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Let’s answer some questions on menti!

Join at menti.com
Use code 74440277



Microbes Matter!

Life on Earth has been microscopic for much of its ~4 billion year history.

The metabolic activity of these organisms has left 1ts mark.

Great oxygenation event
Photosynthesis

Lignin and cellulose degradation
Cycling of elements (C, N, S, Fe, ...)
Greenhouse gas sink/emission
Interact with plants and animals

archaea
7GtC

viruses
0.2GtC

bacteria
700Gt C

- -
fungi animals

protists
12GtC 2GtC

4GtC

Bar-On et.al. PNAS, 2018



Life on the planetary timescale

4.5: moon formation 2.8-2.5: photosynthesis
4.5-4.0: CO, sequestration

3.9-3.8: late bombardment

%.5 ; ﬁrs@ 0.54-0.52: cambrian explosion
|

3.3-2.9: archean expansion 0.02: C4 photosynthesis




We knew microbial ecology before knowing microbes

Fermented beverage and food storage in 13,000 year-old stone mortars



The Unseen Majority
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The Unseen Majority: Great plate count anomaly

1985
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The Unseen Majority: metag
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metagenomics revolution

The Unseen Majority:

Now
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. . . Major habitat i inor i
This enormous biomass is s Iﬁ%ﬁ%fiiﬂ“ﬁ:.?.ﬂm f‘ggﬁﬁl?%a‘?:i sx107
. . . . . on Earth: * Phyllosp ere;‘ x10%*
distributed in microscopic cells ~1x10° » Cattle: 410

* Termites: 6x10%

* Pigs: 7x10%

* Humans: 4x10%

* Sea surface layer: 2x10%

* Atmosphere: 5x10%
~1.2 x 1039 bacterial/archaeal cells

* Etc.
exist in the “big five” habitats of dﬂrm - l -

Earth P soit: 3 x 100

if all the 1 x 103! viruses on earth
were laid end to end, they would
stretch for 100 million light years

Deep continental subsurface: 3 x 10*°

: _‘. - -’ . .}Q.

Upper ocez;ngc-éea.iment: 5 x 10%*

Deep oceanic subsurface: 4 x 10%

(Flemming et.al. 2018. Nat Rev Microbiol)



The great oxygenation event  oxidized forms

* ozone layer

Why are microbes so
diverse?

pikaia gracilens

Atmospheric
oxygen

vertebrates

Reptiles
Dinosaurs

* Evolved early

* Initially access to all habitats on Earth PR
foe'
« Survided a large span of conditions ey

* More habitas, more niches

* Short generation times

ammals
ry
o 4
Morganucodon

* Inter-species gene transfer




Microbes in carbon cycle

Microbes transfer an enormous flow of

| = t
carbon through T . e~

Trophic interaction [, — ool ®s .

‘(/

= hytoplankto o ro s
Metabolism S T AT poo N e :
| / B~ X fcell deatl “ parasites T
| * & viruses® fecal , sparasites
S\ ¥bacteria &+ ” \
L iarchaed i v )\ \‘

Y N - -
" parasites® 9 pellets , Viruses®

' Twiruses A

“pom |\ ,

* phages»
! J //".-—’/;’

Greenhouse gas sink/emission control _ S——room,_ A
: T—— _";‘*‘POM e I'"» ®
Methane N aggregation ‘c sgprot;ophsv
Nitrous Oxide st
CO2 ——

‘p!{':agesa

Climate impact




Challenge: Great plate count anomaly

Siderophores™ |
Fe3*

/ ‘_.‘~‘. _‘,'?_
yﬂ"} '.", ,‘,r:,s |
gy " : Unknown
W stress relief
.‘ / ,,' L 7 .
W W ? .,
\ AR L
ool .
« = ) )
Other % t
stresses

- ]
4 : T &
A 5 - ..
g
o ~ ’ L J
4
%
.

Using conventional cultivation techniques only
0.1-1% of prokaryotes are Culturable in
laboratory conditions.

Catalase
Other C
growth »* e
. nutrients

factors R

?7 .
L4
P4
glifl




Microbiome analysis
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Global Ocean Sampling

Atlantic Ocean
Sargasso Sea ;

Vlsaciﬁc Ocean Pacific Ocean

Galapagos Islands

French Seychelles "1 *_Vanuatu
Polynesia Tonga
V a* scar Keeling Is. :
Cook Indian Ocean Caledonia
Islands

South Africa

® Past Routes: 2003-2008 @ Europe Expedition: 2009-2010



Tara Ocean Sampling
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Tara Ocean Sampling
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Malaspina Sampling
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Soil metagenomes

» Assembly

* Binning o,
* Completeness 2 50%

» Contamination <10%

l

36,398 medium quality MAGs
v completeness 2 50%
v’ contamination < 10%

40,039

MAGs

3,641 high quality MAGs
v’ completeness > 90%
v contamination < 5%
v tRNA number 218
v’ presence of 23S, 16S and 5/5.8S rRNA

— Y SR ] [ N
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Strain heterogeneity (%)

MAG quality ® High quality ® Medium quality
Almeida et al. (2019) 92143

d Nayfach et al. (2019)
Marine
SMAG (current study)

Host associated (human) { 16441
Freshwater 7335

= - UHGG
Engineered (built environment) {
Engineered wastewater

4644
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2627

GEMsoil { [ 2461
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O Forest (621 O Wetland (356% © Shrubland (29) Aquatic (non marine saline and alkaline) { [ 1735
(Number of samples) ¢ Grassland (567)  © Bare Land (224) O Glacier (2) Adquatic (herma springs) {11579
Host associated (plants){ 1131
Engineered (lab enrichment){ | 800
Number of MAGs + 1 0 10 O 100 O 500 i =
0 25000 50000 75000

Number of MAGs



Deep groundwater metagenomes
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Capturing the unseen Majority
or their footprint...

Great Plate Count Anomaly

Only ~1% of Bacteria is Culturable

. A
Environmental 7 A\

Sample Microscope Agar Plate Sequencer Genomes

GTACATGACTAGATCAT
AGACTGGATCGATCCAG

ACGTGTACGTACGTAAG
> GTACATGACTAGATCAT
AGACTGGATCGATCCAG
Uncultivated Sequencing GGACCTAGCTAAGCTAG

Parks et.al. NatMicrobiol, 2017



Amplicon vs. Metagenomics

Metagenomics

* Less complex

. -
Better coverage Bacteria \
* More samples

16S rRNA amplicon

. sequencin
 Extensive database : ¢

Archaea

 Same fragment . .
* Comparable phylogenetic info

* Qualitative (Microeukaryotes
* PCR and primer bias
* Limited phylogenetic info

18S rRNA amplicon
sequencing

viruses

e Limited functional information



Metagenomics Worktlow

— “Shotgun” “Reads”
% Extract 0 metagenomic _—_:
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A —
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“Contigs” I
Assembly  mi——_ Generate info
# I cl c2
—— about contigs 5 112
- AAAT IO | B

Sequence  |aaac|14|7 |...
characteristics |paaG|3 |8 |,

| {
_52 “Binning” 5 SJ —-
* I
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What to think of when designing a experiment...

I
I
v
Optimized sample collection, preparation, and DNA extraction

Scientific question

What is GIGO? Sample type

= ey iy gl Sample should be representative

"... quality of information that went in.

2 Remember all metagenomics values are RELATIVE

@ @ |
is used in o A
"D SR Process samples fast

Garbage In a ba e Out
g g and preserve DNA properly



Metagenomics Worktlow

— “Shotgun” “Reads”
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DNA recovery method impacts the output

* Choice of DNA extraction method
* Consistent method for all experiments we want to

compare
* DNA extraction quality M2 1 2 3 Ml

* Gel electrophoresis bp
* The integrity and size of genomic DNA ﬁiéo

* Spectrophotometry bp 2322
* Pure DNA has an A260/A280 ratio of 1.7-1.9 et 2027
* DNA concentration has been determined using nanodrop 1(7)28 564

 Fluorometry concentration measurements e

100




Metagenomics Worktlow
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Sequencing

Long read

@ SACBIO"

lumina’

NANOPORE

Technologies

Short read

Consider the sequencing quality, read length, and price !

Deeper sequencing = higher resolution also = computationally intensive



Let’s have a break and come back in 20 min

Lets have a

(OHEE
BREAK




Metagenomics Workflow
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Sequence analysis

Assembly

>0

Short read
assembly

v High accuracy
x  Lessindels
¥ Fragmented genome

Long read
assembly

INDELS

¥ Lessaccuracy
®  Moreindels
¥ Complete genome

—— — — —— — — — — — — — — — — S—

Hybrid
assembly

v" High accuracy
v Lessindels
v" Complete genome



Assembly tools

e MEGAHIT: makes use of succinct de Bruijn graphs (SdBG;
Bowe et al., 2012), which are compressed representation of

de Bruijn graphs.

 metaSPAdes: first constructs the de Bruijn graph of all reads
using SPAdes, transforms it into the assembly graph using
various graph simplification procedures, and reconstructs
paths in the assembly graph that correspond to long genomic
fragments within a metagenome.

1. Fragment DNA and sequence

2. Find overlaps between reads

...AGCCTAGACCTACA

CGCATATCCGGT,..

3. Assemble overlaps into contigs

o—>0—>0—>0—5>0—->0—->0 >0

4. Assemble contigs into scaffolds

S



Metagenomics Workflow

seqguencing —
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Sequence analysis

Binning

Preprocessing
% Samples from multiple sites or times

- - - - - - . - - - - - - - - M l. i
MAG (Metagenome assembled genome) CEn o T, T S TE S T T SlEgEnamR IbTmES
L O L O L O oL

\ 1 / InitiaI de-novo assembly

= using the combined library

MAG quality check T MetaBAT

TetraNucleotides Frequency Abundance Calculate TNF for each contig
Lidbisstintindoiiatbidla mall. s, sl sns. .
T TR R| e, B B . Calculate Abundance per library
Mﬂ . s, man.sn.  foreachicontig

6]
Calculate the pairwise distance
matrix using pre-trained
probabilistic models

Forming genome bins iteratively




Binning tools

* MetaBAT2: uses the same raw TNF and abundance (ABD) scores

* CONCOCT: does unsupervised binning of metagenomic contigs by
using nucleotide composition - kmer frequencies - and coverage data

for multiple samples.

* MaxBin: algorithm utilizes two different genomic features:
tetranucleotide frequencies and scaffold coverage levels to populate
the genomic bins using single-copy maker genes and an expectation-
maximization algorithm.



Genome/MAG quality check

* CheckM provides robust estimates of genome completeness and contamination
by using collocated sets of genes that are ubiquitous and single-copy within a
phylogenetic lineage.

* Assessment of genome quality using plots depicting key genomic characteristics
(e.g., GC, coding density) which highlight sequences outside the expected
distributions of a typical genome.

* CheckM also identifies genome bins that are likely candidates for merging based
on marker set compatibility, similarity in genomic characteristics, and proximity
within a reference genome tree.

* https://ecogenomics.github.io/CheckM/
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Genome completeness standards

Table 1 Genome reporting standards for SAGs and MAGs

Criterion Description

Finished (SAG/MAG)

Assembly quality? Single contiguous sequence without gaps or ambiguities with a consensus error rate equivalent to Q50 or better
High-quality draft (SAG/MAG)

Assembly quality® Multiple fragments where gaps span repetitive regions. Presence of the 23S, 168, and 5S rRNA genes and at least 18 tRNAs.
Completion® >90%

Contamination® <5%

Medium-quality draft (SAG/MAG)

Assembly quality? Many fragments with little to no review of assembly other than reporting of standard assembly statistics.
Completion® >50%

Contamination® <10%

Low-quality draft (SAG/MAG)

Assembly quality? Many fragments with little to no review of assembly other than reporting of standard assembly statistics.
Completion® <50%

Contamination® <10%

This is a compressed set of genome reporting standards for SAGs and MAGs. For a complete list of mandatory and optional standards, see Supplementary Table 1,

apssemnbly statistics include but are not limited to: N50, L50, largest contig, number of contigs, assembly size, percentage of reads that map back to the assembly, and number of predicted
genes per genome. PCompletion: ratio of ebserved single-copy marker genes to total single-copy marker genes in chosen marker gene set. “Contamination: ratio of observed single-copy marker
genes in =2 copies to total single-copy marker genes in chosen marker gene set.



Genome taxonomy

* Taxonomy and nomenclature

e https://egtdb.ecogenomic.org/

* https://ncbiinsights.ncbi.nlm.nih.gov/2021/12/10/ncbi-taxonomy-
prokaryote-phyla-added/
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Sequence analysis

Annotation
o . | L | HET N | | -
Gene prediction => ORF finding : 7 =
Prodigal ATG |AAA |GCA|ATG| . . . |GCA|TTG|CTA -
Possible Alternate St p

start start

Function assignment
BLAST

HMM models



Lists of IDs lists of names

# emapper version: emapper-1.0.3-40-g41a8498 emapper DB: 2.0
g # command: ./emapper.py -m diamond -1 KhW 5.faa --cpu 10 --output KhwW_5.faa.emapper
o BlO c # time: Mon Oct 21 84:20:39 2019
F#query_name ed_e ortholog seed_ortholog_e : seed_ s : best_tax Preferred_name GOs
EC <EGG_Pathway KEGG_Module _React1 {EGG_rclass BRITE GG_TC CAZy GG_Reactl
on
) efele . 6. )811_gene .9e-40 170.6 Alteromonadaceae coaX
L KE :KB01947 |- 1KB35235 g , map 70, mapO0780,mapBlle Meel1l2e RO16874,R82971,RO:
ele ! ¢ 786 ¢ 6,R kooeeee,kosreel, koeees2, kot1008 Bacteria
4 5 2 NA|NA|NA H Catalyzes the phosphorylation of pantothena

"

DFHNPLIN 00806 < ; ] Alteromonadaceae birA

* Ensembl Bacteria e oo o ovtee oo SR TR coonbie
* Kbase R e _ sy oo i o
c IMG s RS oo Acauoss A SobT A SamaE oo K o7

@ NA'NA“‘M < Acts both a
s a biotin-- acetyl-C e 11ga~e and a biotin-operon repressor. In the presence of ATP, BirhA activates biotin to
form the BirA-bioti ade 3 AMP or ho]oBer] complex. HoloBirA can either transfer the biotinyl moiet
y to the biotin carbo carrier protein (BCCP) yl-C : xylase, or bind to the biotin operator site and
® inhibit tranncrlptlon of the operon

DFHNPLIN_GB887

. 1901137, 11001564 :
) koo1100, an 20, mapoo mape1160 2 ' ' 06000, kod
Ho )1 4683, 1ECUMN_1333.ECUMN_4498 AT6,1LF82 1304.LF82_1416,iNRG857 1313




KEGG

* The Kyoto Encyclopedia of Genes and Genomes is a resource for
understanding high-level functions of a biological system from
molecular-level information.

* Tools for analysis of large-scale molecular datasets generated by high-
throughput experimental technologies.

* Home page: https://www.kegg.jp/



https://www.kegg.jp/
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The chase takes time ...
The case of SAR202

Proc. Natl. Acad. Sci. USA

Vol. 93, pp. 7979-7984, July 1996
Microbiology

16S rRNA genes reveal stratified open ocean bacterioplankton
populations related to the Green Non-Sulfur bacterla

(molecular ecology/phylogeny/thermophily)

STEPHEN J. GIOVANNONI*, MICHAEL S. RAPPE, KEVIN L. VERGIN, AND NANCI L. ADAIR 1 99 6
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Tree of Life has evolved

1837 Charles Darwin’s
1deas on evolution,
species descend from
common ancestors and
evolve over time.

Phylogenetic Tree of Life

Bacteria Archaea Eucarya
Green
nonsulfur Animalia
bacteria Fungi
Plantae
Gram Methanomicrobiales
Purple  positives | Methanobacteriales extreme s
bacteria Halophiles Ciliates
Methanococcales
Thermococcales
Cyanobacteria
Thermoproteys
Pyrodictiul Flagellates

Microsporidia
Thermotoga

1990 Carl Woese tree
with LUCA and three
domains. Based on rRNA
gene. Later elaborated by
Norman Pace.
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smallest genomes with epi-symbiotic lifestyle
CPR & DPANN
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Remarkable aspect of the
tree of life

* Candidate phyla radiation (CPR)

* DPANN (an acronym of the names of the first
included phyla, ‘Candidatus Diapherotrites’,
‘Candidatus Parvarchaeota’, ‘Candidatus
Aenigmarchaeota’, Nanoarchaeota and ‘Candidatus
Nanohaloarchaeota’)

* Small genomes

* Small cell sizes

* Notable gaps in core metabolic potential
* Mostly symbiotic lifestyle

Their ecological role is not yet well understood
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Asgard archaea illuminate the , 40

° ° ° > '
origin of eukaryotic cellular comple = -

Bacteria

Eukaryotes

@_’\ﬂﬁochondrlon
Cellular
merger

Asgard superphylum Alphaproteobacteria G

Spang et. al. Nature,2015

Early
eukaryotic
cell

<

Eukaryote-Asgard

Eukaryote—
common ancestor

alphaproteobacterium
commeon ancestor

Last universal
common ancestor

Lopez-Garcia et. al. NatMicrobiol,2019
https://www.nature.com/articles/s41564-020-0710-4

Imachi & Nobu et. al. nature,2020
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‘CandidatusPrometheoarchaeum syntrophicum’

* Pure co-culture of the target archacon MK-D1 and Methanogenium after a 12-year study

* From bioreactor-based pre-enrichment of deep-sea sediments to a final 7 years of in vitro
enrichment.

* Extremely slow growth rate and low cell yield.

* The culture consistently had a 30—60-day lag phase and required more than 3 months to reach full
growth: around 10° 16S rRNA gene copies ml™!

* The doubling time was estimated to be approximately 14-25 days.

* Imachi, H., et al. Nature, 2020




L-asparaginase

Search for novel genes

Culture-dependent screening for
L-asparaginase producing organisms
U4 ® &® 4
-
Czapek Dox agar screening
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N
S -
Next generation
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Sample collection
from different sources

Point mutation Epitope engineering Chimera formation
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Modification of known sequences
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- Hallow fiber (1985)
- chamber (1980)
- Dialysis membrane (1981)

Using L-asparaginase
outside of the body

Fusion protein Polymer
conjugation

® O

Encapsulation Nano/Micro
inside RBC particles

Protection from
immune system

N
% 2 5 @
.4 E B8R S8 o
2 T Y 1
. % o D) < &
“afd ¢ - . N
& o) a 205 g s g
. 8 23 33355523 .
® . 22333fg2gsgegf §F§& §
% 2 23 0 & 83 & Eps5FPF S 9 &
N 23228 & ¢ 8 28§25 s 3 F & o ~
® %32 %388 58> 0888308485F8 &
A %«/\ﬂ,“g%‘;‘,;o“' “”Jgfgégé‘@({? >
% 2, . > 7
2 P % % % e FFEESS o o
< % % % 5° FTF LS & G
2 9 % G B 5 FOF o ©
> ‘ o, % % QQ/‘ % & £ & &
S, o, B, G & &0
Ie‘ 2 '%6 o"oo%% *‘Q)@'P 4 o
£ 5o X
% g CANEAN
‘A o, ’e"%e 4’»% S K
Z W GQY*
A, s, % *®
o “og, o@"h
oy A
3 Y \o“ewd o
¢ an, %
R, (‘,GGGP.
S Ger i o‘““-\“o? 400851
261554 gy
MnT15 o 1
Untitleq 1, o8 GOA 002366995
GWcz_st
74 © Desulfu CcGo3
romonadota ' Elusimicrobiota e
3 02-12-FUl - &
- Hoe GB GCA 002441095.1
9
* = 01910 0.001 UBA9089 7
15 L 4 UBP“B L De’a""ibac(e o
4 D“u“obaﬂ“m‘ 68 6ca gy 9
12 o adabac\ana " 2478245 i
\‘o“,g\aﬂ’ rocl'ra;.q‘,,a e
4 ey e 271
260 ma“bac\e Pla"ct cmblor\
cne! Qo By Ctom,. %10
We® o b, “ota &
IN e Re . iy 255
9 Wl O\ 4, CCr a
? - | Yo, 000, 7
) 20 G, S04, 7
3 CAe % ey 5 1
W 2 ® &%, o,
o o o 4, ’°0¢-, & 75,
4 s;
‘\6\‘5 Qp\o\’b Q 04“) %,' )775
ec,ov (@&fﬂ?@gs > . o%:"b.,% %
[©) e @q & '9? » % o% p &
A A % %,
& & FF e o8 %, > 2
& F & 1% % s, s
S EFSe 85 %% % >
¥ & & &2 % 0% o @
& 7 S ETLCFe s %% 2% % %
& Fdsséks 02382 %% 5B °
P U S 88888595387 %5%%9%°%
3 FSFEFCF8e58323%8% S 2% %
L ’." & & § E 3 £525%% 3% kS
> £ 2 [}
. L-asparaginase type | ® é(’\/ é,,"‘é Es‘ 5:;'{ é '% a g' % %: %ﬁ % u‘)
[l L-asparaginase type Il ¥ & i 3 © & g S B
L-asparaginase type | & Il o) ‘. g < 5‘ .‘
No L-asparaginase ";? - 2 . ’ - > B
© - N
8
<

Sobat et. al. iScience, 2021



3adraBy g
3 % o ofl
a % }‘ po® § g s 3 f ?N
° ° ° ° s ol «:%?‘i%%‘%‘é: Sf ¥ gg é;;?
4 - o gajon 2 S o
ethioninase involved 1n NS o
%%.%&%% ’%‘G%“"‘ FIFFS, #
%, 1, “b{@%'o“‘ SES TS 0
/ e E%Q:’%%% %, T @f
/ %y, 7 B &
etabolic Syntro 79
% % & ‘p\e@ @‘ow
D s 3o o 5
'%%e o
<0 e
My o 199
m;:::;:?f U‘;;:’::B“?j\ﬁ
W,;::"'Us [T \ediotd
Myxococq:;'a ‘;’:::1426
Beefiovibyy A . v tonebacterd
vitrionata ¢ N\ Q1777 Fires
891 @) Protoobacteria ™Y i Goldvactena
SAR324 = X = - - - cGo3
untitied 2 Elusimicrobiota
=== - Desufobactarota C 68 GCA 900321855 4
= —_— o8 Gmomav:ﬁ: ‘a é’;gﬁciﬁio
methykCoM oes:;dw rione® PQM ;7300&5 >
oo S, , o,
/ ot
; k¢ Bt ‘iﬁ:«‘f" L:%Q& eriy
== == \B " a
o 99“%5-‘ A
M o LN
& 0® »° Qb;;"'e,,,f,‘%‘-,, “aq
Methyl-CoM o o s oy o,
o &7 57 278 v%% L'
/ R " e,
‘»@‘\ @P‘ &0 % <, s
ff & F£Pe . %, A
[ ) @gfﬁf ) %g%%‘,%:?%
- FLEE 32 8% 5% %,
Methanogenic & @géf: F 85804 l000 ket itRR Y TR%
Archaea : " & fj';§ 65§§§§§§;5%% 32’ LA S
¢ ‘ §4 ¢ =
. Patescibacteria \\ & §E84¢ T} % t¥is %
3 W\ b §z22 - % b 2
R \ & 2= - F i
@ 2 Tree scale: 1
Acetate
e poﬂer>|>[ Acelyl-CoA] m ) .
¢ Acetate kinase 5
\ % g
X §
%a'o% % I
== e %,:‘?J?Q
GB GCA 002789275.1

; o
PN s 2

g —
g

B Bacteroidota [ Firmicutes F [ Firmicutes G
[ Fusobacteriora [l Firr s_D [J Spirochestota
@ Firmicutes_C [l Firr s_E [] Others

[ Hakbacteriota [l Sy

Tree scale: 1



Petabase-scale sequence alignment catalyses viral
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“multi-omics” approach to answer
eco-evolutionary questions
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The transfer of information

Ideas on Protein Synthesis (Oct. 1956)

The Doctrine of the Triad.

The Central Dogma: “Once information has got into a protein it
can't get out egain”. Information here mesns the sequencs of
the amino acid residaes, or other sequences related to it.

That is, we may be able to have

S

-\

DNA - ,> RNA ——————., Protein
- - r
CIRTTWe e
but never
T Gl RNA <& Protein

)

wherc the arrows show the tranefer of information.




Metatranscriptome

What to consider?

* Sampling

* Sample processing

* RNA extraction

* Replicates

* Library preparation (rRNA depletion)



Metatranscriptome

What to consider? How to analyze?

* Sampling * Remove rRNA or not?

* Sample processing * Assemble or not?

* RNA extraction * Gene-resolved metatranscriptomics
* Replicates * How to normalize?

* Library preparation (rRNA depletion)



Some normalization methods

relative_abundance

mean

trimmed _mean

coverage_histogram
covered bases
variance

length

count

reads_per_base

anir

rpkm

tpm

(default) Percentage relative abundance of each genome, and the unmapped read
percentage

Average number of aligned reads overlapping each position on the genome

Average number of aligned reads overlapping each position after removing the most
deeply and shallow-ly covered positions. See --trim-min/--trim-max to adjust.

Histogram of coverage depths

Number of bases covered by 1 or more reads
Variance of coverage depths

Length of each genome in base pairs

Number of reads aligned to each genome. Note that supplementary alignments are not
counted.

Number of reads aligned divided by the length of the genome
Average BLAST-like identity of mapped reads
Reads mapped per kilobase of genome, per million mapped reads

Transcripts Per Million as described in Li et al 2010 https://doi.org/10.1093/
bioinformatics/btp692




The transfer of information
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The transfer of information
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“multi-omics” approach to answer
eco-evolutionary questions
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Compartmentalized metagenomics
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Semi permeable capsules

Proteins,
oligonucleotides, small
molecules are freely
exchanged

Cells and nucleic
acids are retained




Semi permeable capsules
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Removed unpublished results



Metagenomics is it a big deal!?
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