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 The single genomics revolution: cell type molecular profiling across the tree of life

Genome sequence =gp Genome regulation

AGGTTGCAAAT TCAGTCGGTAGTTIAACGTIACGTACGGTACTGGIAT TG TCAGGTTGTTCAADT
CATGACACTGACAGATACGACAGATTGTCGTGTTATVTCACTTGGAACTCTAGGCCCTTGAATCT
TGRCACGTCCCTACATACCATCGATACTGATAACGTRAGGTCAGGT TETTCAACTCATCCAGGA
GAAATATCTCCGATAATTAACAGATACACACTCTTAGACCATTTAATCCCTCGGANAGGCAACTA

GTACCAGTCTTTCCAGGCACTGACAGATAGACAGATTGTCOTGTTATVTGACTTGGAACTSTA
CGCCOTTCAATCTTCOCACTCGTAACCTACGCTACSCTACTCCTAACCTCACCTCAGSTTSTTO
AACTCATCGTGACTGATTACCAGGATCCTAGCGGATCCTACTGACCTCACGTACSTAATGCAGT
GGTCAGGTTGTTCARCTCGATGACTAGAATATATCCAGGAAAATCCCTGGGAAAAATTGGGCCD
TACGTGTCGTAACGTACGTACGSTACTGGTAACGTGAGCCAGCAAAATCCCTCGCAAAAATTG
GGUCCTATCGTGACTGAT TALCAGGATCCTAGCGEAT DD TAC TGADC TGACG TACGTAATGGUAG
TGGTCACGTTGTTCAACTCGATGACTAGAATATATC CACGAAAAAAAATTEGGCCCTACGTACT
GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGGCTACACATTGTCGTGTTATVTGACTTCGGAA
CTGTAGCURLYHAIRGCCCTTGAATCTTGGCAGTCCTACGTACGTACTGAGCTCAGGTTGTTS
AACTCATCCAGGAATCGGGCCCTACGTACCSTAACGTTGCAAATTCACGTCGGTACGTTTCCAGG
CTACACACATACTCACACGATACACACATTGTCOSTSTTATVTCGACTTCCAATTSTASCCCOTTGA
ATCTTGGCASTCGTAACGTACGTACCGTACTCGTAACGTCACGCTCAGSTTETTCATTACCAGGA
TCTACTAGAAGAANANTTGGGCCCTACGTACCGTAACGTTGCANATTCAGTCGGTACGTTTCCA
GGCTACACACACACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACTGTAGGCCCTT
GAATCTTCGUAGTCCIAACGIACGIACGG IAC TGHEAR TDISETGTTCAAC TCATCCAGGAAAAIL
CCCTGCGAAAAATTGGGCCCTACGTACCGTAACCGTTGCAAATTCAGTCGGTACSTTTCCAGGT
TACACACACACTGACAGATAGACAGAT TGTCGTGTTATVTGACAGGCTACACACZACACTGACAG
ATGTAATGCAGTGSTCACGTTGTTCAACTCGATGACTAGAATATATCCAGGALLATCCCTGGGA
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Cell type molecular fingerprinting: in situs, transcriptomics and single-cell transcriptomics

Gene expression pattern X ‘ Single-cell transcriptomics
comparison (classical evo-devo) .
1. No need to define marker genes a priori.
Problems: - . . . .
- Need to define markers a priori. 2. No need for tissue dissection -> Cellular resolution.
- Low throughput (one or a few s M 4 3. Low input material (non-culturable species).
genes at the time) .
A" 4 “»

Martin-Duran et al. 2016
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Problems:

- Need to dissect tissues/organs.

- Cellular heterogeneity within
tissues.
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Breschi et al. 2016



Transcription factor binding

TF binding interacts with DNA
methylation and chromatin accessibility

Transcription and RNA maturation

Histone modifications

Modifications can be active marks
(e.g.,H3K4me3 in green) or repressive

marks (e.g.. H2K27m3 in red)

DNA modifications

(O c @ 5mC

@ 5hmC

Chromosome organization

Higher-order chromatin organization
into LADs and TADs

DNA accessibility
scNOME-seq

SCATAC-seq
scDNAse-seq

Histone modifications
scChlP-seq

Chromosome organization

scHIC

Transcription

SCRNA-seq

DNA modifications

scBS-seq
scAba-seq

CLEVER-seq



Cell type phenomenology
(& variations)

Co-regulated gene
programs
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Appllcatlons of single-cell transcriptomics

Temporal axis: Spatial axis:

cells in time

cells in space
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Experimental profiling:
CRISPR screens, lineage tracing, etc.
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Part 1 - Single-cell transcriptomics technologies



Exponential scaling of single-cell transcriptomics methods

d

Manual

Multiplexing

Integrated fluidic
circuits

Tang et al. 2009 Islam et al. 2011?“ Brennecke et al. 2013

b

Single cells in study

Liquid-handling Nanodroplets Picowells In situ barcoding
robotics i " |
& s _ S
=7 =g — h \FoEpReC |
el _j-__——’_j r ‘
Jaitin et al. 2014~ Klein et al. 2015* Bose et al. 2015%° Cao et al. 2017*
Macosko et al. 2015 Rosenberg et al. 20177
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Study publication date Svensson et al. Nat. Protocols 2018



\\ The ideal single-cell method (and the reality)

Universal in terms of cell size, type and state (and species)
In situ measurements.
No minimum input of number of cells to be assayed.

Every cell is assayed, i.e.100% capture rate.

X X X 1

Every transcript in every cell is detected, i.e.100% sensitivity.

¥ Every transcript is identified by its full-length sequence.
¢/ Transcripts are assigned correctly to cells, e.g. no doublets.
» Additional multimodal measurements.

v/ Cost effective per cell.



Basic steps in single-cell transcriptomics: from whole-organisms to cells

Physical and

) Filter/
enzymatic ) /Q\;-{
dissociation FACS-sort Q\%ﬁq\” Y
\O) O |

Whole-organism

: Single-cell
or tissue

suspension



o

A Basic steps in single-cell transcriptomics: from whole-organisms to cells

L\

Cell fixation/cryopreservation: decoupling tissue processing
from single-cell sequencing.

Methanol-based Formaldehyde/Glyoxal/DSP Cryopreservation
fixatives and other cross-linkers

Nuclei sequencing: direct extraction from complex tissues (e.g. brain)

)



Cell death, debris and multiples

Calcein-FITC
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Sebe-Pedrs et al. Cell 2018
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Why sample prep is the most important step in single-cell transcriptomics?

Ambient RNA

Problematic sample

Clean sample

2 3 4 1 2 3 <
l0Qc(UMI+1) 109 410(UMI+1)

Problems:

- Difficult to determine cells from non-cells
(empty barcodes)

- Transcritpionally quiescent cells (low UMls/cell)
are “swallowed"” by background RNA signal

- Major factor explaining batch effects.



SMART-seg2
MARS-seqg
mcSCRB-seq
CELseg2
Quartz-seg2

O Barcoded

templates

Heat-activated
lysis reagents

o
: o Single cells
0

Basic steps in single-cell transcriptomics: from cells to RNA

Cell encapsulation and lysis

Droplets

inDrops
Drop-seq
10X Chromium*

PIP-seq/FluentBio*

Add oil  Vortex (~1 min)

Nanowells

Microwell-seg

Seqg-well

Tanaka I1Cell8*
BD Rhapsody*

Qil
Barcoded
templates

% Lysed cell
Lysis reagents

in-cell barcoding

SPLIT-seq
sciRNA-seqg
ParseBio™ (Qiagen)
ScaleBio* (10X)

Semi-permeable

capsules
NG g s \pes

O sl . /",
DNA/RNA o . °

AtrandiBio*

*commercial



Basic steps in single-cell transcriptomics: from RNA to cDNA libraries to sequences

RNA capture

(Reverse transcription) mRNA "< 7 [UMI][Cell barcode][T7] OR mMRNA < 7947 [UMI][Cell barcode][PCR adaptor]
Pool cDNAs Pool cDNAs
i ‘ +template switching
S:ggl%ﬁfg?n;mgfgﬁ In Vitro Transcription PCR oligo (TS0)
Tagmentation y Chemical frag \

Fragmentation = X=X = OR

:f' )
\ /
‘ \\ S ﬁ » /

_ .‘~~ -
=D . i
- -
-\_ p——

Library preparation 3" biased OR Full-length transcripts

Sequencing




Unique Molecule Identifiers (UMIs) and ERCC spike-ins

Cell
barcode UMI cDNA UMI collapsing
Quantitative single-cell S— 0
. . [ TTGCCGTGGTGTGECEEGEA. .. ... ... ... . CGETCITA ] DPDX51 1
R N A"Seq WI th U n1 q U e — { TTGCCGTGGTGTTATGGAGG. . . . . v v v v v v ccaceace | NOP2
o « @ | TTGCCETGETGTTCTCAAGT. ... ... .. ... anaareee | ACTB 1
molecular identifiers O L
A ( CGTTAGATGGCAGGGCCGGG. . ... ... .. ... crcatact | [ BR 1
Saiful Islam!, Amit Zeisel!, Simon Joost?, = | CGTTAGATGGCAACGTTATA............. acGeeTac | ODF2 1
Gioele La Manno', Pawel Zajac', Maria Kasper?, 8 CGTTAGATGGCATCGAGATT. . ... ........ aceeerTr | HIF1A 1
Peter Lonnerberg' & Sten Linnarsson' R Rt
( AAATTATGACGAAGTTTGTA............. GGGAATTA
2 | ARATTATGACGAAGTTTGTA............. AGATGGGG] ACTB e
8 L T\A;‘\T'I‘]\"."GACL:ZATGTGCTTG ............. cacreeac | RPS15 1
( GTTAAACGTACCCTAGCTGT............. earrrrer ] GTPBP4 1
z STTAAACGTACCGCAGAAGT . . .. ......... erreeceT ] GAPDH 1
8 4 (ACCAAGGCTTG. . oo v v vnvnn s CAAAGTTC] ARL 1 2
\ TTCCGGTC. . . ..o enn. ... TCCAGTCG

vvvvvvvvvvv

 Set of external RNA transcripts with known concentrations.

P 4456708
Loww 0807001
NATE o6 LTA

ERCC ExFold RNA

A Spike-in Mixes
. Store M 200C 00w

* Represent diverse lengths and sequence composition.

Bifoly BSpkos —
E 1.2 ;J mg § (44559 '“,... -
DStorsd  wal 200 Dol
"READI ADMSDS

5 |

* Internal control used to measure method performance.
* Originally used for internal expression normalization.
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e~
% How much should | sequence my cells?

o

* In most situations: +30-50K reads per cell (e.g. 5 billion reads for 100K cells).
® | ibrary saturation can be measured: reads/UMI (£4-5 is enough, 0.7-0.8 saturation)
* De novo cell type atlas versus resampling (can be shallower).

* Remember, for most applications: More cells, better than more reads!

Sequencing Saturation

ndedup_reads

0.8

Saturation =1 —
Myeads

0.6

0.4

Sequencing Saturation

. M3uplicated reads
Saturation = ————

Nieads

0 20k 40k 60k

Mean Reads per Cell



Three examples of scRNA-seq methods

Multi-well plates Droplets Combinatorial in-cell barcoding

MARS-seq inDrops sciRNA-seq



Example 1: MARS-seq plate-based multi-tiered barcoding

Single-cell NN AN\ N AAAAAAAAAAL

coRRIe TTTTTTTTTTTTT =0 02
Steps 1-17 Ut
@ <((‘—,ﬁ‘ (—' (E:r‘rrrrrﬂ//\’ :) | P ros.
. ' | - Accurate selection of single-cell,
—r S possibility to target poulations.
< .4 - Transcriptome+FACS index
~ 384-well plate | I d 't
’ g dala.
everse NSNS, - ' '
:::-.nssripiion —;;TTT:;;\:;TT}M\-E@ 42 U B Versatlle (easy tO mOdlfy)

Steps 18-29 | . o
- Harsh lysis conditions
Stepe 30-33
SyntheSIS ————————————ssssssss—— S A A A A AAAA A A e e— C .
and IV | I ons.

Se—— - Mid-throughput

R BNABARKARR - More expensive than (in-home)
Fragmentation, — AAAA AI:A;-\\A = d rO p | et m eth Od S .
i S — AAARR AR .
plate bar:c;dmg > W AAAAA s B N eed S FACS_SO rtl ﬂ g .
Steps 4249 BC

l

Slow protocol

Reverse ——

1r&nssripﬁ0n Id{ —— QA,QLAA—_.,
and P‘...H > _TTT TT— -
d1 Plalz
Stege 50-58 BC

TTTTTT s

|

MPooled library “or secuancing

Jaitin et al. Science 2014



Klein et al. Cell 2014

RT/ysis |4
reagents

)

Barcode cDNA synthesis

release (barcoding)
Barcoding
hydrogel
bead 4°C 50 °C
Pros: Cons:
- High-capture efficiency (=80%) - Doublet rates
- Good sensitivity. - Mild cell lysis.

- Fast encapsulation - Cell size limits (~30 um)



Poisson loading and capture rates

4 ® N/ )
O O O
® @
O cell 1 cell 2 cells 1 cell 1 cell
1 beads 1 beads 1 beads 2 beads O beads
Doublet! | ost cell
\_ AN
Cell encapsulation is explained by a Poisson distribution
e~ M\F A\ is the avera Ncells loaded
— ge 1 =
P(droplet haS k CeHS) k' . number Of Ce”S per NC rOp|e’[S

UNLIKELY - bead encapsulation can be forced into a sub-Poisson distribution

Using tighly packed hydrogel beads (10x chromium, Indrop) instead ot
polystirene beads (Drop-seq) massively reduce variance,
resulting in practice in 1 bead per droplet.



Estimating technical multiplet rates

Multiplet Rate (%) # of Cells Loaded # of Cells Recovered
~0.4% ~800 ~500
~0.8% ~1,600 ~1,000
~1.6% ~3,200 ~2,000
~2.3% ~4,800 ~3,000
~3.1% ~6,400 ~4,000
~39% ~8,000 ~5,000
~4.6% ~9,600 ~6,000
~95.4% ~11,200 ~7,000
~6.1% ~12,800 ~8,000
~6.9% ~14,400 ~9,000

~7 /° ~ ~ \
7.6% 16,000 10,000 1 O/\ GENOMICS
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Estimating technical multiplet rates

number of cells number of cells
o species 1 species 2
o < N N — L4%2
8 o collisions number N 1,2~ Observed
il = of droplets collisions
O @
Q
2 = (NN (NN
S | EREAE
- % Average number of cells species 1 or 2
S
O B
M _ 1 (Ml _I_ IU/Q)e_'UJl_'MQ
@ e 1 T 6_'“1_'“2
- 1 1 71T 41
0 1000 2000 3000 4000 Probability of a droplet with
UMIs species 1 at least 1 cell containing

multiple cells



b Distribute nuclei to first plate /

ROUND 1

C

ROUND 2

d

ROUND 3

Nuclei

-3BBOB80EEBEE
: 0.0000@0988

Isolate Nuclei in lysis buffer with DEPC
Check for RNAse activity
Fix with DSP/methanol

RNA AAAAAA

index1

Reverse Transcription adds index1

Pool and split to new plate

T

10000101 [010/0'0'0)

a
n

eoc@eclvieeed

G
[l
\

06000000000

RNA I AAAAAA

cODNA I— TTTTTT—
index1 index2

Ligation adds index2

Pool and split to new plate

Martin et al. Nature Protocols 2023

e

second strand I A AAAA A
CONA I T T T T T T
index1 index2

Second strand synthesis, protease digestion

=AAAAAA—
TTTTT TO—
index1 index2
Tn5 ®g Tagmentation

s AAAAAA T )

g N T T T T T T
index3 index1 index2 plate index

PCR adds index3 + optional plate index for multiple plates

Pros:

- Extremely high throughput

- Very low per-cell costs, <0.1 USD)
- No equipment required*

Cons:

- Very low sensitivity

- Requires fixed cells/nuclei

- Expensive initial set-up (BCs)

- 3'-biased, no full-length.



« ~ Combinatorial barcoding is at the core of many single-cell genomics methods!

Combinatorial barcoding

Isolated
\ nuclei

First barcode: Second barcode:
Tn5 tagmentation PCR



AAAAAAA

%%2.

Cell poolmg Super-loading

Doublet removal

Samples Label with
hashtag oligos
(HTO) . .
Stoeckius et al. Genome Biology 2018

Importantly, it also allows improved capture rates (for low input samples, combined)



Cell hashing without antibodies: ClickTag oligonucleotides

Universal sample multiplexing by chemically labelling cells.

Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and
Transcriptional Spaces

Jase Gehring, Jong Hwee Park, Sisi Chen, Matthew Thomson, Lior Pachter

doi: https://doi.org/10.1101/315333

Heterogeneous cell population

Methyltetrazine (MTZ)-activatead

, , NHs-TCO | M2
barcoded oligonucleotides are MAANTZ

Y

attached to exposed NHS-reactive

s
Mg B

3

Whole-cell DNA labeling

amines in a one-pot reaction.



Cell hashing without antibodies: ClickTag oligonucleotides

Example application: low-input, specimen-resolved scRNA-seq atlases

‘*'\ > wr =
TN R T g .
Simultaneous  \_ )7 N i A o ad. (: 8 bt FACS Sequencing and & i
dissociation T A T ’tagz ;&J;w &Tag 4 A Qc A sorting demultiplexing | .
: — \T ~ ’ /\ e B - :
and fixation Clicktag o, O — e
. e A ! - ——— -~
(ACME) TCO-modified  MTZ-activated y . @ O | X Single Cells / Tegd _Two tags = | &= = o .
protein s, oligonucieat de 5 2h r~ ¥ s 10 T \ g O |
Ife e ' 0 jARE { .
A w| th barcode 5 }\.L\ o /,*.‘*“ e ( ‘*(_3) ’ /. E/\’(&) - Tag?  Tag? “—: _
Nematostella |\ N b ' /@’/ » k &‘ ( tf" ¥ 3 o "\f;) e B O F A =
vectensss e P .‘ | | | | /".-'/ Doublets N/ \ N ;; {‘\\5’\ N % & ¥ Expression
Specimen 1 A - . 6 1 &—/ : N, (u(,.}de emined) 1294 ' . %) IO
P : g Single cells with specimen- f Multiplexed scRNA-seq 2 ¢ - Joint clustering and cell type
Population 1 Click- tag?ed PFOTem% . ; : . 2 Two tags - :
on cell surface specific barcodes r e with sample overloading |~ owae i (doublets) gene expression analysis



\ Open issues in scRNA-seq methods

» Sample prep (dissociation, nuclei extraction, etc.) is still the major bottleneck.

» Reaching very high capture efficiencies: studying small specimens (e.g. embryos) without pooling.
» Cell fixation/preservation: decoupling sampling from single-cell processing (e.g. field work).

* Trade-off between sensitivity & scalability/costs.

» (lass ceiling: sequencing costs... (new sequencing technologies, e.g. UltimaGenomics)



Part 2 - scRNA-seq analysis



The vectors of cellular identity

Multiple factors detine cell type identity:
Wagner et al. Nat. Biotech 2017

o

3
2y

* Membership in a hierarchy/taxonomy of cell types.

Rare subtype

&‘.’ C Sl o s, «
» Time-dependent processes (e.g. cell cycle). *‘ ook

* Response to the environment/physiological states.
Discrete types

* Spatial position e

Spatial position

Continuous phenotypes
Regulatory [ Wl Pro-inflammatory

In practice, in most situations the
cell type identity signal dominates
the transcriptional profile.

Revisiting a

Erythrocyte previous state

A Neutrophil
Source state _ .

. o > v
\~ — -y 9
“ " .

HSc  [-lymphocyte

Unidirectional State vacillation
temporal progression



\% Standard scRNA-seq analysis pipeline

1. UMI counting 5. Feature selection

2. Cell quality control 6. Dimensionality
and filtering reduction

3. Data normalization ,
/. Clustering

and transformation

8. Downstream

analyses



1. Demultiplexing

Cell
barcode UM \
e ' TGACAATARAGACT...... TCTAGCTG
ACAGTATAAAGACT. ........... GGGCCCCE ~——_ - :Gimzu;TGg?ggzg """ :;‘;ﬁigg
TGACAATAAAGACT. .. ......... TCTAGCTG AR ORTECCH b

CGTTAGGTTACGTC............ GATTATAG . ACAGTATARAGACT. .. ... GeEceces
TGACAAGTTACGTC. .. ... v .. ACAATGCT _ : ACAGTAGTTACGTC. . . ... GTCACATC
GTTAGCTGATGCCG. .. .o vn.... CTTTGCAT x5 / ACAGTATGATGCCG. . . . . . TCGACGAT |
GTTAGCTGATGCCG. . . ...\ .. .. TCTCGACT -~ 2 .

“GTTAGTGATGCCG. . ..o v v v v w s CCTCGAGC —_~ / : . LG SRS EoTioeat
ACAGTAGTTACGTC . .o v v vvvsvns GTCACATC _— e s 2 SO BRI ST
TGACAATGATGCCG . . v v v v v v s s GTCACATC //“ I T AT ACAYGCIC
ACAGTATGATGCCG. . .. o .o v v n ™ TCGACGAT ___ R ,;""—‘“' A 'éffAc"Grc T ... .GATTATAG )
GITAGCTAAAGACT . . .. ........ ACATGCTG s —— -\ 'S GTGATECCG. . . . .. COTCGAGC
CGTTAGGTTACGTC. - o oo e e e TAGCCAGT L\ r':‘;';’-;q-‘-,,ﬂ;GTTACG'[‘C ,,,,,, TAGCCAGT J

Cell-specific reads
2. Mapping 3. Quantification
—— o celicel2 .. CelN
e
N s~ genome ene 3 2 . 1D
e - Gene2 | 2 3 . 1
R P B===
p— R Gene3 | 1 14 . 18
= I
[ I =
[ |- S
-
| E—====} - 1 e . . - -
GeneM 25 0 : 0

Reads to genes

Modified from Lafzi et al. Nat. Protocols 2018

Gene expression matrix

Cell 1

Cell 2

Cell 3

[ 4
) -

1. Demultiplexing and transcript counting (assigning reads to cells and to genes)

ATTT ATTT

ATTA
./
AGTA .

AGGA AGTC

Sequencing errors
PCR errors

Informative features:

Base-call quality

Adjacency structure

1
2
3. Gene expression level
4

Mapping position

ﬂi_ UMI Count
——) ATTA
? ATTT 2 V

—> ATTT 1
—> CTTC

X

Mapioing
coordinates



The impact of incomplete gene models in scRNA-seq data analysis

Extended Recover unassigned reads by
N\ annotation . , : , ,
Y& 3" extension and intergenic bins

n 74 ‘.“fll L

LRI - A

e o V. scRNA-seq signal: A L__L F Y

e Called peaks: [ - B { o O |

@ Gene models: E2XH-DHY——== Find & cluster =214

(o} Extend orphan A

% 3'regions peaks Clip 5" overlaps

£ & b

S

— Mapped scRNA-seq Genome annotation

é (BAM) (GTF/GFF)

K Optional: clip 5’ overiaps

O «~ :

O o | . l Peak calling (MACS2)

% Called Zfith percentile

© \\J peaks

O Peak filtering by coverage Genic peaks

D: L'\"\/\A/\/ l --peak : peg‘cy25 - : Intergenic

g = [ Filtered ] log,, per-base coverage
-4000 -2000 TES 2000 4000 peaks

Extend 3" regions up {o LU
m distance (--m <median>) [

[ Extended ]

genes Max distlance o .

Optional: find & cluster Petween peaks
l orr:)han peaks --orphan_maxdist T3

GeneExt: a gene model extension tool for enhanced single-cell RNA-seq analysis
Max size of the peak

b i 0 R iV Maodified annotation cluster D?ﬁ
x Grygoriy Zolotarov, " Xavier Grau-Bove, I Arnau Sebe-Pedros (GTF/GFF) --orphan_maxsize [

THE PREPRINT SERVER FOR BIOLOGY doi: https://doi.org/10.1101/2023.12.05.570120




2. Calling cells from non-cells and filtering bad cells

10* -

Informative features: Empty wells/ Doublets or Knee plot
' . droplets il large cells?
1. UMI counts per cell 3 7 or quiescent
M | Ce”S? 1
(cell size) 55 A o

200
1

2. mitochondrial genes

3. ribosomal rRNAs

Frequency
# Transcripts (log scale)

100
L

4. initial cell input

(expected N of cells) IIIH[ mm,nn"m

| | | | | | |

9 10 11 12 13 14 15 1('30 ' ' lD - '1(')9 ' ' 1(') S 101
# Barcodes (log scale)

107

total cell UMIs (log2)

Example tools/strategies:
General QC tips:

® dropEst: cell calling, based of cell UMI counts distribution. Used by CellRanger. o
* Be permissive

e emptyDrops: cell calling, based on deviations from background RNA distribution.

* Do not attempt to model what
* Scrublet: doublet identitication by simulation from observed expression. we don’t understand

® DoubletFinder: similar to Scrublet. e Perform QC iteratively
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\% Standard scRNA-seq analysis pipeline

6. Dimensionality
reduction




w .

2 - - - I
ﬁ 3. Data normalization and transformation

e Count depth scaling (scaling factor: 10,000 or 1,000,000).

e Random downsampling (only it small cell size variance, severe data loss)

e Size factor estimation (e.qg. in scran), assumes most genes stable, dift. technical

e Parametric normalisation (e.g. neg binomial), principled variance stabilisation.

* No normalisation, if you use similarity metrics that are scale-invariant (e.g. correlation).

e Binary transtormation

* Model-based latent representations (good for data integration/batch correction, e.g. scV)

* | og-transformation: stabilise variance and reduce skewness (compress large values). Often used
with count depth scaling.



1. Biological effects. e.g. cell cycle.

PC2: 14% vanance

FCG1: 46% variance

3. Data imputation to compensate for the
sparsity of single-cell data

MAGIC

Before MAGIC | pitfusion: After MAGIC
B t=1 t=3 t=5 i
” % - C;{é. A ;* &0 g ‘ 1 i | i
T o Adaa Imputation: 1 T
o ' 'I‘ _£‘_ '_'*.‘- . i |
enes % g—> =
J & &o g

van Dijk et al. Cell 2018

Generally a bad idea - instead, use metacells!

4. Data correction: regressing out unwanted covariates and imputing data

2. Batch effects. Methods:

* |dentify and remove “batchy” genes.

e Mutual Nearest Neighbors (MNN): handles
compositional differences between datasets.

3 b Cc
. ‘ @ x ‘ o x
Batch 2 |
4 itch wll boittd 14“‘“
. 1111 painings (R Correction
A M .- it :J' | ) veclors
effect : :_' };}l" e
pog. PN EsGy AR R0 Gy
R, o g i
Haghverdi et al. Nat. Biotech. 2018
eHarmony
Dataset | Cell type
PO YR — lterate until convergence T~
C'USIG C/US/ C’US/ CIUS['@
"" /‘) /~) ’ /)
> >
EdAR * > o ® 59 O o "t v’*t Ey
> N
O &t oo o Qo ) f \- O *%e
®
" M ® ‘\.\ T
e e = o & o O @ » S x k4T
x r'y y kf‘ ,“.,r+.} ~A
4+ t * o d / 4+ &

B Get cluster centroids C Get dataset correction

A Soft assign cells to
for each dataset factors for each cluster

clusters, favoring mixed
dataset representation

D Move cells based on

soft cluster membership
Korsunsky et al. Nat. Methods. 2019



5. Feature selection

..................................

2. Cell quality control 6. Dimensionality  :
and filtering reduction

llllllllllllllllllllllllllllllllll

/. Clustering

Measured data

..................................

: , : 8. Downstream
- 4. Data correction :
: : analyses

lllllllllllllllllllllllllllllllllll

Normalized (corrected?) data



5. Feature selection: variable genes for downstream clustering

Select genes with high variance (normalized by the mean)
and a minimal total expression.

® °

e Feature gene .

Log2(variance/mean)

Log2(mean on downsampled)

Not critical how many genes we select (usually 1,000s)



6. Dimensionality reduction

1. Summarization: reduces data to essential components for
downstream analyses.

E.g. PCA (clustering), Diftusion maps (trajectory).

2. Visualization: project dataset in two dimensions.

PCA Graph-projections

PC2
tSNE2
FA2

UMAP2

PC1 tSNE1 FA1



6. Dimensionality
reduction

llllllllllllllllllllllllllllllllll

Reduced data Reduced data

X. Temporal trajectory



7. Cell clustering

1. Cell-cell distance matrix. E.g. correlation-based, cosine similarity,
Euclidean distance in PC-reduced space.

2. Cell clustering:

i. Clustering algorithms. E.g. HC, k-means.

ii. QGraph-partitioning algorithm: k-NN graph construction followed by
community detection (e.g. Louvain algorithm).

Cells (nodes) connected

to K most similar cells.

N’

Cluster 1 Cluster 2

Cluster 4



7. Cell clustering: Metacells

MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions

Select variable genes Compute raw ~
similarity matrix

and balance I
K-nn graph | 4"‘

’ .
PR " 4
9 \.
’
. '
. »

SRS

b

log2 size correlation

x 1,000

Bootstraping: re-sample cells
and compute metacell partitions

- % % < ?
e « « @ «

@ , % ,
Dowsntream analyses:

gene expression, Re-weight graph based on
2d projection, etc. Detect and remove outliers Compute final metacells  bootstrap co-occurence matrix

log2 Total UMis

Baran, et al. Genome Biology 2019



8. Downstream data analysis: annotation,

Project expression of known marker genes
and/or the top specific genes per each cluster.
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. o ", P |
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yé B\ Yo L S ) IL7R
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5 TRGC2
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. Downstream data analysis: gene modules

Genes o Metacells
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o

ﬁ 8. Downstream data analysis: Cross-species comparisons, overview of strategies

o

w

1. Ortholog selection:
- strict one-to-one orthologs
- homologs

- Protein Language Models

2. Resolution
- single cells
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation

- train classifiers

- sample integration

- DL universal cell embeddings



8. Downstream data analysis: cross-species comparisons, examples

Sebe-Pedros et al., Cell 2018

1. Ortholog selection:

)I_l_ertebrate | T gt PR s i |
- stri -to- issue : PRI Es Bt
strict one-to-one orthologs SESooe L
Y 08§ & , | |
- homologs VP TP T
. <

- P N

rotein Language Models 9

Species

v Pan
paniscus
Homo Gorilla

2. Resolution
_ single cells ﬁ sapiens Bgoriﬂa

- cell clusters/cell types Pongo Macaca
pygmaeus mulatta
Mus Monodelphis |

musculus domestica
3. Comparison strategies: 3%270&3 v\ Gallus
- gene expression correlation anatmus el
- train classitiers 02 Wlos
- sample integration aoar=an

- DL universal cell embeddings



1. Ortholog selection:
- strict one-to-one orthologs
- homologs

- Protein Language Models

2. Resolution
- single cells
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation

- train classitiers

- sample integration

- DL universal cell embeddings

8. Downstream data analysis: cross-species comparisons, examples

Random forest classifiers trained in one species and applied to another

gene 26,000

o

Step 1: Training

mmmgs
(spec;es #1)

Decision Forest

cell 1

@ | Cell Type
gene 1
gene 2

o
-

cell 2

=
(Vg

-----

cell 66,000

Training IDs
(Species #1) kX

Test set
(species #2)
<
(&)
el
8 £
® S o
= a8 2oL
o 32 i & 4%
cell 1 0 0 1
cell 2
A 115 2
cell 66,000 -
A| 41|15 0
Predicted |1Ds
(Species #1)

-

LR B 1 1 B

Readout: Confusion
Matrix

Cluster Assignment

(
O
00

(@)

88 00O

L J

Shafer Front. Cell Dev. Biol. 2019



8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

strict one-to-one orthologs
nomologs

Protein Language Models

2. Resolution

single cells
cell clusters/cell types

3. Comparison strategies:

gene expression correlation
train classifiers

sample integration

DL universal cell embeddings

# genes in the gene set
Gene set: Astrocyte markers

40 60 80 100

20

AUCell: Area Under the

Curve for Gene Sets

Recovery curve

AU

| S IDIPIPIROUs. - — -

1 T 1 T 1
0 100 300

Gene rank
Cell: 1772066095 C10

500

# genes in the gene set

Gene set: Astrocyte markers

40 60 80 100

20

Recovery curve

1 1 T T 1
0 100

300 500

Gene rank
Cell: 1772066101 _FO03

Frequency

Frequency

Frequency

Astrocyte_Cahoy (555g)

0.00 0.04 0.08

AUC histogram

Astrocyte_Lein (12g)

00 02 04 06 08

AUC histogram

Random (509)

0 20 60 100
I T NN N N

2

0.00 0.04 0.08

AUC histogram

Frequency

Frequency

Frequency

Neuron_Cahoy (375g)

0.00 0.05 0.10 0.15

AUC histogram

Neuron_Lein (14g)

uC > 0,17
{1796 calls)

0 200 400 600

| VI U N S N D

L O R P G 1
0.0 0.2 04 06

AUC histogram

Random (500g)

0.00 0.02 0.04

AUC histogram

Frequency

Frequency

Frequency

Oligodendrocyte_Cahoy (417g)

AUC>0074
{763 calis)

| L | 1 | |

I | T =
0.00 0.05 0.10 0.15

AUC histogram

Microglia_lavin (151g)

AUC > 0033
{40 calis)

B R S | I
000 004 008 0.2

AUC histogram

HK-like (100g)

00 01 02 03 04 05

AUC histogram

https://www.bioconductor.org/packages/release/bioc/html/AUCell.html



8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

strict one-to-one orthologs
nomologs (many-to-many)

Protein Language Models

2. Resolution

single cells
cell clusters/cell types

3. Comparison strategies:

gene expression correlation
train classifiers

sample integration

DL universal cell embeddings

g
/

SAMap: cross-species self-assembling manifolds

Gene homology
Species

000000

Manifold alignment

S t . \ J Species 1
\
. ’ L \ S~

XL

9 ’ -
— ==

- - -

= —
- ‘\
Individual cells

T —

— "
—_— —_—

Neighborhoods

¥

‘\ Otic N
Blastula placode ™~

UMAP 1

Non-neural
ectoderm

T\_‘,\f Hatching gland
, ¢
. _} Lens placode Y

Notochord

"o I
T a

N

UMAP 2

o

»

r
neural crest =2

neural crest - crestin =
neural crest - mcamb
neural crest - melanoblast
neural crest - xanthophore

optic &

eye primordium £
forebrain/midbrain £
notoplate ==
neuroectoderm £
hindbrain =2

neuron £J
rohon-beard neuron 2
ionocyte Il

non-neural ectoderm ==
secretory epidermal

rare epidermal subtypes

epidermal progenitor ==
placodal area ==
otic placode ==

lens 1B

blastula Il

tailbud =

involuting marginal zone =2

intermediate mesoderm )

skeletal muscle =2

presomitic mesoderm [}
pronephric duct

blood 3

endothelial ==

macrophage )

notochord

dorsal organizer =

hatching gland ==
pancreas primordium
pharyngeal pouch
endoderm

Non-neuroectoderm

1
=3 neural crest

Sl optic
Sl eye primordium
== forebrain/midbrain

== notoplate
£ neuroectoderm

[ hindbrain

I neuron
&3 rohon-beard neuron
B ionocyte

goblet cell
cement gland primordium

hatching gland

small secretory cells

neuroendocrine cell
Bl non-neural ectoderm

B epidermal progenitor
== placodal area
== otic placode

Ml lens

B blastula
£3 tailbud

&= involuting marginal zone
== intermediate mesoderm

) skeletal muscle

£ presomitic mesoderm
pronephric mesenchyme
B blood

B endothelial
Bl myeloid progenitors
& notochord

£l spemann organizer
== endoderm

Alignment score

5

Endoderm Pluripotent

Tarashansky et al. eLife 2021



8. Downstream data analysis: cross-species comparisons, examples

SCRNA-seq counts SATURN
. =
1. Ortholog selection: Create
Macrogenes multispecies
- strict one-to-one orthologs Macrogene sl stiosse
embeddings
) ﬂomologs ®) Find differentially
5 . expressed
- Protein Language Models o —— macrogenes
O
Transfer
cell-type labels
across spacies
1 J
2' ReSOIUtlon ) SATURN learns weights
: | | |S rratein Sequences that reflect protein R:la:nnotate
- SIngle ce . similarity cell types
J SHEIQMYERN. ..
- cell clusters/cell types Sep
DESMYYNRVEG. . . N S - \-.‘ sl
ESEYMARYCDF. . . Protein language model differences
3. Comparison strategies:
&Blood

Presomitic
Intermedlate mesoderm

-7

' - ,g_.' ’&
Neura :
R Tallbud‘\ .

- gene expression correlation
train classifiers

. . Neuron & ‘erm
- sample integration pﬂmord% R e Pl
. . “Forebrain/midbrain, " e "‘m-gm
- DL universal cell embeddings & g il
Hindbeain progenitor

=

@ Frogcell @ Zebrafish cell
Rosen et al. Nature Methods 2024



Early animal cell type
diversity, evolution and regulation

Arnau Sebé-Pedros

| g . mm - welicome
CBG o5, Sanger

% for Genomic i » institute
Regulation

www.sebepedroslab.org
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Cell types are the functional and evolutionary units of animal multicellularity

N

Porifera  Ctenophora Placozoa  Cnidaria Bilateria

A N D e
i G -4\"}-"1‘ /a‘r/
R. Hertwig, 1880 H. Hyman, 1949  Ramon y Cajal, 1890

Morphological similarities across animal phyla suggest conserved cell types



Cell types are the functional and evolutionary units of animal multicellularity

T

Porifera  Ctenophora Placozoa Cnidaria  Bilateria

XD 2

-‘.; Wt :'/p
R. Hertwig, 1880 H. Hyman, 1949  Ramon y Cajal, 1890

A major question is when cell types originated



Cell types are the functional and evolutionary units of animal multicellularity

| Novel cell type

Ctenophora Placozoa  Cnidaria Bilateria

A major question is when cell types originated and how novel cell types evolve



Cell types are genetically defined by specific regulatory programs

Genome sequence =gp Genome regulation —

ACGTTHCAAAT TCAGTCGGTAGTTITIAACGTACGTACGGTAC TGGTATTLTCAGGTIGTTCAAL
e o o

Cell types

CATGACACTGACAGATACACAGATTGTCGTGTTATVTCGACTTGGAACTCTAGGCCCTTGAATCT
TGBCACTCCCTACBTACCATCGBTACTGGATAACBATBRAGGTCAGGT TEBTTCAACTCATCCAGGA
GAAATATCTCCGATAATTAACAGATACACACCCTTAGACCATTTAATCCCTCGGAANAGGCAACTA

GTACCACTCTTTCCAGGCACTGACAGATAGACAGATTGTCOTGT TATVTGACTTGGAACTSTA
CCCCOTTCAATCTTCGCACTCGTAACCGTACGTACSCTACTCCTAACGTCACCTCAGSTTSTTO
AACTCATCGTSACTGATTACCAGCGATCCTAGCGGATCCTACTGACCTCACGTACSTAATGCAGT

GGTCAGGTTGTTCARCTCGATGACTAGAATATATCCAGGAAAATCCCTGGGAAAAAT TGGGCET
TACGTGTCGTAACGTACGTACGGTAC TGGTAACGTGAGCCAGGAAAATC CCTGGGAAAATTG i
GGUCOTATCGTEACTGAT TACCAGGATCCTAGUGREAT LD TACTGALDC TEACG TACG TAATGUAG

TGGTCAGGTTGTTCAACTCGATGACTAGAATATATC CAGGAAAAAAAATTEGGCCCTACGTACS i,

GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGGCTACACATTGTCGTGTTATVTGACT TCGAA
CTGTAGCURLYHAIRGCCCTTGAATCTTCGCAGTCGTAACGTACGTACTGAGCTCAGGTTGTTS
AACTCATCCAGGAATCGGCCCTACGTACCSTAACGTTGCAAATTCACGTCGGTACGTTTCCAGG
CTACACACACACTCACAGATACACACATTGTCOTSTTATVTCGACTTCCAASTSTASCCCCTTCA
ATCTTGGCASTCATAACGTACGTACCGTACTCOTAACGTCACCTCAGSTTATTCATTACCAGGA ‘

a— CC A y

/\_——/

TCTACTAGAAGAANAANTTGGGCCCTACGTACCGTAACGT TGCANATTCAGTCGGTACGTTTCCA
GGCTACACACACACTGACAGATAGACACATTGTCCTGTTATVTGACTTGGAACTCTACGGCCCTT
GAAICT ICGUAGC TCCIAACCTACC IACGG IACTGHEAR TDISETGTTCAAC TCATCCAGGAAAAL

CCCTGCCAAAMATTGGGCCCTACGTACCGTAACCTTGCAAATTCAGTCGGTACSTTTCCAGGT
TACACACACACTSGACAGATAGACAGAT TGTCGTGTTATVTGACAGGCTACACAZACACTCACAG g e n e
ATGTAATGCAGTGSTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGCGALLATCCCTGGGA




Cell types are genetically defined by specific regulatory programs

> Cell types

Genome sequence =P Genome regulation

CATGACACTGACAGATACACAGATTGTCGTCTTATYTCACTTGGAACTGTAGGTCCTTGAATCT
TGBCACGTCCLCTACBATACCATCGATACTGATAACATRAGGTCAGGT TEBTTCAACTCATCCAGGA
GAAATATCTCCGATAATTAACAGATACACACCCTTAGACCATTTAATCCCTCGGAANAGGCAACTA i3] Al

GTACCAGCTCTTTCCAGGCACTGACAGATAGACAGATTGTCOTGT TATVTGACTTGGAACTSTA
CCCCOTTCAATCTTCGCACTCGTAACCGTACGTACSCTACTCCTAACGTCACCTCAGSTTSTTO
AACTCATCGTSACTGATTACCAGCGATCCTAGCGGATCCTACTGACCTCACGTACSTAATGCAGT
GGTCAGGTTGTTCAARCTCGATGACTAGAATATATCCAGGAAAATCCCTGGGAAAAATTGGGCLT
TACGTGTCGTAACGTACCTACGSTACTGGTAACCTCGAGCCAGGAAAATC CCTGGGAAAAATTG
GGUCOTATCGTEACTGAT TACCAGGATCCTAGUGREAT LD TACTGALDC TEACG TACG TAATGUAG
TGGTCACGTTGTTCAACTCCATCGACTAGAATATATCCACGAAAAAARAATTCGGCCCTACGTACT
GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGGCTACACATTGTCGTGTTATVTGACT TGGAA
CTGTAGCURLYHAIRGCCCTTGAATCTTCGCAGTCGTANCGTACGTACTGAGCTCAGGTTGTTS
AACTCATCCAGGAATCGGGCCCTACGTACCGTAACGTTGCAAATTCACTCGGTACGTTTCCAGG
CTACACACACACTCACACGATACACACATTGTCOTSTTATVTCGACTTCCAASTSTASCCCOTTGA
ATCTTGGCASTCGTAACGTACGTACCGTACTCGTAACGTBAGCTCAGSTTATTCATTACCAGGA
TCTACTAGAAGAANAANTTGGGCCCTACGTACCGTAACG T TGCAANATTCAGTCGGTACGTTTCCA
GGCTACACACACACTGACAGATAGACACATTGTCCTGTTATVTGACTTGGAACTCTACGGCCCTT
GAATCT ICGEAC ICCIAACGIACCIACGG IACTGHEAR TDISETGTTCAAC TCAITCCAGTAAAAL
CCCTGCCAAAMATTGGGCCCTACGTACCGTAACCTTGCAAATTCAGTCGGTACSTTTCCAGGT
TACACACACACTSACAGATAGACAGAT TGTCGTGTTATVTGACACGGCTACACAZACACTGACAG
ATGTAATGCAGTGSTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGCGALLATCCCTGGGA

Study cell type evolution by detining
and comparing cell identity programs




‘ Phylogenetic sampling biases preclude the systematic comparative study of cell types

SN

=g Genome regulation

Enhancer _

Cell types

Genome sequence

AGHTTGCAAAT TCAGTCGGTACTTIAACGIACGTACGGTACTGGTIAT TG TCAGGTTGTTCAALT
CATGACACTGACAGATACACAGATTGTCGTGTTATVTCGACTTGGAACTCGTAGGCCCTTGAATCT
TOGBACACTCCCTACATACCATOGBTACTGATAACBATRAGGTCAGGT TBTTCAACTCATCCAGGA
GAAATATCTCC GATAATTAACAGATACACACCCTTAGACCATTTAATCCCTCGCANAGGCAACTA

GTACCACTCTTTCCAGGCACTGACAGATAGACAGATTGTCOTGT TATVTGACTTGGAACTST
CCCCCTTCAATCTTCCCACTCGTAACCTACCTACSCTACTCCTAACCTCAGSCTCAGSTTSTTS
AACTCATCGTGACTGATTACCAGGATCCTAGCGGATCCTACTGACCTCACGTACSTAATGCAGT
GGTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGGAAAATCCCTGGGAAAAATTGGGLCT
TACGTGTCGTAACCTACCTACGSTACTGGTAACGTGAGCCAGGAAAATC CCTGGCAAAAATTG
GGUCOCTATCGTCACTGAT TALCAGGATCCTAGCGEAT D TACTGALCTGACG TACGTAATGUAG
TGGTCACGTTGTTCAACTCGATGACTAGAATATATC CACGAAAAAARAATTCGGCCCTACGTACT
GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGGUTACACATTGTCGTGTTATVTGACTTGGAA
CTGTAGCURLYHAIRGCCCTTGAATCTTGGCAGTCGTAACGTACGTACTGAGCTCAGGTTGTTS
AACTCATCCAGGAATCGGGCCCTACGTACCSTAACGTTGCAAATTCACTCGGTACGTTTCCAGG
CTACACACATACTCACACATACACACATTGTCSTSTTATVTCGACTTCCAATTSTASCCCCTTGCA
ATCTTGGCASTCGTAACGTACGTACCGTACTCGTAACGTCACGCTCAGSTTETTCATTACCAGGA
TCTACTAGAAGAANANTTGGGCCCTACGTACCGTAACGTTGCAAATTCAGTCGGTACGTTTCCA
GGCTACACACACACTGACAGATAGACACGATTGTCCTGTTATVTGACTTGGAACTCTAGGCCCTT
GAATCTTGGLAG TCCIAACGIACGTACGG IAC TGHEAR TDISE TG TTCAAC TCATCCAGGAAAA]

CCTGCGAAAAATTGGGCCCTACGTACCGTAACCTTGCAAATTCAGTCGGTACSTTTCCAGGT
TACACACACACTSACAGATAGACAGAT TGTCGTGTTATVTGACACGGCTACACACZACACTCACAG
ATGTAATGCAGTGSTCACGTTGTTCAACTCGATGACTAGAATATATCCACGALLATCCCTGGGA
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Single-cell transcriptomics: phylogenetic state-of-the-art
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Single-cell transcriptomics: phylogenetic state-of-the-art

108 -
B
P
8 ®
@
1R 100M 8 ®s : o
5 ‘ z .
@
(@ o % e © o © v o ©
= 10%- g2 .
3 A
e e® : ®
1000 o o ®
— @ o
& o .
D . o
50M E 8 0 - °
=R R S SRRV LU Finsniogg = = d
500
. e
0 By 10~ -, ; - . ; -
Number Number 2012 2014 2016 2018 2020 2022
of datasets of cells Year

Modified from Svensson, Beltrame & Pachter, Database 2020



Single-cell transcriptomics: phylogenetic state-of-the-art
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Stylophora pistillata cell type atlas
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* A multi-stage cell atlas reveals stony coral cell type diversity and evolution
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* Cross-stage comparisons
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* Shared and cell type-specific genes
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Transcriptional dynamics of skeleton formation

Calicoblasts are transcriptionally Calicobasts are abundant
similar to epidermal cells in settling polyps, absent in larva
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* A bacteria-to-corals HGT toxin expressed in calicoblasts during skeleton formation
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% Host-symbiont gene expression at single-cell resolution
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containing cells
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\ Story 2: The evolution of the neuronal gene expression program
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Phylogenetic framework: placozoans

Simple bodyplan and six/nine cell types
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Phylogenetic framework: placozoans

Simple bodyplan and six/nine cell types Habitat - microbial mats, feeding by extracellular digestion
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% Phylogenetic framework: placozoans
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Asexual reproduction by fission Collective cell behaviors controlled by small peptides

Varoqueaux et al., Current Biology, 2018 SIFGamide

Prakash Lab
Stanford University




Phylogenetic framework: Placozoa genomes
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" A multi-species placozoan

@ Trichoplax adhaerens H1

® Trichoplax sp.H2
Cladhexea sp.H11

® Hoilungia hongkongensis H13
Hailungia sp.H4
Cladtertia sp.H6

® Cladtertia collaboinventa H23
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A multi-species placozoan

@ Trichoplax adhaerens H1
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"L Conserved broad cell types across Placozoa

@ Trichoplax adhaerens H1
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gene modules

Highly conserved gene modules across Placozoa

Single-species gene modules , , ,
, Multi-species gene module clustering
(based on metacell-level gene-gene correlations)
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Functional enrichments in cross-species gene modaules: fiber cells
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Unexpected diversity of peptidergic cell types
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Peptidergic cell types transcription factor code
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Shared, pan-peptidergic gene modules
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Predicting peptidergic cell-cell communication in Placozoa

Peptide dockings for a Hypothetical peptidergic signalling network
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«+ Peptidergic progenitors express TFs involved in neurogenesis in other animals
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Peptidergic progenitors are specified by Notch-Delta signaling
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L Peptidergic progenitors are located in the peripheral lower epithelium
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Mapping cis-regulatory elements in four
olacozoans (ATAC, H3K4me3, H3K4me?2)
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% The genetic basis of placozoan cell type gene expression evolution

Some cell types evolve faster than others Degree of conservation of cell identity
(gene and RE gains/losses are correlated) determinants with phylogenetic divergence
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7L Cell type transcriptome macroevolutionary comparisons

Cross-phyla cell type comparisons
using published whole-organism cell atlases
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Cross-phyla cell type comparisons
using published whole-organism cell atlases
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Peptidergic cells transcriptionally resemble neurons
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Cell type transcriptome macroevolutionary comparisons

Cross-phyla cell type comparisons Peptidergic cells transcriptionally resemble neurons

using published whole-organism cell atlases peptidergic
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Evolution of the neuronal gene expression program
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Stepwise evolutionary emergence of the neuronal gene expression program

Reconstruction of gene expression ancestral states, High GPCR and lon Channel gene counts is a
losses and novelties in neurons/neuronal-like cells hallmark of cnidarian and bilaterian neurons
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Evolution of the neuronal gene expression program
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Cell type macroevolution, similarity beyond form and function

"Bag of (effector) genes” comparisons

Species X Species Y Species Z
TFa Gene 1 TFa Gene 1 TFb Gene 1

TFd Gene 3 TFd TFc Gene 2

U

1. Functional constraints -> convergent (and divergent) gene usage.

Arendt Nat. Rev. Genetics 2008

2. We don't apply explicit evolutionary models for gene expression characters.

3. Genes are not independent characters.



'~ Cell type macroevolution, similarity beyond form and function

-

Tissue :

Species

Pan &

pariscus troglodytes
Homo Gorilla
sapieris gorilla
Pongo
pygmaeus

Mus Monodelphis |
musctiltis domestica

rhynchus
gallus

anatinus

02 Tlos

Pearson
correlation

Macaca
mulatta

Sebe-Pedros et al., Cell 2018
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Neurons+Brain/Cerebellum
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n=255 orthologs

Term Description Population  Set log2FC
GO 0005244 voltage-gated on channel activity 22 12 25
GO0048058 cAMP metabolic process 17 9 25
(G0 0022833 lon gated channel activity 28 14 24
GO0070382 exocytic vesicle 26 12 23
GO 0008794 posisynapse 46 17 19
GO 0004930 G-protein coupled receptor activity €% 23 1.8
GO 00968733 presynapse £ 18 1.7
GO O030425 dendrite 61 19 1.7
GO0045202 synapse 112 33 18
GO 0005218 ion channal activity 81 18 1.6
GO 0007258 chemical synaplic ransmisson 55 18 18
GO 0038477 somatodendritic compartmant a7 24 1.5
GO 0043005 neuron projection 145 33 1.2
GO O0Y7458 neuron part 188 41 1.2
G00030182 neuron differentiation 164 34 1.1
GO 0046699 generation of neurons 181 35 1.2
GO:0022008 neurogenesis 151 36 1.0
GO 0007398 nervous system development 284 54 1.0
N
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Brain + Nematostella neurons

(similarity driven by neuronal genes)

J

Cnidarian neurons (transcriptionally) resemble vertebrate brain/cerebellum



Cell type macroevolution, similarity beyond form and function

Sebe- Pedros et aI Cell 2018

Vertebrate |
Tissue

Species
Pan & Pan
pariscus troglodytes p 2
Gorilla

Homo ]
sapieris gorilia

_u._;__b_ Testis + Nematostella gut cells
| | (similarity driven by ciliary genes)

Macaca
mulatta

Pongo
pygmaeus

Mus Monodelphis | -
musciilis domestica |

Omltho Gallus
rhynchus
gallus

anatinus

020 TWlos

Pearson
correlation

Direct comparisons of cell type transcriptomes are confounded
by convergent effector gene usage
(and divergent gene usage, and TF replacement, and more)



Cell type macroevolution, similarity beyond form and function

Arendt Nat. Rev. Genetics 2008

Cell type homoplasy

Species Y

Species X
TFa Gene 1
TFd Gene 3

TFa Gene 1

Species Z
TFb Gene 1
T e: Gene 2

U

Cell type homology?




Story 3: Decoding cnidarian cell type regulatory identities
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Slow-evolving genome:
conserved intron positions, syntenic
blocks, gene repertoire
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Nakanishi et al. 2012



Nematostella single-cell chromatin accessibility atlas
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Minnoye et él., Nat Rev Methods Primers 2021
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Annotation transfer from scRNA-seq atlas
Elek, Iglesias, et al., Nature Ecol&Evol 2026

Anamaria Elek Marta Iglesias
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Cell type-specific gene regulatory landscapes

(1) NeuroPou4/FoxL2-AP::mQOrange

Chromatin accessibility

Alternative promoter
(AP)

Elek, Iglesias, et al., Nature Ecol&Evol 2026
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Cell type regulatory identity 3: Sequence motif grammars
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Cell type relationships inferred from effector gene usage versus regulatory characters
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