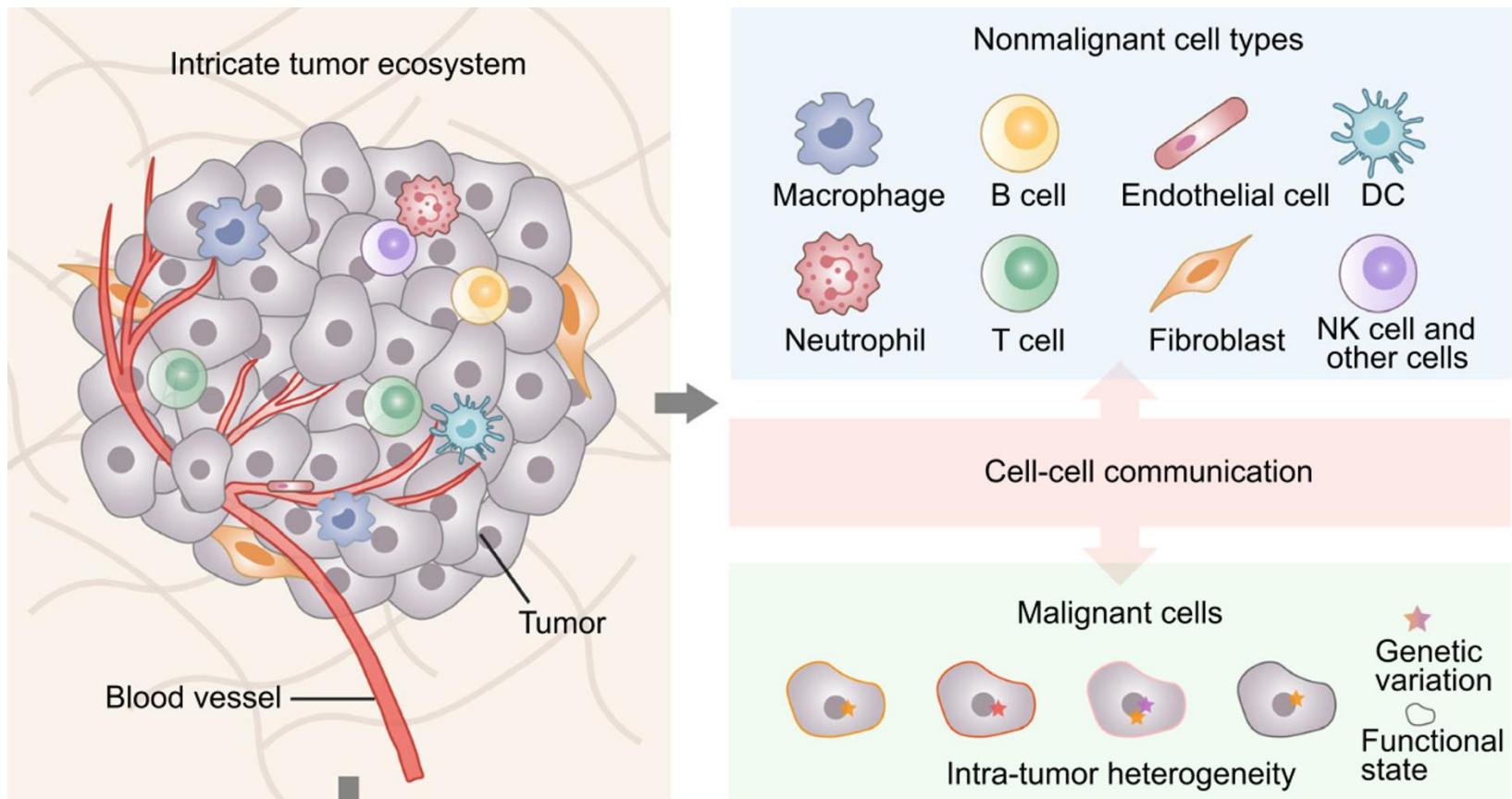
HUMAN CELL ATLAS

Characterize the ~37 trillion cells in the human body

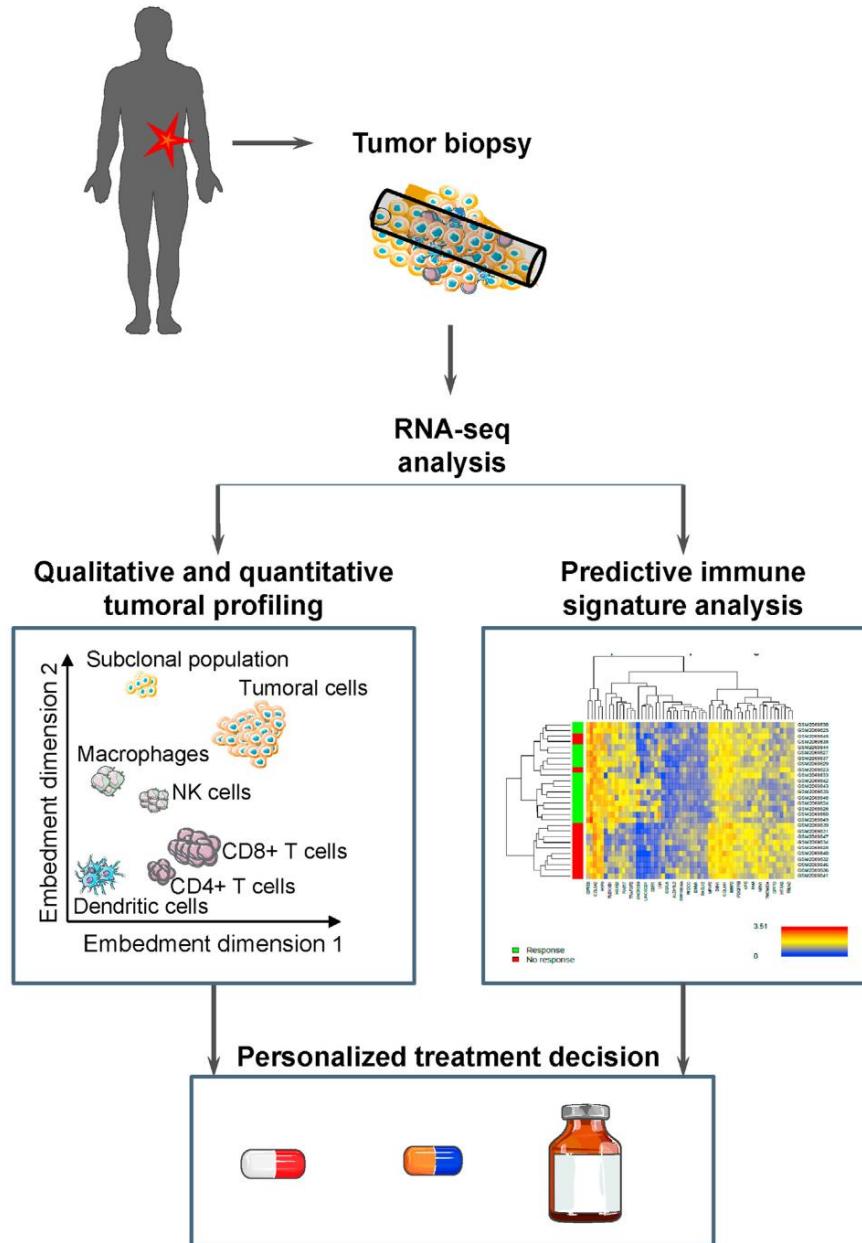
HCA is a global initiative of > 3k members

Initially targeting 18 biological networks of organs and tissues

Single cell analysis is revolutionizing cancer research



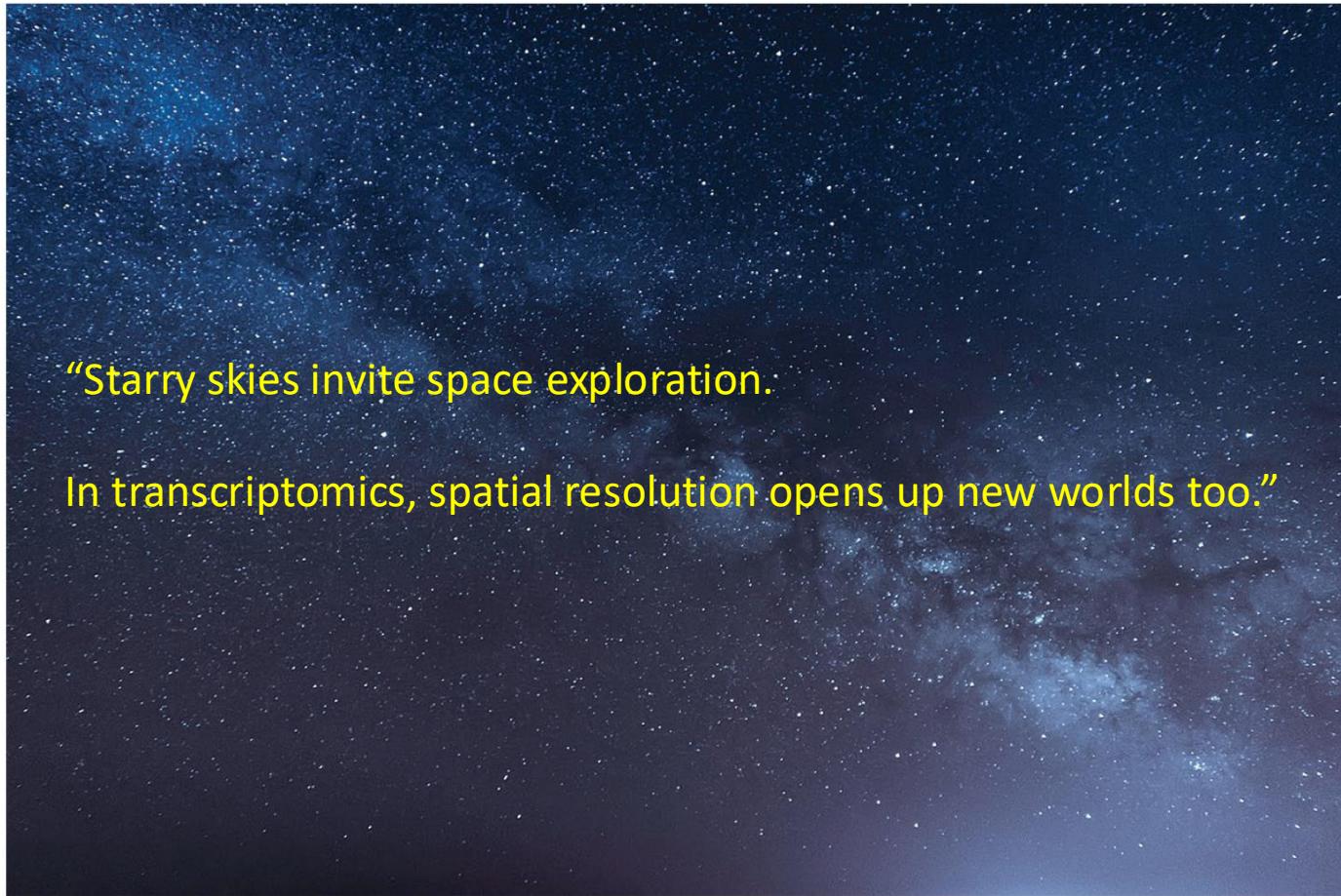
Clinical Application for Tumor Single Cell Transcriptomics



Part 8. Overview of Spatial Transcriptomics

Method of the Year: spatially resolved transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.



"Starry skies invite space exploration.

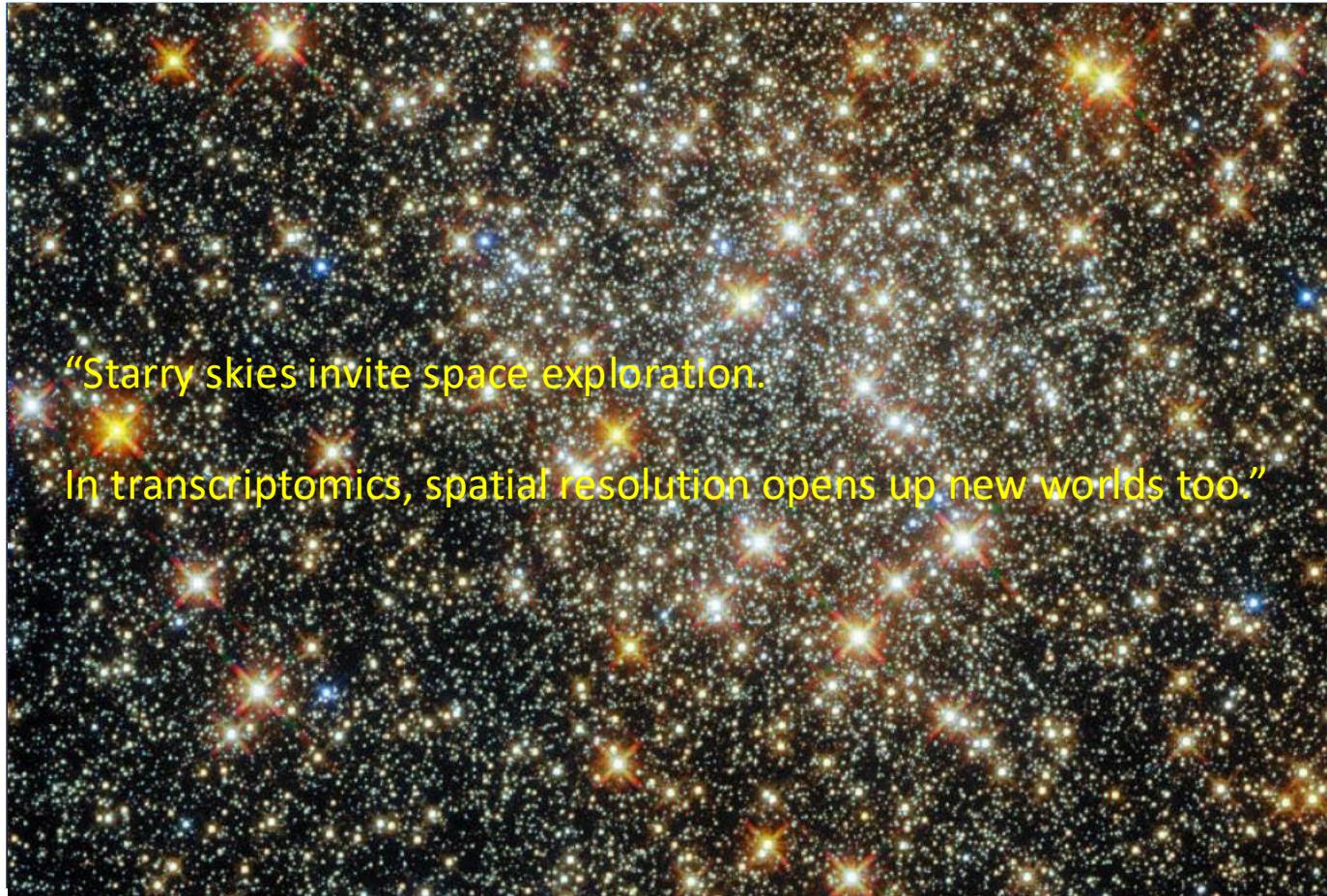
In transcriptomics, spatial resolution opens up new worlds too."

Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too.

Credit: bjd1zx/Getty Images

Method of the Year: spatially resolved transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.



Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too.

Credit: bjdlzx/Getty Images

Single Cells vs. Spatial Transcriptomics

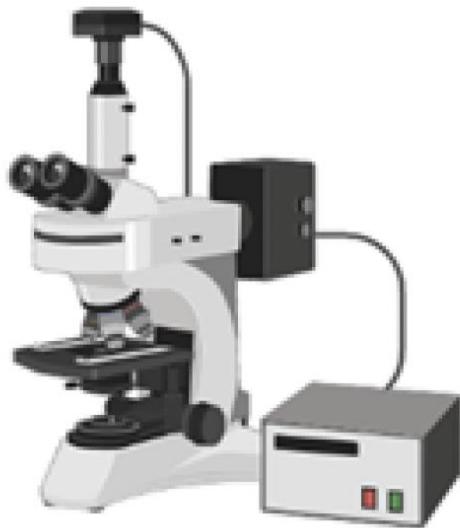
Vs.

Car parts ~ single cells

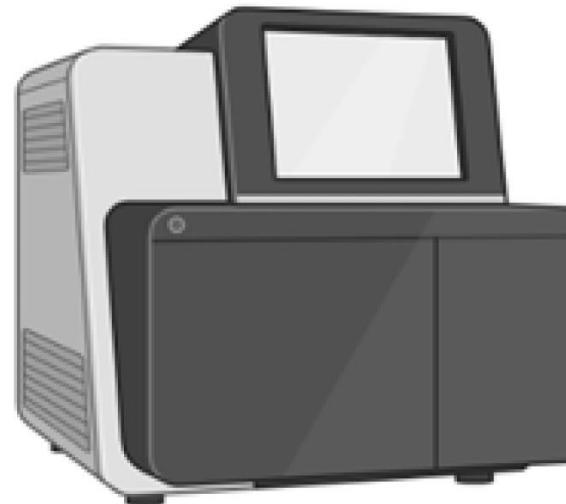
Car ~ tissue

Classes of Spatial Transcriptomics

Imaging Readout



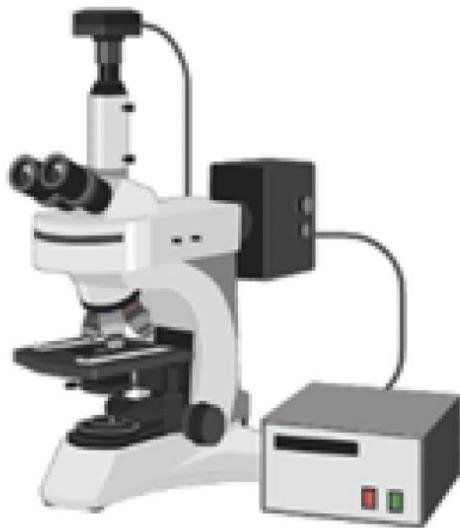
Sequencing Readout



Based on In Situ Hybridization (ISH)
and fluorescent tags

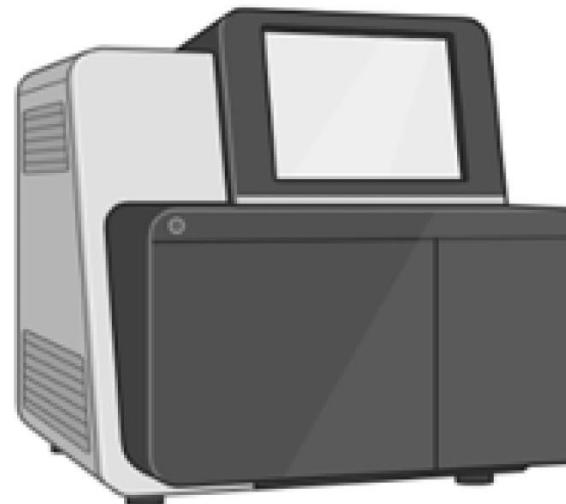
Classes of Spatial Transcriptomics

Imaging Readout



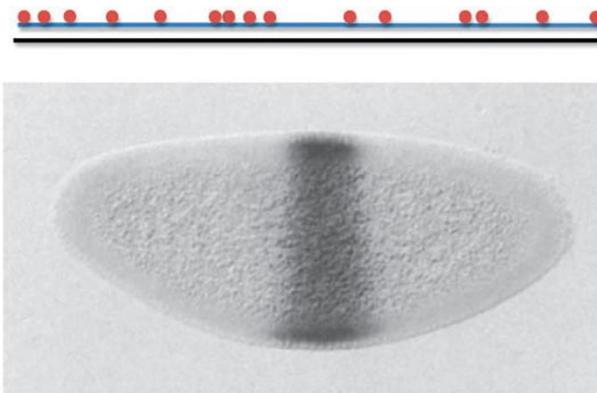
Based on In Situ Hybridization (ISH)
and fluorescent tags

Sequencing Readout



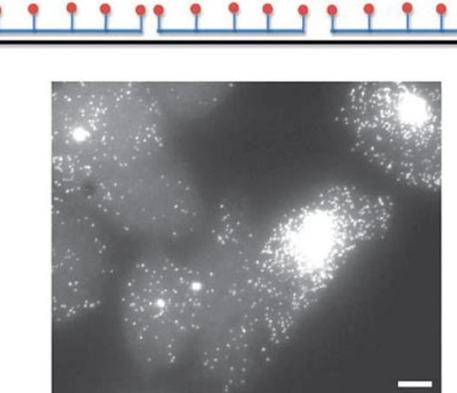
Single Molecule Fish (smFISH) Methods for Visualizing RNA Molecules at Sub-cellular Resolution

a Long probe, many labels



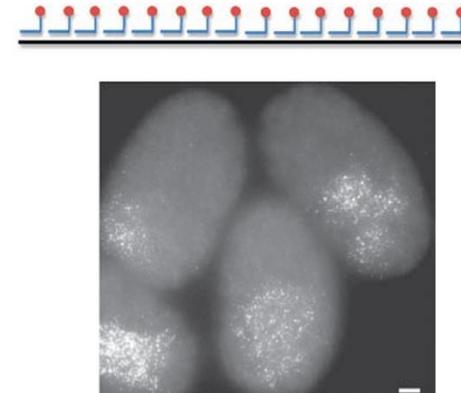
Target: hunchback RNA in Drosophila embryo

b Shorter probes, fewer labels



Target: single transcripts in mammalian cells

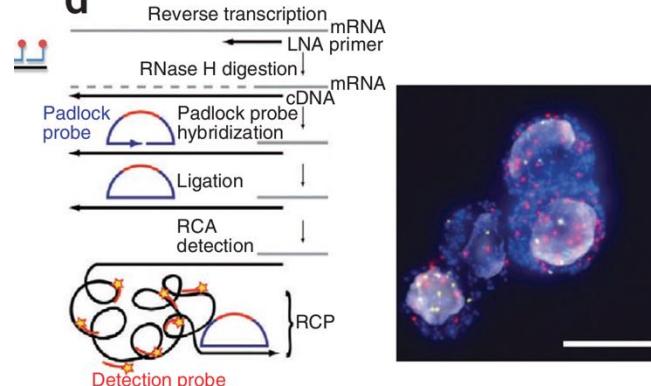
c Many probes, single label ea.



Target: end-1 gene in C.elegans embryos

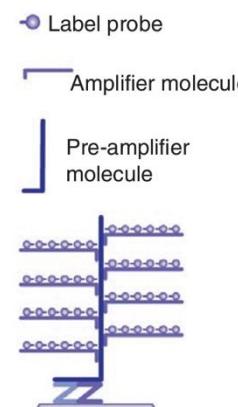
Rolling circle amplification (RCA) of 'padlock probes'.

d Labels hyb to RCA product.

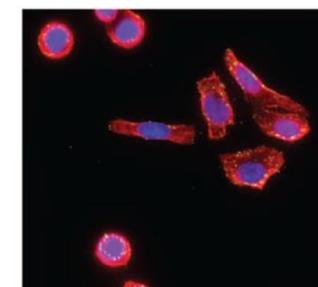


TARGET: ERBB2 (aka. HER2) in human fibroblasts

e



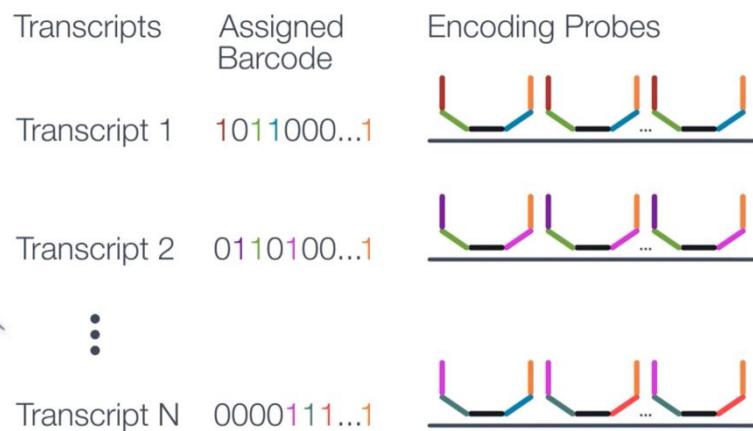
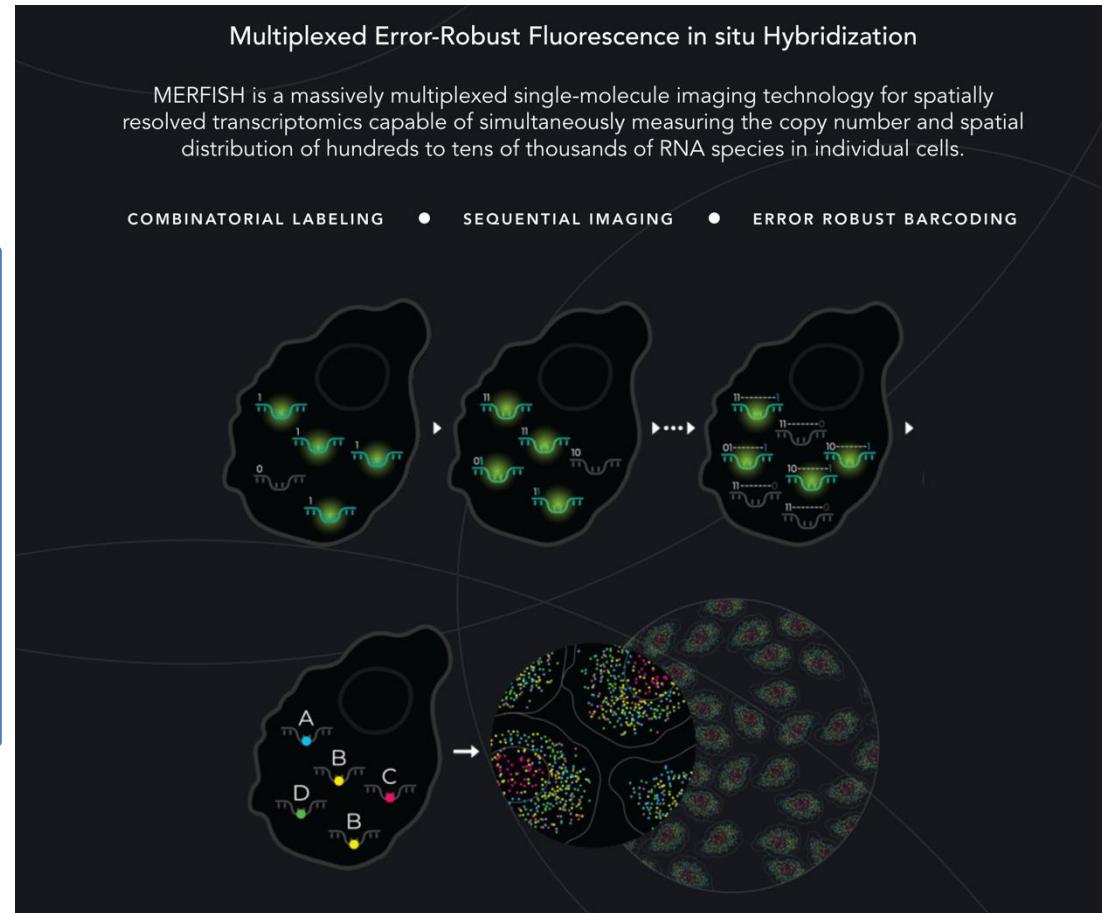
Branched oligo sets that amplify labeling



Target: ERBB2 (green) and 18SrRNA (red)

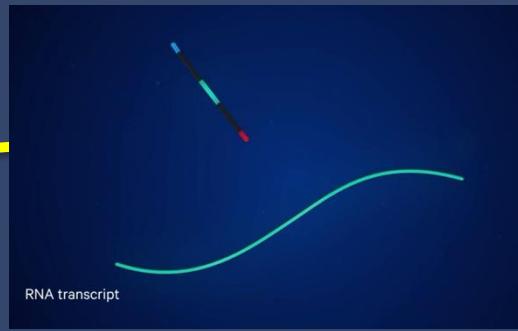
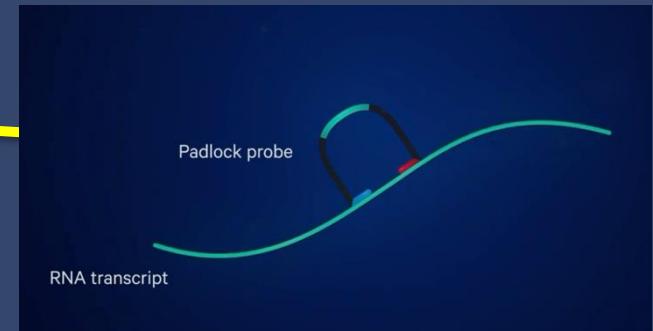
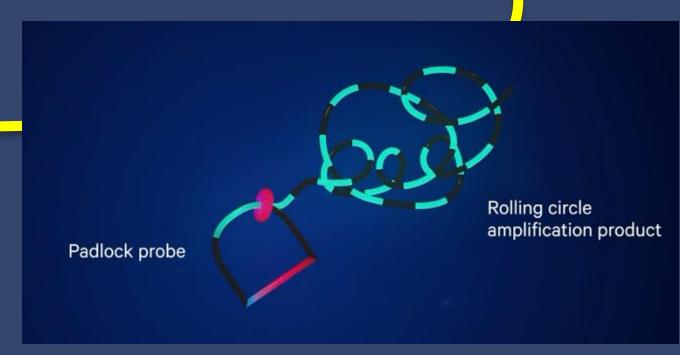
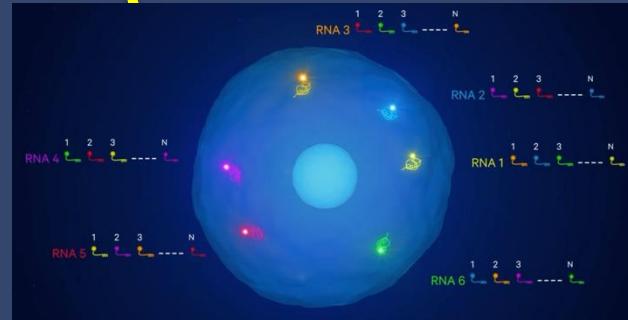
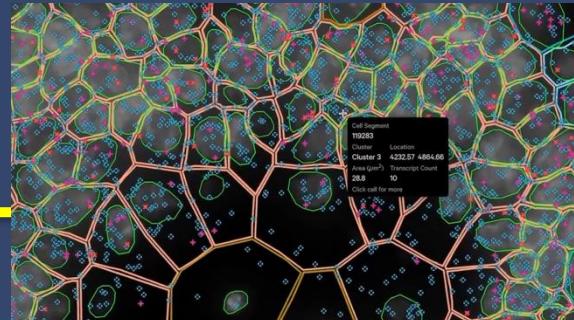
MERFISH – smFISH adapted for hundreds to thousands of transcripts

Each transcript target probe has a unique combination of beacon landing pads



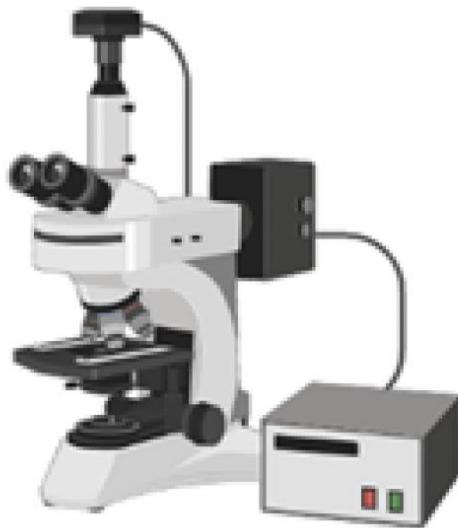
- Different fluorescently labeled probes (ie. beacons) are hybridized in each round.
- Combinations of colors -> Transcript ID

10X Genomics Xenium – 100s to 1000s of Targeted RNAs visualized at subcellular resolution



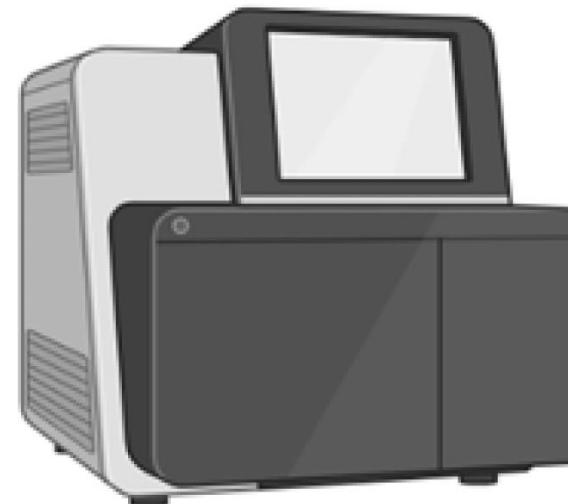
Classes of Spatial Transcriptomics

Imaging Readout

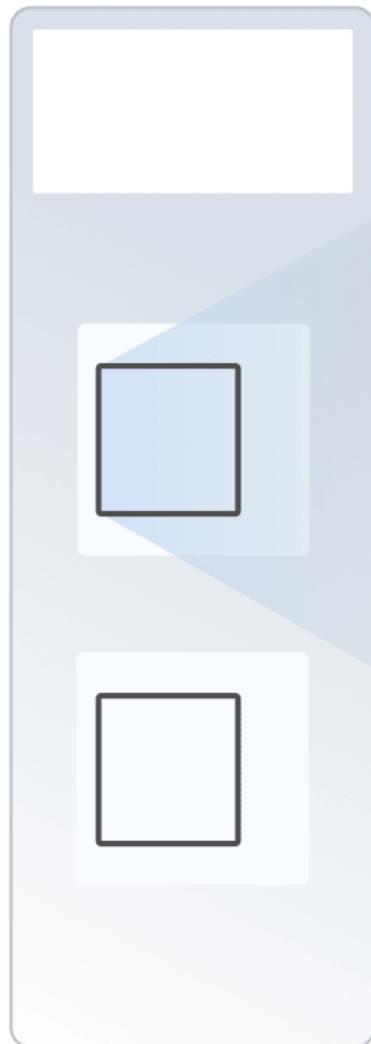


Based on In Situ Hybridization (ISH)
and fluorescent tags

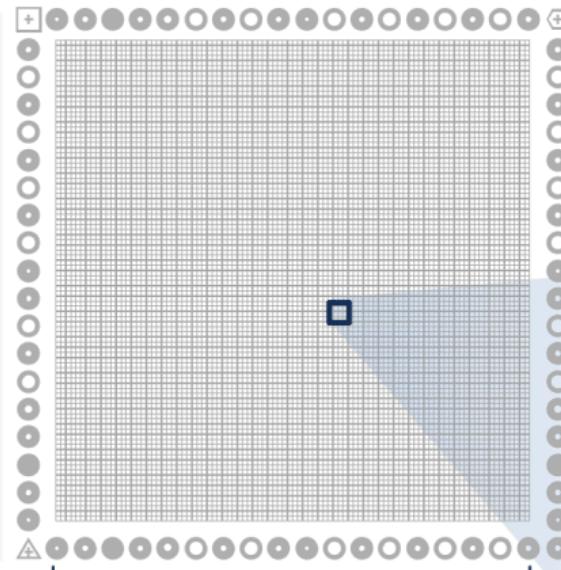
Sequencing Readout



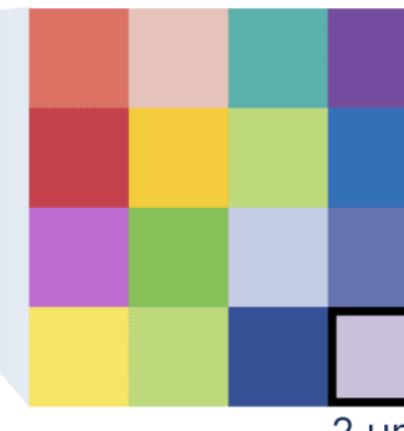
Spatial RNA-seq – 10X Visium HD



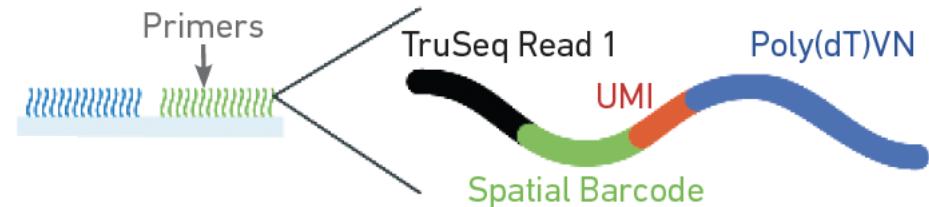
The Capture Area is a
continuous lawn of oligos



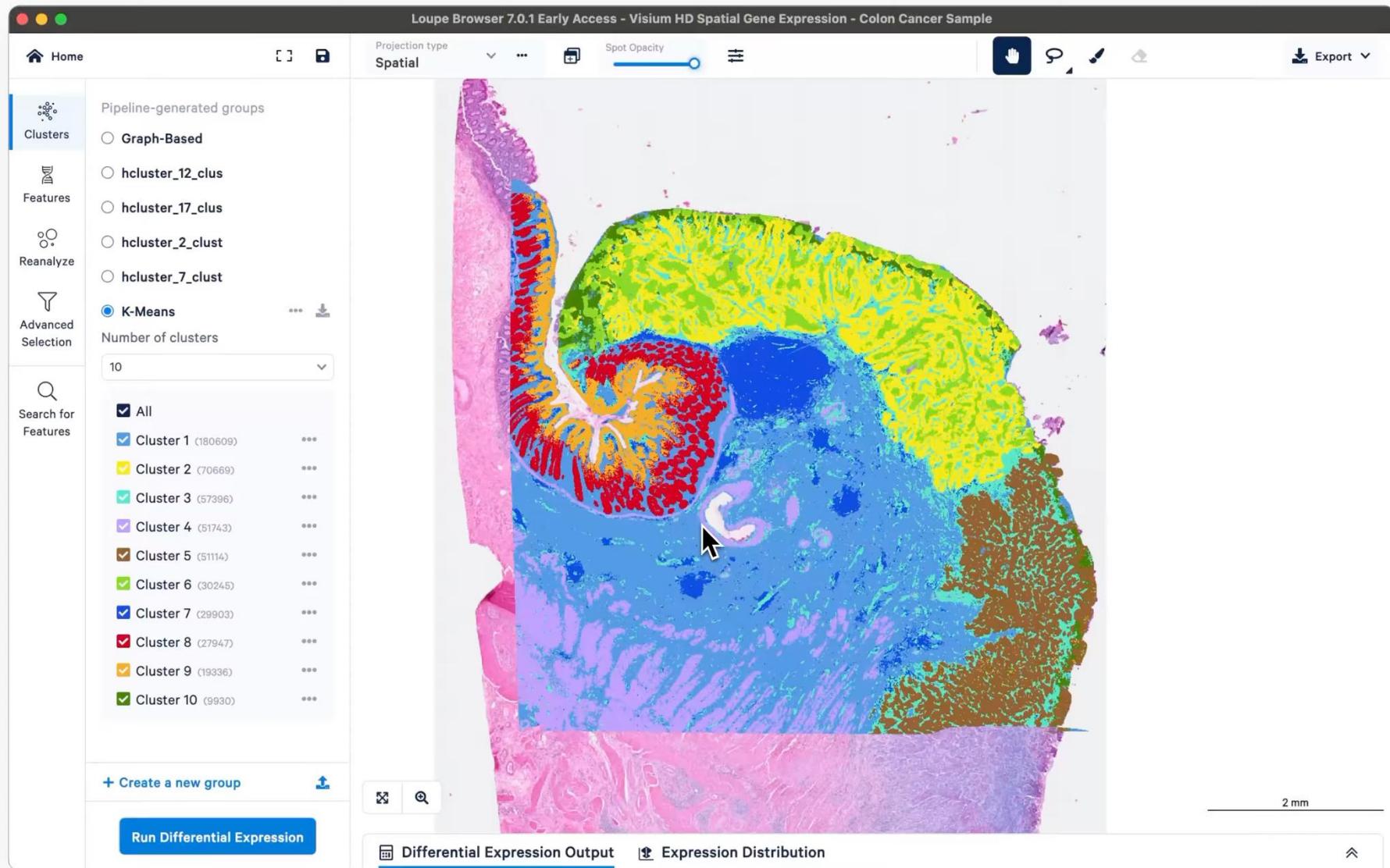
$8 \times 8 \mu\text{m}$ bin



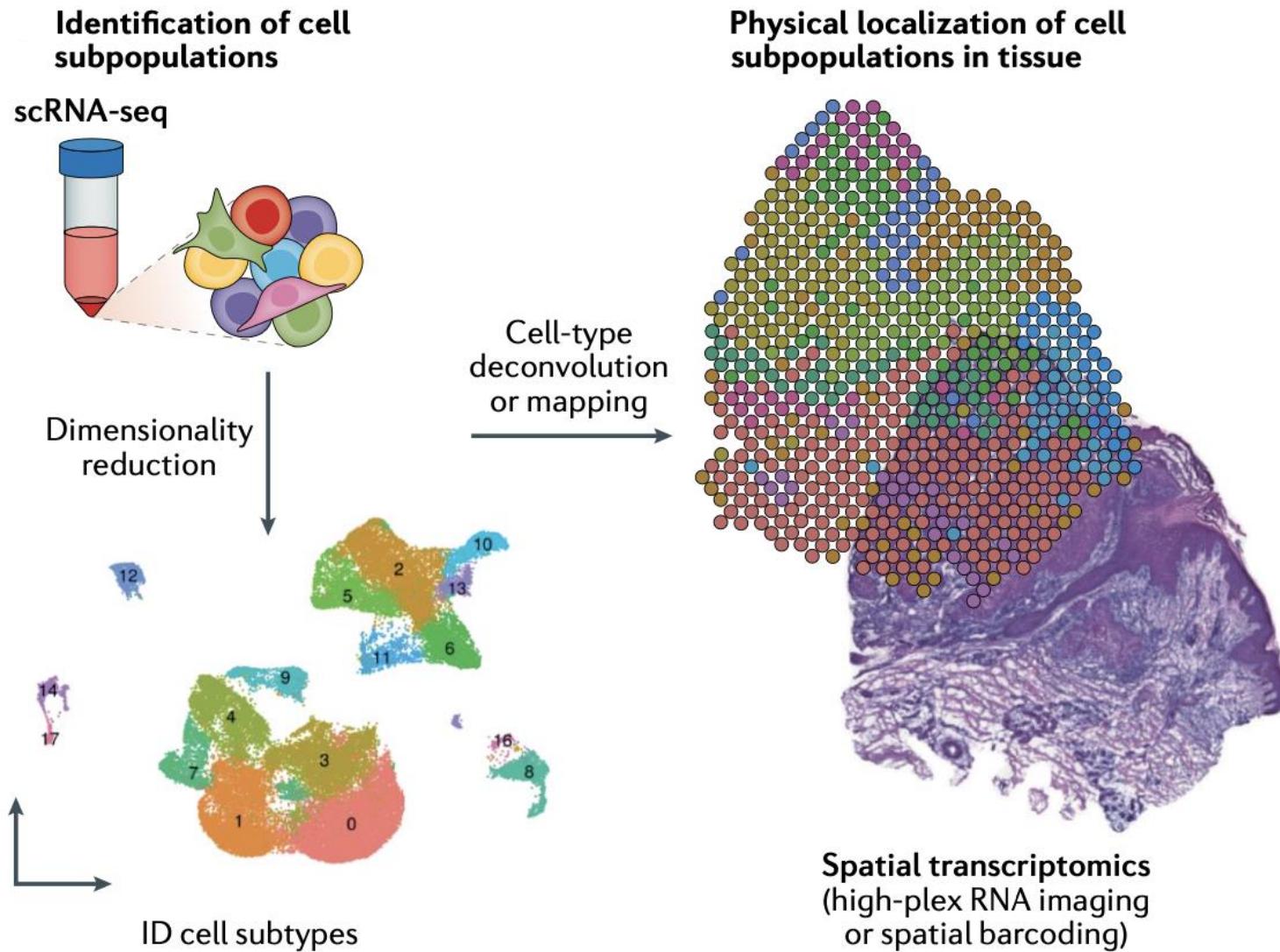
$2 \mu\text{m}$
 $2 \mu\text{m}$



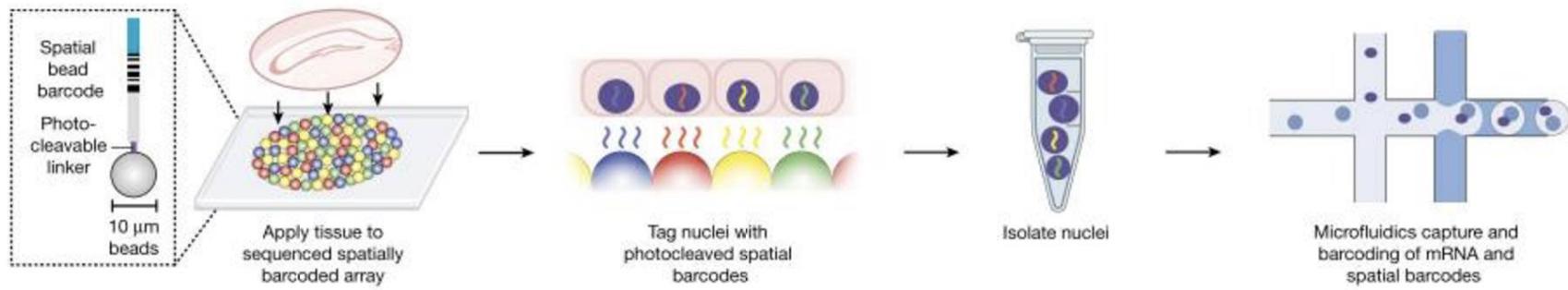
Spatial RNA-seq – 10X Visium HD



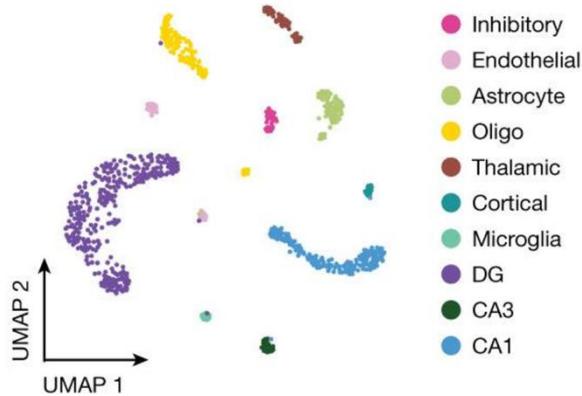
Integration of Single Cell and Spatial Transcriptomes



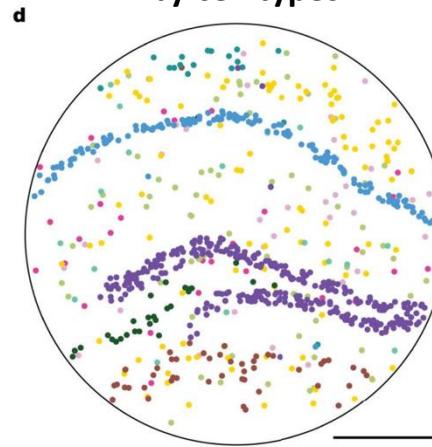
Slide-Tags: integrated single nuclei and spatial transcriptomics



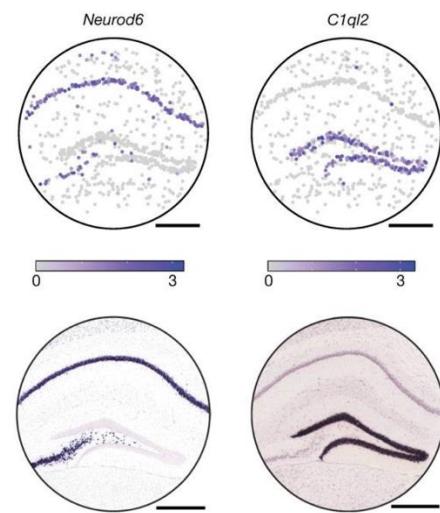
UMAP and cell types, expression-based clustering



Cells plotted according to spatial coordinates, colored by cell types



Spatial Expression of Marker Genes



In situ hybridization
(Allen Mouse Brain Atlas)

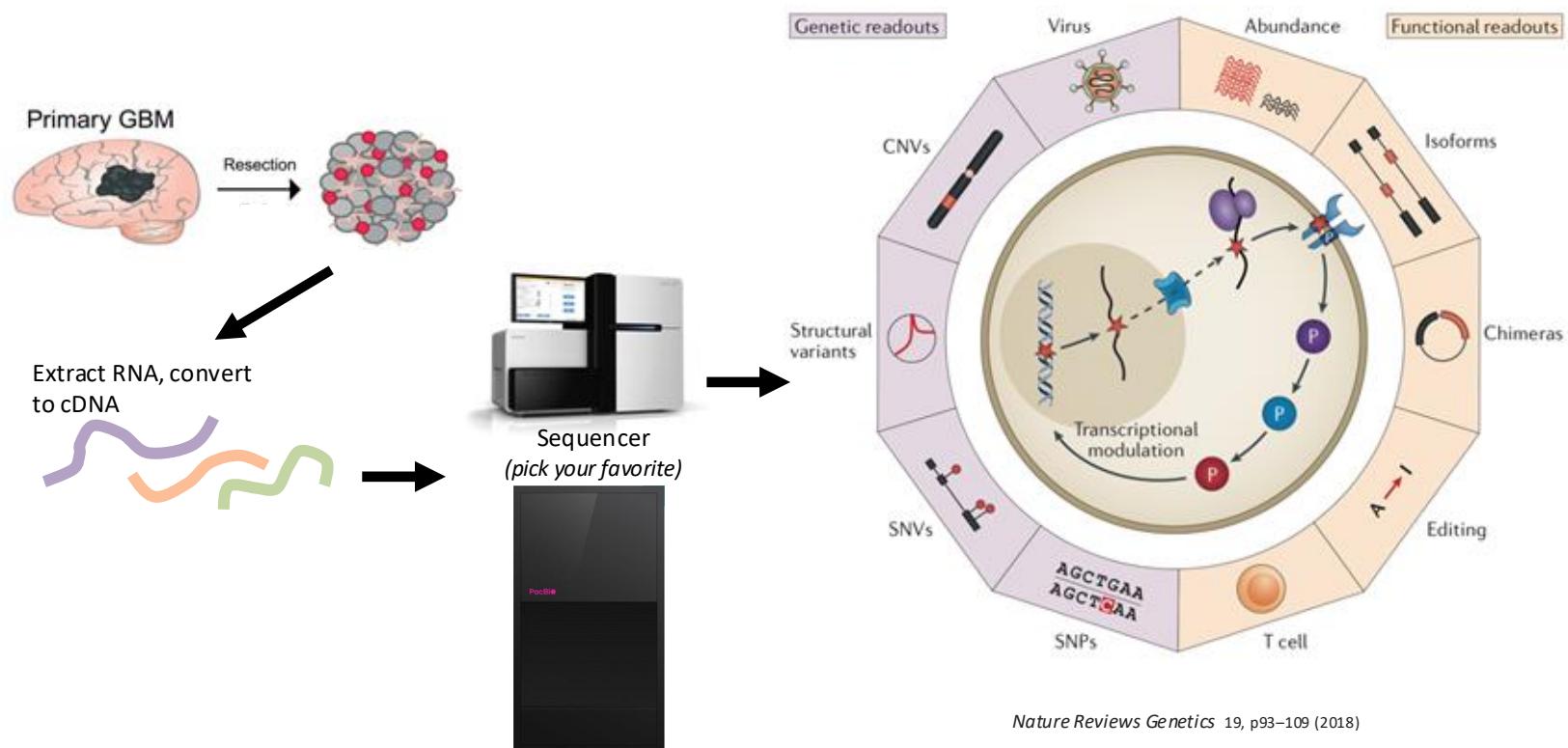
Slide-Tags commercialized as 'Trekker' by Curio Bioscience

The screenshot shows the Curio Bioscience website at curiobioscience.com/curio-trekker/. The header includes the Takara Curio logo, navigation links for PRODUCTS, APPLICATIONS, RESOURCES, COMPANY, CONTACT US, SUPPORT, and a search icon, along with a 'REQUEST QUOTE' button. A large banner on the right features a dense, colorful dot plot of single nuclei. In the center, a diagram illustrates the Trekker bioinformatics pipeline. It starts with two input libraries: 'snRNA-seq gene expression library' (containing 'Single-cell barcodes' and 'mRNA' strands) and 'Trekker spatial library' (containing 'Trekker spatial barcodes'). These inputs feed into the 'Trekker bioinformatics pipeline', which leads to a 'Spatial map of single nuclei'. The spatial map is a 3D-like visualization of the nuclei, colored by their spatial distribution and possibly expression levels.

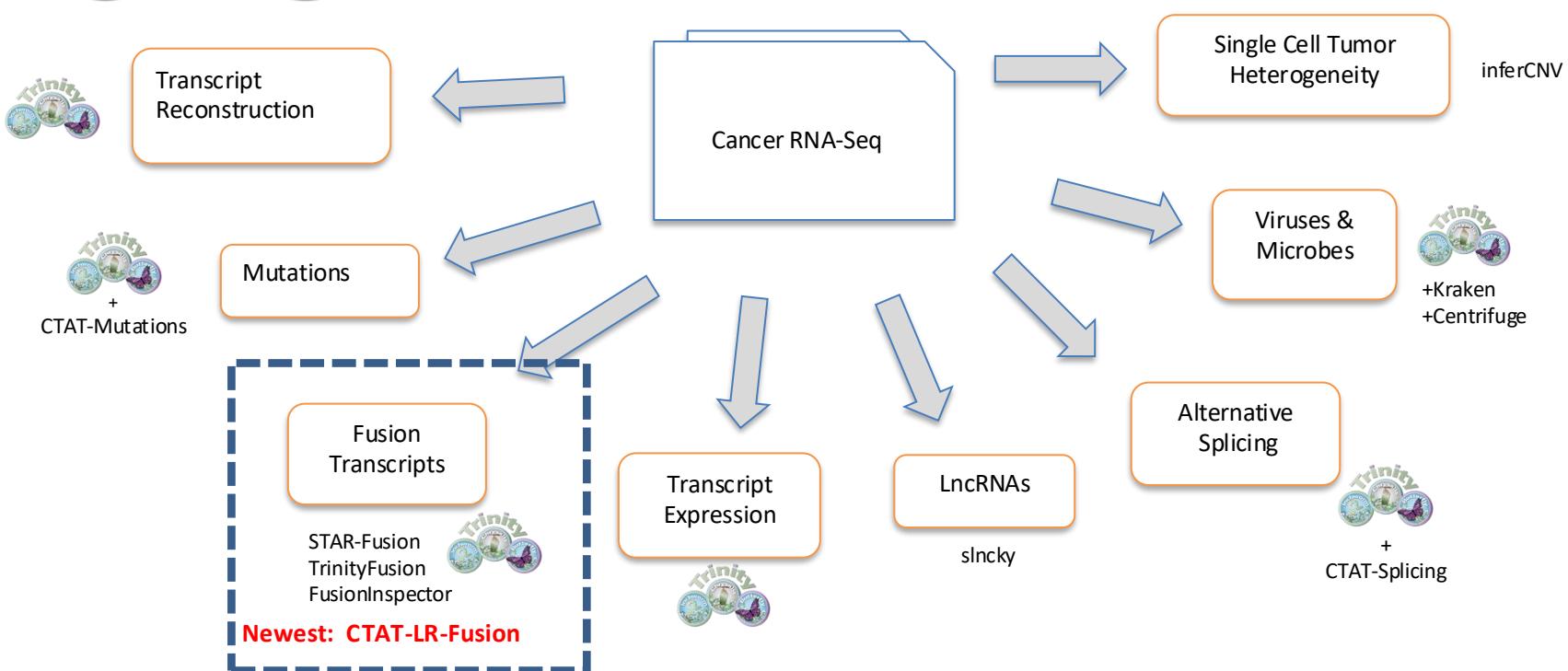
Video: <https://curiobioscience.com/curio-trekker/>

Part 9. Applications in Cancer Transcriptomics

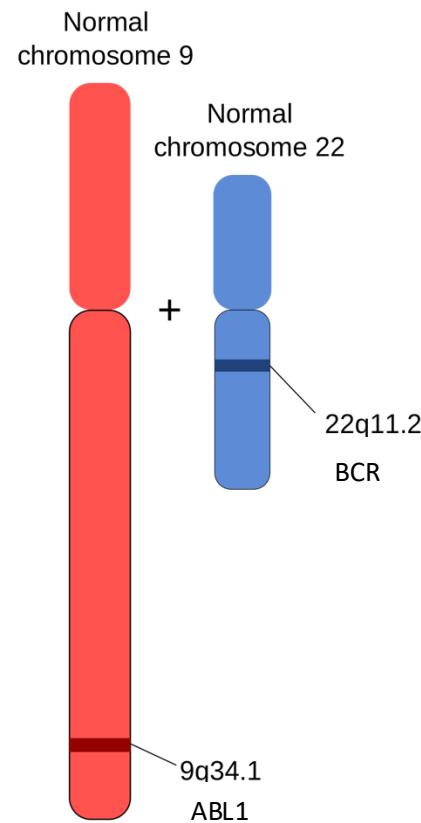
RNA-Seq Empowers Transcriptome Studies of Cancer



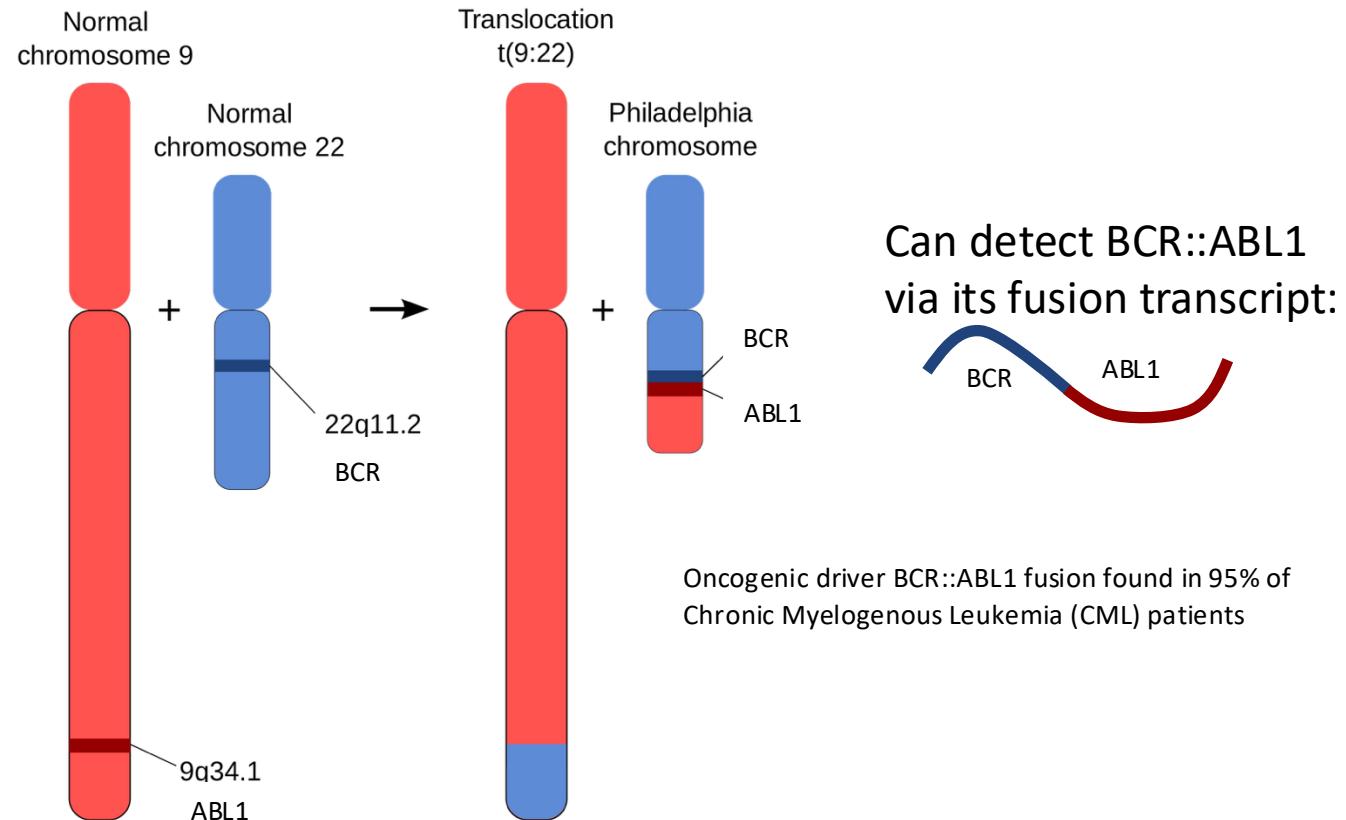
Cancer Transcriptome Analysis Toolkit (CTAT)



Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts



Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts



Diagnostics and Therapeutics Involving Oncogenic Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)

- Chronic Myelogenous Leukemia (CML) cases (95% of cases)
- Treatable with tyrosine kinase inhibitors

SS18-SSX

- Synovial sarcoma (~100% of cases)

TMPRSS2-ERG

- Prostate cancers (50% of cases)

EML4-ALK

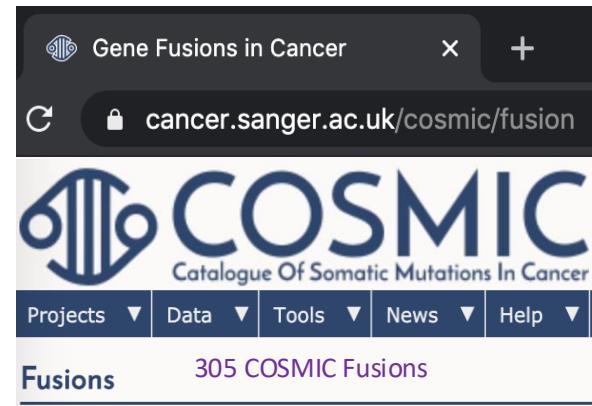
- Non small cell lung carcinoma (4% of cases)
- anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome

DNAJB1-PRKACA

- Fibrolamellar hepatocellular carcinoma (FL-HCC), 100% of cases, but a rare cancer.

FGFR3-TACC3

- ~8% of glioblastoma patients



Gene Fusions in Cancer

cancer.sanger.ac.uk/cosmic/fusion

COSMIC

Catalogue Of Somatic Mutations In Cancer

Projects Data Tools News Help

Fusions 305 COSMIC Fusions

Diagnostics and Therapeutics Involving Oncogenic Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)

- Chronic Myelogenous Leukemia (CML) cases (95% of cases)
- **Treatable with tyrosine kinase inhibitors**

SS18-SSX

- Synovial sarcoma (~100% of cases)

TMPRSS2-ERG

- Prostate cancers (50% of cases)

EML4-ALK

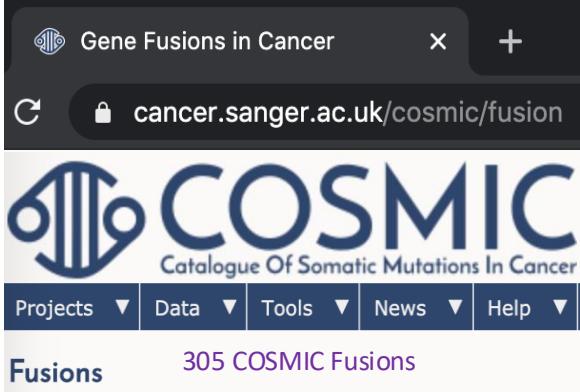
- Non small cell lung carcinoma (4% of cases)
- **anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome**

DNAJB1-PRKACA

- Fibrolamellar hepatocellular carcinoma (FL-HCC), 100% of cases, but a rare cancer.

FGFR3-TACC3

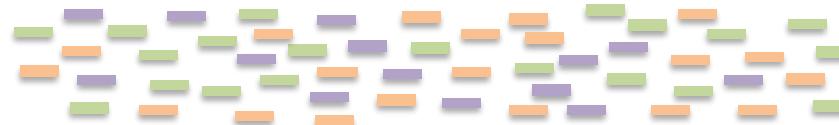
- ~8% of glioblastoma patients



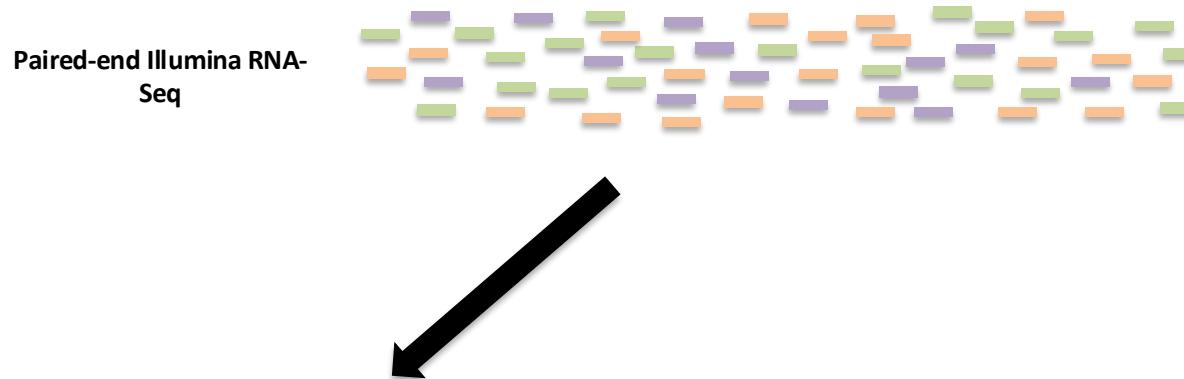
The screenshot shows a search results page for 'Gene Fusions in Cancer' on the COSMIC website. The top navigation bar includes a search icon, the text 'Gene Fusions in Cancer', a close button, and a '+' button. Below the bar is a URL bar with the address 'cancer.sanger.ac.uk/cosmic/fusion'. The main content area features the COSMIC logo and the text 'Catalogue Of Somatic Mutations In Cancer'. A navigation menu below the logo includes 'Projects', 'Data', 'Tools', 'News', and 'Help'. A secondary menu below the main one is labeled 'Fusions' and shows '305 COSMIC Fusions'.

General Approaches to Fusion Transcript Discovery

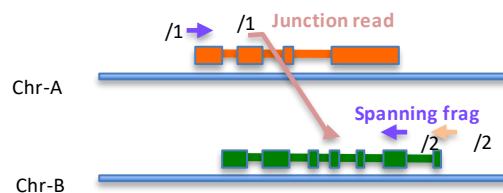
Paired-end Illumina RNA-
Seq



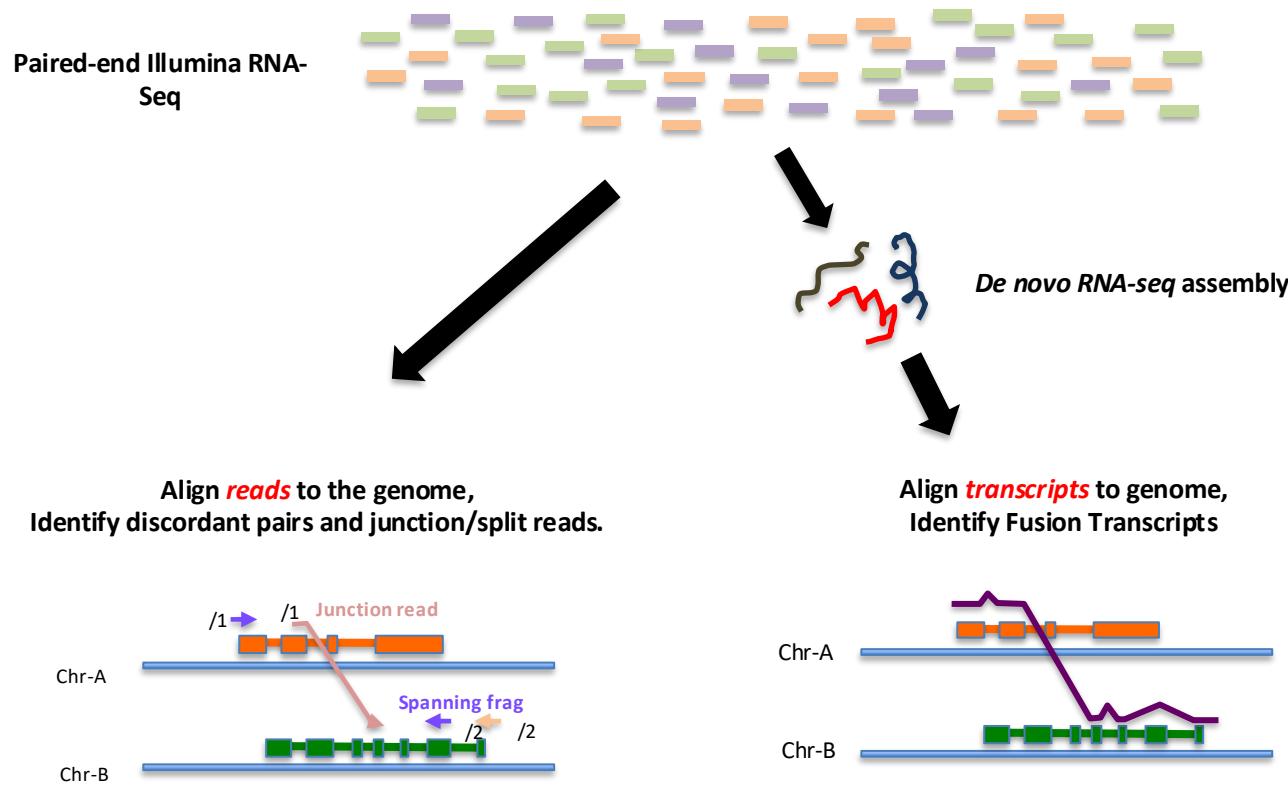
General Approaches to Fusion Transcript Discovery



Align **reads** to the genome,
Identify discordant pairs and junction/split reads.



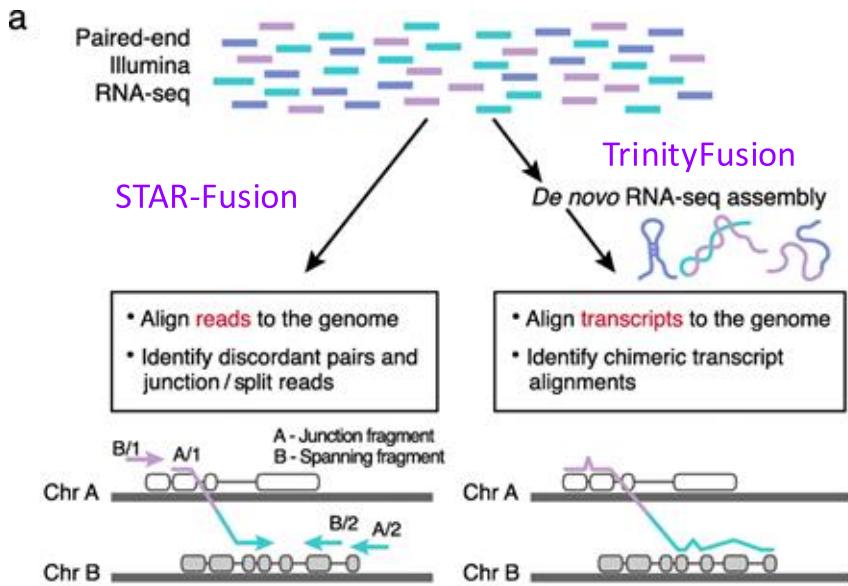
General Approaches to Fusion Transcript Discovery



Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods

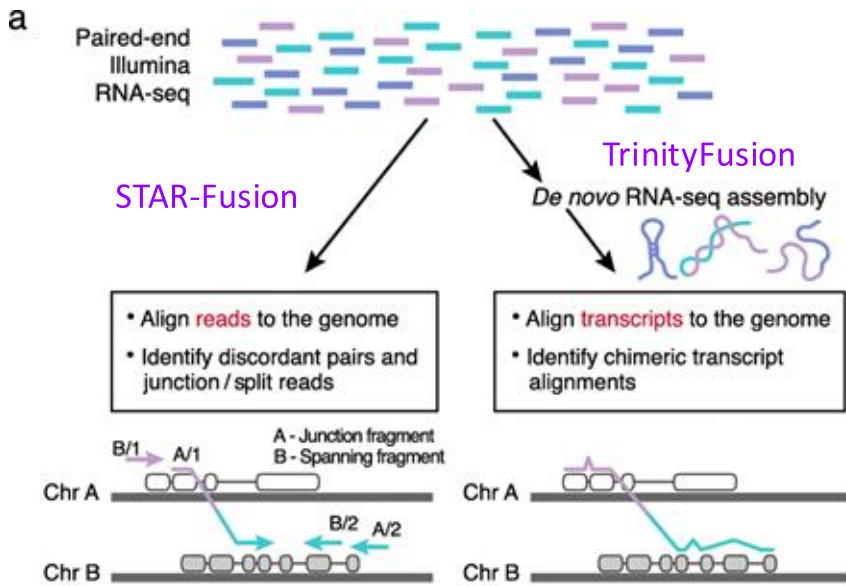
[Genome Biology volume 20, Article number: 213 \(2019\)](#)



Our Prior Work on Fusion Detection, Benchmarking, and Analysis via Illumina RNA-seq

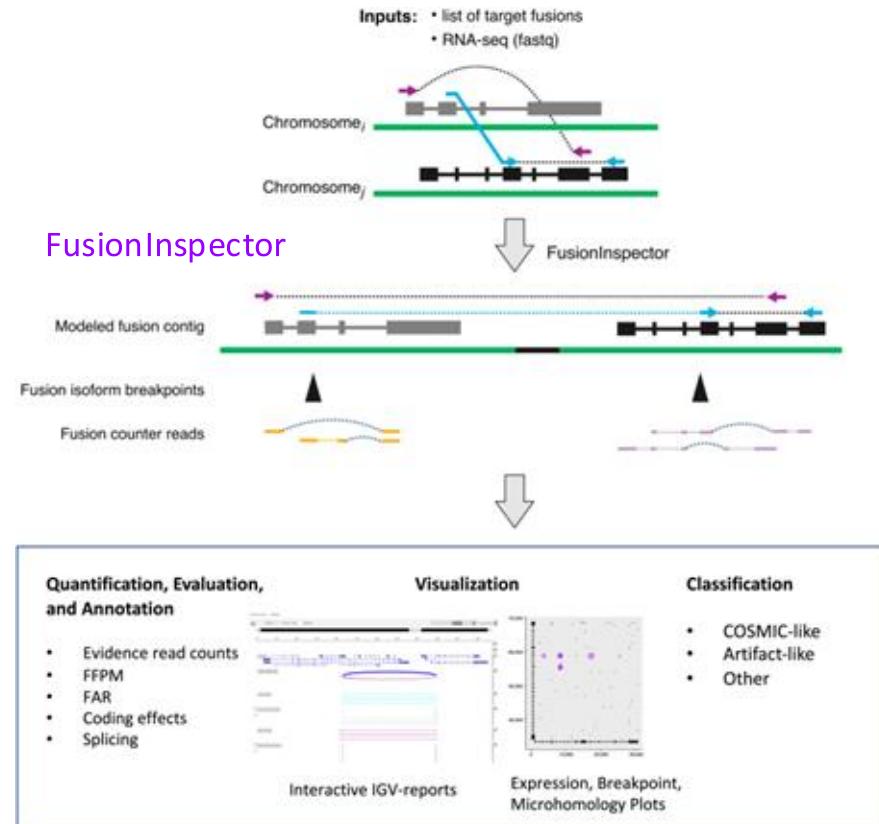
Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods

[Genome Biology volume 20, Article number: 213 \(2019\)](#)



Targeted in silico characterization of fusion transcripts in tumor and normal tissues via **FusionInspector**

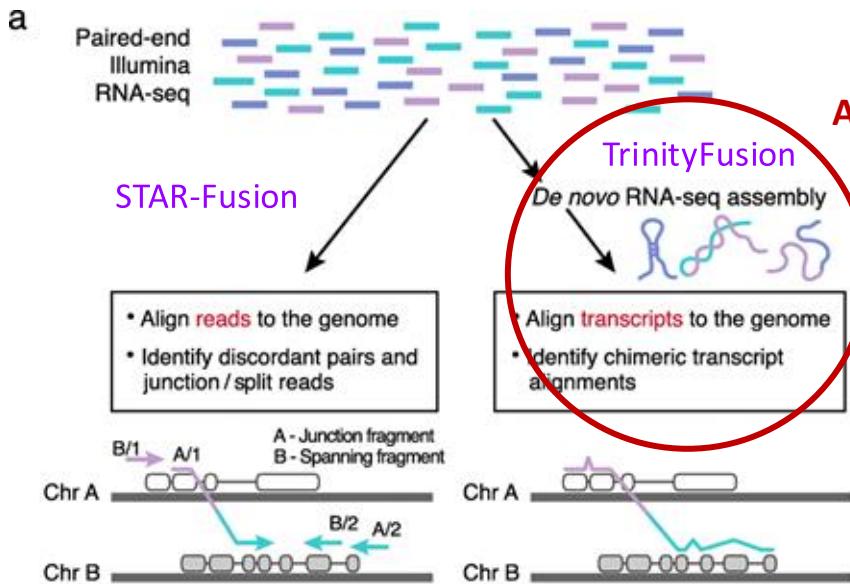
[Cell Rep Methods. 2023 May 8;3\(5\):100467.](#)



Adapting TrinityFusion and FusionInspector to Long Read Fusion Detection

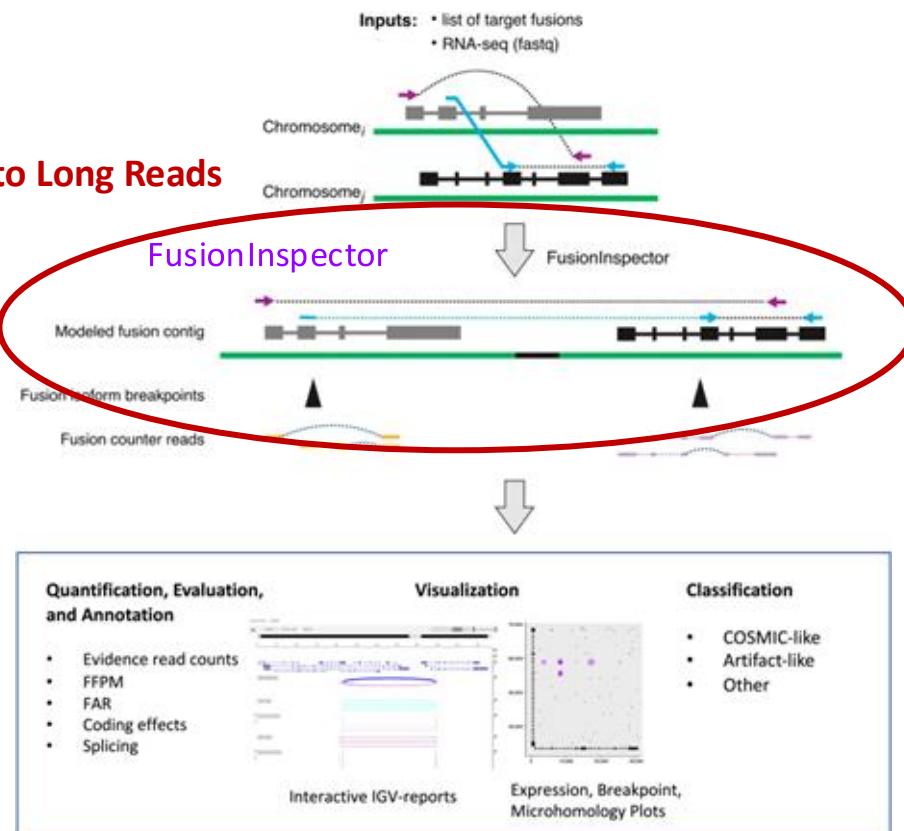
Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods

[Genome Biology volume 20, Article number: 213 \(2019\)](#)



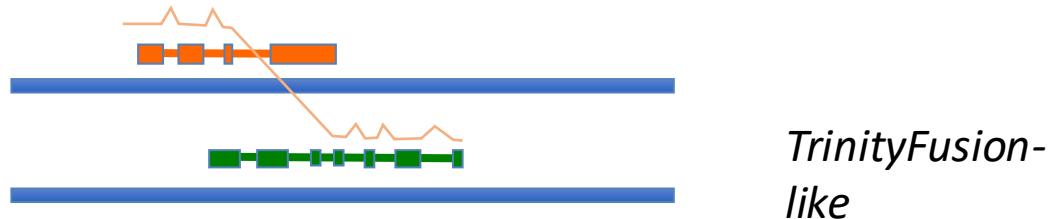
Targeted in silico characterization of fusion transcripts in tumor and normal tissues via FusionInspector

[Cell Rep Methods. 2023 May 8;3\(5\):100467.](#)



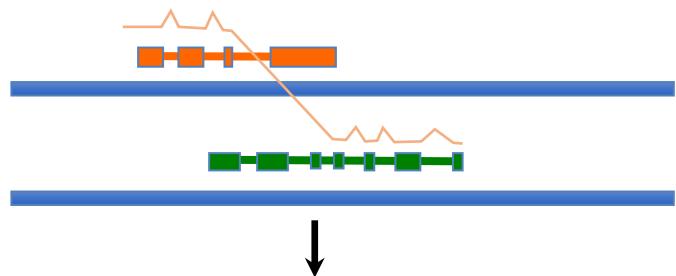
New Addition to our **Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion**
(borrows general approach from TrinityFusion and FusionInspector, adapted for LR)

(1) Quickly Identify Fusion Candidate (ctat-minimap2) *4x faster*



New Addition to our **Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion**
*(borrows general approach from *TrinityFusion* and *FusionInspector*, adapted for LR)*

(1) Quickly Identify Fusion Candidate (ctat-minimap2) *4x faster*



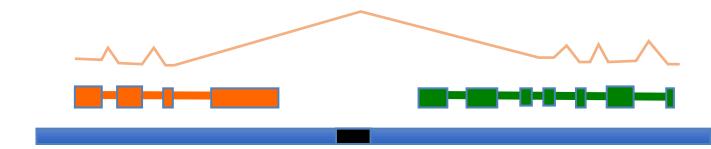
TrinityFusion-like

(2)

Make mini-fusion contigs

FusionInspector-like

Rigorous minimap2-alignment, capture precise breakpoints



CTAT-LR-Fusion Interactive Reports for Visualization and Analysis

Single Cell MAS-Iso-seq Applied to T-cell Enriched Melanoma Patient Sample

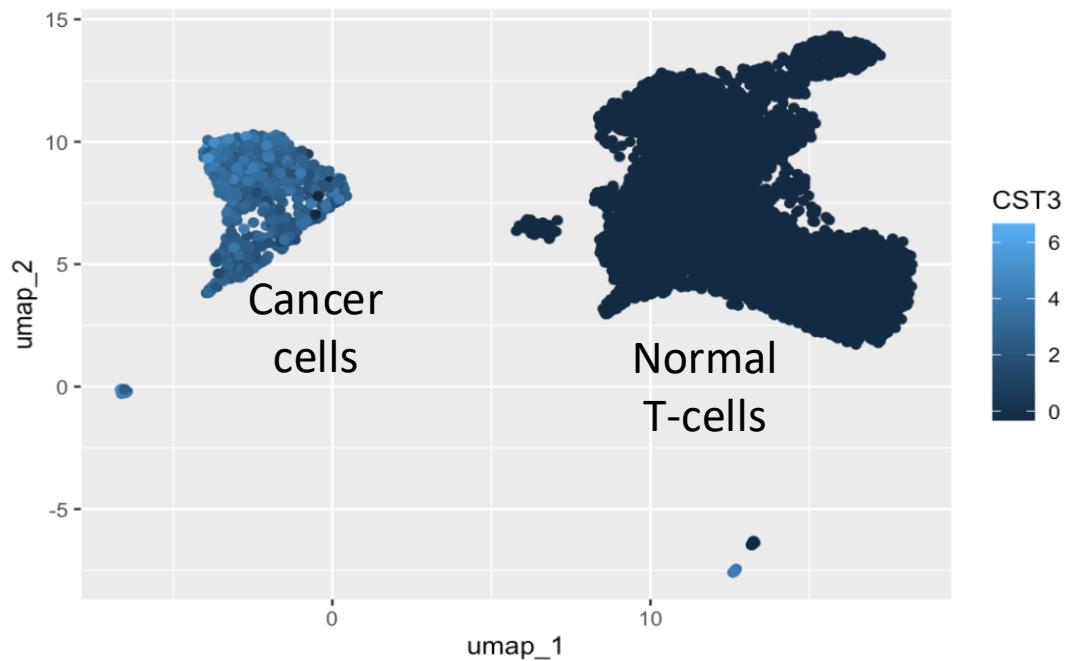
Long and Short scRNA-seq

- ~ 20M PacBio MAS-Iso-seq reads
- ~ 200M Illumina 10x 3' reads
- ~ 7k Total cells (10% cancer cells)

Brief Communication | Published: 08 June 2023

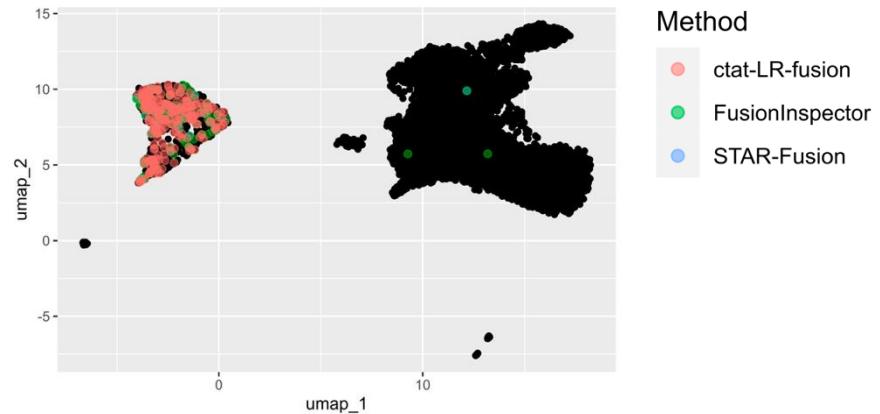
High-throughput RNA isoform sequencing using programmed cDNA concatenation

Aziz M. Al'Khafaji , Jonathan T. Smith, Kiran V. Garimella , Mehrtash Babadi , Victoria Popic ,
Moshe Sade-Feldman, Michael Gatzen, Siranush Sarkizova, Marc A. Schwartz, Emily M. Blaum, Allyson Day, Maura Costello, Tera Bowers, Stacey Gabriel, Eric Banks, Anthony A. Philippakis, Genevieve M. Boland, Paul C. Blainey & Nir Hacohen



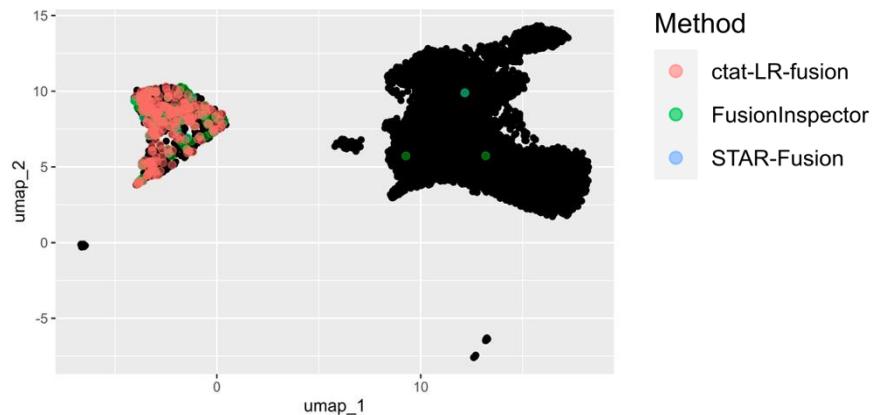
Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4

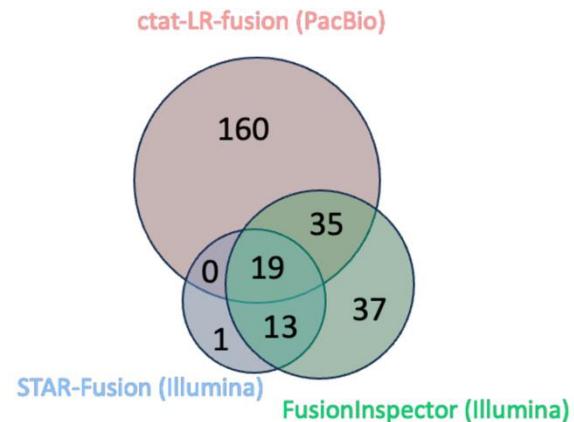


Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4

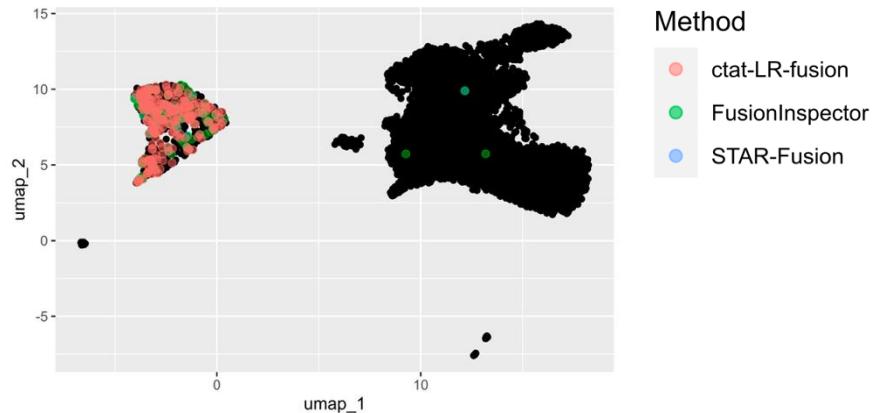


Cells Identified with NUTM2A-AS1::RP11-203L2.4

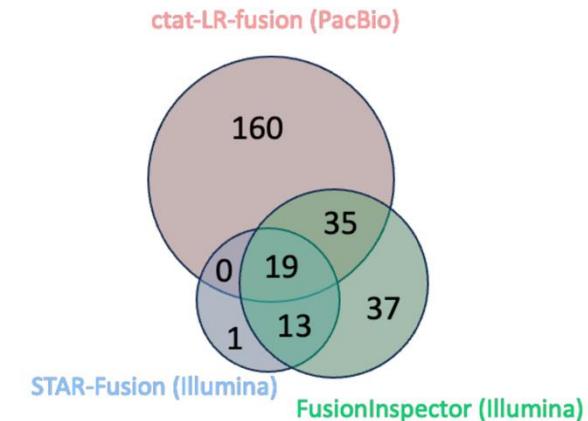


Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

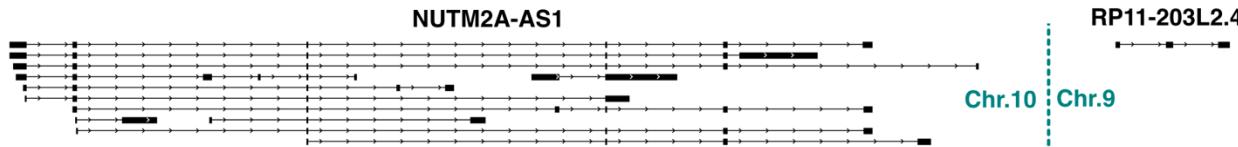
Cells expressing NUTM2A-AS1::RP11-203L2.4



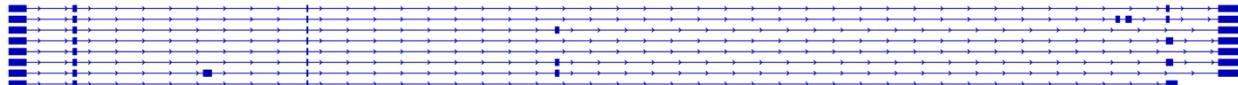
Cells Identified with NUTM2A-AS1::RP11-203L2.4



Reference Isoform Structures



Isoforms Reconstructed from PacBio MAS-Iso-seq Reads



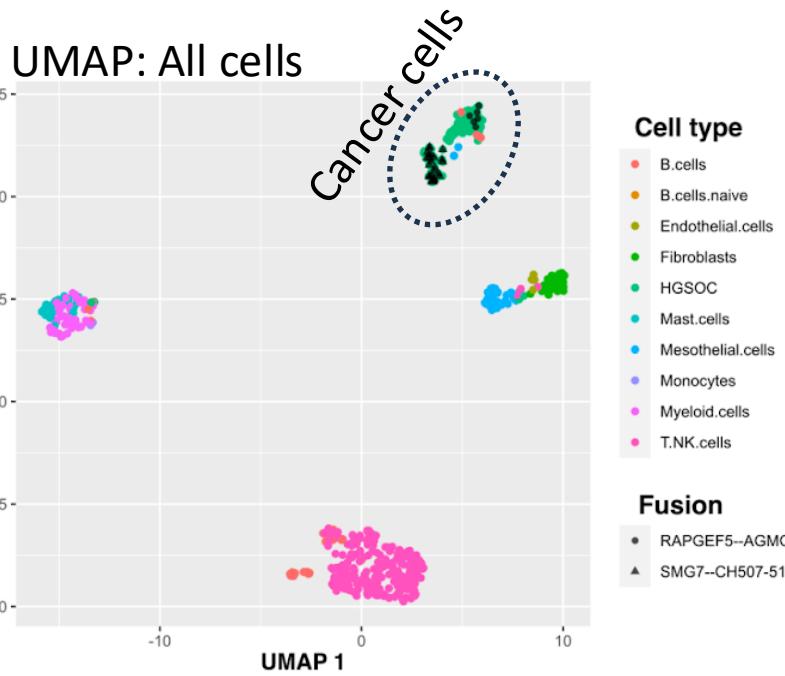
Fusion Isoform Junctions Detected from Short Illumina Reads

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer

Arthur Dondi, Ulrike Lischetti, Francis Jacob, Franziska Singer, Nico Borgsmüller, Ricardo Coelho, Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel & Niko Beerewinkel

Nature Communications 14, Article number: 7780 (2023) | [Cite this article](#)



Patient 1:

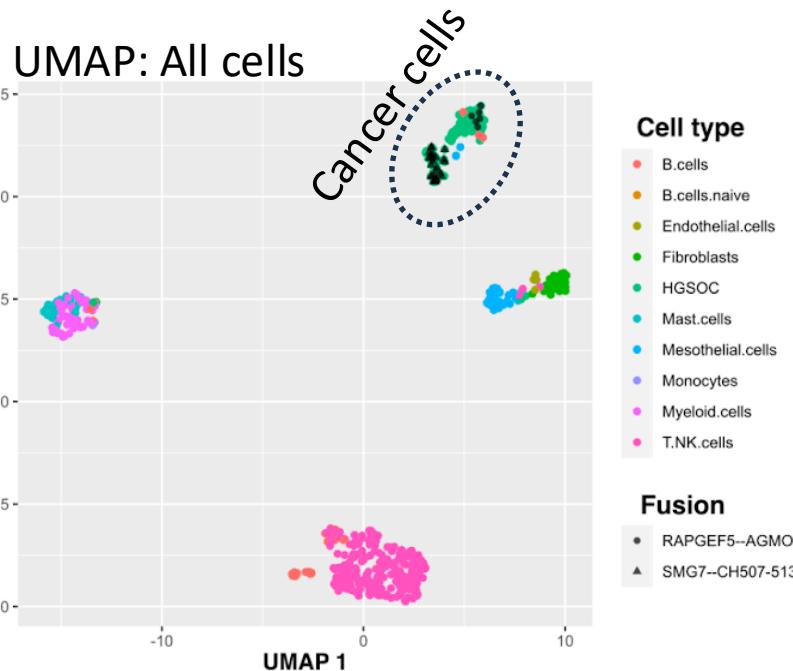
- 54M PacBio Isoform reads
- 35M Illumina 10x 3' reads
- ~500 cells (20% cancer)
- 4 cancer-specific fusions detected

Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer

Arthur Dondi, Ulrike Lischetti, Francis Jacob, Franziska Singer, Nico Borgsmüller, Ricardo Coelho, Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel & Niko Beerewinkel

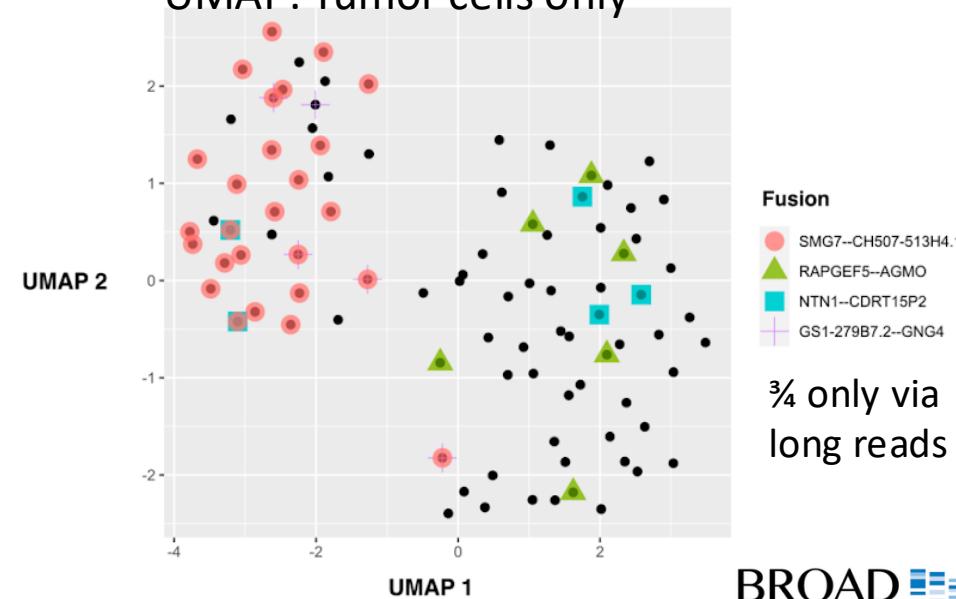
Nature Communications 14, Article number: 7780 (2023) | [Cite this article](#)

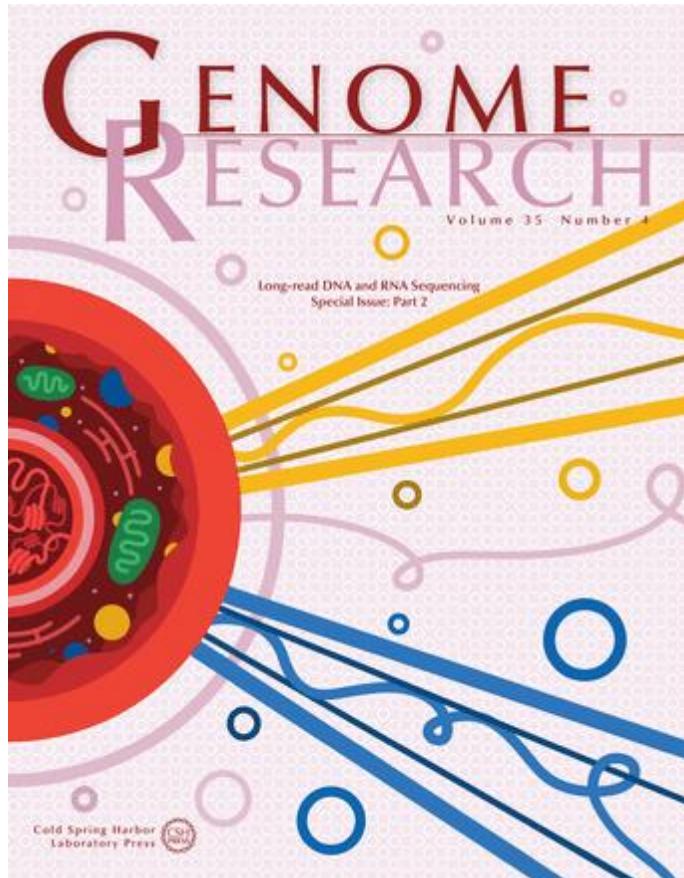


Patient 1:

- 54M PacBio Isoform reads
- 35M Illumina 10x 3' reads
- ~500 cells (20% cancer)
- 4 cancer-specific fusions detected

UMAP: Tumor cells only





Accurate fusion transcript identification from long- and short-read isoform sequencing at bulk or single-cell resolution

Qian Qin¹, Victoria Popic¹, Kirsty Wienand¹, Houlin Yu¹, Emily White¹,
Akanksha Khorgade¹, Asa Shin¹, Christophe Georgescu¹, Catarina D. Campbell¹,
Arthur Dondi^{2,3}, Niko Beerenwinkel^{2,3}, Francisca Vazquez¹, Aziz M. Al'Khafaji¹ and
Brian J. Haas¹

April, 2025

In Summary

- Many applications for RNA-seq, technology continues to evolve.
- Analysis can involve reference genomes or be genome-free via de novo transcriptome assembly – Trinity can help.
- Quantification involves counting reads and considering read-mapping uncertainty
- Long reads now available for applications previously limited to short reads, involve far less read mapping uncertainty, and enable isoform rather than gene expression analyses.
- Single cell and spatial transcriptomics studies are revolutionizing our understanding of tissue complexity, diversity of cell types, and cellular interactions - particularly in studies of cancer.
- Massive resources being built - whole organism cell atlases and high-resolution spatial maps, and new software tools and algorithms developed for leveraging long reads in bulk, single cell, and spatial studies.

A.I.

Favorite tools for leveraging AI - Coding

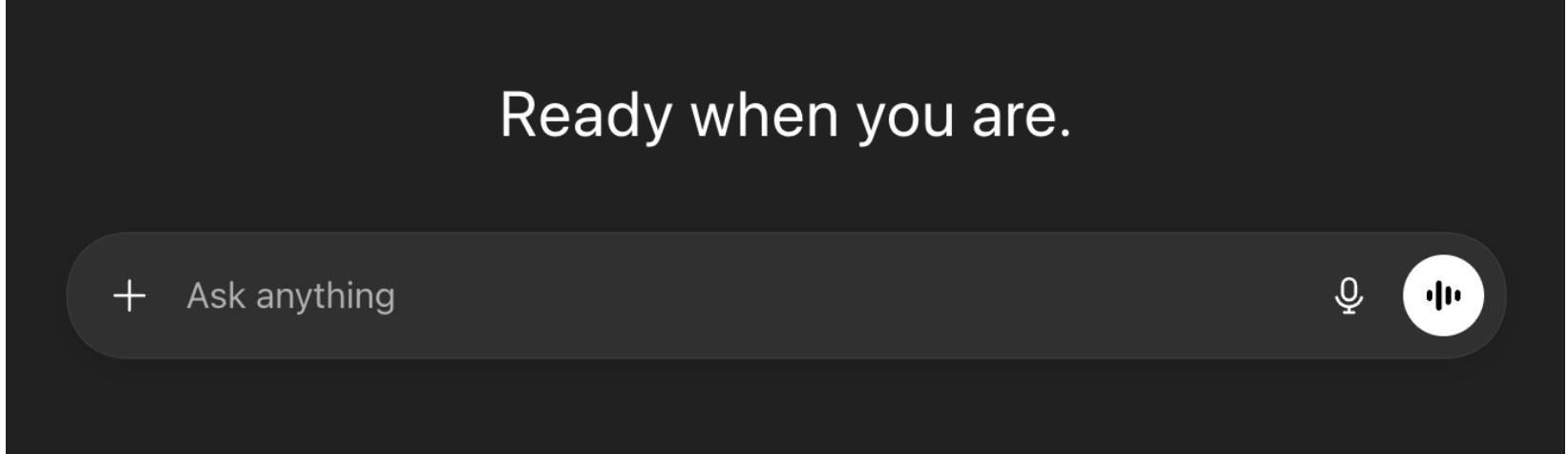
The screenshot shows a Visual Studio Code interface with a dark theme. The left sidebar displays 'AGENT SESSIONS' with a 'LOCAL CHAT AGENT' section containing a 'Refactoring MailList component' entry. Below it are sections for 'GITHUB COPILOT CLOUD AGENT' and 'GITHUB COPILOT CLI AGENT', with the latter having a 'Start CLI Agent Session' button. The main editor area shows a file named 'MailList.tsx' with the following code:

```
1 import { For, createSignal, createMemo } from "solid-js"
2 import { useNavigate, useParams } from "@tanstack/react-router"
3 import { getEmailsForMailbox } from "~/data/email"
4 import { MailListItem } from "~/components/MailList"
5
6 export function MailList() {
7   const params = useParams({ strict: false }) as {
8     mailbox?: string;
9     id?: string;
10 };
11 const navigate = useNavigate();
12 const [query, setQuery] = createSignal("");
13 const mailbox = () => params.mailbox || "inbox";
14 const list = createMemo(() => {
15   const q = query().toLowerCase();
16   return getEmailsForMailbox(mailbox()).filter(
17     (e) =>
18       !q ||
19       e.subject.toLowerCase().includes(q) ||
20       e.snippet.toLowerCase().includes(q)
21     );
22   });
23   function open(id: string) {
24     navigate({
25       to: `/mail/${mailbox()}/${id}`,
26       params: { mailbox: mailbox(), id },
27       search: (prev) => prev,
28     });
29   }
30
31   return (
32     <div>
33       <h1>MailList</h1>
34       <input type="text" value={query()} onChange={(e) => setQuery(e.target.value)} />
35       <ul>
36         {list.map((e) => (
37           <li>{e.subject} - {e.snippet}</li>
38         ))}
39       </ul>
40     </div>
41   );
42 }
```

The right sidebar features a 'CHAT' section with a message from 'kenzi.lawson' about delegating to a cloud agent. It also shows a message from 'GitHub Copilot Cloud Agent' and a progress update for a pull request. At the bottom, there's a prompt to 'Describe what to build next' and a status bar indicating 'Agent' and 'Claude Opus 4.5'.

Favorite tools for leveraging AI – Learning and Writing

- ChatGPT
- Claude.io
- Gemini

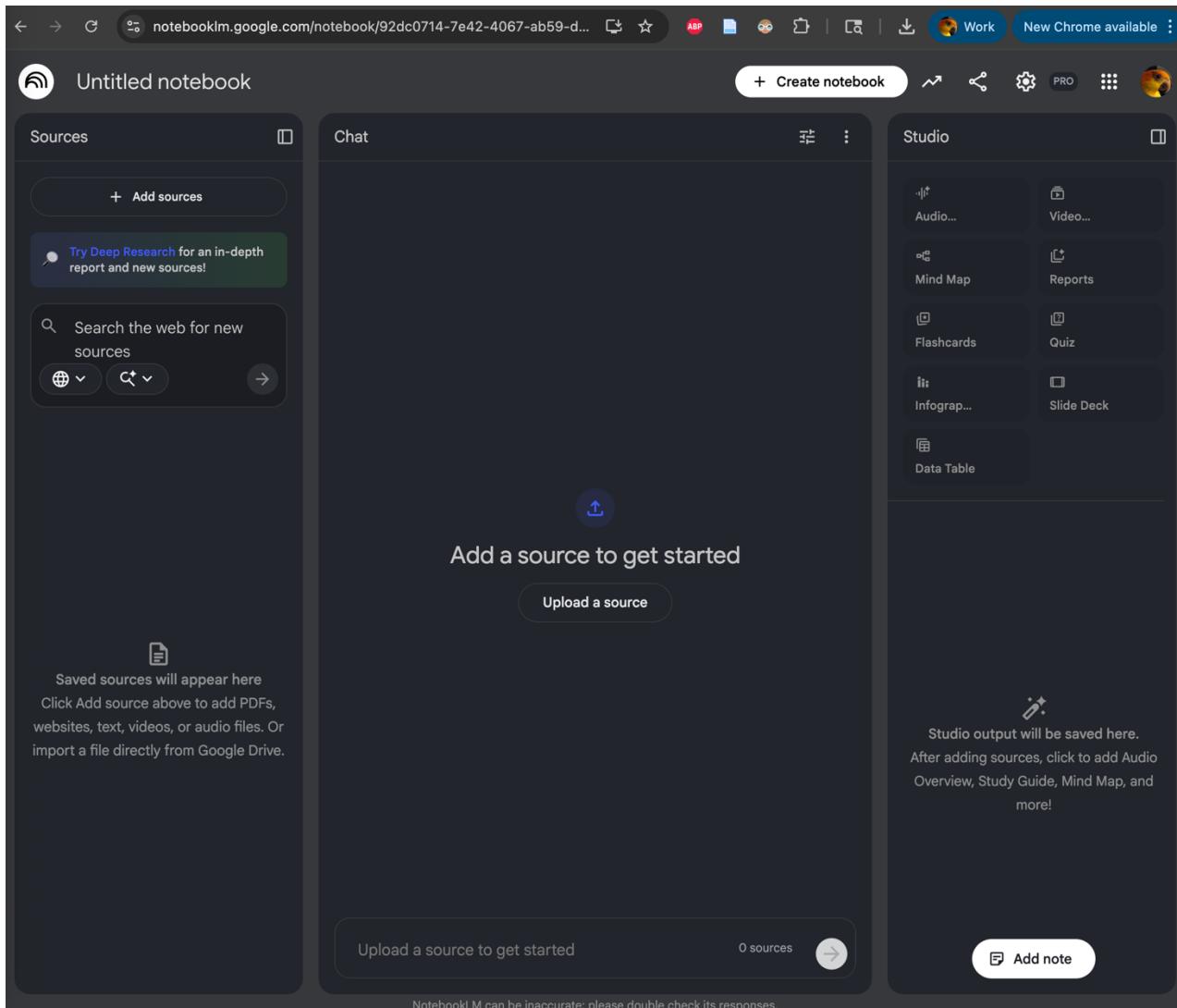


Ready when you are.

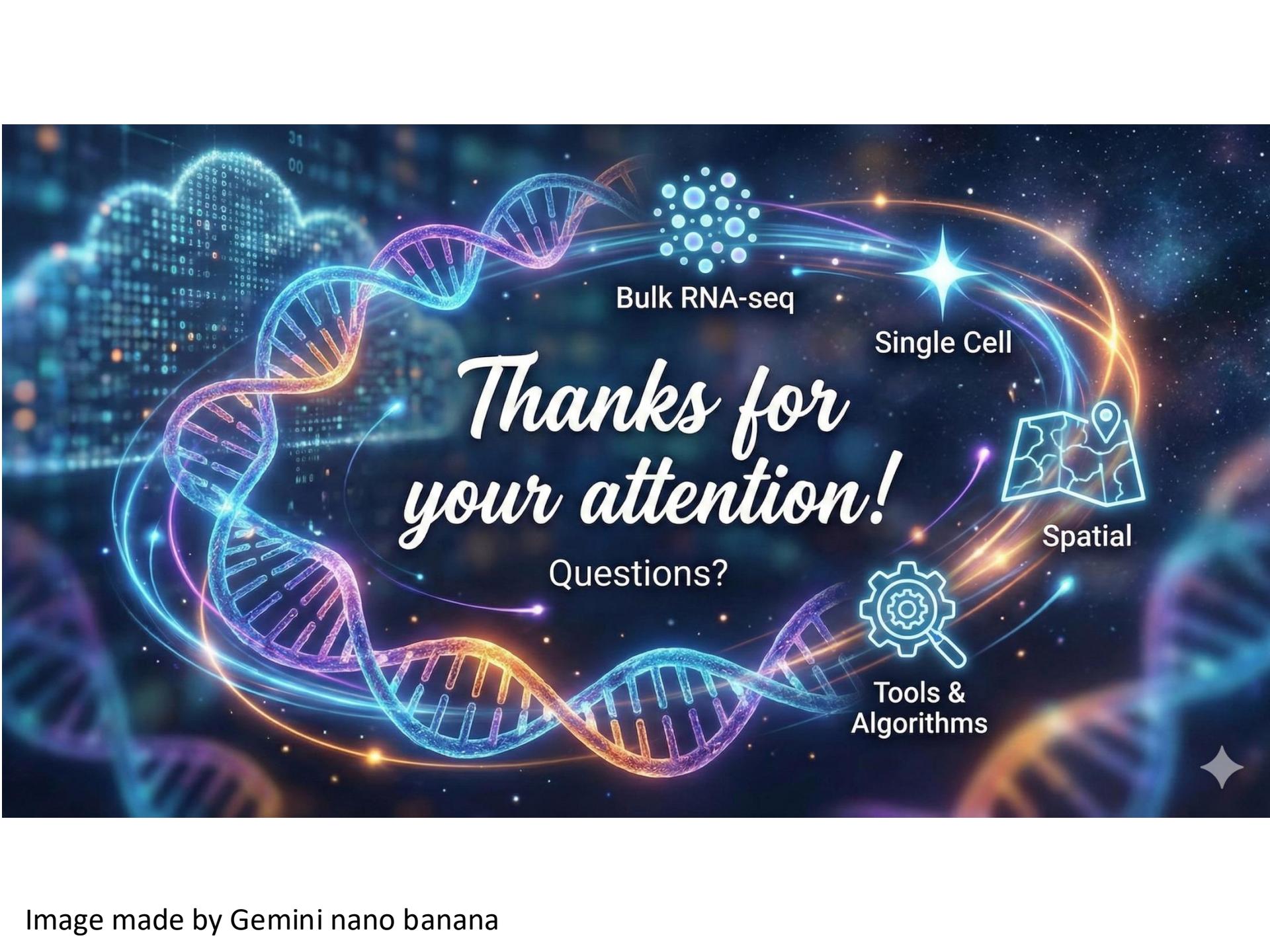
+ Ask anything

Favorite tools for leveraging AI – Learning and Writing

NotebookLM



- Upload papers
- Auto-slide decks
- Makes podcasts!



*Thanks for
your attention!*

Questions?

Bulk RNA-seq

Single Cell

Spatial

Tools &
Algorithms