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Education and Career History
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A% INSTITUTE
Cambridge, Massachusetts, USA

BS,MS Molecular Bio

2007-current

DNA Repair
SUNY Albany, New York The Institute for Genomic Research  Computational Biologist / Manager /
Rockville, Maryland, USA Principal Computational Scientist
1991-1999 (1999-2007)

Ph.D. Bioinformatics / Boston University
Bioinformatics Analyst & Engineer

MS. Computer Science / Johns Hopkins



Annotation and Analysis for Diverse Genomes and Transcriptomes
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My Favorite Activity — Bioinformatics Tool
Development and Applications
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Genome Biology, 2008 Genome Biology, 2019 )
Fusionlnspector
@ Cell Reports Methods, 2023



My Favorite Activity — Bioinformatics Tool

NAR, 2003
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Genome Biology, 2019 )
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@ Cell Reports Methods, 2023



Earlier developments focused on cancer transcriptomics:
Years 2013-2023

Cancer Transcriptome Analysis Toolkit

) Single Cell Tumor ~ STAR-Fusion
- ctat-LR-fusion
De novo Transcript

Heterogeneity InferChW
Reconstruction Cancer RNA-Seq

o)
Trinit Tumor
DISCASM Mutations, Single Cell
RMNA-editing, & Copy Number Aberrations
Neoantigens InferCHy
G Cancer
+ " &
Splicing
T- .
cgﬁ&f&;ﬂ"; Fusion (Vi & Aberrations
Transcripts Transcript Oncogenic iruses |
Expression Genome Insertions G
STAR-Fusion =
TrinityFusion (575l CTAT-VirusintegrationFinder CTAT-Splicing
Fusioninspector i
CTAT-LR-Fusion i el

Interactive Visualizations and Summary Reports E%,ﬂ

Overview of Trinity CTAT. Given cancer RNA-seq as input, Trinity CTAT provides modules for exploring characteristics of
the cancer transcriptome (and cancer genome) including both genome-guided and genome-free analyses, targeting bulk or

single-cell transcriptomes. Interactive visualizations and reports are provided to facilitate downstream analysis and for
clinical review.
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Transcriptomics Lecture Outline

1. Intro to transcriptomics

2. Transcript reconstruction methods

3. Genome-free transcriptomics (eg. for non-model orgs)

4. Expression quantification

5. Differential expression (brief — more details in Rachel’s workshop!)
6. Latest advancements in long read isoform sequencing

7. Overview of single cell transcriptomics

8. Overview of spatial transcriptomics
9. Applications in Cancer Transcriptomics

* Followed by comments on how I’ve recently been using LLMs in my work
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Part 1. Intro to Transcriptomics



Intro to Transcriptomics
Central Dogma Of Molecular Biology

Translation

Growing
Amino
f Acid chain

https://www.simply.science/images/content/biology/genetics/molecular_genetics/conceptmap/Central Dogma_of Molecular Biology.html
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Primary mRNA molecules Often Undergo Splicing in Eukaryotes

Exan 1

Gene in the Genome e

Exon 2 Exon 3

— T — I —

Transcription

Exomn 1

Primary transcript |

l

Exon 2 Exon 3

Intron Splicing,
5’ Capping,
and 3’ Polyadenylation

Processed RNA

Translation

Protein

Adapted from: https://cs.wikipedia.org /wiki/Splicing




Alternative Splicing — Multiple Products from Single Genes

Pre-mRNA Mature mRNA

Constitutive splicing

?F

|

ik

— Reading frame changes

» Core regulatory process — diversifies S
the function of genes. Exon skipping/inclusion
A A AT
» Generates mRNAs that differ in
coding sequence and UTRs. Effects: Alternative 5’ splice sites
— Protein isoforms SHAATSATSIE
— Translation efficiency ™~
— Stability Alternative 3’ splice sites
— Localization o
I‘-|. .r‘ -\‘

) Intron retention
« Estimated 90-95% of human genes

undergo alternative splicing

|

/N /\

Mutually exclusive exons

From Aziz Al’Khafaji, Broad Inst.



Think of genes as protosentences

. +h
Gene: A catalytically active kinase wit a NLS
inactive without

From Aziz Al’Khafaji, Broad Inst.



Think of genes as protosentences

active .
kinase

Inactive without

Gene: A catalytically a NLS

Alternative splicing

with
\kinasel/ \Ja NLS|

inactive without

H with
|A catalytically kinase fa NLS]

inactive withoutV

A catalytically

active with
A catalytically kinase a NLS
inactive without
active with
|A catalytically kinase fa NLS]|

\inactive withoutV

From Aziz Al’Khafaji, Broad Inst.



Fully formed sentences = mature mRNA

: active .
Gene: Acatalytically —— ~ kinase - a NLS
inactive without
Alternative splicing Transcripts
‘ with
A catalytically \Ja NLS]| |A catalytically active kinase with a NLS)|
inactive without

‘ with
|A catalytically kinase faNLS| [A catalytically active kinase without a NLS|

inactive withoutV

active with
A catalytically kinase a NLS A catalytically inactive kinase with a NLS
inactive without
active with
|A catalytically kinase fa NLS| |A catalytically inactive kinase without a NLS|

\inactive withoutl/

From Aziz Al’Khafaji, Broad Inst.



RNA isoform sequencing provides structural insight

: active .
Gene: Acatalytically —— ~ kinase - a NLS
inactive without
Alternative splicing Transcripts Proteins Cellu!ar
function
active
[A catalytically -\’ a NLS |A catalytically active kinase with a NLS]| ( i g : kinase
inactive without nuclear targets

active with kinase
|A catalytically kinase aNLS| |A catalytically active kinase without a NLS| cytoplasmic targets

inactive Withoutv

competitive inhibitor

active with
A catalytically kinase a NLS A catalytically inactive kinase with a NLS @ A nuclear targets
inactive without

active with competitive inhibitor
|A catalytically kinase fa NLS| |A catalytically inactive kinase without a NLS| cytoplasmic targets

inactive withoutV

From Aziz Al’Khafaji, Broad Inst.



Biological Investigations Empowered by Transcriptomics

7 Extract RNA,

B i ~ ... some protocol for processing, ...
£y +

9=

Northern J
rrree Analysis Method

- (pick your favorite)
LA

ST

| 2 3 4 5 6 7 8

Other...

PAPDPEDRPPOHOPOPPOOOOHA-“40OQA4AD

Microarray = N i ‘! f—

ot Blot SRR
gRT-PCR

' Cﬂ@‘ | .

Sanger Sequencing wnon  wmmon



Gene expression analyses ignore isoform variation

Cellular
function

@ kinase
nuclear targets
( i% kinase
_ cytoplasmic targets
active with
kinase a NLS

inactive without e
A competitive inhibitor
’ @ nuclear targets

dw competitive inhibitor
cytoplasmic targets

Need to resolve isoforms for deeper
insights into cellular functions

Gene expression

A catalytically

From Aziz Al’Khafaji, Broad Inst.



Historical Timeline to Modern Transcriptomics (from 1970)

Reverse Transcription (1970)

Northern Blot
Sanger Sequencing
(1977)

Expressed Sequence Tags (1992)

cDNA microarrays (1995)

RNA-Seq (2006-2008)
PacBio IsoSeq (2014)
Droplet single cell RNA-Seq (2015)

Direct RNA Seq Nanopore (2018)

SlideSeqg-v2 (2021)

Reverse transcriétion 1970

1975

‘ Northern blotting H Sanger sequencing

1980
{ Smith-Waterman |
[Subtractive hybridization |
198! FASTA
RACE H qPCR
1990 BLAST
Differential displa
SAGE 1995
[[RT-gPCR H Oligonucleotide microarray
EST shotgun 2000
SAM
_ 6] [Eembl |
[Mitelman] Limma
2005
[RNA-seq 454 |
RNA-seq SBS
(Direet ANAzeq | 2010 Aoy
Trinity
STAR
Sailfish
2015

2020

From Cieslik and Chinnaiyan,
NRG, 2017

Note: Just a small
sampling of what’s
available.

=5
¢

Smith Waterman (1981)

BLAST (1990)

SAMtools (2009)
Tophat/Cufflinks (2010)
2 »

STAR (2013)
StringTie (2015)
Kallisto (2016)
Salmon (2017)
minimap2 (2018)
Seurat-v2 (2021)




ies Empowered by RNA-seq

Modern Transcriptome Stud

<<
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L

gen Sequencer

(pick your favorite)

Next

Millions to Billions of Reads

RNA-seq



Personal Reflections...

Circa 1995
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Generating RNA-Seq: How to Choose?

Plri]e::t HiSeq Nova 5500 318 lon

Firefly Next | 2500 | Hiseq | HiSeq | HiSeq SeqS1| Nova | Nova HiQ lon |Proton
Platform 2018 | MiniSeq| MiSeq |Seq550| RR |2500V3|2500V4| 4000 |HiSeqX| 2018 | SeqS2 | Seqs4| XL 520 530 P1 6-C4 | uel
Reads: (M) 4| 25| 25| 400| 00| 3000| 4000| 5000/ 6000 3300 6600|20000] 1400 3-5| 15-20| 165| 60-80| 5.5 38.5 = = = = = --| 400| 1600| 1600|--
Read length: 200 200
(paired-end*) 150*| 150*| 300*| 150*| 100*| 100*| 125*| 150*| 150*| 150*| 150*| 150* 60 400 400 200 200 16K|  12K| 32K -- - - - - --| 100* 50| --
Run time: (d) 0.54 1 2 1.2] 1.125 11 6 3.5 3] 1.66| 1.66/ 1.66 7| 0.37] 0.16 -] 0.16 4.3 - - -- 2 2 - 1 0.4]--
Yield: (Gb) 1 7.5 15 120 120 600/ 1000{ 1500| 1800 1000 2000( 6000 180 1.5 7 10 12 12 5 150 4 8 40 80 200 8[--
Rate: (Gb/d) 1.85 7:H 75 100( 106.6 55 166/ 400| 600/ 600( 1200/ 3600 30 5:5 50 --| 93.75 2.8 - - -- 4 20 --| 200 20|--
Reagents: ($K) 0.1 1.75 1 5| 6.145| 23.47 - - -- - --| 10.5 0.6 - 1 1.2 24 -- 0.5 1i5 - - 0.5 - -|==
per-Gb: ($) 100) 233] 66| 50/ 51.2] 39.4| 31.7] 205 58.33 = [ 100 | 200 -| 625 375] 20 43 = 2 ==
hg-30x: ($) | 12000| 28000| 8000| 5000| 6144| 4692| 3804| . 7000 | -|12000] _ -| 24000 -] 7500] 4500] 2400 H =
Machine: ($) 30K| 49.5K| 99K| 250K| 740K| 690K| 690K| 900K 1M] 999K| 999K| 999K| 595K| 50K| 65K| 243K| 242K| 695K -- --| 125K| 75K| 75K --| 200K e

#Page maintained by http:/twitter.com/albertvilella http:/tinyurl.com/ngslytics #Editable version: http:/tinyurl.com/ngsspecsshared

#curl "https://docs.google.com/spreadsheets/d/1 GMMfhyLK0-g8Xklo3YxIWaZA5vVMuhU1kg4 1g4xLkXc/export?gid=4&format=csv" | grep -v '"M#' | grep -v 'A"' | column -t -s\, | less -S

Stats circa 2018

For current, see: https://tinyurl.com/wbgcs65

llumina

*Not all shown at scale

PacBio



https://tinyurl.com/wbgcs65
https://tinyurl.com/wbgcs65
https://tinyurl.com/wbgcs65

Maybe something fast and portable?

Oxford Nanopore Technology (ONT) Minion



Sequencing by Expansion (SBX) Technology

X-NTPs Xpandomer Synthesis

i =, :‘"---u.___h : R :_w
e Ry s, 8 w0 .
“Mi "1 Y Y —)

Backbone Cleavage and

®-N Xpandomer Expansion
@®
w i

Xpandomers Travel Through Nanopore Detectors Xpandomer Signals Detected

https://sequencing.roche.com/us/en/article-listing/sequencing-platform-technologies.html
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Lab Sets Guinness World Record for DNA Sequencing Speed
Oct 17,2025 | Company News |

Teams complete whole human genome sequencing and analysis in under
four hours, demonstrating potential for same-day NICU workflows.

Broad Clinical Labs, in collaboration with Roche Sequencing Solutions and Boston Children’s Hospital, has achieved
official recognition from Guinness World Records for the fastest DNA sequencing technique, completing sequencing
and analysis of a whole human genome in less than four hours.

https://clpmag.com/lab-management/company-news/lab-collaboration-sets-guinness-world-record-dna-sequencing-speed/
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A Plethora of Biological Sequence Analyses Enabled by RNA-Seq

| Genetic readouts | Virus Abundance |Functional readouts |

|soforms

Structural
variants

Chimeras

Transcriptional
e

SNVs

(ie. mutations)

Figure 2 | Transcriptome profiling for genetic causes and functional phenotypic

readouts. L o
From Cieslik and Chinnaiyan, NRG, 2017



RNA-Seq is Empowering Discovery at Single Cell Resolution
i o G
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- Discrete types
CTe e A
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YT 0% S
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. Spatial position
Continuous phenotypes <& .
Regulatory [ Pro-inflammatory
Revisiting a
Erythrocyte previous state
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Source state _| N i
H3C T-Iy.mphocyte
Unidirectional State vacillation

temporal progression

Wagner, Regev, and Yosef. NBT 2016



Spatial Transcriptomics

Spatial Encoding

Tissue section

Spatialomics cDNA synthesis

Tissue section

oligo-dT
UMl
Spatial ID

From “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield
Nature Reviews Genetics volume 20, pages631-656(2019)

Sequencing




A Myriad of Other Specialized
RNA-seq -based Applications

RNA-Sequencing as your lens towards biological discovery

gUVcrosslink Biotin

RNase V1 RNase S1
(digests (digests
dsRNA) ssRNA)

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield
Nature Reviews Genetics volume 20, pages631-656(2019)



A Myriad of Other Specialized
RNA-seq -based Applications

Ribosomal profiling

RNA-Protein Interactions

5UVcrosslink Biotin

RNase V1 RNase S1
(digests (digests
dsRNA) ssRNA)

Adapted from “RNA sequencing: the teenage years”
Rory Stark, Marta Grzelak & James Hadfield

Nature Reviews Genetics volume 20, pages631-656(2019)

RNA-RNA interactions

RNA Structuromics
g and E

Q
FLto Em




RNA-seq Publication Trend

Paper Counts from PubMed

15000 -
RNA-seq

o lllii Single-cell RNA-seq
ol m LLLL Llll Spatial RNA-seq

2005 2010 2015 2020 2025
Year

NumPapers




RNA-seq library enrichment strategies that influence interpretation and analysis.
RNA-seq Strategy Tissue

\

Isolate RNA,
DNAse

!

Initial RNA pool R —a Legend
—\_ N N\

W\ 00'07?’0 S~ genomic DNA

N — immature RNA
... mature RNA

non-coding RNA
=0o=5*  ribosomal RNA
EEED paired end reads

- - A COMPUTATIONAL
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393 @PLOS BIOLOGY
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RNA-seq library enrichment strategies that influence interpretation and analysis.
RNA-seq Strategy Tissue
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DNAse
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non-coding RNA
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RNA-seq library enrichment strategies that influence interpretation and analysis.
RNA-seq Strategy Tissue
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Isolate RNA,
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Legend
NS
~ —==... mature RNA
sOogr=

non-coding RNA
ribosomal RNA
- paired end reads

' '

Total rRNA
RNA reduction

Selection/depletion

Resulting RNA pool

A Total RNA D. ¢cDNA capture
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RNA-seq library enrichment strategies that influence interpretation and analysis.

RNA-seq Strategy Tissue

¢
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Initial RNA pool it
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Part 2. Transcript Reconstruction Methods



RNA-Seq Challenge: Transcript Reconstruction

fragmen-
\ tation
mRNA l RT
(Avg. ~ 2 kb)

sequence library
RT\,_., =

fragmen-
tation

(Avg. ~ 300 b)

short sequence reads
Reconstruct original
full-length transcripts

(~ 75 to 150 b reads, SE or PE)

Adapted from: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html



Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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=
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Align reads to
genome
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Assemble transcripts
from spliced alignments




Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Transcript Reconstruction from (short) RNA-Seq Reads
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Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Transcript Reconstruction from (short) RNA-Seq Reads

RNA-Seq reads

= o 3 - [
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End-to-end Transcriptome-based
RNA-Seq Analysis
Software Package

NATURE PROTOCOLS | PROTOCOL

De novo transcript sequence reconstruction from
RNA-seq using the Trinity platform for reference
generation and analysis

Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood,
Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew D

MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan Weeks,

Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D LeDuc, Nir
Friedman & Aviv Regev

Affiliations | Contributions | Corresponding authors

Nature Protocols 8, 1494-1512 (2013) | doi:10.1038/nprot.2013.084
Published online 11 July 2013
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Transcript Reconstruction from (short) RNA-Seq Reads
RNA-Seq reads
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Part 3. Trinity for Genome-free
transcriptomics (eg. for non-model orgs)



Trinity — How it works:

Linear Transcripts
contigs +
Isoforms
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—_— T — >a122:len=2560
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o 26 fene8 78 ..ATTCGCAA...TCATCGGAT...
>a126:len=66

Thousands of disjoint graphs
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contigs

>a121:ln=5845

— How it works:

Manfred Moran

Yassour
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Trinity — How it works:

Linear
contigs

>a121:1en=5845
— — — >a122:len=2560
J— >a123:len=4443
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>a126.Jen=66




Trinity — How it works:

Linear de-Bruijn
contigs graphs
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Thousands of disjoint graphs



Trinity — How it works:

-Rruii Transcripts
de-Bruijn P
graphs +

- Isoforms

-.CTTCGCAA..TGATCGGAT...
/':‘ N .ATTCGCAA..TCATCGGAT...

Thousands of disjoint graphs



de Bruijn
graph

compact
graph

.CTTCGCAA.. TGATCGGAT...
.ATTCGCAA..TCATCGGAT...

compact
graph with sequences
reads (isoforms and paralogs)



Butterfly Example 1:
Reconstruction of Alternatively Spliced Transcripts

@TCC...TATTCTGAG@
/
Butterfly’s Compacted  iccrcroan secroeacmaamn > 32

Sequence Graph \
2

TATCTTTCTG... GAACCTCAGT(1752at)




Reconstruction of Alternatively Spliced Transcripts

@TCC...TATTCTGAG@
/
Butterfly’s Compacted  iccrcroan secroeacmaamn > 32

Sequence Graph \
2

TATCTTTCTG... GAACCTCAGT(1752at)

Reconstructed Transcripts




Reconstruction of Alternatively Spliced Transcripts

@TCC...TATTCTGAG@
/
Butterfly’s Compacted  iccrcroan secroeacmaamn > 32

Sequence Graph \
2

TATCTTTCTG... GAACCTCAGT(1752at)

Reconstructed Transcripts




Reconstruction of Alternatively Spliced Transcripts

@TCC...TATTCTGAG@
/
Butterfly’s Compacted  iccrcroan secroeacmaamn > 32

Sequence Graph \
2

TATCTTTCTG... GAACCTCAGT(1752at)

Reconstructed Transcripts

Aligned to Mouse Genome

l HH —H—H—H—HH H H+HHH
Naa25 Nalpha acteyltransferase 25 (Reference structure)

| 1—a i H i 1—i -1 —i1 H——1— 1 H

I —i— —i H i ——i —i H———1HE
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Butterfly Example 2:
Teasing Apart Transcripts of Paralogous Genes
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Teasing Apart Transcripts of Paralogous Genes
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Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly:
ex. Forward !=reverse complement
(GGAA != TTCC)
Biologically: separate sense vs. antisense transcription

lllumina TruSeq Stranded mRNA Kit:

illumina

Trueq® Suranded KNA NI €1
W Samps Cove e

= et



Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe
(fission yeast)

chri1: 5,329,037-5,333,190
b 4137 bp -

Aszsembled .‘“I

sequences

¥ ¥ ¥ ¥ ¥ ¥ ¥ }

EEEEIIRE EIEE T - EE -
Forward |
Read j“_l_hh‘-
o _._.-l_.—
Reverse

>
HEE-E-1 >
Known SPAPSAZ.08
annotation myosin Il light chain KT K K- K K-

SPAPBA3.08c
Protein phosphatase regulatory subunit Paai



Antisense-dominated Transcription

chr2:1,674,778-1,683,672

4 8,852 bp -
LI T S R
Assembled < comp3099_c512_seq1;6.726 «
sequences { & 4 £ £ A ¢ 4 4 4 L 4 4 {4 £ {4 £ A
compl453 208 seql(;17.408 comp5369 113 seq5;0.392

[0 - 500]
Forward
Read

coverage

Reverse

Known

annotation
.
SPCC417.05¢c SPCC417.06¢c SPCC417.07c
chitin synthase regulatory meiosis specific protein MT organizer Mtol

factor Chr2 (predicted) kinase Mug27/5lk1




Trinity is a Highly Effective and
Popular RNA-Seq Assembler

nawre - Thousands of routine users.

biote dmolo“\

~20k literature citations

Freely Available, Well-supported,
Open Source Software

GitHub

http://trinityrnaseq.github.io

Nature Biotechnology, 2011



nature

protocols

Transcriptome Assembly is Just the End of the Beginning...

De novo transcript sequence reconstruction
from RNA-seq using the Trinity platform for
reference generation and analysis

Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood,
Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew
D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan

Weeks, Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D

LeDuc, Nir Friedman & Aviv Regev

Affiliations | Contributions | Corresponding authors

Nature Protocols 8, 1494—1512 (2013) | doi:10.1038/nprot.2013.084
Published online 11 July 2013
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Framework for De novo Transcriptome Assembly and Analysis

Applied to Axolotl for studies of
limb regeneration

Reads » Combine reads 1.3 Pl"”'o':j
Total Reads
(per sample) l i l i Assembled i Normalization?
transcripts -
Abundance estimation De novo assembly 86 Million
(all samples) lized d
Bowtie & RSEM r\ Assembled Normalized Reads
51/“‘/4) transcripts
Identify differentially expressed transcripts Identify coding regions
MA, plot Volcano plot
\J
EdgeR,
Bioconductor Expression pattemns, transcript clusters
& Trinity l_y"_,_lj
[N .
N f
1 =7 \
H B




Trinity output: A multi-fasta file

Feompl _c0_seql len=5528 path=[1: El 3646 10']55!3‘47—357! 3648:3776=5527]

AR TGART OO T T T T TG T AT TEARARAG T TEARATE ARAL AL ATATAL AL AT
AETOTEEATOA GAGATACTAL TTGARECEGATTEL ATCTCAGT AL TATARARAGE A TEATTETTTITTTICAGTET
GTARAL A TAGTCL TG T T T T IG TTE T I T TTARATATE ART TTACE AL AL AARAAL AARRCAGARE ARRAACE CAT ATARACE AL AL CAGE AL CAGE AE TG GE O TTGAGE AT T TEC TTAGATECTAL TG AL ATAL AGGE
GTGGGE AL ARG Ol T T A T A T ARG AR T AT AT AT AT AT AT AT AL TT T TARC TG T AL AL AR TE TATAG TEE ATGACAGE TTCE ARARGART AL A TARARGATATTGECEATT TEATART TTCASTETTTITITAL
AT TATCTCAAARTGT ARG ART T AGATC T AT TEARRTGE TACA TTTAGT AAGARARTCAGE ARG TRACAGAGE AAGTGTARCCCE AL CATE AL AT TAT T TG T ARC ARG A CAGTGE AL GECE TACATETTAGRECAGE
ALACTEALAGGATAGACE AT TAGAGE ARGE AL CTATGE CTEAGE GECATAGLCAGE COATG ANT L CATACE GACLATGOTL 1:-:a.ca;:a;:L"':-:a"l:"a;:ar:LA'lc':-:l:ca.n:L-:l:ca.\LALAL CACARTTTGART
ATCECARG ARALATTATTOL AGGAGE CAGEGE, G CARARTEAGGETETTCARECEATET
AT T ARG OO T T T T T T TG GE A TGS AL A G O AT AL TE TG A TGE ARC L AT GA T TAGE e TOE A AR T E T AL ARG T ARG ARG T AL T T TH A A AT TTE T TAC ARG TARRTTAE TTARCE AL TR’
CE AL ARG T TACGATARAGARTGEARTEGTG TG TG ARG T EATGE GARRGACE AL TEC T ACE ARG TERTE T T T TEACE TTAC A TTAL TE TEAG GARTARR

AL AGGAGAT TOAG AR AR AR AL TE AL GE AR AL L TG T GAG L T GECATE AL ATARTE ARGAGE AETTTTEATETTET
GTGARE AACATE AR TACACECTGATECAGTT

Ci}.’.i"L':TG'["("TGL'_'LCLGM;CTG;'_’L_4_LA'[CT"L'_'LCTG(GLAR.CL"'[C TG T T TR TG T T A A AT T O T T A AR T T T T T AL T T T O T T TG T AL T T ARG T T T TT IO TOAGE AR TOE OO TE TE TECAGARE
AT AR T T O TG AL T T T e O TG e AL AL T T T Tl AR AR T T T IO T T T O T T L CE TAGAGA T ACARE TTTECTETARS) T TE ARG T T ARG TGE ARTE AL ATGTEE TTEARE TECTTTARTATEAT
AT TG ARRT T ARG T TE ARG T CAG TARCE TAGTCT TG ARAC TG T G A TG AT A TG TG T T T T T T T T T T T T T T IO T T T T IO TGG AT AT TTART TTE TATEGTCG CARG AL ALTT
AR TG G A A ARG G A TG A A AR A T A T T AR G ARG ARG A AL AT T T T AG S AL T A O TG ST O T T AL AT T E O AT O TG T AR TTE T ARG AL G T O CE T TTACATE TECTGARE AL ALT
TECARG AL TATTT TOTAT T GITECTGTATATOC AL
ARG AL TG L ATO L T E G TG LG AR AL GE L ARGE ARG E L TAC TGART T T TTOTOARTARAL G
CEGTTETETEALATETTETE TET GETEL AL AL AL AL T TGE ARG TOE AL TS AT CAGE CTEARE GT T ARG GAGE GARTT
A AR AT IO TG T O T T T TEGA T OL AAC TGARG AR R A AT ARG T T TG T TG T O TG CA AR T T T LA TG GARE AT AT T T T TE G O TCAGA T TCAT TGAT T TG AT AL T TTE TECE RAGE TARTTGATATGT
TAGAAGGTC TARCAGE ATCEGETEAGTE ARRATGEAGAEART TATTE AGCE THTTCE TARARG CEATARALT GEATCTTETE ARATGE ALCATATTTETARGET

GEAGCTGETTAATLARTTGTGTGEALT
CAGAGERGTG

BETTERTEARTL oL, ARAGEGEGT
B C?M:ICLGuCLAL'IGL'LAuCI'L—t'.'.'!ALAt'.'.aCLAt'.'.LA'I'!':'!"'I'LCLGM:!C'!Ga.'ut"!Ca.n:IT'aTLMA:'!'L'L'LC'IM"!"ICL'L—i.'utG?M:i—LCa.!.'u'.'.L'ICLT"GIAL'I'LCLM.GLGL—LCN:?A
ARG T ART ARG T T AR O T AL T TeAG L O T T AT T T L T O TO L TTCACE ATC T TE TE TACE AT TETE T LOTTETEATOL GEATATAGATTGEATGATCAA
GEGACARTCTTATACAGAGE CATECEABCETECTGEATETT
ACTRAL TOCGGE COG TG ATCTO TG TREAGARTE GTCAGEGECTGE MGG

G AL T TG TOA T TG TEGE O TOAA GECAGE CACE T CTGAGE CAREGTGARAGE T TOT
AR TGE AT T T TAT T AT TTE AT TATC ARG ATAATEGTAAATGEGOCE

AEACTGAE AGGATAGACE AT TAGAGE RAGE A CTATGE CTGAGEGECA TAGECAGE O ATGE A TE CATACEGACE ATGE TE AL CTGAC AGAGE TTGAT TTAGAGE ATC TG TGACCGTGARE AL AL AGCACARTTTGART

Can visualize using Bandage

https://rrwick.github.io/Bandage/

Bandage - /Users/Ryan/Desktop/E_coli_LastGraph
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IGV

€ =2 C O www.broadinstitute.org/igv/

Integrative
Genomics
Viewer

A Home
t Downloads
E] Documents
Hosted Genomes
FAQ
# IGV User Guide
File Formats
[# Release Notes
Credits

Search website

search
Broad Home
Cancer Program

EZBROAD

INSTITUTE
© 2012 Broad Institute

Home

Integrative =
Genomics
Viewer

What's New

NEWS July 3, 2012. Soybean (Glycine max) and Rat
» e (n5) genomes have been updated.

1= April 20,2012. IGV 2.1 has been released.
See the release notes for more details.

April 19, 2012. See our new |GV paper in Briefings in
Bioinformatics.

Overview

Citing IGV
To cite your use of IGV in your publication:

James T. Robinson, Helga Thorvaldsdéttir, Wendy
Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P.
Mesirov. Integrative Genomics Viewer. Nature
Biotechnology 29, 24-26 (2011), or

Helga Thorvaldsdottir, James T. Robinson, Jill P. Mesirov.
Integrative Genomics Viewer (IGV): high-performance
ggngmics d_ata v_isuali;atip_nand exploration.
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Can Examine Transcript Read Support Using IGV

] IGv

File Genomes Yiew Tracks Regions Tools GenomeSpace Help
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Part 4. Expression Quantification

Bioconductor,
& Trinity

éa

£

Identify differentially expressed transcripts

MA, plot Volcano plot

Expression patterns, transcript clusters

Reads » Combine reads
(per sample) 4 L 4 l L4 Assembled i Normalization?
L transcripts
Abundance estimation De novo assembly
(all samples)
A Assembled
@";;@ transcripts

Identify coding regions



Calculating expression of genes and transcripts
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Slide courtesy of Cole Trapnell



Calculating expression of genes and transcripts
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Normalized Expression Values

* Transcript-mapped read counts are
normalized for both length of the transcript
and total depth of sequencing.

* Reported as: Number of RNA-Seq Fragments
er I\ilobase of transcript

per total IViillion fragments mapped

RPKM (reads per kb per M) used with Single-end RNA-Seq reads
FPKM used with Paired-end RNA-Seq reads.



Transcripts per Million (TPM)

_FPKM..,,
TPMi_ jFPKM le6

Preferred metric for measuring expression
* Better reflects transcript concentration in the sample.
* Nicely sums to 1 million

Linear relationship between TPM and

FPKM values. TPM

Both are valid metrics, but best to be consistent.

FPKM



Transcript length normalization not required for 3’ QuantSeq

Length Normalization:
Standard full-length RNA-seq with short reads

3’ QuantSeq with short reads

—
[ ]
[ ]
_— x No (CPM / Counts)
[ ]
[ ]

Long read RNA-seq

X No (CPM / Counts)

CPM="“Counts per Million”



Multiply-mapped Reads Confound
Abundance Estimation

Isoform A
I I I . I I
I I I I .
I I I I I .
I I I I .

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads



Multiply-mapped Reads Confound
Abundance Estimation

Isoform A
I I I . I I
I I I I .
I I I I I .
I I I I .
Isoform B

Blue = multiply-mapped reads
Red, Yellow = uniquely-mapped reads

Estimate expression, s mm = —:—__ = -
Compute likelihood ~ == == == == == —
——— & ]
—_p ENM —>» .
Adj Model Params, NN ]

Proportioning Reads

Use Expectation Maximization (EM) to find the
most likely assignment of reads to transcripts.

Performed by:
 RSEM (genome-free)
» Kallisto, Salmon (alignment-free)



Salmon —Don't count . . . quantify!

nature methods

BE__ N Altmetric:210 Citations: 42 More detail »

Uses a suffix array
instead of the
de Bruijn graph

Brief Communication

Salmon provides fast and bias-aware
quantification of transcript expression

Rob Patro ™, Geet Duggal, Michael | Love, Rafael A Irizarry & Carl Kingsford =

Nature Methods 14, 417-419 (2017) Received: 29 August 2016
doi:10.1038/nmeth.4197 Accepted: 22 January 2017
Download Citation Published online: 06 March 2017

https://combine-lab.github.io/salmon/
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Part 5. Differential Expression

Bioconductor,

& Trinity

» Combine reads

Reads
(per sample) l i l i

Assembled i Normalization?
transcripts
Abundance estimation = De novo assembly
(all samples)
Assembled
g@ /f ;@ transcripts

Identify differentially expressed transcripts Identify coding regions

MA plot Volcano plot

Expression patterns, transcript clusters




Differential Expression Analysis Involves

* Counting reads mapped to features
 Statistical significance testing

Beware of small counts leading to notable fold changes

Sample_A Sample_B Fold_Change Significant?

Gene A 1 2 2-fold No

Gene B 100 200 2-fold Yes



Variation Observed Between Technical Replicates
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* plot from Brennecke, et al. Nature Methods, 2013

Variation observed is well
described by models of
random sampling
(Poisson Distribution)

Poisson shot noise is high for small counts.

Poisson Coeff. Var. vs. mean (lambda)
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Observed RNA-Seq Counts Result from Random
Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is
well modeled by the Poisson distribution
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See: http://en.wikipedia.org/wiki/Poisson_distribution
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Example: One gene*not* differentially expressed

Example: SampleA(gene) = SampleB(gene) = 4 reads

Distribution of observed counts for single gene Dist. of log,(fold change) values

(under Poisson model) / same
X o _
=~ 0:9 <
/ \ SampleA . |
° 4 o o 3 - 2-fold diff
S
> > /
2 o / _. RS -
2 = 4 2 |
g ° \ Lo 4-fold diff
e &
S 7 \ | /
3 _ To.q ]
o | | | ! | | S -
| | T T 1
2 4 6 8 10 12 4 2 0 " A
(k) number of reads observed x = log,(SampleA/SampleB)

for a single gene



Sequencing Depth Matters

Poisson distributions for counts based on 2-fold expression differences

1 Read Versus 2 Reads
e(\C\(\% T T T T

oV No confidence in 2-fold
P(x=k) difference. Likely
, r observed by chance.

"

From: http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for
and from supplementary text of Busby et al., Bioinformatics, 2013
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Sequencing Depth Matters

Poisson distributions for counts based on 2-fold expression differences

1 Read Versus 2 Reads

C\(\% T T T U . .
“ (oo No confidence in 2-fold
\O : .
o P(x=k) difference. Likely
, r observed by chance.
0 2 4 6 8 10
10 Reads Versus 20 Reads
o\ue“d“%
e

From: http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for
and from supplementary text of Busby et al., Bioinformatics, 2013
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Sequencing Depth Matters

Poisson distributions for counts based on 2-fold expression differences

1 Read Versus 2 Reads

WS
(\C\(\ T T T T
\oW e
\\O
El P(x=k)
0 2 4 6 8 10
10 Reads Versus 20 Reads
o\ue“cm%
e
0 P(x=k)
0 10 20 30 40 50
100 Reads Versus 200 Reads
(\C\(\%
X Seo‘\)e
0 100 200 300 400

Observed Read Count (k)

No confidence in 2-fold
difference. Likely
observed by chance.

High confidence in 2-fold
difference. Unlikely
observed by chance.

From: http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for

and from supplementary text of Busby et al., Bioinformatics, 2013
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Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per
sample

100,000
1,000,000

10,000,000

Sample A
Number of reads

10

100

Sample B
Number of reads

20

200

P-value (Fishers
Exact Test)

0.099

8.0e-09



Technical vs. Biological Replicates

RNA-Seq Technical replicates aren’t essential

(Technical variation is well-modeled by the Poisson distribution)

“We find that the Illumina sequencing data are highly replicable, with relatively little
technical variation, and thus, for many purposes, it may suffice to sequence each
MRNA sample only once” Marioni et al., Genome Research, 2008

However, biological replicates *ARE* essential

total_variance = technical_variance + biological_variance
(Total variance well-modeled by negative binomial distribution)

“... at least six biological replicates should be used, rising to at least 12 when it is
important to identify SDE genes for all fold changes.” Schurch et al., RNA, 2016



DE_a‘naIysis requires a counts matrix

D

,_*ff::=
4 .

Transcript_ID
TR24|c0@_gl_il
TR2779|c0_g1_il
TR127|cl_g1_il
TR2107|cl_g1_il
TR2011|c5_gl1_il
TR4163|c0_g1_il
TR5055|c0@_g2_il
TR1449|c0_gl_il
TR1982|c2_g1_il
TR1859|c3_g1_il
TR1492|c0@_gl1_i2
TR1122|c0_g1_il
TR2278|c0_g1_il
TR4084|cO_gl1_il
TR4761|c0_gl1_il
TR3638|c0_g1_il
TR2090|c0_g1_il
TR3854|c@_gl1_il
TR131|cO_g1_il
TR5075|c0_g1_il
TR2182|c3_g2_ib
TR3788|c0_g1_il
TR4859|c0_g1_il
TR2487|c0@_g1_il
TR2122|c0_g2_i2
TR4277|c0O_g1_il
TR4669|c0_g2_il
TR3091|c0O_gl1_il

Sample Type A, 3 Bio replicates

90.00
186.00
9.00
59.00
11.00
368.00
36.00
196.00
7.00
0.00
1895.00
2.00
497.00
95.00
2089.00
647.00
0.00
1878.00
32.00
13.00
1.44
17.00
6.00
386.00
145.00
4466.00
0.00
22.00

67.00
137.00
23.00
65.00
4.00
422.00
17.00
230.00
7.00
0.00
1906 .00
3.00
610.00
148.00
1746.00
676.00
0.00
1734.00
28.00
22.00
2.70
30.00
12.00
383.00
135.00
4701.00
0.00
17.00

85.00
217.00
16.00
47.00
4.00
425.00
27.00
207.00
6.00
1.00
1921.00
0.00
598.00
86.00
1875.00
712 .00
0.00
1864.00
31.00
21.00
3.84
22.00
8.00
424,00
136.00
4284.00
0.00
19.00

Sample Type B, 3 Bio replicates

36.00
147.00
2.00
6.00
8.00
172.00
4.00
66.00
4.00
0.00
1104.00
3.00
333.00
77.00
155.00
117 .00
22.00
1775.00
1001.00
6.00
3.35
91.00
4.00
689.00
155.00
118.00
209.00
250.00

35.00
186.00
0.00
6.00
5.00
216.00
7.00
113.00
3.00
0.00
1263.00
0.00
406.00
111.00
174.00
184.00
©.00
2173.00
1233.00
8.00
0.00
132.00
1.00
866.00
157.00
134.00
0.00
308.00

34.00
197.00
1.00
7.00
7.00
210.00
3.00
91.00
8.00
0.00
1319.00
0.00
413.00
127.00
165.00
174.00
0.02
2151.00
1208.00
16.00
0.00
125.00
3.00
806.00
201.00
164.00
217.50
284.00




Typical output from DE analysis

Transcript_id
TRINITY DN876 cO gl il
TRINITY DN6470 cO gl il
TRINITY DN5186 cO gl il
TRINITY DN768 cO gl il
TRINITY DN70 cO gl il
TRINITY DN1587 cO gl il
TRINITY DN3236 cO gl il
TRINITY DN4631 cO gl il
TRINITY DN5082 cO g5 il
TRINITY DN1789 c0 g3 il
TRINITY DN4204 c0 gl il
TRINITY DN799 c0 gl il
TRINITY DN196 c0O g2 il
TRINITY DN5041 c0 gl il
TRINITY DN1619 cO gl il
TRINITY DN899 cO gl il
TRINITY DN324 c0 g2 il
TRINITY DN3241 cO gl il
TRINITY DN4379 cO gl il
TRINITY DN1919 cO gl il
TRINITY DN2504 cO gl il

-7.
-7.
-7.

logFC

15049572793027
26777912190146
85623682454322

7.72884741150304
-12.7646078189688

-5.
-7.
-7.
-5.
10.

89392061881667
27029815068473
45310693639574
33154406167545
2032564835076

4.81030233739325

-4.

22044475626154

4.60597918494257

-4.
-4.
-4.

27126549355785
47156415953777
90914328409143

4.87160837667488

-4.

77760618069256

3.85133572453294
4.05998814332136

-6.

92417817059644

Up vs. Down regulated

1

Ny JdJoyJWOWWOW EOOHEX gk, WJ o W

logCPM

0.6197708379285
.03987604865422
.18570464327063
.7514619195169
.86482982471445
.07366563894607
.02209568234202
.91664918183241
0.6977538760467
.32607652700285
.88844409410644
.9937398638711
.86878463857276
.70894399883
.22535948721718
.93768691394594
.84850312231775
.94111259715689
.23712813663389
.95937301668582
.20370039359785

Np RPN PRP PR AR RN WOIW, PP O

PValue

.687485656951e-287
.17049180235068e-278
.32504881419265e-272
.92853491279431e-253
.32919557933429%9e-243
.64955175271959%9e-235
.30540921272851e-229
.7424335667625%9e-225
.44273728647186e-213
.27180216086162e-205
.24746518421083e-197
.9819997623131e-192
.8930437900069e-185
.76766063029526e-181
.11054513767547e-180
.20092562166991e-179
.60585457735621e-173
.48140532848425e-164
.8588621194715e-161
.42022459856956e-160

Avg. expression level

O~k WUl RFE JdJdOF NS WOowo o N oy O

FDR

.46813252309319e-284
.99099671894011e-275
.28895605240022e-269
.02322972829624e-250
.08660221852944e-240
.99678053376405e-232
.1256583780971e-226

.33594396920022e-222
.10600240380933e-210
.46160321501501e-202
.96922341846683e-195

.16877001368402e-189
.03657669244235e-182

.03392426122899%e-179
.32089939088761e-178
.92487989160089%e-177
.83915621667372e-171
.4046554341137e-161

.12501850393425e-159

.83497227268296e-158

Significance



Tools for DE analysis with RNA-Seq

edgeR ROTS
ShrinkSeq TSPM
DESeq DESeq2
baySeq EBSeq
e Vsf NBPSeq
' Limma/Voom  SAMseq
BlOCOﬂdUCtOI’ mmdiff NoiSeq
B cuffdiff Sleuth

(italicized not in R/Bioconductor
but stand-alone)

See: http://www.biomedcentral.com/1471-2105/14/91
A comparison of methods for differential expression analysis of RNA-seq data
Soneson & Delorenzi, 2013
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Part 6. Latest advancements in long read
isoform sequencing



Some transcripts can be challenging to reconstruct from short reads

 Complex alternative splicing (many isoforms)
* Verylong RNAs (ex. Titin — up to 36 kb)

* Transcripts containing repetitive sequences



Long Isoform Reads are Essential for Resolving Transcriptome Complexity
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Number of isoforms
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Long Isoform Reads are Essential for Resolving Transcriptome Complexity
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Long Read Isoform Sequencing via PacBio MAS-Iso-Seq (Kinnex)

PacBio SMRT
sequencing

20m

i

NES

N
Throughput . 75k 1
Error rate: 10%
BROAD ==

CLINICAL LABS ®™m=

Editorial | Published: 12 January 2023

Method of the Year 2022: long-read sequencing

The variables on RNA molecules: concert or
cacophony? Answersinlong-read sequencing

Long read
ONT PacBio ONT ONT
MinION Sequel GridlION PromethION
2015 2015 2017 2018
f-
1-10 million 500k ) 10-30 million 30-150 million
5-10% 10% 5-10% 5-10%

Info on error rates for long reads — impressive!!

https://nanoporetech.com/accuracy

https://www.pacb.com/technology/hifi-sequencing/

99% ....99.9%......

Q20 Q30

Inflection point for LR
transcriptomics

' 7R

. ) ..

PacBio PacBio Aziz Al Khafajl
Sequel Il Revio
2021 2023

b 40-120 million
(commercially cDNA reads
Kinnex)
4M 8M
<1% <1%

Long reads for Single Cell Transcriptomes!!

Different cell types Different isoforms

e — -

~

——

Short reads
Long reads
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Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing
CCS read accuracy ~ # passes

cDNA library L 5 1.000+ T
Ligate adapters { s 5 0998
¥ 3 0.996
(e R ) 8
'] o 0.994-
0
2 0.9921
o O
Q
; : O 0.990- s | | : : |
Sequence 0 10 20 30 40 50 60
number of passes
I : — ‘ Passes Base calling accuracy increases with
A oo - J the number of consensus reads.
CR——— Total bases: ~Q30 (99.9%) @ 10 passes.
- : ~200kb
Clrculqr .Consensus /Q\ 200kb total = 20kb / pass
H|F| Read ACfAG Reference
SNV

From Aziz Al’Khafaji, Broad Inst.



Standard isoform sequencing is inefficient on the PacBio platform

WGS fragment
A )

N Y

cDNA library 20kb capacity

PacBio HiFi Sequencing

= |50-Seq

ngate adapterS _: i ———— 0.25 - WS H

0.20 +
0.15 +
0.10 H
0.05

0.00 - J

. /
n J I T T T T |
Sequ ence 0 10 20 30 40 50 60

number of passes
By |

‘ Passes
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From Aziz Al’Khafaji, Broad Inst.



Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing

cDNA library

Ligate adapters

Sequence

Circular Consensus
HiFi Read

From Aziz Al’Khafaji, Broad Inst.
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Most transcripts are <5kb and get >60
passes. Wasted sequencing potential!



Standard isoform sequencing is inefficient on the PacBio platform

PacBio HiFi Sequencing 18kb lost opportunity!

CD NA Ilbrary ,,,,,,,,,,,,,,,,,,,,,,,, sssssssssssssssasas N v J
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i ————— J Of the 20kb segment, RNAs only use ~2kb
ot L Tottal bases:

|
Circular Consensus s ~200kb
HiFi Read Aghs e

From Aziz Al’Khafaji, Broad Inst.



Standard isoform sequencing is inefficient on the PacBio platform

o ] Multiplexed Array Sequencing (MAS-Seq)
PacBio HiFi Sequencing
cDNA library

cDNA library A=
istribute

Ligate adapters {
' ~ o

PCR1-AB PCR2-BC PCR3-CD PCR4-DE PCR(n)

8 C O
b 4\— —au & i\d"“ . C” W WO W L
=t el wll L lE
A B e D
Sequence " pool
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» —l - reaction clean up
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= Total bases: e A B C D E "'20kb size
Circular Consensus e ~200kb LU T
HiFi Read Ach Reference - PacBio sequencing
st - cDNA demultiplexing

>15-fold increase in throughput
From Aziz Al’Khafaji, Broad Inst. Al'Khafaji et al., NBT 2024



Technical validation using RNA isoform standards

SIRVs (Spike-in RNA Variant Control Mixes) are synthetic gene isoforms

SIRVome SIRV 1 SIRV 2 SIRV 3 SIRV 4 SIRV 5 SIRV 6
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69 isoforms AL . — U B Lo g 13
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m i = —I
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. N N
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SIRVS serve as truth dataset to evaluate MAS-seq's ability to accurately
identify RNA isoforms.

LEXNDOGEN

From Aziz Al’Khafaji, Broad Inst.



Long-read sequencing accurately identify RNA isoform standards
Gene X
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From Aziz AlKhafaji, Broad Inst. Reads Sequenced from SIRV Isoforms



Transcript Reconstruction from (Long) RNA-Seq Reads

RNA-seq Long Reads (not drawn to scale)
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LRAA algorithm for isoform identification and quantification
for bulk and single-cell long-read transcriptomics

Long RNA-Seq - —
Read Alignments —_—
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Splice Graph
Construction TP I/\[ 1/\| | |l|>| I/\I I/I\I |
== oo

Splice Graph Labeled E————b

Read Paths as Read ___—__—‘J
Compatibility Classes _— s e —
—  — e— —
h————b
v e E—
——
—

Isoform Identification
Coupled to Abundance
Estimation and Filtering

h 4

Reported Isoforms h_-—_____b
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https://github.com/MethodsDev/LongReadAlignmentAssembler/wiki

Filtering low quaility and
low isoform fraction candidates



https://github.com/MethodsDev/LongReadAlignmentAssembler/wiki

Pilot Study to Survey Long Reads and Isoform Structures
Across Humans and Non-human Primates

Human

3

Rhesus Macaque

3 ¥ 3 b
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Lo L e Luooe I i T oan rois [l Tcom Jive | ume
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Bulk Kinnex of Primate Tissue in Collaboration with the GTEx Consortium



Thousands of tissue-specific genes expressed
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Example: Paraoxonase3 Isoform Expression in Liver

human rhesus marmoset

expr_val

human.SM.OCU20.Male.Liver.1yr ™
rhesus.SM.NSUP2.Male.Liver.42da ™

SO
8 &
5 B
2 3
_!_I
s 3
g =
< O
x 8
2 »
@z
z
2‘2
%)
@
€ &
g E
£ 5
2 £

rhesus.SM.NMNOI.Female.Liver.36da~
marmoset.SM.OF5U7 .Male.Liver.7mo ™
marmoset.SM.NS25S.Female.Liver.1yr~

sample_name

The PON3 gene, a member of the paraoxonase

family, encodes a protein that associates with high-
density lipoprotein (HDL) and is involved in the
hydrolysis of lactones and the inhibition of low-density
lipoprotein (LDL) oxidation.

LRAA Primate Isoform Structures
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Example: Tsukushi (TSKU) Isoform Expression in Liver
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sample_name

The TSKU gene, encoding the protein Tsukushi, plays a
role in cholesterol homeostasis and is released in
response to non-alcoholic fatty liver disease (NAFLD). It
impacts systemic cholesterol homeostasis, reducing
circulating HDL cholesterol, lowering cholesterol efflux
capacity, and decreasing cholesterol-to-bile acid
conversionin the liver.

LRAA Primate Isoform Structures
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Part 7. Overview of Single Cell Transcriptomics



The Quintessential “Fruit Smoothie Metaphor”
for Bulk RNA-seq

Cell Type A

vs.

Bulk RNA Seq SCRNA Seq

From: https://perkinelmer-appliedgenomics.com/2022/02/15/single-cell-rna-seg-intro/



Step 1: Break down tissue to single cells (or nuclei)

(i) Mechanical (ii) Enzymatic (iii) Filtering (iv) Selection
. (dissection) (FACS/MACS)
e @

g: 1‘ ) : 3

o 191C
: (@)
:

— —

Can also extract and sequence nuclei instead of whole cells — popular in neurobiology

Lafzi et al., Nat Protocols, 2018



Examples of Different Popular Classes of Single Cell Sequencing

Plate-based methods
Low throughput

Cell lysis (Steps 1-8)

|

Poly(A)" RNA
SN L AAAAAAAAAA

1 <
Oligo(dT) primer

Reverse transcription
and terminal transferase (Steps 9-11)

LNA-containing TSO

EEET (GGG w/ S/ S s AAAAAAAAAA
ccc

=N

Template switching a’%&k
by reverse transcriptase (Steps 9-11)
ISPCR primers

[
| — | E—|
ISPCR primers
PCR preamplification of cDNA (Steps 12—14)
PCR cleanup (Steps 15-26)
[ GGG .
I CCC

l Tagmentation (Tn5) (Steps 28-31)

w

Gap repair, enrichment PCR
and PCR purification (Steps 32-36)

)

| — c{c{c]
E 1 CCC

P

L.

P5 primer i5 index

-y .
- —{l
[ s

i7 index P7 primer
Sequencing (Steps 37-41)

4— Read2seq

Bindexseq: Read'1seq Sequencing-ready fragment —J» {7 index seq

Smart-seq2 Method: Get reads covering the
full length of the RNA molecule.

Picelli et al., Nature Protocols, 2014

Droplet-based methods

Cells Qil

@ |
®

o® o®

®

o3

Droplet !

Cell lysis Hybridization
@ and reverse
@ transcription

From Potter, Nature Reviews Nephrology, 2018

Barcoded
beads
—
‘
A
Cell Cell-specific read
Demultiplexing GiFSpocliic roags
barcode UMI RNA
= —_— TGACAATAAAGACT. . . ... TCTAGCTG
ACAGTATAAAGACT. ........... GGGCCCCG TERCAMGITACEIC e
R AT A it TGACAATGATGCCG. . . . . . GTCACATC
GTTAGGTTACGTC. .. ......... GATTATAG > ACAGTATAAAGACT . .. ... GGGCCCCG
TGACAAGTTACGTC. .. ......... ACAATGCT ACAGTAGTTACGTC. . . . .. GTCACATC
GTTAGCTGATGCCG. . . ......... CTTTGCAT ACAGTATGATGCCG. . . . . . TCGACGAT
GTTAGCTGATGCCG. . . ......... TCTCGACT
CCRRERRE corceace = GTTAGCTGATGCCG. .. ... CTTTGCAT
ACAGTAGTTACGIC. . .......... GTCACATC I TACCIATCO0S St slepise e
TGACAATGATCCCG . . o o oo oo ercacarc___——— —_ GTTAGCTAAAGACT. .. ... ACATGCTG
ACAGTATGATGCCG. . .......... TCGACGAT ( CGTTAGGTTACGIC ..... GATTATAG )
GTTAGCTAAAGACT. ........... ACATGCTG J AGTGATGCCG. . . . .. CCTCGAGC
AGGTTACGTC. ........... TAGCCAGT L "TAGGTTACGTC. . . . . . TAGCCAGT

Lafzi et al., Nat Protocols,

Unique Molecular Identifier (UMI)

2018



Single Cell Transcriptome Sequencing Methods

scRNA-seq Methods

# UMIs

# Genes :

10x . sci-RNA-
Smart-seq2 CEL-Seq2 Chromium Drop-Seq Seqg-Well inDrops seq
7 N O 4 Jolbtl
eoe@® [ T I oo ® @ 9o (Y ] @ 0o
T | [ T | 22
Many reads
along the
Full length 3' counting 3' counting 3' counting 3' counting 3' counting 3' counting
Low throughput High throughput
~400 cells ea. ~3000 cells ea.

Averaged counts of UMIs and Genes per cell by method
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412
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Based on Ding et al., NBT 2020



Single Cell Transcriptome Sequencing Methods

scRNA-seq Methods

sci-RNA-
seq

10x

Chromium Seq-Well

Smart-seq2 CEL-Seq2 Drop-Seq inDrops

3’ counting == gene expression

I= transcript expression @
Many reads =
alongthe AEEEEEERER EANEEEEEER u ] EEEEEEEE EEEEREER llllllll.
Full length E 3' counting 3' counting 3' counting 3' counting 3' counting | &

Low throughput High throughput

3' counting

~400 cells ea. ~3000 cells ea.

Averaged counts of UMIs and Genes per cell by method
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method Based on Ding et al., NBT 2020



Single Cell Transcriptome Sequencing Methods

scRNA-seq Methods
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10x Genomics Chromium Single Cell Transcriptome Sequencing

10x Next GEM Technology samples a pool of ~3.6 million
10x Barcodes to separately index each cell’s transcriptome

High-Diversity Gel Bead Pool

Read 1 10x Barcode Poly(d

Capture
Read 1 10x Barcode Sequence 1

Capt
Read 1 10x Barcode sé’é’u‘é'nccez

10x Next GEM Technology for Single Cell Partitioning

10x Barcoded Gel Beads

e

Cells &

Enzyme

10x Barcoded Gel
Beads are mixed

. with cells, enzyme,
and partitioning ol

10x Barcoded Gel
Beads are mixed
with cells, enzyme,
4 22
and partitioning oil

Oil

N\

— Single cell GEMs undergo RT
i . \
N
\
\ +
to generate 10x Barcoded cDNA
/
4

. y
N All generated cDNA from individual
cells share a common 10x Barcode

...enables massive transcriptional profiling of

thousands of individual cells...

—
Cell 1...
Gene 1
Gene 2.
r
Cell 30,000
.GeneW :}ene 2

Gene 2,000

Q) eeee

ene 2,000

to create single cell GEMs

...to identify cellular subtypes and rare cells
in the samples.

~80k cells/run

https://www.10xgenomics.com/platforms/chromium



https://www.10xgenomics.com/platforms/chromium

Analysis Workflow for Single Cell Transcriptomics

Reference genome

]
— 5 - Align reads to the reference genome
- -
— - Collapse PCR duplicates (by UMIs)
-
— [
| ] -
— m
m m
u -
m
Cell2 ... CellN
Genel| 3 2 . 183
2 3 . 1
Gene3 | 1 14 i 18
' ' - Build a {Gene X Cell} UMI counts matrix
GeneM! 25 0 0




Single Cell Transcriptomics Data Processing Workflow

Normalization
Imputation
/ Cells
0o 1 2

0
2
0
0
1

o

Genes
—

oomow;/

- O o
QIN | O | o |o
O A O O O O

& Remove cell - cycle )

Batch correction

Andrews, 2021, review

Gene ‘count’ matrices for single cell data tend to be
very large and very sparse

eg. 25k genes x 100k cells

(almost all zeros — no reads detected)

Various processing needed:

- Which cells are ‘good’ cells? vs dying/stressed cells,
doublets, or empty droplets?

- possibly remove confounding cell cycle signatures
from expression data.

- Multiple experiments/replicates - batch correction
or harmonization?



In Silico Removal of Ambient RNA

(by Cellbender)
Phenomenology of ambient RNA

Cell dissociation
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Normalization

Imputation

Cells
0| 1|1 2|5 |0
o(o0(O0|0(3
§ 1 | 0 | 2|0 | 0
Slolo|lo|o]2
0| 7|0|4 |0
0|1|0]|0

Remove cell - cycle ~

Batch correction

Andrews, 2021, review

In Silico Removal of Ambient RNA
(by Cellbender)

Phenomenology of ambient RNA

Cell dissociation
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https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender
https://github.com/broadinstitute/CellBender

Metrics for Filtering Cells — Keep the Good Ones

Normalization

Imputation
Cells
0| 1|1 2|5 |0
0O|0|0O0|0 |3
§ 1|1 0|2|0 |0
Slolo|lo|o]2
0O 7 0 4 o0
1(0|1[0]|0

Remove cell - cycle

Batch correction

Andrews, 2021, review

Filter cells based on #genes, #UMlIs, and %Mito RNA

Histogram of #UMls per cell
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Batch Correction for Single Cell Transcriptomes

Normalization

Imputation

Cells
0| 1|1 2|5 |0
0'0.0.0‘3
§1:0:.2_0:0
Slolo|lo|o]2
0'7'0v4‘0
1‘0‘1-0j0

Remove cell - cycle

Batch correction

Andrews, 2021, review

Plot your cells and paint by batch to examine this.
Batch correction methods are available

No batch correction Batch correction

Figure 3. UMAP visualization before and after batch correction.
Cells are coloured by sample of origin. Separation of batches is clearly visible before batch correction and less visible afterwards. Batch correction was performed using
ComBat on mouse intestinal epithelium data from Haber et al (2017).



Integrating scRNA-seq data sets based on common sources of variation

Normalization

Imputation

Cells
0| 1|1 2|5 |0
o(o0(O0|0(3
§ 1'0'2.0:0
Slolo|lo|o]2
0704.0
1A0.10.0

Remove cell - cycle

Batch correction

Andrews, 2021, review

Peripheral blood mononuclear cells (PBMCs) +/- stimulation
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60 -30 0 30 60 40 20 0 20 40 40 20 0 20 40
t-SNE 1 t-SNE 1 t-SNE 1

Aligned using Seurat via canonical correlation analysis (CCA)
Butler et al., Nature Biotech, 2018



Finally, Single Cell Data Exploration and Biological Discovery

Normalization
*  Cell clustering

Imputation Literature *  Defining cell types
+ *  Biomarker Discovery
Cells Existing datasets
0|12 |5|0 Cell type 1
olo|o|o|a
@l 1| 0(2|0 |0
Cell t 2
Glo|loflo|o]2 Visualization ekt
0O|(7|0|4]|0 % g
1l0|1|0]0 \

Remove cell - cycle

e Cell state continuities

Batch correction . . . .
» Differentiation trajectories

Dimensionality reduction via
t-SNE, UMAP, etc

Andrews, 2021, review



Popular Software Packages for Single Cell Transcriptome Studies

P
Pr—

Tutorials

Clustering
For getting started, we recommend Scanpy’s reimplementation (SHSNBENER of Seurat's

[Acite_satija15] clustering tutorial for 3k PBMCs from 10x Genomics, containing preprocessing,
clustering and the identification of cell types via known marker genes.

Bl tm@%“" 1y

Visualization

This tutorial shows how to visually explore genes using scanpy. ([ IERRIEE

i
i

Trajectory inference

Get started with the following example for hematopoiesis for data of [*cite_paul15]:

Paul et al. (2015)

F. Alexander Wolf, Philipp Angerer & Fabian J. Theis,
Genome Biology, 2018;
Isaac Virshup: lead developer since 2019

Vignettes ~ Extensions FAQ News Reference Archive

Data visualization vignette

SCTransform, v2 regularization
Using Seurat with multi-modal data

Seurat v5 Command Cheat Sheet

Introduction to scRNA-seq integration
Integrative analysis in Seurat v5

Mapping and annotating query datasets

Dictionary Learning for cross-modality integration
Weighted Nearest Neighbor Analysis

Integrating scRNA-seq and scATAC-seq data
Multimodal reference mapping

Mixscape Vignette

Sketch-based analysis in Seurat v5
Sketch integration using a 1 million cell dataset from Parse Biosciences
Map COVID PBMC datasets to a healthy reference

BPCells Interaction

Analysis of spatial datasets (Imaging-based)

Analysis of spatial datasets (Sequencing-based)

Cell-cycle scoring and regression
Differential expression testing

Demultiplexing with hashtag oligos (HTOs)

From
Rahul Satija’s
lab



Gene expression # transcript expression

Cells

Gene Y Gene Z

scRNA-seq

But — long isoform reads to the rescue!!

From Aziz Al’Khafaji, Broad Inst.

saua9)



Long read scRNA-seq (Kinnex) of tumor infiltrating CD8 T cells

CD45 epitope
expression

(by CITE-seq)

Perform MAS-Iso-seq on the 10x sc libraries to get long isoform reads at single cell resolution

Al’Khafaji et al., Nature Biotechnology, 2023

MAS-1SO-seq

CD45 RB

Y e

CD45 RAB

',j. - T,,.::;'::
. ".\'R;-""- -
“:)’-} ..- soibr 7
My
CD45 RBC CD45 RABC
-:'\‘ '—3

CDA45 T-cell Marker Isoform expression resolved via long reads

CD45 RO

.__:
@‘k'
-
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t::,“:' .

Ry 2
o SR 5
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- e
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Cataloguing Cell Types and Building Cell Atlases

Tabula Muris Tabula Drosophila

Aorta -
BAT 4 : 3 Droplet Fly cell atlas JOGene—
~ Bladder{ m——1 mm FACS Adult fly Datees
Brain myeloid - 17 tissues Crowd » Gut
Brain non-myeloid - 580,000 cells annotation and S Hean
Diaphragm im >250 cell types cell-type ontology :%"sag
at N [:] » Antenna
GATH = Visualization tools
Heart 7 +-Analyses:--=========smocmcnnmsnenno
_ Kidney - ;
Large intestine {
Limbmuscle{ m——— A
Liver - )\
Lung4 W ] .
MAT 4 = Gene regulatory Cross-tissue
Mammary gland4{ ] networks analysis
|klflarrow -
Pancreas{ m_] a s
SCAT{ m & 3
Skin{ W] oN
Spleen+ Sexual Trajectory
Thymus+ s dimorphism analysis
Tongue -
Trachea '-:l . . ’ Tabula Drosophilae. In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and >250 cell
0 20,000 40,000 60,000 types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body.

Number of cells All data are freely available for visualization and download, with featured analyses shown at the bottom right.



HUMAN
CELL
ATLAS

Characterize the ~37 trillion cells in the human body

HCA is a global initiative of > 3k members

Initially targeting 18 biological networks of organs and tissues

& d & (e L D ki &)
o2 b & (O B i B 00 &

Currently at >70M across 25k specimens. Cells (Jan, 2026) https://www.humancellatlas.org/



https://www.humancellatlas.org/
https://www.humancellatlas.org/
https://www.humancellatlas.org/

Single cell analysis is revolutionizing cancer research

Nonmalignant cell types

Macrophage B;czzell Endothelial cell

@ #Z

) : NK cell and
Neutrophil T cell Fibroblast other cells

Intricate tumor ecosystem

Cell-cell communication

Malignant cells .
PN Genetic
Blood vessel \\ o ) @ * @ va(r;atnon
o Functional
r Intra-tumor heterogeneity ~ state

From Li, Jin, & Bai, Protein & Cell, 2022



Clinical Application for Tumor Single Cell Transcriptomics

—> Tumor biopsy

Dendritic cells

RNA-seq
analysis
Qualitative and quantitative Predictive immune
tumoral profiling signature analysis
A Subc!onal population E—
c g Tumoral cells
2 i il
5 _-?.T;.'-'* =R
€ | Macrophages <= p= | =
= a
©
E @NK cells
=
5 @CD& T cells
-g CD4+ T cells
11}

1

Embedment dimension

From Kuksin et al, EJC, 2021
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Part 8. Overview of Spatial Transcriptomics



Method of the Year: spatially resolved
transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.

~ “Starry Sjk'ié_s'_'in',\'lif.té"SPéceh.:eXplbratidn.-" i

In transcriptomics, spatial resolution opens. up new worlds too?” .

Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too.

Vivien Marx Credit: bjdlzx/Getty Images



Method of the Year: spatially resolved
transcriptomics

Nature Methods has crowned spatially resolved transcriptomics Method of the Year 2020.

.
-
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Starry skies invite space exploration. In transcriptomics, spatial resolution opens up new worlds too.
Vivien Marx Credit: bjdlzx/Getty Images



Single Cells vs. Spatial Transcriptomics

(VN
\_YR) e

Car parts ~ single cells Car ~ tissue



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH)
and fluorescent tags



Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH)
and fluorescent tags



Single Molecule Fish (smFISH) Methods for Visualizing RNA Molecules at Sub-cellular Resolution

a Long probe, many labels b Shorter probes, fewer labels C Many probes, single label ea.
200 o o esee o o s e B AL BARSE A ASEMMIEILEERAAREELERN]

Target: hunchback RNA in Target: single transcripts in Target: end-1 gene in
Drosophila embryo mammalian cells C.elegans embryos

Rolling circle amplification (RCA) of ’‘padlock probes’.
d Labels hyb to RCA product.

Reverse transcription mANA

11 <= LNA primer e
—_— RNase H digesti
ase H digestion mBNA

___________ c
Padlock Padlock probel
probe [ \ hybridization

Branched oligo sets
that amplify labeling

<O Label probe

: Amplifier molecule

Pre-amplifier
/~ \Ligation | _I molecule
RCA
detection sococgl S
m,ﬂm
]RCP mm
ma»‘m
Detection probe
TARGET: ERBB2 (aka. HER2) in Z_ Target: ERBB2 (green) and
human fibroblasts 18SrRNA (red)

Itzkovitz & van Oudenaarden, Nature Methods Supplement, 2011



MERFISH — smFISH adapted for hundreds to thousands of transcripts

Multiplexed Error-Robust Fluorescence in situ Hybridization

Each transcript target probe has | | | | . |
MERFISH is a massively multiplexed single-molecule imaging technology for spatially
au nlq ue com bl natlon Of resolved transcriptomics capable of simultaneously measuring the copy number and spatial

distribution of hundreds to tens of thousands of RNA species in individual cells.
beacon landing pads

COMBINATORIAL LABELING L] SEQUENTIAL IMAGING ° ERROR ROBUST BARCODING

Transcripts ~ Assigned Encoding Probes
Barcode
Transcript 1 1011000... I\ /l\ /l\ /

0110100... l\ /l\ ’l\ -l

Transcript 2

Transcript N 0000111... L /L /L /

» Different fluorescently labeled probes (ie. beacons) are
hybridized in each round.

* Combinations of colors -> Transcript ID

https://vizgen.com/technology Movie: https://www.youtube.com/watch?v=00QekKSsciA



https://www.youtube.com/watch?v=O0QekKSscjA

10X Genomics Xenium — 100s to 1000s of Targeted RNAs visualized at subcellular resolution

Padlock probe

RNA transcript
RNA transcript

Fluorescent oligo t

” “t ‘/\‘

Rolling circle

amplification product

\ \ ‘ amplification product
l ! / Padlock probe
<‘ Rolling circle
-

o=t

AP



https://www.10xgenomics.com/videos/s3lqk4sivj?autoplay=true

Classes of Spatial Transcriptomics

Imaging Readout Sequencing Readout

Based on In Situ Hybridization (ISH)
and fluorescent tags



Spatial RNA-seq — 10X Visium HD

The Capture Area is a
continuous lawn of oligos
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Spatial RNA-seq — 10X Visium HD

Projection type
£9
A Home HE " | Spatial X Export v
;g'. Pipeline-generated groups
Clusters O Graph-Based
Z O hcluster_12_clus
Features
O hcluster_17_clus
%Q O hcluster_2_clust
Reanalyze
O hcluster_7_clust
Y @® K-Means S
Advanced
Selection Number of clusters
10 v
Search for All
Feat
eatures Cluster 1 (120609 oo
Cluster 2 (70669) Lot
4 Cluster 3 (573%6) oo
Cluster 4 (51743
Cluster 5 (51114) one
Cluster 6 (20245) ooe
Cluster 7 29902 oo
Cluster 8 27947 see
Cluster 9 (19336) ese
Cluster 10 29:0) L
+ Create a new group X S £ ALK 1 / o
52 Qe £ SN : <1 Ko7 2mm
s bk s
Run Differential Expression ; — g
Differential Expression Output  |® Expression Distribution A




Integration of Single Cell and Spatial Transcriptomes

Identification of cell Physical localization of cell
subpopulations subpopulations in tissue
scRNA-seq

Cell-type
deconvolution

or mapping
Dimensionality >

reduction

\

Spatial transcriptomics
(high-plex RNA imaging
ID cell subtypes or spatial barcoding)

Longo, NRG, 2021



Slide-Tags: integrated single nuclei and spatial transcriptomics

I

Photo-

i cleavable
; linker C)
§ —_ i

10 ym
beads i

Apply tissue to
sequenced spatially
barcoded array

UMAP and cell types,
expression-based clustering

Russell et al., Nature 2023, PMID: 38093010

@ Inhibitory
Endothelial
Astrocyte
Oligo

@ Thalamic

@ Cortical
Microglia

® DG

® CA3

® CA1

Tag nuclei with

photocleaved spatial

barcodes

® ©00

L
A, ™

-~

%

Isolate nuclel

Cells plotted according to
spatial coordinates, colored
by cell types

@
©
o
@
b
%
o°

|

Microfluidics capture and
barcoding of mRNA and
spatial barcodes

Spatial Expression of Marker Genes
Neurod6 Ciql2

[— ]
0 3

).

In situ hybridization
(Allen Mouse Brain Atlas)



Slide-Tags commercialized as ‘Trekker’ by Curio Bioscience

C 23 curiobioscience.com/curio-trekker/

SPATIALIZE YOUR SINGLE-CELL DATA

snRNA-seq gene expression library

A

-
‘;*:?\ < Spatial map
A7 B
W

of single nuclei

¢ .
. 2

Trekker
bioinformatics
pipeline

Video: https:



https://curiobioscience.com/curio-trekker/
https://curiobioscience.com/curio-trekker/
https://curiobioscience.com/curio-trekker/
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Part 9. Applications in Cancer Transcriptomics



RNA-Seq Empowers Transcriptome Studies of Cancer

|Genetic readouts | \’lrus ‘ __Abundance Functional readouts |
Primary GBM ! ,/
T - Ty CNVs S > .'," \ Isoforms
e (_! /
. -]
2 ) L ‘ 4 ”

Structural { Chimeras
variants |

Extract RNA, convert

MIRATAT

to cDNA - "
Sequencer G L ¥ Transcriptional
\ modulation
# (pick your favorite) N . \_ a 8
g _ A
NS / \ Editing
>, \
N\
Ag . 3
C | \ \
LY ™
GCTQ‘: J U :
SNPs s Tcell

Nature Reviews Genetics 19, p93-109 (2018)




A Transcript <j
Q} 4) Reconstruction

m ‘9

CTAT-M utations

Mutations :

I Newest: CTAT-LR-Fusion

L----------

| |
| |
| Fusion I
1 Transcripts |
' :
i STAR-Fusion .
| TrinityFusion */ 4) |
| Fusioninspector |
|
I

Cancer RNA-Seq

Cancer Transcriptome Analysis Toolkit (CTAT)

Single Cell Tumor
:> Heterogeneity inferCNV

I3y

Transcript
Expression

"Q; @

LncRNAs

sincky

% Viruses &

Microbes & **{)

+Kraken
+Centrifuge
Alternative
Splicing
oz ;vc:;l\:%:j:\ﬂ
+
CTAT-Splicing



Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

Normal
chromosome 9

Normal
chromosome 22

22q11.2
BCR

9034.1
ABL1

BROAD ===

CLINICAL LABS ®m=



Chromosomal Translocations Can Lead to Oncogenic Fusion Transcripts

Normal Translocation
chromosome 9 t(9:22)
Normal Philadelphia
chromosome 22 chromosome

Can detect BCR::ABL1
via its fusion transcript:

y

BCR
BCR ABL1

22q11.2 ABL1
BCR

Oncogenic driver BCR::ABL1 fusion found in 95% of
Chronic Myelogenous Leukemia (CML) patients

9034.1
ABL1

BROAD ===
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Diagnostics and Therapeutics Involving Oncogenic
Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)
— Chronic Myelogenous Leukemia (CML) cases (95% of cases)
— Treatable with tyrosine kinase inhibitors C & cancer.sanger.ac.uk

$518—SSX

— Synovial sarcoma (~¥100% of cases) COS M I C
TMPRSS2-ERG

Catalogue Of Somatic Mutations In Cancer

— 0,

EML4-ALK _
— Non small cell lung carcinoma (4% of cases) Fusions 305 COSMICFusions
— anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome
DNAJB1-PRKACA

— Fibrolamellar hepatocellular carcinoma (FL-HCC),
100% of cases, but a rare cancer.

FGFR3-TACC3

— ~8% of glioblastoma patients

gl Gene Fusions in Cancer

BROAD E==
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Diagnostics and Therapeutics Involving Oncogenic
Fusion Transcripts in Cancer

BCR-ABL1 (Philadelphia chromosome)
— Chronic Myelogenous Leukemia (CML) cases (95% of cases)
— Treatable with tyrosine kinase inhibitors C @& cancer.sanger.ac.uk

$518—SSX

— Synovial sarcoma (~¥100% of cases) COS M I C
TMPRSS2-ERG

Catalogue Of Somatic Mutations In Cancer

— 0,

EML4-ALK .
— Non small cell lung carcinoma (4% of cases) Fusions 305 COSMIC Fusions
— anaplastic lymphoma kinase (ALK) inhibitors improve patient outcome
DNAIJB1-PRKACA

— Fibrolamellar hepatocellular carcinoma (FL-HCC),
100% of cases, but a rare cancer.

FGFR3-TACC3

— ~8% of glioblastoma patients

gl Gene Fusions in Cancer
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General Approaches to Fusion Transcript Discovery

Paired-end lllumina RNA- - e My —
Seq — -

BROAD ===
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General Approaches to Fusion Transcript Discovery

Paired-end lllumina RNA-
Seq

Align reads to the genome,
Identify discordant pairs and junction/split reads.

e L
-l
Chr-A
Spanning frag
-
Chr-B

BROAD E==
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General Approaches to Fusion Transcript Discovery

Paired-end lllumina RNA-

Seq
‘_l’.'v % De novo RNA-seq assembly
Align reads to the genome, Align transcripts to genome,
Identify discordant pairs and junction/split reads. Identify Fusion Transcripts

e L
g X 1 S — ChiA
Chr-A
Spa::\ingfrag
non = T——T
R Chr-B
Chr-B

BROAD E==
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Our Prior Work on Fusion Detection, Benchmarking, and Analysis via lllumina RNA-seq

Accuracy assessment of fusion transcript detection via read-mapping and de novo
fusion transcript assembly-based methods
Genome Biology volume 20, Article number: 213 (2019)

Paired-end wem o ™ === — " s
uming =, = e = T = =
RN A.seq _—_—___ —_— — _— —
TrinityFusion

STAR-Fusion DGQO RNA-seq assembly
* Align reads to the genome * Align transcripts to the genome
* Identify discordant pairs and * Identify chimeric transcript

junction / split reads alignments

g-mw

B, an Spanning fragment
ChrA ChrA
B2 a2

<
CH B e SO0 D0 ey OV B e OO0,

BROAD ===
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9

Our Prior Work on Fusion Detection, Benchmarking, and Analysis via lllumina RNA-seq

Accuracy assessment of fusion transcript detection via read-mapping and de novo

fusion transcript assembly-based methods

Genome Biology volume 20, Article number: 213 (2019)

Paired-end we . "=
lllumina e

RNA-seq

STAR-Fusion

TrinityFusion
De novo RNA-seq assembly

K50

* Align reads to the genome

* Identify discordant pairs and
junction / split reads

* Align transcripts to the genome

* Identify chimeric transcript
alignments

8/ A - Junction fragment
L A1 B - Spanning fragment
ChrA

B2 aAp

ChrA

<
CH B e SO0 D0 ey OV B e OO0,

BROAD £==
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Targeted in silico characterization of fusion transcripts in tumor
and normal tissues via FusionInspector

Cell Rep Methods. 2023 May 8;3(5):100467.

Inputs: * kst of target fusions
* RNA-seq (fastq)

Cheon

Chre

FusionInspector

-

Modeled fusion contig

Fusion isoform breakpoints ‘ A

Fusion counter reads —rl —”" —

Quantification, Evaluation, Visualization Classification
and Annotation 2
- { *  COSMIC-like
Evidence read counts A e =f <[fslsite *  Artifact-like
FFPM = . *  Other
FAR
Coding effects -
*  Splicing P

Expression, Beeakpoint,

Interactive IGV-ri 3
nore Microhomology Plots



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9
https://www.sciencedirect.com/science/article/pii/S2667237523000863?via%3Dihub

Adapting TrinityFusion and Fusioninspector to Long Read Fusion Detection

Targeted in silico characterization of fusion transcripts in tumor
and normal tissues via FusionInspector

Cell Rep Methods. 2023 May 8;3(5):100467.

Accuracy assessment of fusion transcript detection via read-mapping and de novo
fusion transcript assembly-based methods

Genome Biology volume 20, Article number: 213 (2019) I Inputs: ° st of target fusions
| * RNA-seq (fastq)
Paired-end  we . " - o I
lllumina s S | Cheor )
RNA.seq __ —__

Chromosome,
STAR-Fusion Fusionlnspector
e - ———coceen
Modeled husion contig [ ]
* Align reads to the genome Align transcripts to the genome A
* Identify discordant pairs and *\dentify chimeric transcript i
junction / split reads gnments / Fusion roads - 2o

8/ A - Junction fragment

S A 8- Spanning fragment y

Quantification, Evaluation, Visualization Classification
and Annotation

ChrA ChrA
B2

O B e Q000 O B e Q000

~ { +  COSMIC-fike
Evidence read counts SR =7 =lfes @ «  Artifact-like
. FFPM —_— R=? +  Other
FAR
Coding effects -
Splicing L_ *****
B ROAD = Interactive IGV-reports Expression, Breakpoint,
CLINICAL LABS 5:; Microhomology Plots



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1842-9
https://www.sciencedirect.com/science/article/pii/S2667237523000863?via%3Dihub
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New Addition to our Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion
(borrows general approach from TrinityFusion and Fusioninspector, adapted for LR)

(1) Quickly Identify Fusion Candidate (ctat-minimap2) 4xfaster

| —
I S—S—
g =g~ TrinityFusion-



New Addition to our Cancer Transcriptome Analysis Toolkit: CTAT-LR-fusion
(borrows general approach from TrinityFusion and Fusioninspector, adapted for LR)

(1) Quickly Identify Fusion Candidate (ctat-minimap2) 4xfaster

-
-~ ]
T —] TrinityFusion-
l— like
: Make mini-fusion contigs

Fusioninspector-:
O === ] I- :

ike

(2) —l
Rigorous minimap2-alignment, capture precise breakpoints
= 5 R — -]
BROAD = : S
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CTAT-LR-Fusion Interactive Reports for Visualization and Analysis

Browse All Fusions IGV Detail

IGV  CYTHI-EIF3H:1-44573 Q, 44kb Track Labols [ETIEIR— K (+]
[ I D}

Kb 20 ko X 30kb 40 ko

wGene A Gene B

ref_annot

Ref. Annotations

i
Lcu:= Read_Alignments | - .i E E :{ E ? T:. E e
Long Fusion readls |

(PacBio)

Short Fusion rea
(llumina)

BROAD &
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Single Cell MAS-Iso-seq Applied to T-cell Enriched Melanoma Patient Sample

15-
Long and Short scRNA-seq
10 -
~ 20M PacBio MAS-Iso-seq reads
~200M lllumina 10x 3’ reads
C\ll 5-
~ 7k Total cells (10% cancer cells) &
=
0 -
Brief Communication | Published: 08 June 2023
High-throughput RNA isoform sequencing using
programmed cDNA concatenation
5=

Aziz M. Al'Khafaji &, Jonathan T. Smith, Kiran V. Garimella &, Mehrtash Babadi &, Victoria Popic &,

Moshe Sade-Feldman, Michael Gatzen, Siranush Sarkizova, Marc A. Schwartz, Emily M. Blaum, Allyson

Boland, Paul C. Blainey & & Nir Hacohen &
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Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4

Method
ctat-LR-fusion
© Fusioninspector

STAR-Fusion

umap_1

BROAD E==
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Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4 Cells Identified with NUTM2A-AS1::RP11-203L2.4

Method
ctat-LR-fusion

© Fusioninspector

STAR-Fusion

<,
= : S

umap_1 Fusioninspector (lllumina)
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Single Tumor-specific Fusion Transcript Detected: NUTM2A-AS1 (Oncogene) :: RP11-203L2.4

Cells expressing NUTM2A-AS1::RP11-203L2.4 Cells Identified with NUTM2A-AS1::RP11-203L2.4

Method
ctat-LR-fusion
© Fusioninspector

STAR-Fusion

U
= .. S

umap_1 Fusioninspector (lllumina)

Reference Isoform Structures
NUTM2A-AS1 RP11-203L2.4

.

Chr.10 : Chr.9

Isoforms Reconstructed from PacBio MAS-Iso-sed Reads

8 full-length
e - : : fusion isoforms

Fusion Isoform Junctions Detected from Short lllumina Reads

BROAD === ) . 5 sets of isoform

CLINICAL LABS ®m= ' ! breakpoints




Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by high-
throughput full-length single-cell RNA sequencing in
ovarian cancer

Arthur Dondi, Ulrike Lischetti &, Francis Jacob, Franziska Singer, Nico Borgsmiiller, Ricardo Coelho,

Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel & & Niko Beerenwinkel &

Nature Communications 14, Article number: 7780 (2023) | Cite this article

UMAP: All cells ...,

Cell type

B.cells

10- R B cells.naive
Taanst Endothelial.cells
Fibroblasts
HGSOC
5 -
Mast.cells

Mesothelial.cells

¥

UMAP 2

Monocytes

01 Myeloid.cells
T.NK cells

5- Fusion

s RAPGEF5-AGMO
1] % A SMGT7--CH507-513F
10-
10 0 10
UMAP 1

Patlent 1:
54M PacBio Isoform reads

* 35M lllumina 10x 3’ reads
* ~500 cells (20% cancer)
* 4 cancer-specific fusions detected
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Detection of Fusion Transcripts in High Grade Serous Ovarian Cancer via Long Read Isoform Sequencing

Detection of isoforms and genomic alterations by high- P atient 1:
throughput full-length single-cell RNA sequencing in 54M PacBio Isoform reads

ovarian cancer ’
e 35M lllumina 10x 3’ reads

Arthur Dondi, Ulrike Lischetti &, Francis Jacob, Franziska Singer, Nico Borgsmiiller, Ricardo Coelho,

Tumor Profiler Consortium, Viola Heinzelmann-Schwarz, Christian Beisel & & Niko Beerenwinkel & ° ~50 0 Cel |S ( 20% cance r)
Nature Communications 14, Article number: 7780 (2023) | Cite this article oL .
* 4 cancer-specific fusions detected
>
LUMAP: All cells  &......, UMAP: Tumor cells only
N ’ ‘. .
& ;o Cell type e
(§ 5 ’ .: * Bucells 2- & ¢ @
10- (J " ‘0" ® B.cells.naive . :
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In Summary

Many applications for RNA-seq, technology continues to evolve.

Analysis can involve reference genomes or be genome-free via de novo
transcriptome assembly — Trinity can help.

Quantification involves counting reads and considering read-mapping
uncertainty

Long reads now available for applications previously limited to short reads,
involve far less read mapping uncertainty, and enable isoform rather than gene
expression analyses.

Single cell and spatial transcriptomics studies are revolutionizing our
understanding of tissue complexity, diversity of cell types, and cellular
interactions - particularly in studies of cancer.

Massive resources being built - whole organism cell atlases and high-resolution
spatial maps, and new software tools and algorithms developed for leveraging
long reads in bulk, single cell, and spatial studies.
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