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The single genomics revolution: cell type molecular profiling across the tree of life



Cell type molecular fingerprinting: in situs, transcriptomics and single-cell transcriptomics

Bulk tissue transcriptome 
comparisons 

Problems: 
- Need to dissect tissues/organs. 
- Cellular heterogeneity within 

tissues.

Breschi et al. 2016

Martin-Duran et al. 2016

Gene expression pattern 
comparison (classical evo-devo) 

Problems: 
- Need to define markers a priori. 
- Low throughput (one or a few 

genes at the time)

Cells

G
en

es

1. No need to define marker genes a priori.

2. No need for tissue dissection -> Cellular resolution.

3. Low input material (non-culturable species).

Single-cell transcriptomics



What can we (try) to measure in a single-cell



Applications of single-cell transcriptomics

Co-regulated gene 
programs

Spatial axis: 
cells in space

Cell type phenomenology 
(& variations)

Temporal axis: 
cells in time

Experimental profiling: 
CRISPR screens, lineage tracing, etc.



Part 1 - Single-cell transcriptomics technologies



Svensson et al. Nat. Protocols 2018 

Exponential scaling of single-cell transcriptomics methods



- Universal in terms of cell size, type and state (and species) 

- In situ measurements. 

- No minimum input of number of cells to be assayed. 

- Every cell is assayed, i.e.100% capture rate. 

- Every transcript in every cell is detected, i.e.100% sensitivity. 

- Every transcript is identified by its full-length sequence. 

- Transcripts are assigned correctly to cells, e.g. no doublets. 

- Additional multimodal measurements. 

- Cost effective per cell. 

✔︎

✘

☛

✘

✘

✔︎

✔︎

☛

☛

The ideal single-cell method (and the reality)



Basic steps in single-cell transcriptomics: from whole-organisms to cells

Physical and 
enzymatic 

dissociation
Filter/ 

FACS-sort

Single-cell 
suspension

Whole-organism 
or tissue



Cell fixation/cryopreservation: decoupling tissue processing 
from single-cell sequencing. 

Methanol-based 
fixatives 

Formaldehyde/Glyoxal/DSP 
and other cross-linkers 

Cryopreservation 

Nuclei sequencing: direct extraction from complex tissues (e.g. brain) 

Basic steps in single-cell transcriptomics: from whole-organisms to cells



Dead cells and 
non-cellular 

particles

Physical 
doublets/
multiplets

Live cells (Calcein) 
Dead cells (PI)

Cell death, debris and multiples 

Sebe-Pedros et al. Cell 2018 

Why sample prep is the most important step in single-cell transcriptomics?

Ambient RNA 
Clean sampleProblematic sample

Problems: 

- Difficult to determine cells from non-cells 
(empty barcodes) 

- Transcritpionally quiescent cells (low UMIs/cell) 
are “swallowed” by background RNA signal 

- Major factor explaining batch effects.



Basic steps in single-cell transcriptomics: from cells to RNA

Multi-well plates

SMART-seq2 
MARS-seq 

mcSCRB-seq 
CELseq2 

Quartz-seq2

inDrops 
Drop-seq 

10X Chromium* 

Microwell-seq 
Seq-well 

Tanaka ICell8* 
BD Rhapsody*

SPLIT-seq 
sciRNA-seq 

ParseBio* (Qiagen) 
ScaleBio* (10X)

*commercial

Droplets in-cell barcodingNanowells

Cell encapsulation and lysis

PIP-seq/FluentBio*

Semi-permeable  
capsules

AtrandiBio*

proteins 
and reagents

DNA/RNA



Basic steps in single-cell transcriptomics: from RNA to cDNA libraries to sequences



ERCC: External RNA Controls Consortium 
• Set of external RNA transcripts with known concentrations. 
• Represent diverse lengths and sequence composition. 
• Internal control used to measure method performance. 
• Originally used for internal expression normalization.

UMI collapsing

Unique Molecule Identifiers (UMIs) and ERCC spike-ins



• In most situations: ±30-50K reads per cell (e.g. 5 billion reads for 100K cells). 

• Library saturation can be measured: reads/UMI (±4-5 is enough, 0.7-0.8 saturation) 

• De novo cell type atlas versus resampling (can be shallower). 

• Remember, for most applications: More cells, better than more reads!

How much should I sequence my cells?

Saturation = 1 −
ndedup_reads

nreads

Saturation =
nduplicated_reads

nreads



Multi-well plates

inDrops sciRNA-seq

Droplets

MARS-seq 

Three examples of scRNA-seq methods

Combinatorial in-cell barcoding



Pros: 
- Accurate selection of single-cell, 

possibility to target poulations. 
- Transcriptome+FACS index 

data. 
- Versatile (easy to modify) 
- Harsh lysis conditions

Cons: 
- Mid-throughput 
- More expensive than (in-home) 

droplet methods. 
- Needs FACS-sorting. 
- Slow protocol 

Example 1: MARS-seq plate-based multi-tiered barcoding

Jaitin et al. Science 2014 



Klein et al. Cell 2014 

Pros: 
- High-capture efficiency (±80%) 
- Good sensitivity. 
- Fast encapsulation 

Cons: 
- Doublet rates 
- Mild cell lysis. 
- Cell size limits (~30 um) 

Example 2: inDrops microfluidics droplet encapsulation and barcoding



1 cell 
0 beads 
Lost cell

1 cell 
1 beads

1 cell 
2 beads

2 cells 
1 beads 
Doublet!

0 cell 
1 beads

UNLIKELY - bead encapsulation can be forced into a sub-Poisson distribution

Using tighly packed hydrogel beads (10x chromium, Indrop) instead of 
polystirene beads (Drop-seq) massively reduce variance,  

resulting in practice in 1 bead per droplet.

Poisson loading and capture rates

Cell encapsulation is explained by a Poisson distribution

Droplet tuning concepts

• Load beads into droplets at Poisson rate .

• Load cells into droplets at Poisson rate    .

P(droplet has j beads) =
e�µµj

j!
.

<latexit sha1_base64="dkV3fUkJUqiROk5G8ZZ69JuqlPQ="></latexit>

P(droplet has k cells) =
e���k

k!
.

<latexit sha1_base64="ppoqEy14DaVkCNU04aZuWhvGovE="></latexit>

λ is the average 
number of cells per 

λ =
Ncells loaded

Ndroplets



Estimating technical multiplet rates



collisions

M = 1� (µ1 + µ2)e�µ1�µ2

1� e�µ1�µ2
.

<latexit sha1_base64="+/OvDa5utcNg5ECxvrgtw/wTPL0=">AAACJnicbVDLSsNAFJ3UV62vqEs3wSJUpCGpgm4KRTduhAr2AU0Mk+mkHTp5MDMRSsjXuPFX3LioiLjzU5ykWWjrgbmcOedeZu5xI0q4MIwvpbSyura+Ud6sbG3v7O6p+wddHsYM4Q4Kacj6LuSYkgB3BBEU9yOGoe9S3HMnN5nfe8KMkzB4ENMI2z4cBcQjCAopOWrzrmnWLY9BlNQsP3bMs6w2TvFjUs/veW2kaWLWlzTdUauGbuTQlolZkCoo0HbUmTUMUezjQCAKOR+YRiTsBDJBEMVpxYo5jiCawBEeSBpAH3M7yddMtROpDDUvZPIEQsvV3xMJ9Dmf+q7s9KEY80UvE//zBrHwruyEBFEscIDmD3kx1USoZZlpQ8IwEnQqCUSMyL9qaAxlZkImW5EhmIsrL5NuQzfPdeP+otq6LuIogyNwDGrABJegBW5BG3QAAs/gFczAu/KivCkfyue8taQUM4fgD5TvH2Oro+g=</latexit>

number of cells  
species 2 

number of cells  
species 1 

Observed 
collisions

Probability of a droplet with  
at least 1 cell containing  

multiple cells

Average number of cells species 1 or 2

number 
of droplets

Estimating technical multiplet rates



Pros: 
- Extremely high throughput 
- Very low per-cell costs, <0.1 USD) 
- No equipment required* 

Cons: 
- Very low sensitivity 
- Requires fixed cells/nuclei 
- Expensive initial set-up (BCs) 
- 3’-biased, no full-length. 

Martin et al. Nature Protocols 2023 

Example 3: sci-RNA-seq3 split&pool combinatorial barcoding



Combinatorial barcoding is at the core of many single-cell genomics methods!



Antibodies (against ubiquitous surface proteins) loaded with unique polyA barcodes 

Importantly, it also allows improved capture rates (for low input samples, combined)

Stoeckius et al. Genome Biology 2018 

Cell hashing for sample overloading



Universal sample multiplexing by chemically labelling cells.

Methyltetrazine (MTZ)-activated 

barcoded oligonucleotides are 

attached to exposed NHS-reactive 

amines in a one-pot reaction.

Cell hashing without antibodies: ClickTag oligonucleotides



Cell hashing without antibodies: ClickTag oligonucleotides

Example application: low-input, specimen-resolved scRNA-seq atlases



• Sample prep (dissociation, nuclei extraction, etc.) is still the major bottleneck. 

• Reaching very high capture efficiencies: studying small specimens (e.g. embryos) without pooling. 

• Cell fixation/preservation: decoupling sampling from single-cell processing (e.g. field work). 

• Trade-off between sensitivity & scalability/costs. 

• Glass ceiling: sequencing costs… (new sequencing technologies, e.g. UltimaGenomics)

Open issues in scRNA-seq methods



Part 2 - scRNA-seq analysis



Multiple factors define cell type identity: 

• Membership in a hierarchy/taxonomy of cell types. 

• Time-dependent processes (e.g. cell cycle). 

• Response to the environment/physiological states. 

• Spatial position

Wagner et al. Nat. Biotech 2017 

In practice, in most situations the 
cell type identity signal dominates 

the transcriptional profile.

The vectors of cellular identity



1. UMI counting

2. Cell quality control 
 and filtering

3. Data normalization 
and transformation

4. Data correction 

5. Feature selection

6. Dimensionality 
reduction

7. Clustering

8. Downstream 
analyses

Standard scRNA-seq analysis pipeline



Informative features: 

1. Base-call quality 

2. Adjacency structure 

3. Gene expression level 

4. Mapping position

Sequencing errors 
PCR errors

✔︎

✘

Gene

Mapping 
coordinates

ATTA
ATTT

UMI

Gene
ATTT
CTTC

UMI

Count

2

1
Modified from Lafzi et al. Nat. Protocols 2018 

1. Demultiplexing and transcript counting (assigning reads to cells and to genes)



Recover unassigned reads by  
3’ extension and intergenic bins

The impact of incomplete gene models in scRNA-seq data analysis



Example tools/strategies: 

• dropEst: cell calling, based of cell UMI counts distribution. Used by CellRanger. 

• emptyDrops: cell calling, based on deviations from background RNA distribution. 

• Scrublet: doublet identification by simulation from observed expression. 

• DoubletFinder: similar to Scrublet. 

Informative features: 

1. UMI counts per cell 
(cell size) 

2. mitochondrial genes 

3. ribosomal rRNAs 

4. initial cell input 
(expected N of cells)

Doublets or  
large cells?

Empty wells/
droplets 

or quiescent 
cells?

2. Calling cells from non-cells and filtering bad cells

General QC tips: 
• Be permissive 
• Do not attempt to model what 

we don’t understand 
• Perform QC iteratively

Knee plot



1. UMI counting

2. Cell quality control 
 and filtering

3. Data normalization 
and transformation

4. Data correction 

5. Feature selection

6. Dimensionality 
reduction

7. Clustering

8. Downstream 
analyses

Standard scRNA-seq analysis pipeline

Measured data



• Count depth scaling (scaling factor: 10,000 or 1,000,000). 

• Random downsampling (only if small cell size variance, severe data loss) 

• Size factor estimation (e.g. in scran), assumes most genes stable, diff. technical 

• Parametric normalisation (e.g. neg binomial), principled variance stabilisation. 

• No normalisation, if you use similarity metrics that are scale-invariant (e.g. correlation). 

• Binary transformation 

• Model-based latent representations (good for data integration/batch correction, e.g. scVI) 

• Log-transformation: stabilise variance and reduce skewness (compress large values). Often used 
with count depth scaling.

• Mitigates the mean–variance relationship. 
•

3. Data normalization and transformation



1. Biological effects. e.g. cell cycle.

4. Data correction: regressing out unwanted covariates and imputing data

2. Batch effects. Methods: 
• Identify and remove “batchy” genes. 

• Mutual Nearest Neighbors (MNN): handles 
compositional differences between datasets. 

Haghverdi et al. Nat. Biotech. 2018 
•Harmony

Korsunsky et al. Nat. Methods. 2019 

3. Data imputation to compensate for the 
sparsity of single-cell data

van Dijk et al. Cell 2018 

Generally a bad idea - instead, use metacells!



1. UMI counting

2. Cell quality control 
 and filtering

3. Data normalization 
and transformation

4. Data correction 

5. Feature selection

6. Dimensionality 
reduction

7. Clustering

8. Downstream 
analyses

Standard scRNA-seq analysis pipeline

Measured data

 Normalized (corrected?) data



Select genes with high variance (normalized by the mean)  
and a minimal total expression.

Not critical how many genes we select (usually 1,000s)

5. Feature selection: variable genes for downstream clustering



1. Summarization: reduces data to essential components for 

downstream analyses.  

E.g. PCA (clustering), Diffusion maps (trajectory).

2. Visualization: project dataset in two dimensions.

PCA tSNE UMAP Graph-projections

6. Dimensionality reduction



Reduced data

1. UMI counting

2. Cell quality control 
 and filtering

3. Data normalization 
and transformation

4. Data correction 

5. Feature selection

6. Dimensionality 
reduction

7. Clustering

8. Downstream 
analyses

X. Temporal trajectory

Standard scRNA-seq analysis pipeline

Reduced data



1. Cell-cell distance matrix. E.g. correlation-based, cosine similarity,    
Euclidean distance in PC-reduced space.

2. Cell clustering: 

i. Clustering algorithms. E.g. HC, k-means. 

ii. Graph-partitioning algorithm: k-NN graph construction followed by 
community detection (e.g. Louvain algorithm).

Cells (nodes) connected 
to K most similar cells.

7. Cell clustering



MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions 

Baran, et al. Genome Biology 2019 

7. Cell clustering: Metacells



Project expression of known marker genes 
and/or the top specific genes per each cluster.

8. Downstream data analysis: annotation, integration, gene module inference, etc.

Comparative cell type annotation

Alternative:  
joint analysis

Projection to a 
reference atlas

Gene-gene expression 
correlation to infer co-

regulated gene modules



8. Downstream data analysis: gene modules

Gene-gene expression 
correlation (over metacells)

0 0.7

G
en

es

Genes

Normalized gene expression

0 5

Metacells



2. Resolution 
- single cells 
- cell clusters/cell types

8. Downstream data analysis: cross-species comparisons, overview of strategies

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs 
- Protein Language Models



2. Resolution 
- single cells 
- cell clusters/cell types

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs 
- Protein Language Models

Sebe-Pedros et al., Cell 2018

8. Downstream data analysis: cross-species comparisons, examples



2. Resolution 
- single cells 
- cell clusters/cell types

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs 
- Protein Language Models

Shafer Front. Cell Dev. Biol. 2019 

Random forest classifiers trained in one species and applied to another

8. Downstream data analysis: cross-species comparisons, examples



2. Resolution 
- single cells 
- cell clusters/cell types

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs 
- Protein Language Models

https://www.bioconductor.org/packages/release/bioc/html/AUCell.html

AUCell: Area Under the 

Curve for Gene Sets

8. Downstream data analysis: cross-species comparisons, examples



2. Resolution 
- single cells 
- cell clusters/cell types

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs (many-to-many) 
- Protein Language Models

Tarashansky et al. eLife 2021 

SAMap: cross-species self-assembling manifolds

8. Downstream data analysis: cross-species comparisons, examples



2. Resolution 
- single cells 
- cell clusters/cell types

3. Comparison strategies:  
- gene expression correlation 
- train classifiers 
- sample integration 
- DL universal cell embeddings

1. Ortholog selection:  
- strict one-to-one orthologs 
- homologs 
- Protein Language Models

Rosen et al. Nature Methods 2024 

8. Downstream data analysis: cross-species comparisons, examples



Early animal cell type  
diversity, evolution and regulation
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Cell types are the functional and evolutionary units of animal multicellularity



Ramon y Cajal, 1890R. Hertwig, 1880 H. Hyman, 1949

Morphological similarities across animal phyla suggest conserved cell types

Cell types are the functional and evolutionary units of animal multicellularity



A major question is when cell types originated

Ramon y Cajal, 1890R. Hertwig, 1880 H. Hyman, 1949

Cell types are the functional and evolutionary units of animal multicellularity



Cnidocytes

Novel cell type

A major question is when cell types originated and how novel cell types evolve

Cell types are the functional and evolutionary units of animal multicellularity



Genome sequence Cell types

Cell types are genetically defined by specific regulatory programs

Genome regulation



Genome sequence Cell types

Cell types are genetically defined by specific regulatory programs

Study cell type evolution by defining 
and comparing cell identity programs 

Genome regulation



Genome sequence Cell typesGenome regulation

Phylogenetic sampling biases preclude the systematic comparative study of cell types



Single-cell transcriptomics: phylogenetic state-of-the-art

Modified from Svensson, Beltrame & Pachter, Database 2020



Modified from Svensson, Beltrame & Pachter, Database 2020

Single-cell transcriptomics: phylogenetic state-of-the-art



Single-cell transcriptomics: phylogenetic state-of-the-art

Sebé-Pedrós, Tanay, Lawniczak, Arendt et al, Nature 2025

https://goat.genomehubs.org/

• Taxonomic prioritization and coordination 
• Methods decision tree and validated protocols 
• Shared atlas standards relevant across species 
• Scale-up phylogenetic coverage

https://www.biodiversitycellatlas.org/



Story 1: Coral cell type diversity and evolution



A multi-stage cell atlas reveals stony coral cell type diversity and evolution

Gulf of Eilat



Stylophora pistillata cell type atlas



A multi-stage cell atlas reveals stony coral cell type diversity and evolution

16,080 cells 
into 161 MCs

3,140 cells3,571 cellsLevy, Elek, et al. Cell 2021

Anamaria 
Elek

Shani 
Levy



Stylophora cell atlas interpretation: in situ hybridization validations



Cross-stage comparisons



Shared and cell type-specific genes



Transcriptional dynamics of skeleton formation

Epidermis

Calicodermis


Gastrodermis


Gastrovascular 

Gastrodermis


Calicoblasts are transcriptionally 
similar to epidermal cells

Calicobasts are abundant  
in settling polyps, absent in larva

Skeleton production 
metabolism 

Fox XP_022788808_1 
Homeobox XP_022801442_1

Epidermal-like identity 

Fox XP_022788808_1 
Bach/Nfe2 

Pax2/5/8 (Epidermal TF)



A bacteria-to-corals HGT toxin expressed in calicoblasts during skeleton formation

Syntenic gene neighborhoods

Secretion signal peptide and 
conserved intronic positions



Host-symbiont gene expression at single-cell resolution

Symbiodium occupancy across coral cell types

Host cells targeting strategy
USF1 (bHLH), Zic1 (zfC2H2) 

Leloir pathway -> Galactose metabolism 

Fatty acid metabolism (Elov, Pas2,…) 

Lipid transporters (NPC1, ApoD) 

Carbonic anhydrase -> CO2 availability 

Glutathione pathway -> Oxidative stress 

Ammonium transporters 

Aminoacid transporters 



Epidermis

Gut

Chlamydiales-proteobacteria

Chlamydiales expression
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Xenoturbella cell atlas of  
endosymbiotic interactions

proteobacteria 16S FISH

Mapping symbioses at single-cell resolution

Robertson et al. Nat Comm 2024



Levy, Elek, et al. Cell 2021

Cnidarian cell type evolution

Conserved major cell types 
across 550 million years  
of evolution

Independent 
diversification of 
neurosecretory  
cell types



Story 2: The evolution of the neuronal gene expression program



Phylogenetic framework: placozoans

Eitel et al., PLOS One, 2013

Biogeography - tropical and subtropical seas

Simple bodyplan and six/nine cell types



Eitel et al., PLOS One, 2013

Biogeography - tropical and subtropical seas

Habitat - microbial mats, feeding by extracellular digestion

Senatore et al., The Journal of Experimental Biology, 2017

Simple bodyplan and six/nine cell types

Phylogenetic framework: placozoans



Asexual reproduction by fission Collective cell behaviors controlled by small peptides
Varoqueaux et al., Current Biology, 2018 LF SIFGamide

Phylogenetic framework: placozoans



Phylogenetic framework: Placozoa genomes

• Trichoplax adhaerens (H1) in 2008 + 6 others in recent years  
• 87-108Mb 
• 6 chromosomes 
• ±12,000 genes 
• highly-conserved gene repertoire 
• proximal promoter gene regulation

Iana Kim
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Kim et al., Nature, 2025



A multi-species placozoan cell type atlas

Xavier 
Grau-Bove

Sebastian 
Najle

Bernd  
Schierwater

Harald 
Gruber-Vodicka

Najle, Grau-Bové et al., Cell 2023



Upper 
epithelia

Fiber cells

Lower epithelia

Lipophil 
cells

Gland cells

Najle, Grau-Bové et al., Cell 2023

A multi-species placozoan cell type atlas



Conserved broad cell types across Placozoa

Multi-species cell type clustering



Highly conserved gene modules across Placozoa

Single-species gene modules  
(based on metacell-level gene-gene correlations)

Multi-species gene module clustering



Functional enrichments in cross-species gene modules: fiber cells

Transcription factors

GO enrichments

Multi-species gene module clustering



Unexpected diversity of peptidergic cell types



Peptidergic cell types transcription factor code



… and neuropeptide processing genes

Peptidergic expression of presynaptic scaffold genes

Shared, pan-peptidergic gene modules



Identifying small peptides and their post-translational modifications



Unique combinations of peptides and GPCRs across peptidergic cell types



Neuropeptide+GPCR structural modeling (AlphaFold2), and 
docking analysis to predict peptide-receptor pairs

Predicting peptidergic cell-cell communication in Placozoa

30 peptide-receptor pairs +  
cell type-specific expression patterns

Hypothetical peptidergic signalling network

Damiano  
Cianferoni

Luis Serrano



Placozoa intermediate cell states: transdifferentiation?

Observed by ISH (and FACS-ISH)

Not explained by random co-
encapsulation (“doublets”)

GlandLipophil

Also observed in our 2018 
MARS-seq Trichoplax sc atlas

Observed in multiple species Many differentiated cells 
express cell cycle genes



Peptidergic progenitors express TFs involved in neurogenesis in other animals



Peptidergic progenitors are specified by Notch-Delta signaling



Notch antagonists increase the 
relative abundance of 

peptidergic progenitor cells

Peptidergic progenitors are specified by Notch-Delta signaling



Peptidergic progenitors are located in the peripheral lower epithelium



Mapping cis-regulatory elements in four 
placozoans (ATAC, H3K4me3, H3K4me2)

Classifying REs into novel and ancestral
and into fast and slow-evolving

CRE gains and losses across placozoan phylogeny

The genetic basis of placozoan cell type gene expression evolution

CRE evolution linked to gene expression divergence



Some cell types evolve faster than others  
(gene and RE gains/losses are correlated)

Degree of conservation of cell identity 
determinants with phylogenetic divergence

The genetic basis of placozoan cell type gene expression evolution



Cross-phyla cell type comparisons 
using published whole-organism cell atlases

Stylophora  
pistillata

Mus 
musculus

Spongilla 
lacustris

Mnemiopsis 
leidyi

Hydra 
vulgaris

Nematostella 
vectensis

Drosophila 
melanogaster

Cell type transcriptome macroevolutionary comparisons



Expression Conservation scores (EC) via Iterative Comparison of Coexpression (ICC)  



Cross-phyla cell type comparisons 
using published whole-organism cell atlases

Peptidergic cells transcriptionally resemble neurons

Stylophora  
pistillata

Mus 
musculus

Spongilla 
lacustris

Mnemiopsis 
leidyi

Hydra 
vulgaris

Nematostella 
vectensis

Drosophila 
melanogaster

Cell type transcriptome macroevolutionary comparisons



Cross-phyla cell type comparisons 
using published whole-organism cell atlases

Peptidergic cells transcriptionally resemble neurons

Stylophora  
pistillata

Mus 
musculus

Spongilla 
lacustris

Mnemiopsis 
leidyi

Hydra 
vulgaris

Nematostella 
vectensis

Drosophila 
melanogaster

Cell type transcriptome macroevolutionary comparisons



Reconstruction of gene expression ancestral states, 
losses and novelties in neurons/neuronal-like cells

Gene gains enriched functional categories

Evolution of the neuronal gene expression program



Reconstruction of gene expression ancestral states, 
losses and novelties in neurons/neuronal-like cells

Stepwise evolutionary emergence of the neuronal gene expression program

High GPCR and Ion Channel gene counts is a 
hallmark of cnidarian and bilaterian neurons



Evolution of the neuronal gene expression program
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“Bag of (effector) genes” comparisons

1. Functional constraints -> convergent (and divergent) gene usage.  

2. We don’t apply explicit evolutionary models for gene expression characters. 

3. Genes are not independent characters.  

Cell type macroevolution, similarity beyond form and function



Cell type macroevolution, similarity beyond form and function

Brain + Nematostella neurons 
(similarity driven by neuronal genes)

Cnidarian neurons (transcriptionally) resemble vertebrate brain/cerebellum

Sebe-Pedros et al., Cell 2018



Cell type macroevolution, similarity beyond form and function

Testis + Nematostella gut cells 
(similarity driven by ciliary genes)

Direct comparisons of cell type transcriptomes are confounded  
by convergent effector gene usage  

(and divergent gene usage, and TF replacement, and more)

Sebe-Pedros et al., Cell 2018



Cell type homoplasy

Cell type homology?
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Cell type macroevolution, similarity beyond form and function



Story 3: Decoding cnidarian cell type regulatory identities

Slow-evolving genome: 
conserved intron positions, syntenic 

blocks, gene repertoire

Putnam et al. 2007

NvElav1::mOrange

Neurons, but no CNS

Nakanishi et al. 2012

Diploblastic (no mesoderm) Indirect development (dispersive larva)



>65,000 scATAC-seq profiles Reduced into 705 metacells

Nematostella single-cell chromatin accessibility atlas

Marta IglesiasAnamaria Elek Annotation transfer from scRNA-seq atlas

scATAC-seq

Minnoye et al., Nat Rev Methods Primers 2021

Elek, Iglesias, et al., Nature Ecol&Evol 2026



Cell type-specific gene regulatory landscapes

C
hr

om
at

in
 a

cc
es

si
bi

lit
y

Cell type specific 
accessibility,  

known marker

Different 
landscape in 

gastrula and adult

Complex landscape Constitutive promoter  
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Alternative promoter  
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Elek, Iglesias, et al., Nature Ecol&Evol 2026
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Cell type-specific gene regulatory landscapes

Elek, Iglesias, et al., Nature Ecol&Evol 2026



Cell type regulatory identity 1: Transcription Factor activity

Cnidocyte 
TF activity



Cell type regulatory identity 2: Gene Regulatory Networks

Cnidocyte  
GRN

TF network 
connectivity 



Cnidocyte CRE 
sequence model

gkmSVM cnidocyte model

Cell type regulatory identity 3: Sequence motif grammars

Apply sequence 
model classifiers  
across cell types

Postion (250bp CREs)
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Most common motif lexicons in cnidocyte CREs



Gene accessibility 
(n=3,243) 

Cell type relationships inferred from effector gene usage versus regulatory characters

Cole et al., Nat. Comm. 2023

CRE accessibility 
(n=7,890)

Sequence models


