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Fun Facts:
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https://www.genomicseducation.hee.nhs.uk/education/core-concepts/what-is-genomics/
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What is a phylogeny…?



A phylogenetic tree is a 
hypothesis of how species 

or genes are related 
through evolution

What is a phylogeny…?



Unrooted tree

Rooted tree

What is a phylogeny…?



What is a phylogeny, why is it important…?



“As buds give rise by growth to fresh buds, and these, if vigorous, branch
out and overtop on all sides many a feebler branch, so by generation I

believe it has been with the great Tree of Life, which fills with its dead and
broken branches the crust of the earth, and covers the surface with its

ever branching and beautiful ramifications”

(Darwin 1859)

The first phylogenies



The first phylogenies



Mivart (1865) Proc. Zool. Soc. London Haeckel (1866) 

The concept: 
Darwin’s ‘I think’ 
(1837)

The first phylogenies



VS

Analogous Structures

What is a phylogeny, why is it important… and how do you build one?



What is a phylogeny, why is it important… and how do you build one?



Cloutier et al. 2020 http://www.nature.com/nrg/journal/v7/n11/images/nrg1918-f2.jpg

What is a phylogeny, why is it important… and how do you build one?



The origin of molecular phylogenetics

Nuttal (1904) - serological cross-reactions were stronger
for more closely related organisms -> phylogeny of apes



Nuttal (1904) - serological cross-reactions were stronger
for more closely related organisms -> phylogeny of apes

Dobzhansky & Sturtevant (1938) - genomic 
rearrangements in Drosophila as phylogenetic markers

The origin of molecular phylogenetics



Nuttal (1904) - serological cross-reactions were stronger
for more closely related organisms -> phylogeny of apes

Dobzhansky & Sturtevant (1938) - genomic 
rearrangements in Drosophila as phylogenetic markers

Zuckerkandl & 
Pauling (1965) - 

The origin of molecular phylogenetics



Molecular phylogenetics: the new wave

Cavalli-Sforza & Edwards (1965) in Genetics Today



Molecular phylogenetics: the new wave

Sarich & Wilson (1967) Science
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Molecular phylogenetics: the new wave



The dawn of phylogenomics



The dawn of phylogenomics

Phylogenomics: prediction of gene function and gene 
family evolution



The dawn of phylogenomics

Phylogenomics: prediction of gene function and gene 
family evolution



The dawn of phylogenomics

Phylogenomics: species tree inference



Phylogenomics sensu 
comparative genomics

Phylogenomics sensu species tree 
inference

The dawn of phylogenomics
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3 ‘Next generation’ phylogenomics

From Darwin to phylogenomics

Conceptual framework for phylogenomic 
reconstruction



DATA

ORTHOLOGY
INFERENCE

PHYLOGENOMIC 
SUBSAMPLING

ALIGNMENT
& TRIMMING 

SUPERMATRIX 
VS INDIVIDUAL 
GENES

TESTING THE 
ROBUSTNESS 
OF YOUR TREE

MODEL 
SELECTION & 
PHYLOGENETIC 
INFERENCE

Tutorials and hands-on sessions available at 
https://evomics.org/2024-workshop-on-phylogenomics-cesky-krumlov/
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01 DATA Incomplete, biased, or improper taxon sampling can lead to 
misleading results in reconstructing evolutionary relationships. 
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01 DATA Incomplete, biased, or improper taxon sampling can lead to 
misleading results in reconstructing evolutionary relationships. 

Outgroups / Fast-evolving lineages / Missing data



01 DATA Source of your data

GENOMES

● Assembled and 
annotated.

● Coding genes are 
retrieved (longest 
isoform) -> this is your 
dataset!

https://knowgenetics.org/whole-genome-sequencing/



01 DATA Source of your data

GENOMES

Pros: 

● Very large set of genetic markers 
● Good identification of full-length 

genes, less chimeras (if the assembly 
and annotation are of good quality)

● Good for shallow and deep 
evolutionary distances

● Ethanol-fixed tissue OK (for draft 
genomes)

Cons: 

● Annotation may vary quite a lot 
between species (source, software, 
etc), may not be comparable.

● Expensive (money and computing 
time)

● More difficult to have a high number 
of species

● Fresh tissue needed (for 
chromosome-level genomes)



01 DATA Source of your data

Moreton et al. 2016

● Assembled de novo

● Coding genes are retrieved 
(after inferring ORFs; longest 
isoform) -> this is your dataset!

De Bruijn Graph

TRANSCRIPTOMES

Gene A
Isoform 1

Isoform 2



01 DATA Source of your data

Pros: 

● Very large set of genetic markers 
● Much cheaper than sequencing 

genomes -> easier to have a high 
number of species

● Not dependent upon a reference 
genome

● Good for shallow and deep 
evolutionary distances

Cons: 

● Incomplete identification of full-length 
genes and single-copy transcripts.

● Potential misassembly of transcripts 
(especially when duplicates are present)

● Missing data as a product of the 
transcriptome representing a snapshot 
of expression (but this could also affect 
genome annotation)

● Fresh tissue needed

TRANSCRIPTOMES



01 DATA Source of your data

Faircloth et al. 2012

ULTRACONSERVED ELEMENTS (UCEs)

The UCEs are designed a priori -> after hybridization, sequencing, assembly and 
mapping, this is your data!



01 DATA Source of your data

ULTRACONSERVED ELEMENTS (UCEs)

Pros: 

● Medium-large set of genetic 
markers 

● Much cheaper than sequencing 
genomes -> easier to have a high 
number of species

● Not dependent upon a reference 
genome

● Tissues fixed in EtOH or museum 
specimens are OK

Cons: 

● Limited availability of markes outside the 
designed ones.

● Potential misassembly (if probes are 
designed with a limited amount of 
species)

● Retrieval success dependent on DNA 
quality

● Usefulness of markers known a 
posteriori

● No proper orthology inference 



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)

After digestion, sequencing and 
mapping, this is your data!



01 DATA Source of your data

REDUCED REPRESENTATION (RADseq, GBS)

Pros: 

● The cheapest of the methods
● Not dependent upon a reference 

genome
● Samples fixed in ethanol OK
● Markers distributed evenly across 

the genome

Cons: 

● No full genes, only SNPs
● Only for population genomics or 

phylogeny including closely-related 
species

● Missing data as a product of the 
transcriptome representing a snapshot 
of expression (but this could also affect 
genome annotation)

● No proper orthology inference



01 DATA Source of your data

METAGENOMICS/METATRANSCRIPTOMICS 
 

One individual, multiple cells One cell, one organismOne cell, multiple organisms

(Metagenome-Assembled 
Genome)



01 DATA Source of your data

METAGENOMICS - single cell vs MAGs

Bowers et al. 2017



DATA

ORTHOLOGY
INFERENCE



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

Orthology inference is 
essential for phylogenomics, 
as you want to consider only 
genes that arouse through 

speciation events



02 ORTHOLOGY INFERENCE

Altenhoff, Glover & Dessimoz 2019

Orthology relationships are inferred pairwise

When we have multiple species, we should 
consider the concept of orthogroup

Pairwise orthologs

Orthologous 
Group

(orthogroup)

For phylogenomic inference, we 
want either:

● Single-copy orthogroups 
(ie, one gene per species)

● Trimmed orthogroups (ie, 
removing genes from 
duplication events)

Software: 
- OrthoFinder
- OMA
- TOGA (synteny; vertebrates)
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& TRIMMING 



03 ALIGNMENT AND TRIMMING

If the sequences are poorly aligned, you may want 
to consider trimming the poorly aligned areas. 

The goal of the alignment procedure should be to 
identify the events associated with the homologies, so 
that the aligned sequences accurately reflect those 
events.

Software: 
- Muscle5, MAFFT
- PhyKIT, trimAL



03 ALIGNMENT AND TRIMMING

If the sequences are poorly aligned, you may want 
to consider trimming the poorly aligned areas. 

The goal of the alignment procedure should be to 
identify the events associated with the homologies, so 
that the aligned sequences accurately reflect those 
events.

Software: 
- Muscle5, MAFFT
- PhyKIT, trimAL



DATA

ORTHOLOGY
INFERENCE

ALIGNMENT
& TRIMMING 

PHYLOGENOMIC 
SUBSAMPLING



04 PHYLOGENOMIC SUBSAMPLING

What? Sets of loci are selected from large genome-scale data sets and used for 
phylogenetic inference.

Why? To avoid an accumulation of nonphylogenetic signals as a product of 
heterogeneities in evolutionary processes, reduce computing time and improve 
model fit.

This step can be used to explore phylogenetic conflicts, test specific hypotheses of 
relationships, measure the impact of different sources of bias, and allow for a better 
modeling of evolutionary processes. 

How? By checking the properties of genes or sites and selecting the ones that 
minimize bias.



04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

Baeza & Fuentes 2013

Good information 
to infer these 

nodes



04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Baeza & Fuentes 2013

Not enough 
information to infer 
these nodes



04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Systematic error: when a 
calculated value deviates from the 
true value in a consistent way.



04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Systematic error: 

calculated value deviates from the 
true value in a consistent way.

Philippe et al. (2017)



04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Systematic error

-> root-to-tip distance (ie, the degree of 
deviation from a strict clock-like behavior)

-> average pair-wise patristic distance 
between terminals (indicative of susceptibility 
to long-branch attraction)

-> level of saturation



04 PHYLOGENOMIC SUBSAMPLING

Which properties? Systematic error

-> root-to-tip distance (ie, the degree of 
deviation from a strict clock-like behavior)

-> average pair-wise patristic distance 
between terminals (indicative of susceptibility 
to long-branch attraction)

-> level of saturation
-> compositional heterogeneitySpecies A

 Site 1      Site  2   Site 3…Site n

Species B

Species C

Species D

Gene 1

Leu    Met    Lys   Hys   

Leu    Leu    Asn   Pro   

Leu    Met    Lys   Pro   

Leu    Ile      Leu   Leu   
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04 PHYLOGENOMIC SUBSAMPLING

Which properties? 

Information content

-> length of alignment
-> missing data
-> level of occupancy

Phylogenetic signal

-> average support
-> Robinson-Foulds distance

Systematic error

-> root-to-tip distance (ie, the degree of 
deviation from a strict clock-like behavior)

-> average pair-wise patristic distance 
between terminals (indicative of susceptibility 
to long-branch attraction)

-> level of saturation
-> compositional heterogeneity

Software: 
- PhyKIT
- genesortR
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05 SUPERMATRIX VS INDIV. GENE TREES
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05 SUPERMATRIX VS INDIV. GENE TREES

Introgression



05 SUPERMATRIX VS INDIV. GENE TREES

Indiv. gene trees

Fernández, Hormiga & Giribet (2014)

Phylogenetic analysis
(one tree)

Phylogenetic analysis
(multiple trees)

Estimation of a species 
tree given a set of gene 

trees

Multispecies coalescent

Software: 
- ASTRAL
- TREE-QMC/TOB-QMC
- StarBeast3
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06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION
METHOD

A WAY TO ASSESS HOW GOOD YOUR 
HYPOTHESIS IS 



06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION (= substitution model)

A model that describes changes in sequences over evolutionary time and 
transforms the number of changes in an evolutionary distance

Seq1 ATGGCA

Seq2 ACGCCG

Seq3 AGGGCC

3 changes 
(1 transition, 2 transversions)

3 changes (3 transvesions)

2 changes

Observed number of changes Equation Evolutionary 
distance



06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION (= substitution model)

A model that describes changes in sequences over evolutionary time and 
transforms the number of changes in an evolutionary distance

Seq1 ATGGCA

Seq2 ACGCCG

Seq3 AGGGCC

3 changes

3 changes

2 changes

Observed number of changes Equation Evolutionary 
distance

Complexity

Jukes & Cantor
Kimura 2P

Felsenstein 81
GTR…

PAM
BLOSUM

JTT
LG…

nucleotides amino acids
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DATA MODEL OF EVOLUTION (= substitution model)

A model that describes changes in sequences over evolutionary time and 
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Seq1 ATGGCA

Seq2 ACGCCG

Seq3 AGGGCC

3 changes

3 changes

2 changes

Observed number of changes Equation Evolutionary 
distance



06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION (= substitution model)

A model that describes changes in sequences over evolutionary time and 
transforms the number of changes in an evolutionary distance

Seq1 ATGGCA

Seq2 ACGCCG

Seq3 AGGGCC

3 changes

3 changes

2 changes

Observed number of changes Equation Evolutionary 
distance

Software: 
- ModelFinder (IQ-TREE3)
- ModelTest



06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION
METHOD

Two main methods: 
Maximum Likelihood (ML) and Bayesian Inference (BI)

Basic question in BI:
‘What is the probability that this model (M) is correct, given 
the data (D) that we have observed?’

Basic question in ML:
‘What is the probability of seeing the observed data (D) 
given that a certain model (M) is true?’

BI seeks P(M|D), while ML maximizes P(D|M)

Software: 
RevBayes
BEAST2
ExaBayes

IQ-TREE3
RAxML-ng
ExaML



06 MODEL SELECTION & PHYLOGENETIC INFERENCE

DATA MODEL OF EVOLUTION
METHOD

A WAY TO ASSESS HOW GOOD YOUR 
HYPOTHESIS IS 

● ML: standard nonparametric bootstrap (100 reps), 
approximate likelihood ratio test (1,000 reps), ultrafast 
bootstrap (1,000 reps)(between 1 and 100)

● BI: posterior probability (between 0 and 1)

Traditional metrics:
○ concordance factor: for every branch of a reference 

tree, the percentage of “decisive” gene trees 
containing that branch.

○ internode certainty/tree certainty: a measure of the 
support for a given internode by considering its 
frequency in a given set of trees jointly with that of 
the most prevalent conflicting internode in the same 
set of trees.

○ Felsenstein’s bootstrap proportion (FBP)
○ Transfer bootstrap expectation (TBE)

Novel metrics:

http://www.iqtree.org/doc/Concordance-Factor
https://academic.oup.com/sysbio/article/69/2/308/5556115
https://www.nature.com/articles/s41586-018-0043-0
https://www.nature.com/articles/s41586-018-0043-0
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Repeat N times



07 TESTING THE ROBUSTNESS OF YOUR TREE

These are matrices/subsets 
of individual gene trees



07 TESTING THE ROBUSTNESS OF YOUR TREE

These are analyses



07 TESTING THE ROBUSTNESS OF YOUR TREE

These are analyses
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AND YOU, HOW IS YOUR PROJECT?
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‘Next generation’ phylogenomics: Why rethink phylogenomics?
Thousands of loci ≠ resolved trees

● Deep divergences, 
rapid radiations, 
short internodes

● Sequence signal 
saturates faster 
than we like

● Genomes contain 
more information 
than alignments



● Genome architecture
- Gene order, chromosomes, 3D folding (chromosome-level genomes galore!)

Two new sources of phylogenetic signal

Yang & Ma 2022



● Genome architecture
- Gene order, chromosomes, 3D folding (chromosome-level genomes galore!)

Two new sources of phylogenetic signal

● AI-based methods applied to phylogenomics/comparative genomics
- Encoding sequences as ‘something else’, based on AI learning



WARNING (AGAIN!!): THIS IS ALL EXPLORATORY

● Uncharted territory, emerging concepts that 
still need to be properly defined and tested.
○ still exploring: we need your brains!!

● Fields expanding exponentially, great 
potential, great investment (i.e. 
chromosome-level genomes, AI in China*)
○ we need to build literacy and critical 

thinking

● Results may be GREAT… or may be 
bullshit

(*China investment in AI surpasses by far that in Europe & USA)



PART I — Genome 
architecture–aware 
phylogenomics

PART I — Genome 
architecture–aware 
phylogenomics

Chen et al. 2023

Genomes are not bags of genes

● Genes have order, 
orientation, neighbors

● Chromosomes evolve via 
fusions, fissions, inversions

● Structure persists when 
sequence similarity is gone: 
SYNTENY



PART I — Genome 
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PART I — Genome 
architecture–aware 
phylogenomics

Chen et al. 2023

Genomes are not bags of genes

● Genes have order, 
orientation, neighbors

● Chromosomes evolve via 
fusions, fissions, inversions

● Structure persists when 
sequence similarity is gone: 
SYNTENY (... or does it??)



PART I — Genome 
architecture–aware 
phylogenomics

PART I — Genome 
architecture–aware 
phylogenomics

Macrosynteny survives deep time

● Ancestral linkage groups conserved 
across animals

● Detected even after >500 My of 
divergence

● Provides signal when alignments fail

Examples

● Amphioxus as proxy for ancestral 
chordate genome

● Bilaterian chromosomal blocks 
conserved across phyla

Ancestral Linkage Groups 
(ALGs): conserved blocks of 

genes that remained together on 
ancestral chromosomes over 

vast evolutionary periods

Ancestral                             Human                         Medaka

(2017)

(2022)



PART I — Genome 
architecture–aware 
phylogenomics

PART I — Genome 
architecture–aware 
phylogenomics
Synteny as a rare genomic change

● Rearrangements = discrete evolutionary events
● Shared fusions/fissions → low homoplasy
● Conceptually similar to indels or retroposons

Key idea
● Fewer characters, but more reliable
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● REALLY??
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PART I — Genome 
architecture–aware 
phylogenomics
Synteny as a rare genomic change

● REALLY??
Rearrangement rate heterogeneity is high

● Some lineages: highly stable genomes
● Others: massive reshuffling (even within phylum/genus!!)
● Rate heterogeneity is lineage-specific: we need models & 

new tools (e.g. to infer ALGs with more precision, 
simulations of SV scenarios, etc)

Implications

● Architecture works best when reshuffling is not extreme
● If extreme, be creative :-) (feel free to reach out for tips!)
● Not all 3D signal is phylogenetically useful



PART I — Genome 
architecture–aware 
phylogenomics

PART I — Genome 
architecture–aware 
phylogenomics

When genome architecture can mislead

● Assembly errors mimic rearrangements

● TE-driven convergence of breakpoints

● Paralogy confounds synteny blocks

Rules

● Chromosome-level assemblies are mandatory (good 
quality!!)

● Hi-C data needs to be comparable (same kits/enzymes) 
& of enough depth



PART I — Genome 
architecture–aware 
phylogenomics

PART I — Genome 
architecture–aware 
phylogenomics

Can 3D data inform phylogeny?

● Comparative contact decay curves

● Compartment similarity metrics

● Architecture-aware distance measures: ‘3D 
linkage groups’?

Are we there yet?

● Promising, exploratory, not standardized yet. 
A lot of fun work to do here!!



PART II — AI-assisted 
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PART II — AI-assisted 
phylogenomics

Two main ‘lines’ of development of methods

● Complex pattern recognition via Machine learning & Deep learning
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PART II — AI-assisted 
phylogenomics

Two main ‘lines’ of development of methods

● Complex pattern recognition via Machine learning & Deep learning

Ca. 1,000 animal genomes, 24M genes, 520k orthogroups (OGs)

130 OGs are relevant for terrestrial 
animals (none shared across 

phyla)
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Two main ‘lines’ of development of methods

● Complex pattern recognition via Machine learning & Deep learning

Ca. 1,000 animal genomes, 24M genes, 500k orthogroups (OGs)

130 OGs are relevant for terrestrial 
animals (none shared across 

phyla)
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Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Encoding proteins as numerical vectors (‘embeddings’)

From: www.miro.medium.com



PART II — AI-assisted 
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PART II — AI-assisted 
phylogenomics

Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Encoding proteins as numerical vectors (‘embeddings’)

From: www.miro.medium.com Gupta et al. 2020



PART II — AI-assisted 
phylogenomics
PART II — AI-assisted 
phylogenomics

Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Protein language models in a nutshell

● Trained on millions of protein sequences

● Learn grammar of evolution implicitly

● No alignments, no trees during training

Key insight

● Evolutionary constraints are learnable
● More informative than just the sequence
● Less bias due to indels

UniRef50 (ca. 60M 
non-redundant proteins)

Transformer-based models work 
best (i.e. ProtT5, Ankh3)



PART II — AI-assisted 
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PART II — AI-assisted 
phylogenomics

Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

From sequences to embeddings

● Each protein → vector in high-dimensional 
space

● Similar function/evolution → nearby vectors

Protein sequences

0.2 1.3 0.5 1 -8 0

0.1 1.9 0.9 1 -7 0

1 1.1 8 0 -5 -1

5 -0.9 -0.3 3 1 8

Embedding spaceEmbeddings

Apply a protein model (e.g. ProtT5)

We can now ask 
questions!!
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phylogenomics

Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Martínez-Redondo et al., 2025

Protein sequences

0.2 1.3 0.5 1 -8 0

0.1 1.9 0.9 1 -7 0

1 1.1 8 0 -5 -1

5 -0.9 -0.3 3 1 8
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Different language models (ProtT5, SeqVec, ESM2, Ankh3, etc)
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Investigating the ‘dark proteome’ of neglected species/lineages 

Ca. 8,000 genes in 
tardigrades without GO 

terms based on homology
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Investigating the ‘dark proteome’ of neglected species/lineages 
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Investigating the ‘dark proteome’ of neglected species/lineages 

Spermatogenesis

Fusion of sperm to egg 
plasma membrane involved 

in singe fertilization

Sperm-egg recognition

Acrosome reaction

Male-female gamete 
recognition during double 

fertilization forming a zygote

Spermatogonial cell division

Male germline stem cell 
symetric division

Digestive system 
process

Micrognathozoa

If all high scores are noise -> No enrichment
Enrichment -> model isn’t hallucinating at random
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Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Scaling up comparative genomics (exploration of orthogroups/gene families)

1,000 animal genomes from all phyla, 24 million genes, 520K orthogroups (‘gene families’) 

Nelson et al. (2013)

Embeddings
+

supervised 
Machine 
Learning

Martínez-Redondo et al. (in prep)

Example 1: Largest orthogroups: CYTOCHROME P450 (83K genes; 48K > 300 aa; 11 clans) 
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Two main ‘lines’ of development of methods

● Genome/Protein Language Models to recode sequences and ‘learn’ the grammar of genomes 

Species trees from embeddings (in progress)

● Aggregate protein embeddings across genomes 
● Compute genome–genome distances
● Infer species relationships without MSAs

Caution

● Functional and phylogenetic signals are entangled 
● Models also learn dataset biases

Other potential applications of embeddings

Genome language model (DNABERT2)

Protein language models
 Individual gene trees w/o MSA
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From gene phylogenies to embedding trees - 
Conceptual challenges

Embedding-based phylogenomics forces a redefinition of what is being inferred, 
shifting from explicit models of mutational change to implicit representations of 

evolutionary constraint. It demands new criteria for interpretation, validation, and trust.

● Are embedding distances measures of ancestry, evolutionary constraint, or learned functional similarity? 
Can these be disentangled?

● What replaces explicit models of sequence evolution? What is the implicit evolutionary process acting on 
embeddings, and can it be formalized and validated?

● How should uncertainty and statistical support be defined?

● Under which evolutionary regimes (deep time, high divergence, domain reshuffling, convergence) do 
embeddings provide genuinely new or more reliable signal?

A few (of many) open questions
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Take-home message

From: https://michellekassorla.substack.com/p/an-ai-playground
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