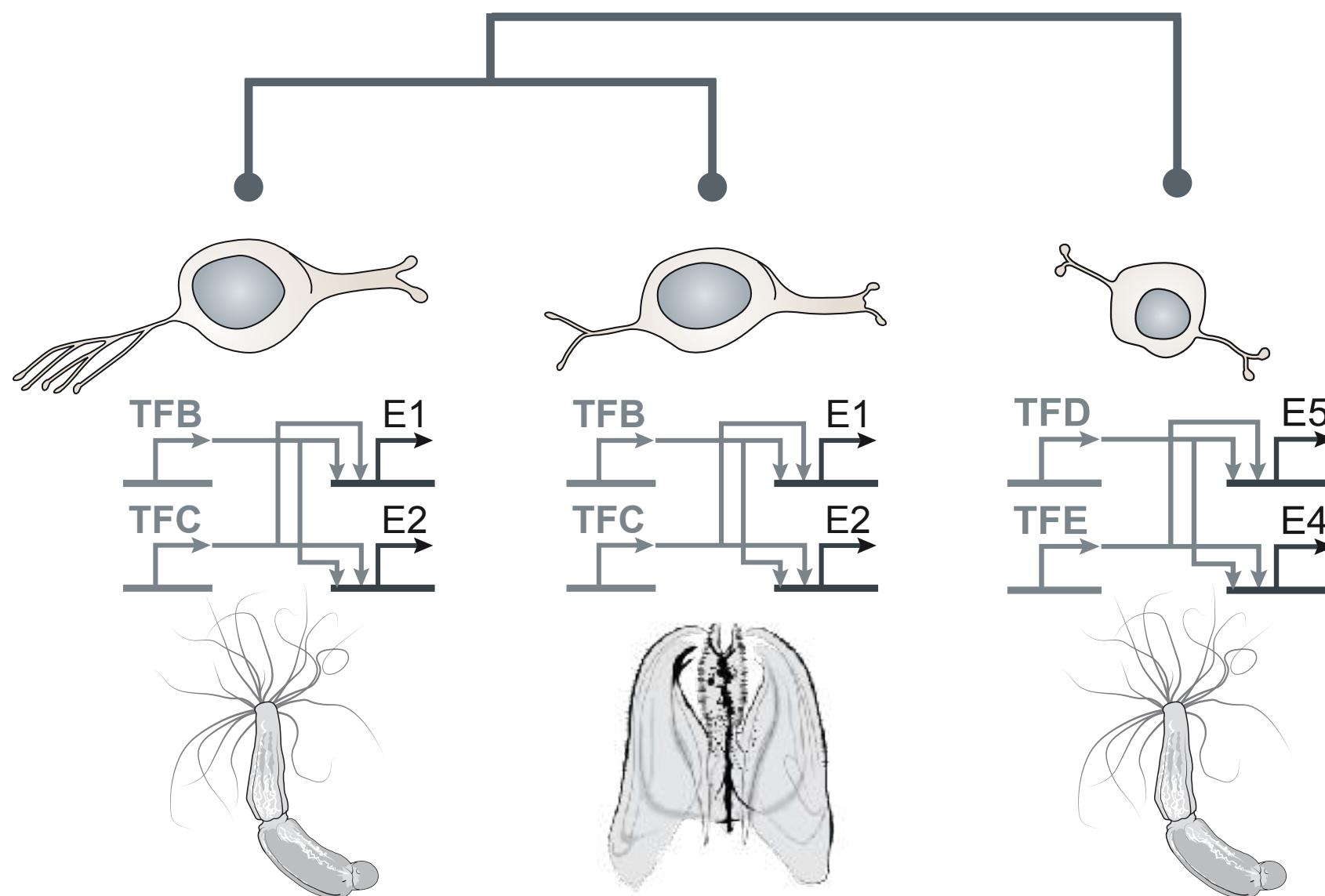
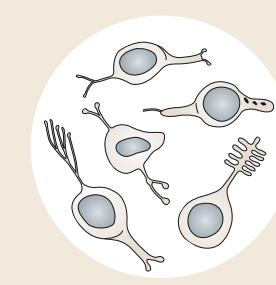


Introduction to single-cell functional genomics



Arnau Sebé-Pedrós

www.sebepedroslab.org

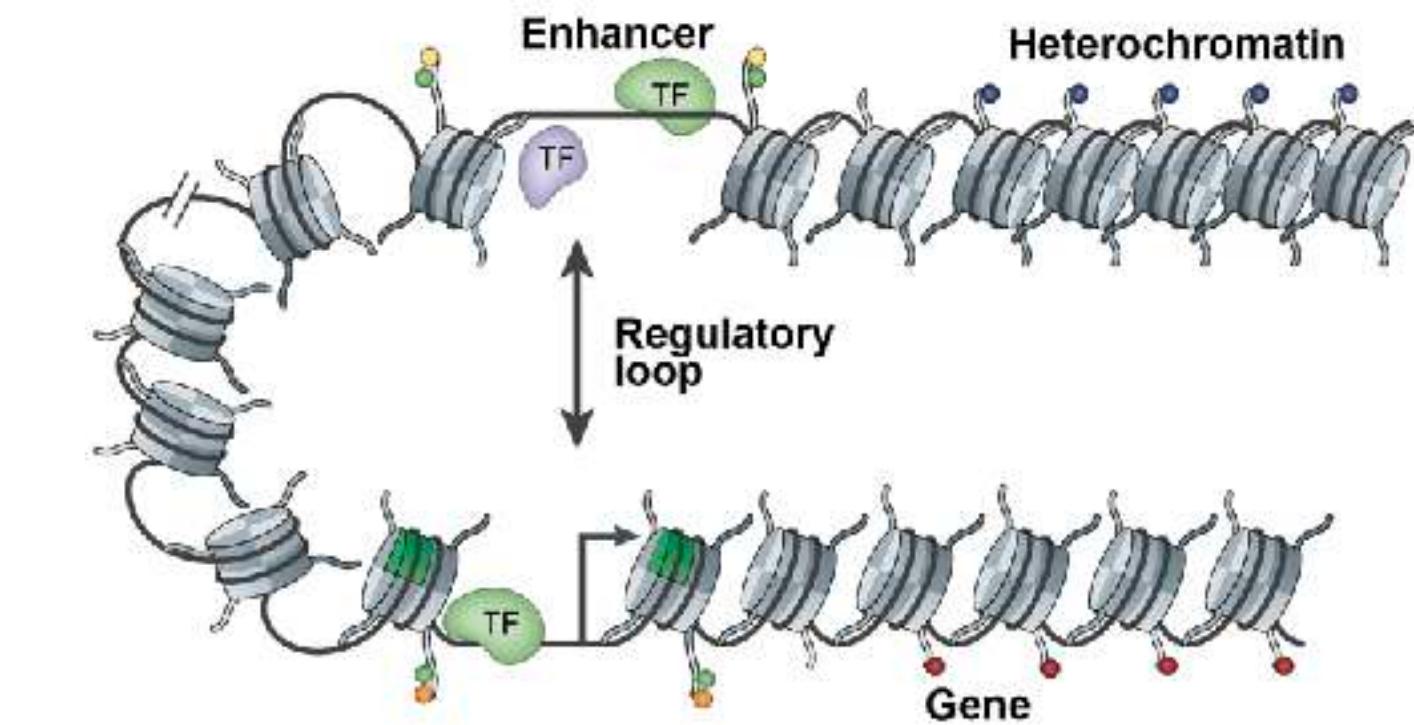


The single genomics revolution: cell type molecular profiling across the tree of life

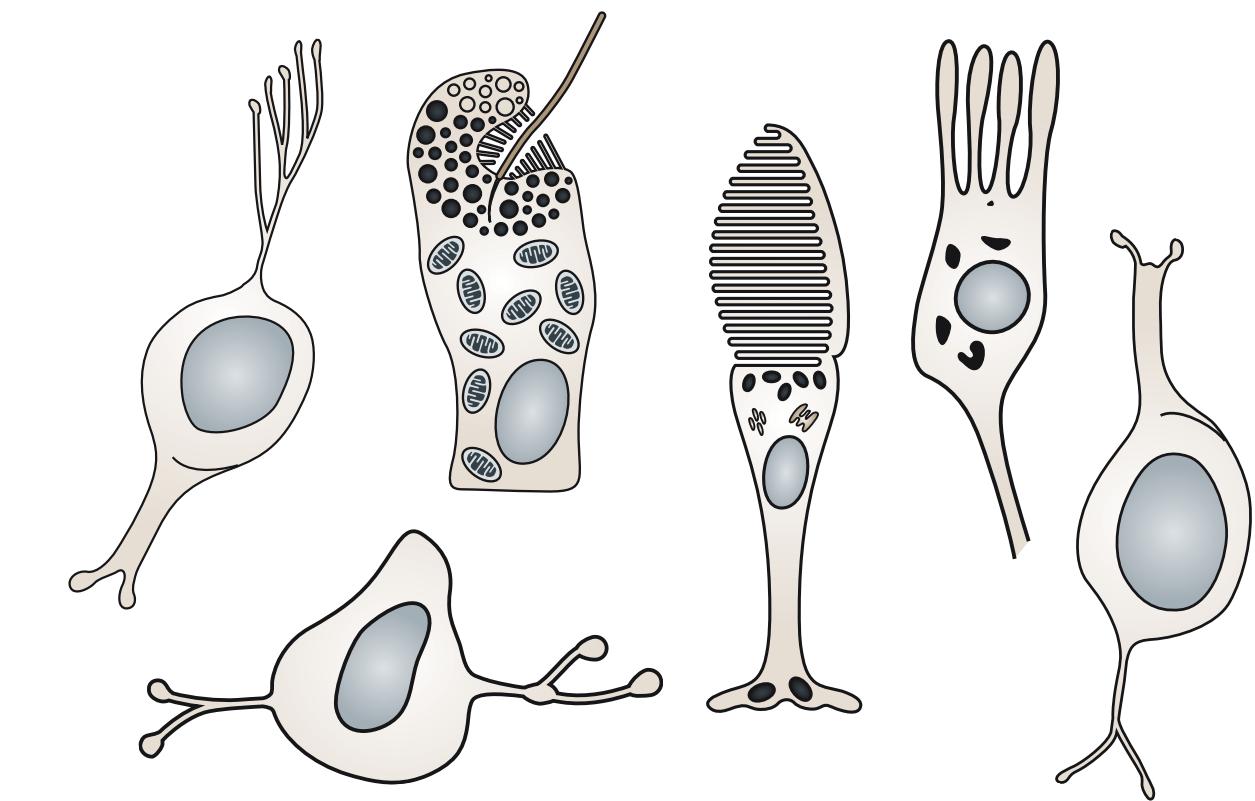
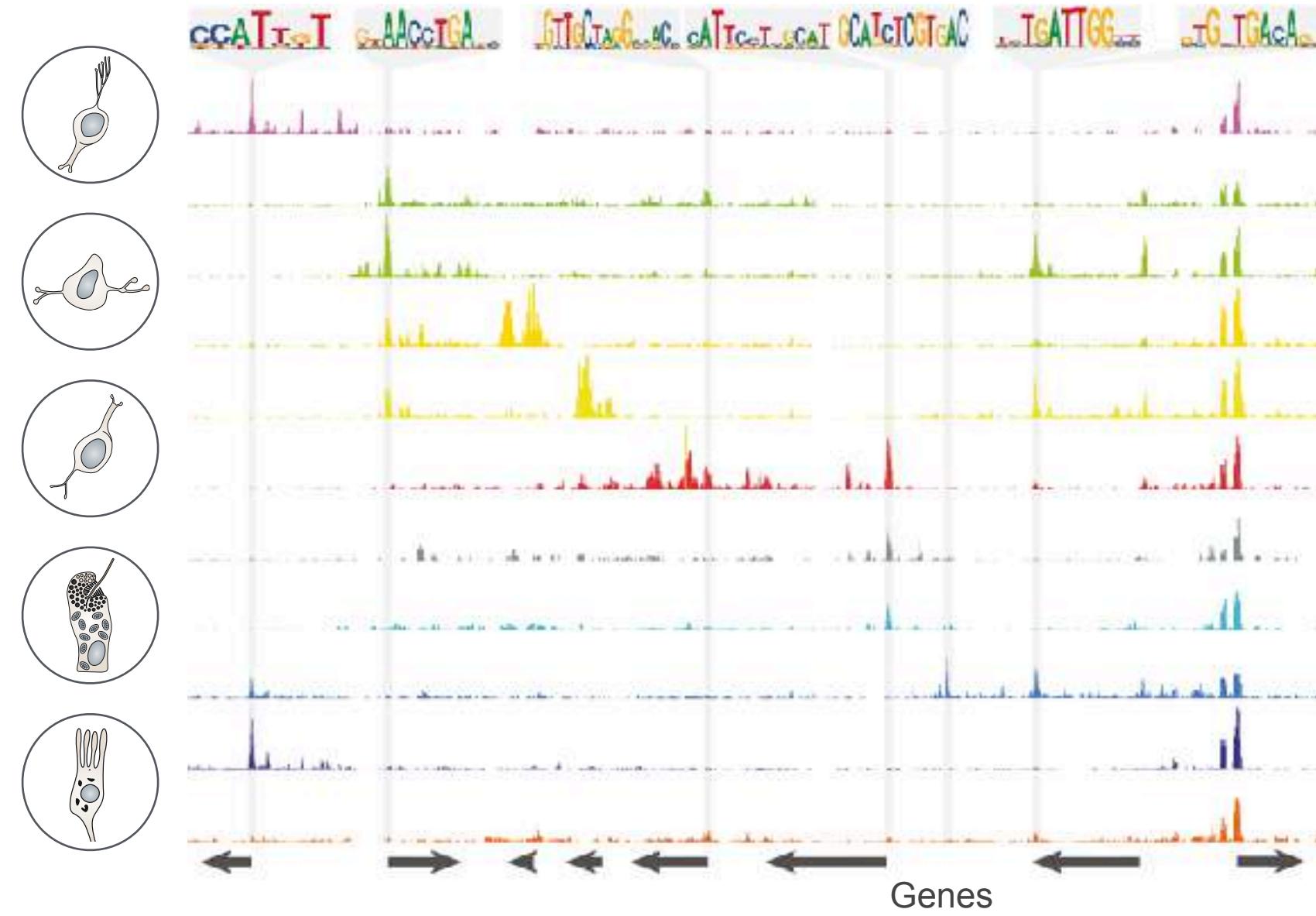
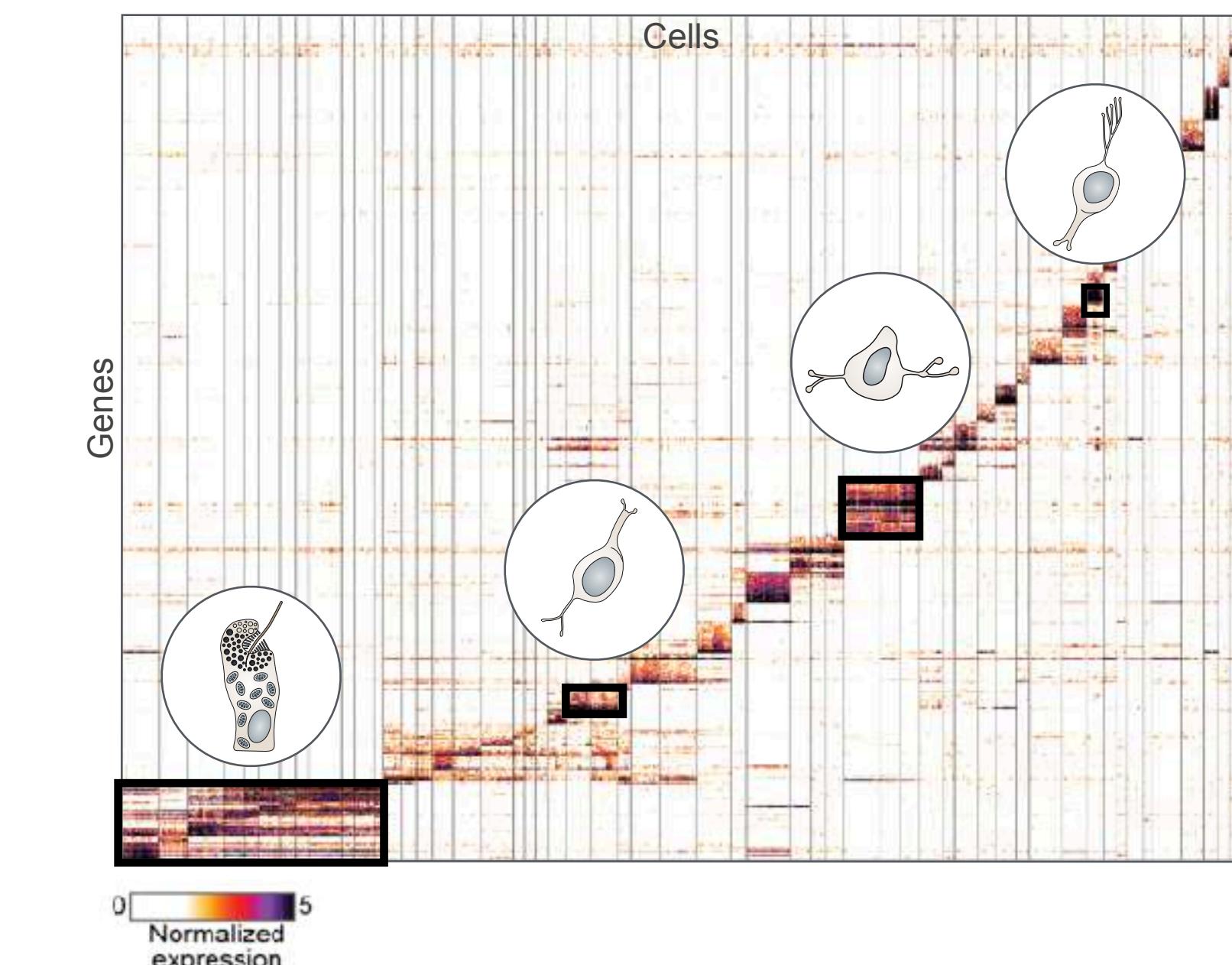
Genome sequence

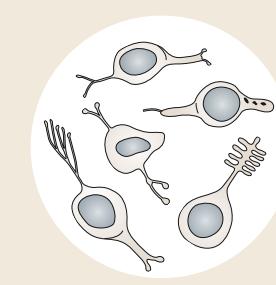
```
ACGTTGCAAAATTCACTCGGTACTTTAACGTAACGTACGGTACTGGTATTGTCAGGTGTTCACT  
CATGACACTGACAGATAGACAGATTGTCGTGTTATVGAATTGAACTGTAGGCCCTTGAATCT  
TGGCAGTCCTACGTACCGTACGGTACTGGTAACGTGAGGTCAAGGTTGTTCAACTCATCCAGGA  
GAAATATCTCGGATAATTACAGATACAGACGCGCTTACGACATTAACTCCCTGGGAAAGGAACTA  
CGTACCGACTTCCAGGCACTGACAGATAGACAGATTGTCGTGTTATVGAATTGAACTGTG  
GGCCCTTGAATCTTCCAGGCACTGTAACGTACGGTACTGGTAACGTGAGCTCAGGTTG  
AACTCATCGTACTGATTACCAAGGATCTAGCGATCCTACTGACCTGACGTACGTAATGAGT  
GGTCAGGGTGTCAACTGATGACTAGAATATACCAAGGAAATCCCTGGGAAATGGGGCC  
TACGTGTCGTAACGTACGGTACTGGTAACGTGAGGCCAGGAAATCCCTGGGAAATGG  
GGCCCTATCGTACTGATTACAGGATCTAGCGGATCTACTGACCTGACGTACGTAATGAG  
TGGTCAGGGTGTCAACTCGTACTGAGTACAGATATACCAAGGAAATCCCTGGGCCCTACGTAC  
GTAACGTTGCAAAATTCACTCGGTACGGTACGGTACACATTGTCGTGTTATVGAATTGAA  
CTGTAGCURLYHAIRGCCCTTGAACTTGGCAGTCGTACGTACGTTGAGGTCAAGGTTGTC  
AACTCATCAGGAATGGGCCCTACGTACCGTAACGTTGCAAAATTCACTCGTACGTTCCAGG  
CTACACACACTGACAGATACACATTGTCGTGTTATVGAATTGACCTGAACTGAGGCCCTTG  
ATCTTGGCAGTCGTACGTACGTTGAGGTCAAGGTTGAGGTCAAGGTTGTCATTACAGGA  
TCTACTGAGAAGAAAATTGGGCCCTACGTACCGTAACGTTGCAAAATTCACTCGGTACGTTG  
GGCTACACACACTGACAGATAGACAGATTGTCGTGTTATVGAATTGACCTGAGGCCCT  
GAAATTGCGAGCTAACGTTGCAACGTTGACCTGAAATTCACTCGGTACGTTG  
CCCTGGGAAATGGGCCCTACGTACCGTAACGTTGCAAAATTCACTCGGTACGTTG  
TACACACACACTGACAGATAGACAGATTGTCGTGTTATVGAATTGACCTGACAG  
ATGTAATGCACTGGTCAGGGTGTCAACTCGTACGACTGAGAATATACCAAGGAAATCCCTGGG  
A
```


Genome regulation



Cell types



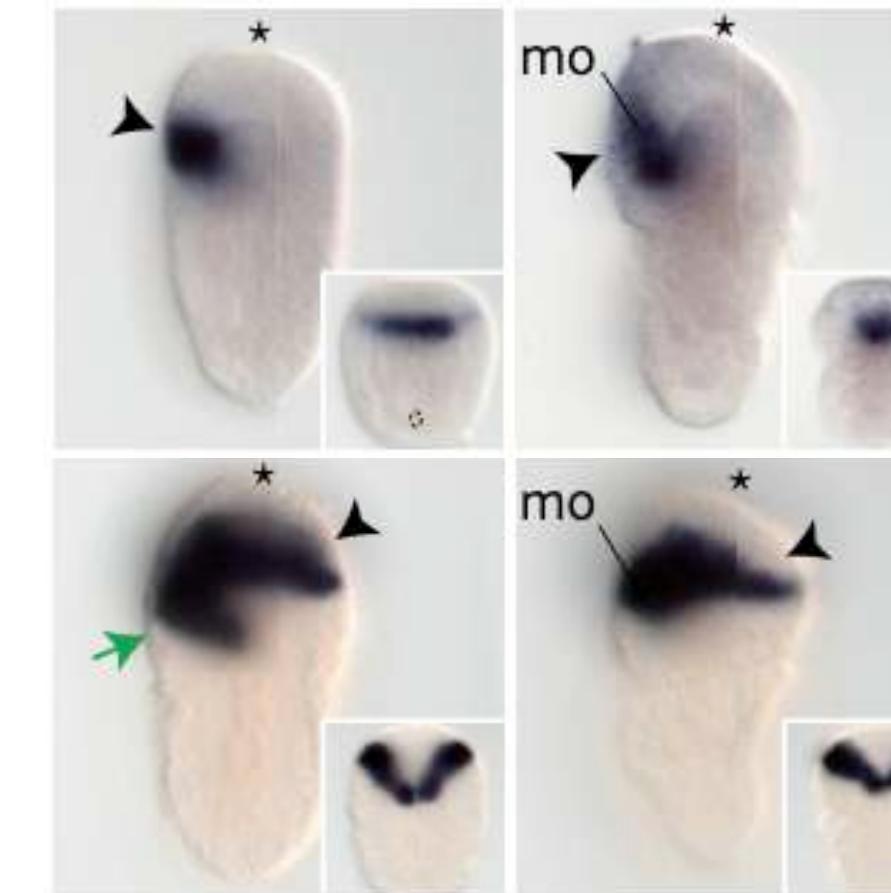


Cell type molecular fingerprinting: *in situ*, transcriptomics and single-cell transcriptomics

Gene expression pattern comparison (classical evo-devo)

Problems:

- Need to define markers *a priori*.
- Low throughput (one or a few genes at the time)

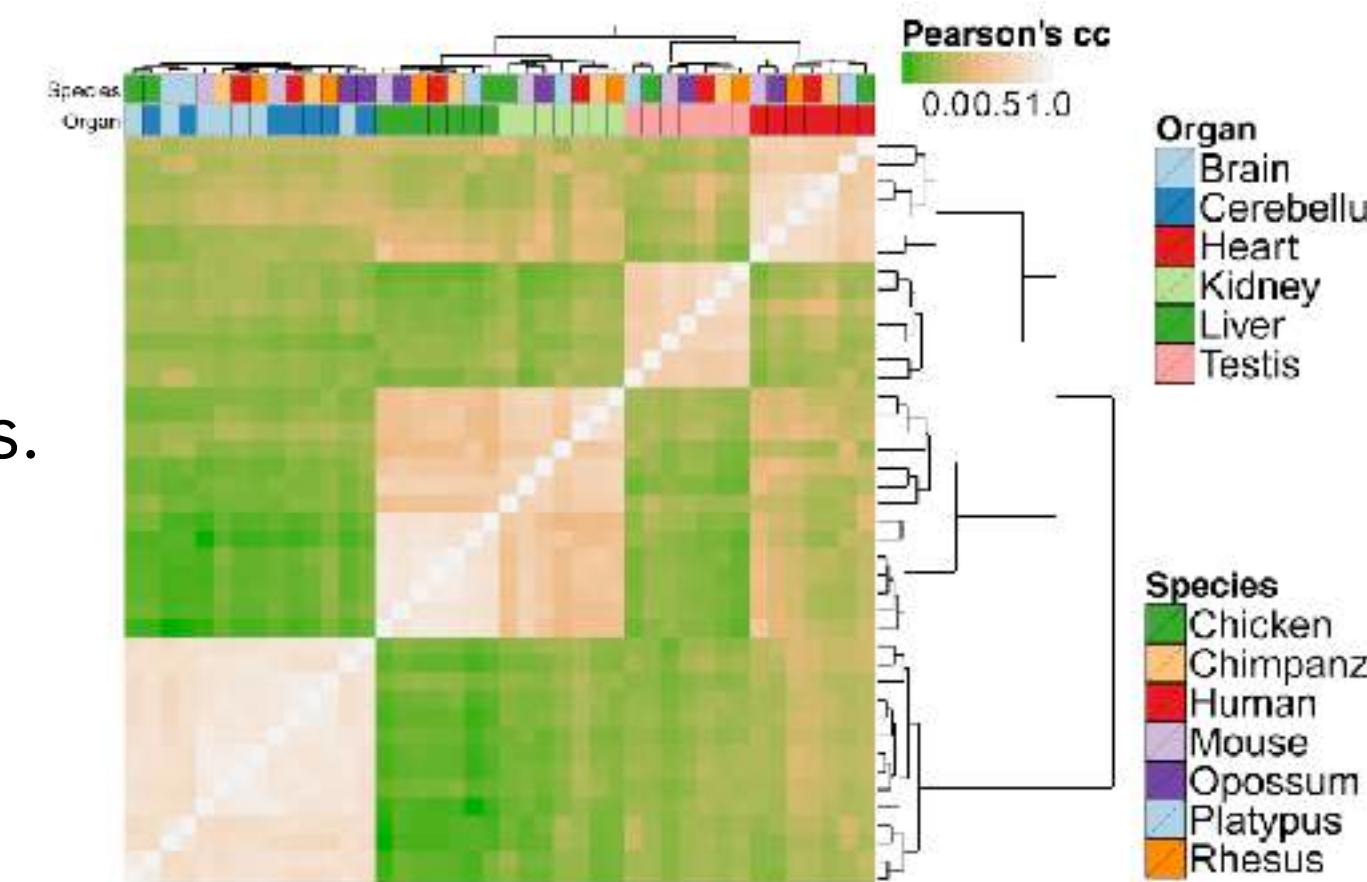


Martin-Duran et al. 2016

Bulk tissue transcriptome comparisons

Problems:

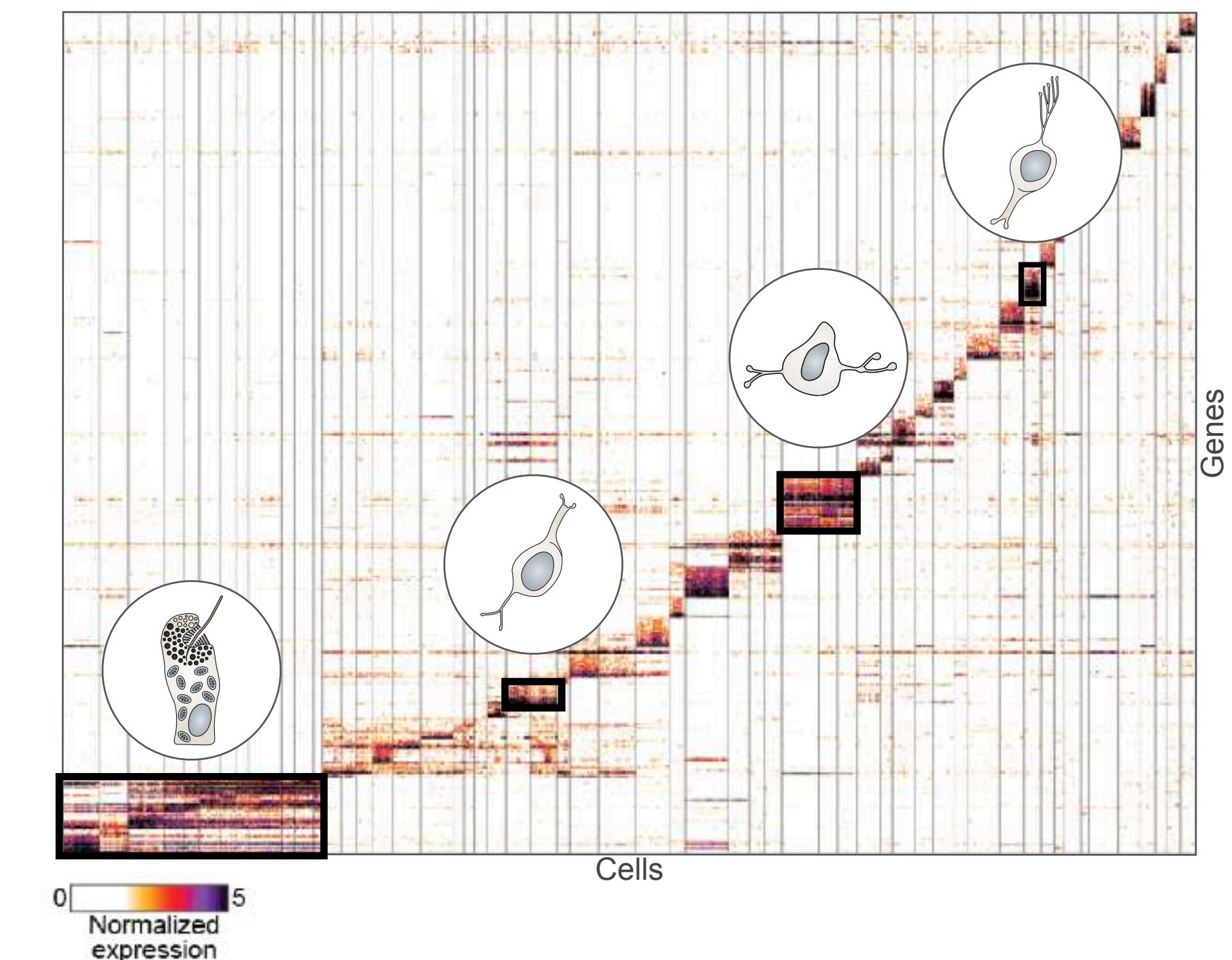
- Need to dissect tissues/organs.
- Cellular heterogeneity within tissues.

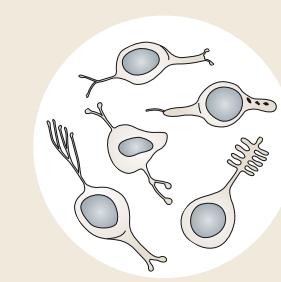


Breschi et al. 2016

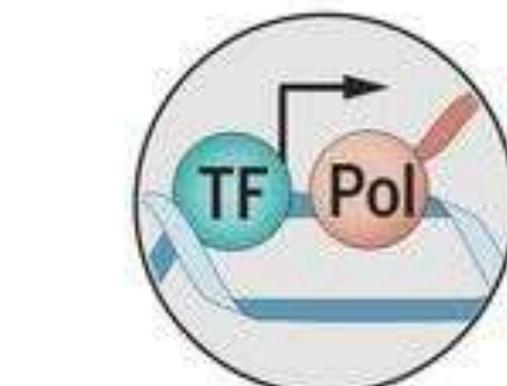
Single-cell transcriptomics

1. No need to define marker genes *a priori*.
2. No need for tissue dissection -> Cellular resolution.
3. Low input material (non-culturable species).



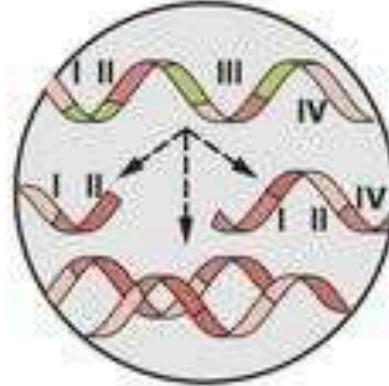


What can we (try) to measure in a single-cell

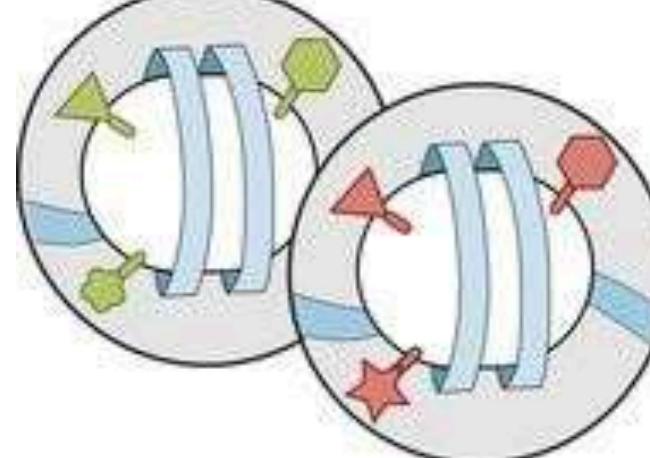


Transcription factor binding

TF binding interacts with DNA methylation and chromatin accessibility

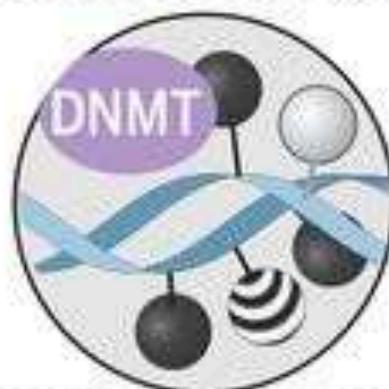


Transcription and RNA maturation



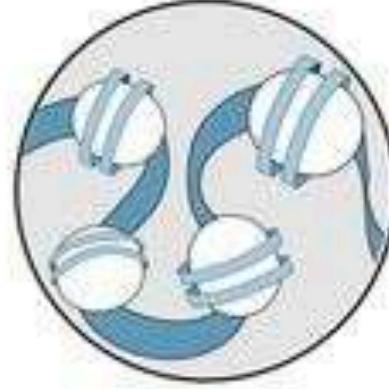
Histone modifications

Modifications can be active marks (e.g., H3K4me3 in green) or repressive marks (e.g., H2K27m3 in red)



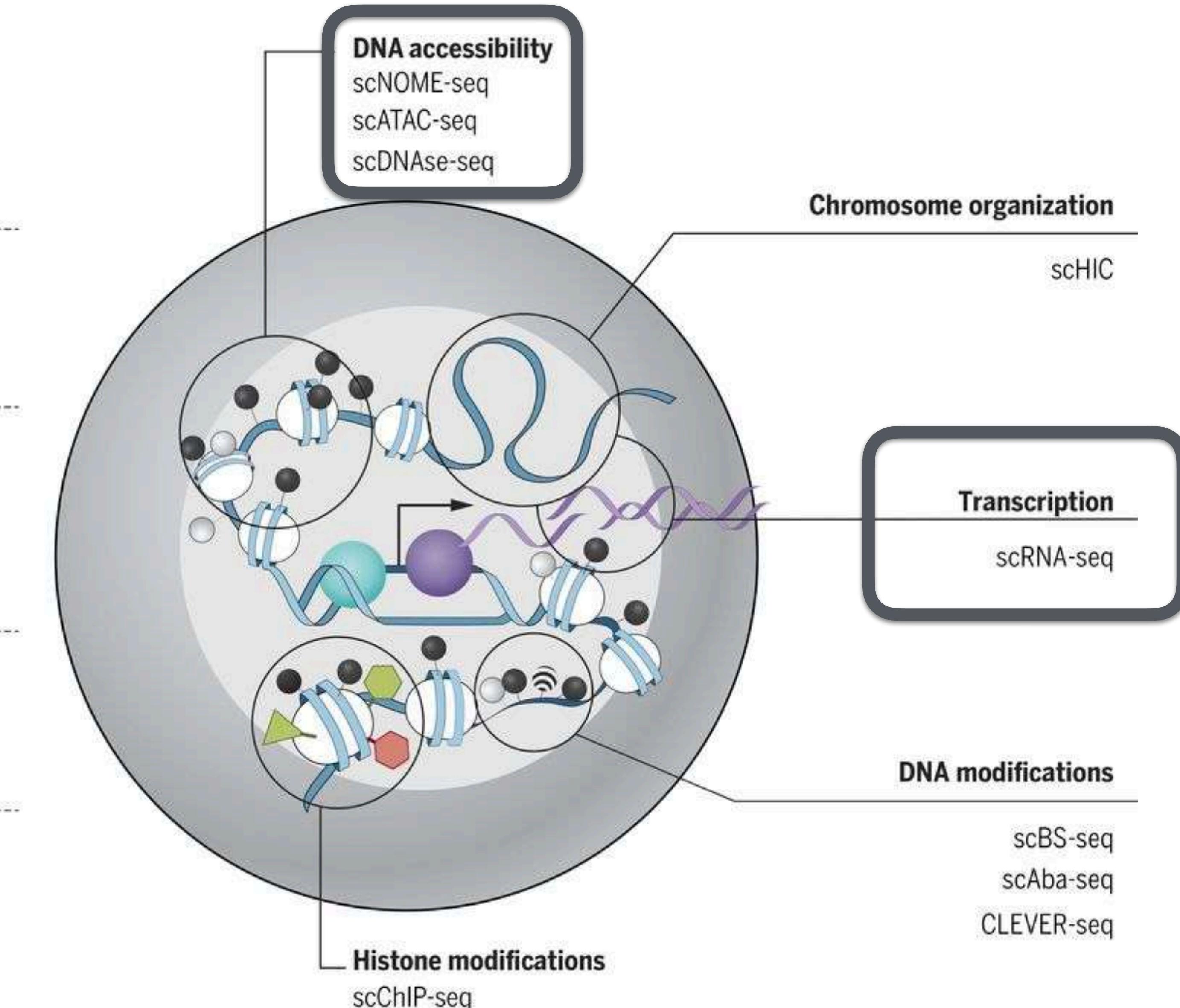
DNA modifications

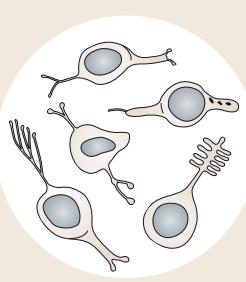
- C
- 5mC
- 5hmC



Chromosome organization

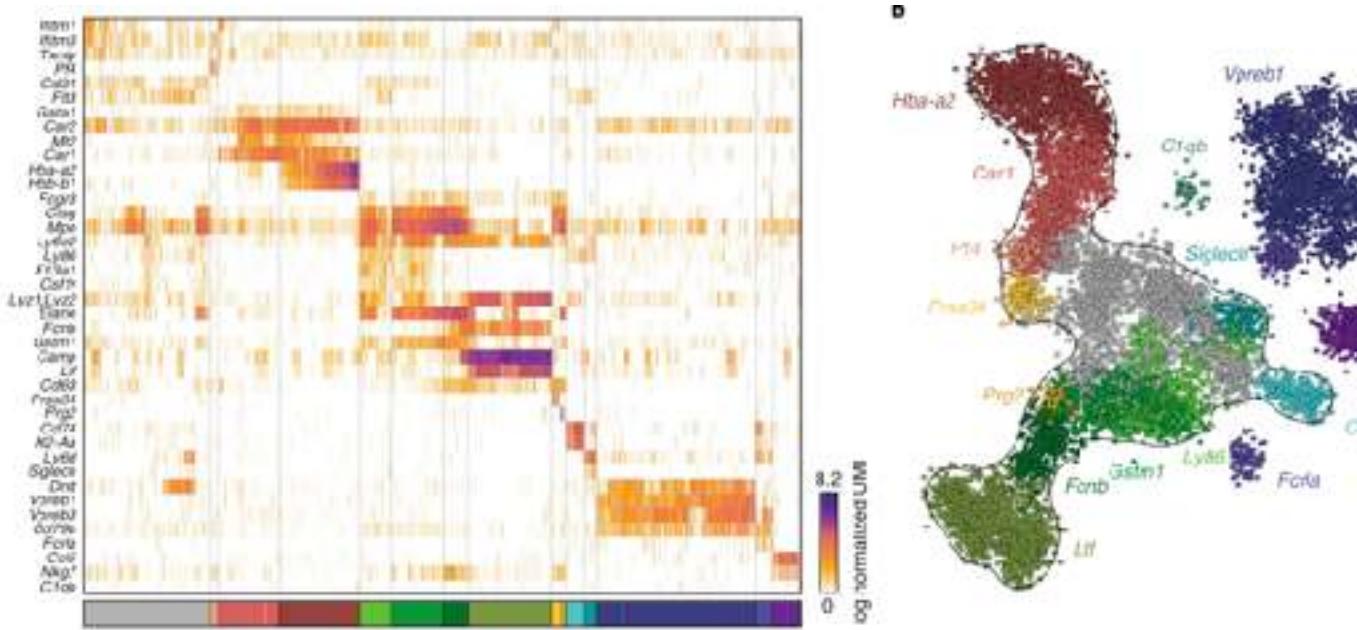
Higher-order chromatin organization into LADs and TADs



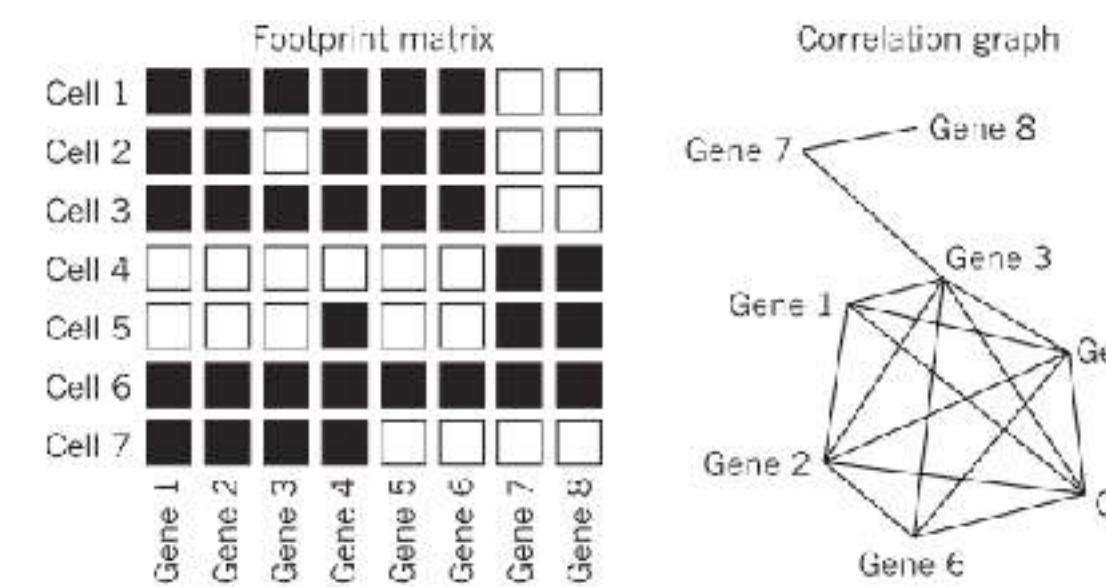


Applications of single-cell transcriptomic

Cell type phenomenology (& variations)

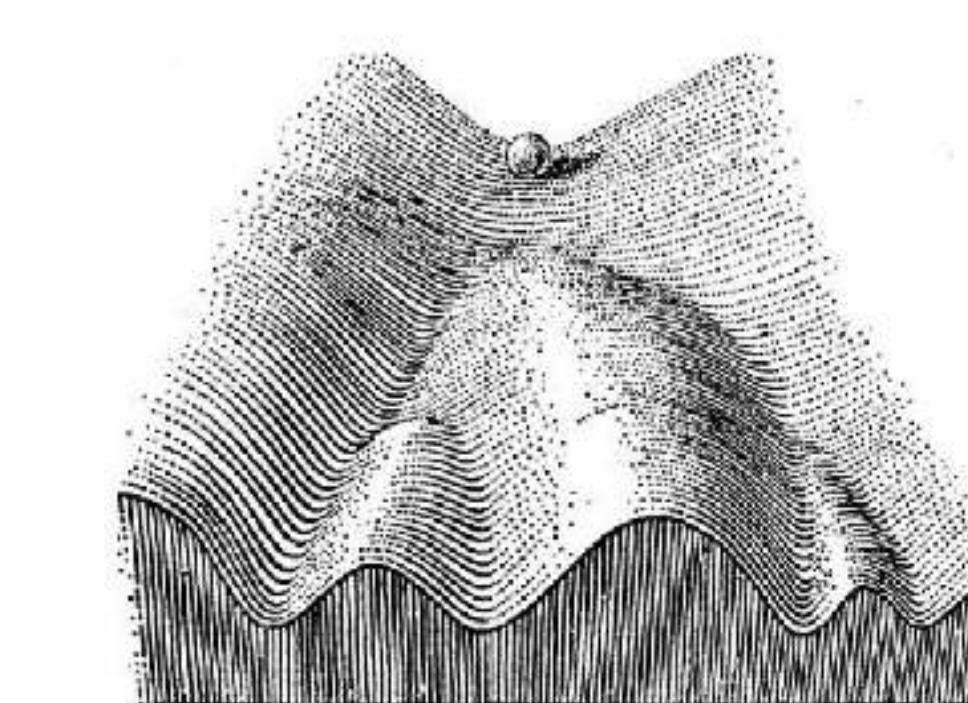


Co-regulated gen programs

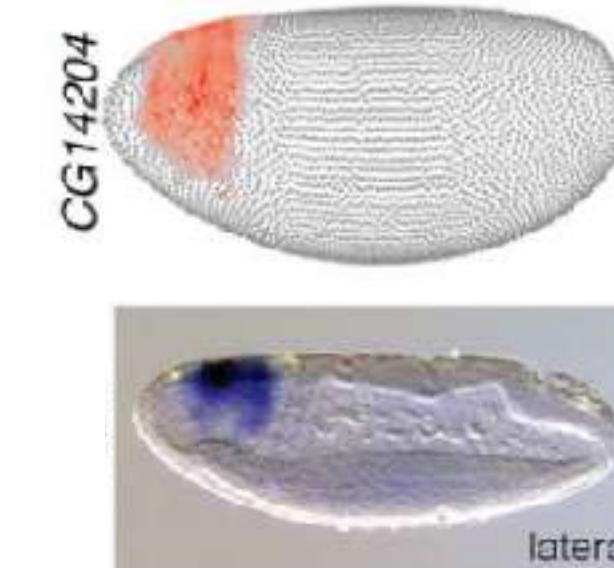


Temporal axis

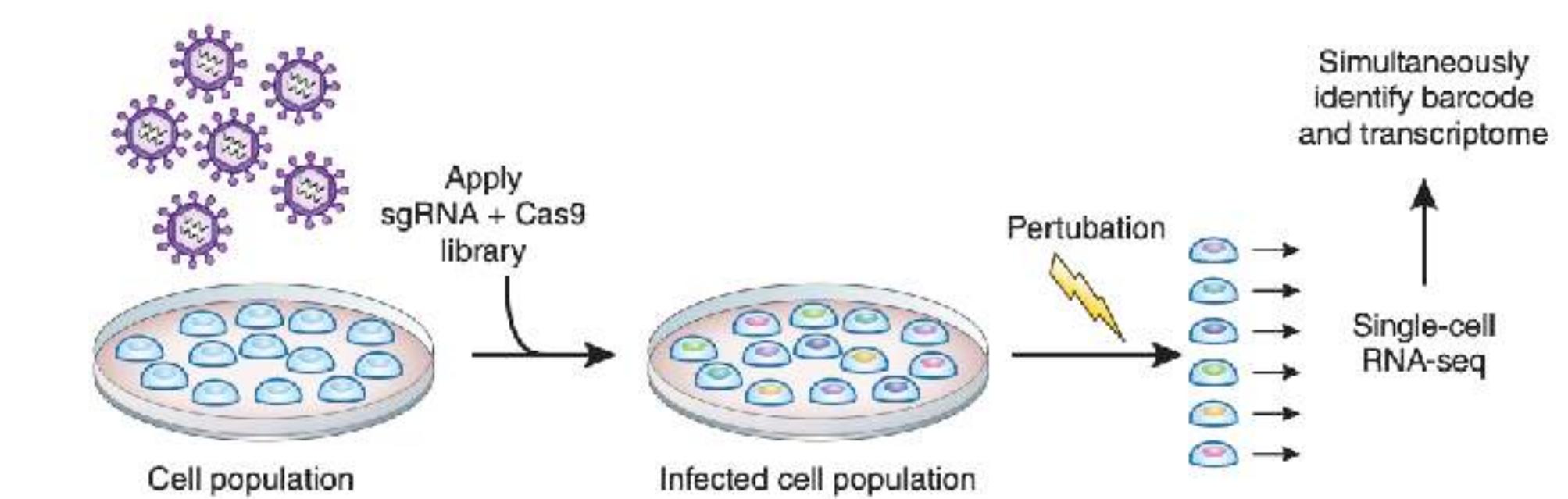
cells in time



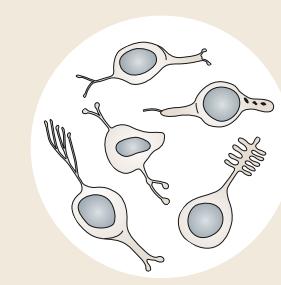
Spatial axis: cells in space



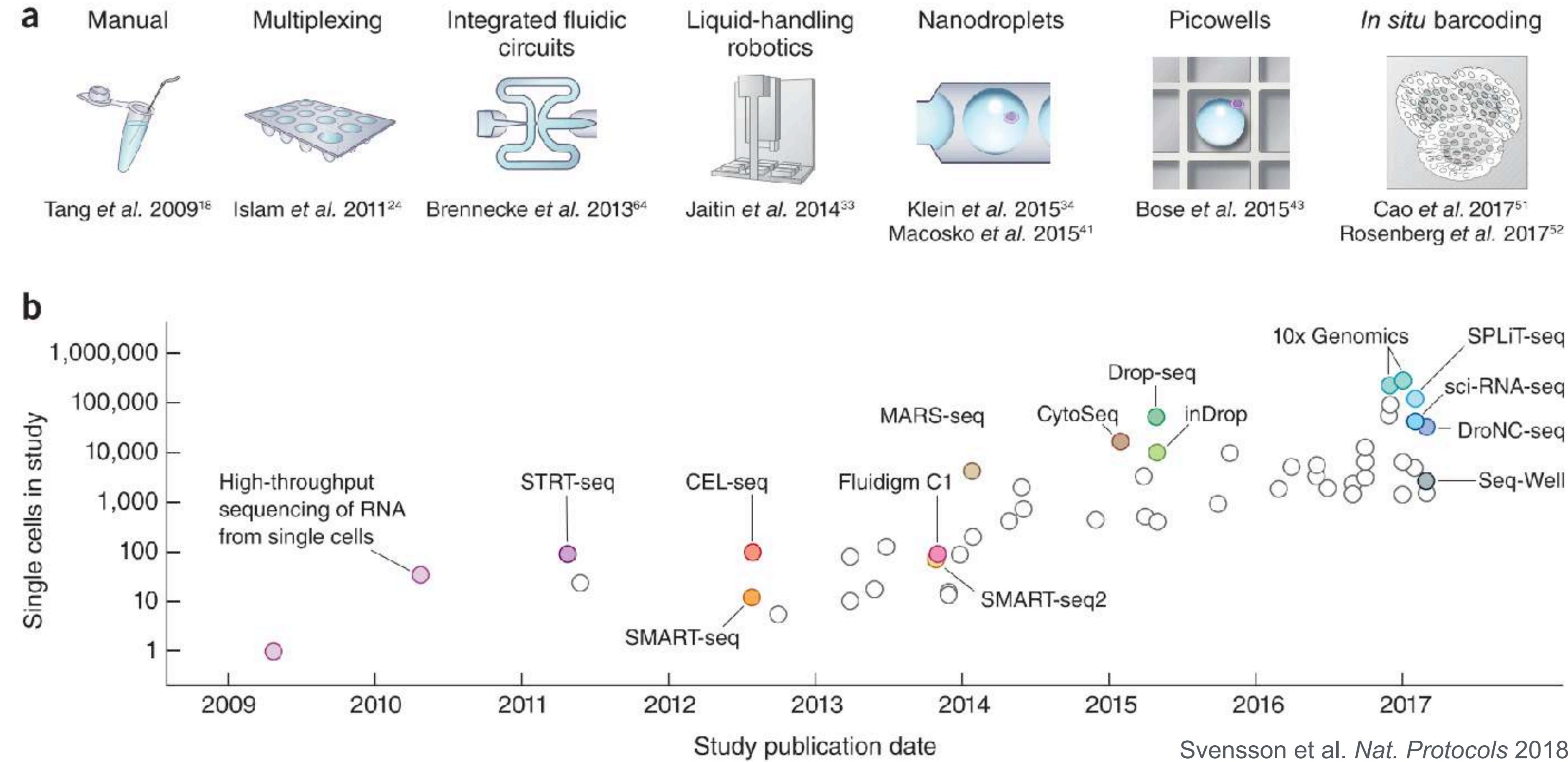
Experimental profiling: CRISPR screens, lineage tracing, etc.

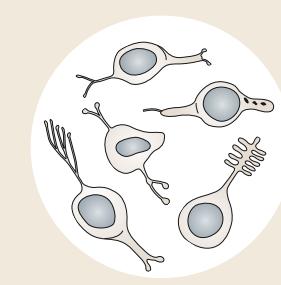


Part 1 - Single-cell transcriptomics technologies



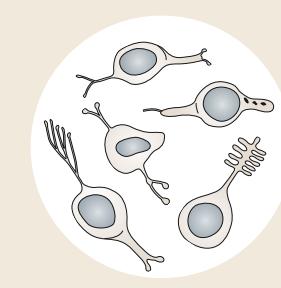
Exponential scaling of single-cell transcriptomics methods



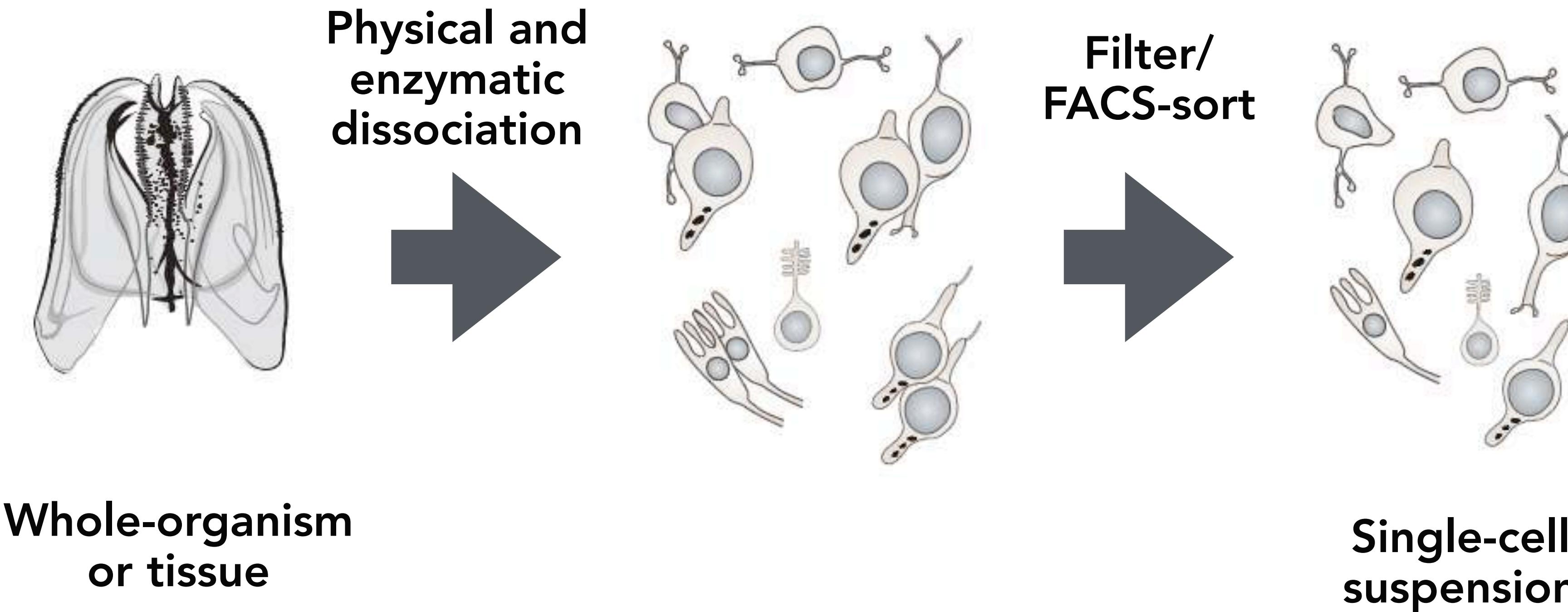


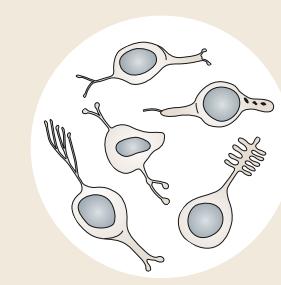
The ideal single-cell method (and the reality)

- ✓ ***Universal*** in terms of cell size, type and state (and species)
- ✗ ***In situ*** measurements.
- ✗ No ***minimum input*** of number of cells to be assayed.
- ✗ Every cell is assayed, i.e. 100% ***capture rate***.
- ✗ Every transcript in every cell is detected, i.e. 100% ***sensitivity***.
- ✗ Every transcript is identified by its ***full-length sequence***.
- ✓ Transcripts are assigned correctly to cells, e.g. no ***doublets***.
- ✗ Additional ***multimodal*** measurements.
- ✓ ***Cost*** effective per cell.



Basic steps in single-cell transcriptomics: from whole-organisms to cells





Basic steps in single-cell transcriptomics: from whole-organisms to cells

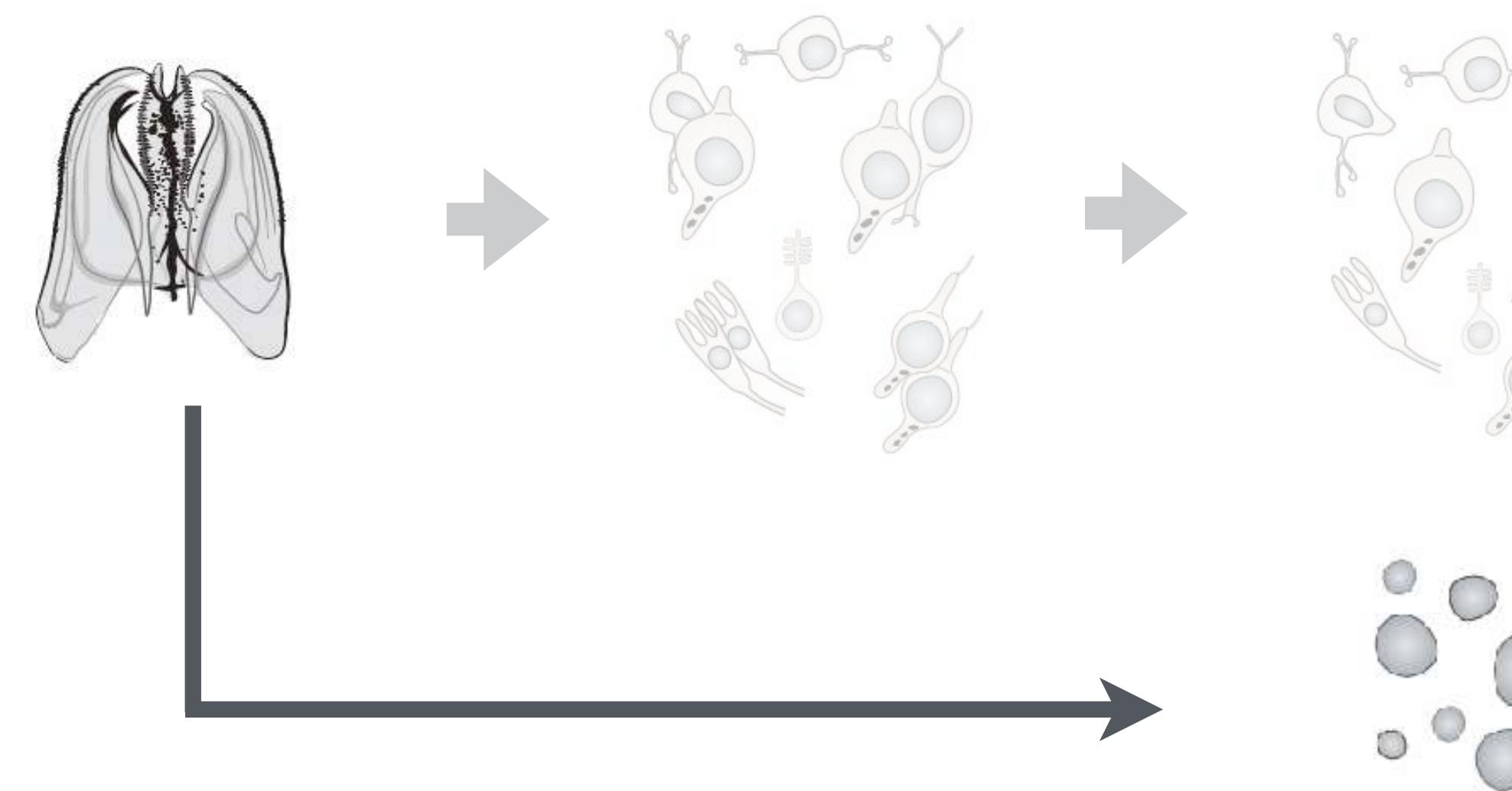
Cell fixation/cryopreservation: decoupling tissue processing from single-cell sequencing.

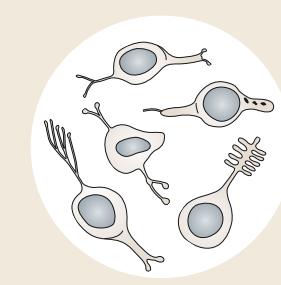
Methanol-based fixatives

Formaldehyde/Glyoxal/DSP and other cross-linkers

Cryopreservation

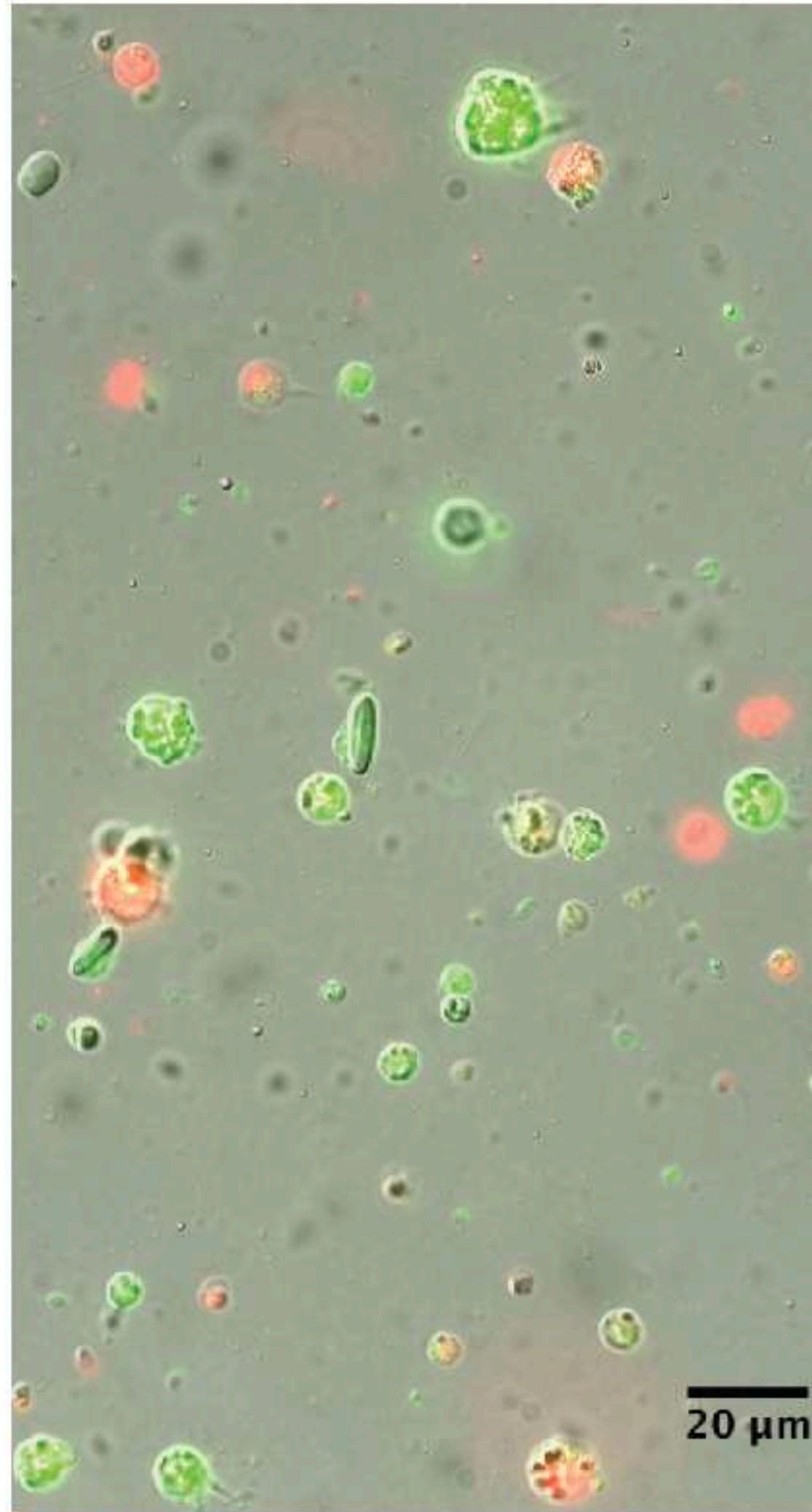
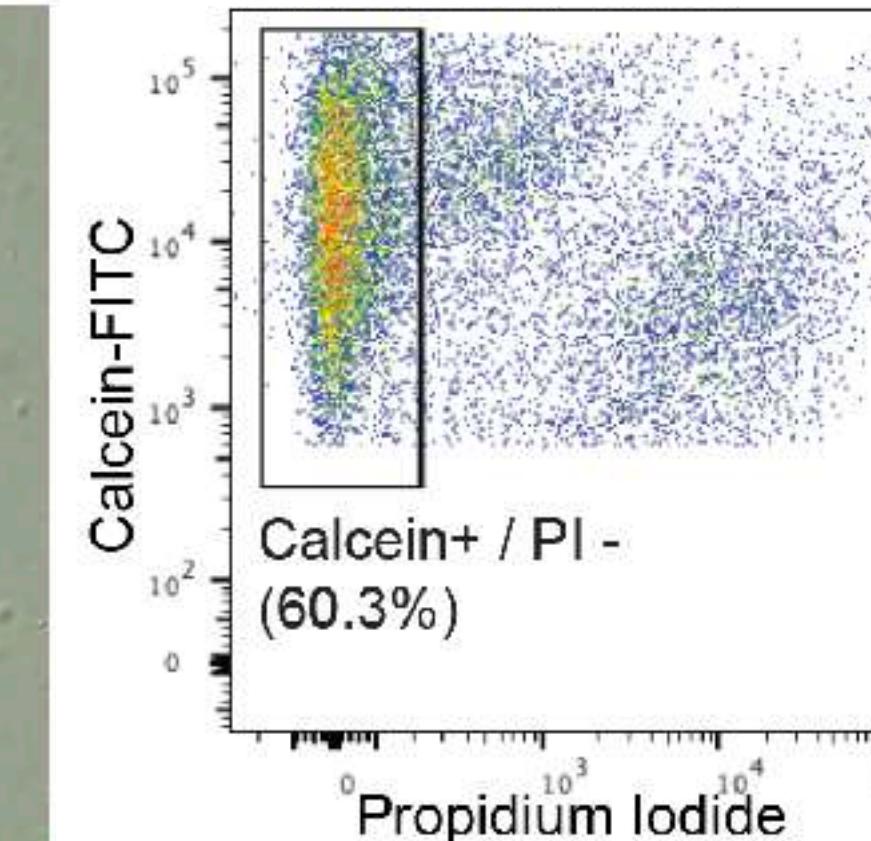
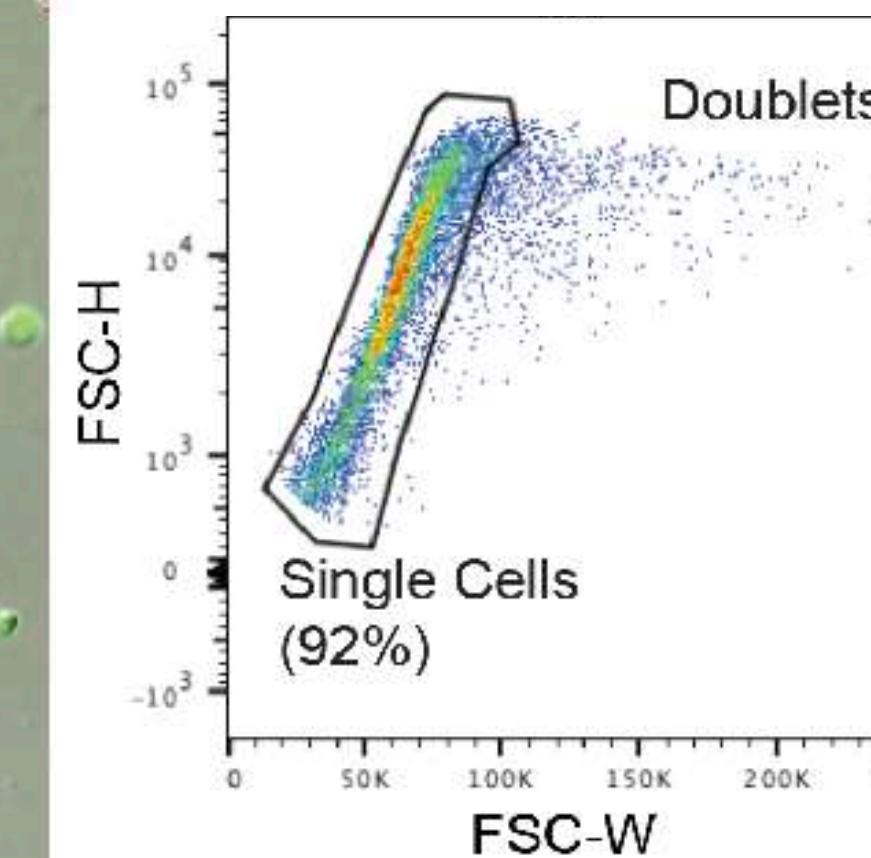
Nuclei sequencing: direct extraction from complex tissues (e.g. brain)





Why sample prep is the most important step in single-cell transcriptomics?

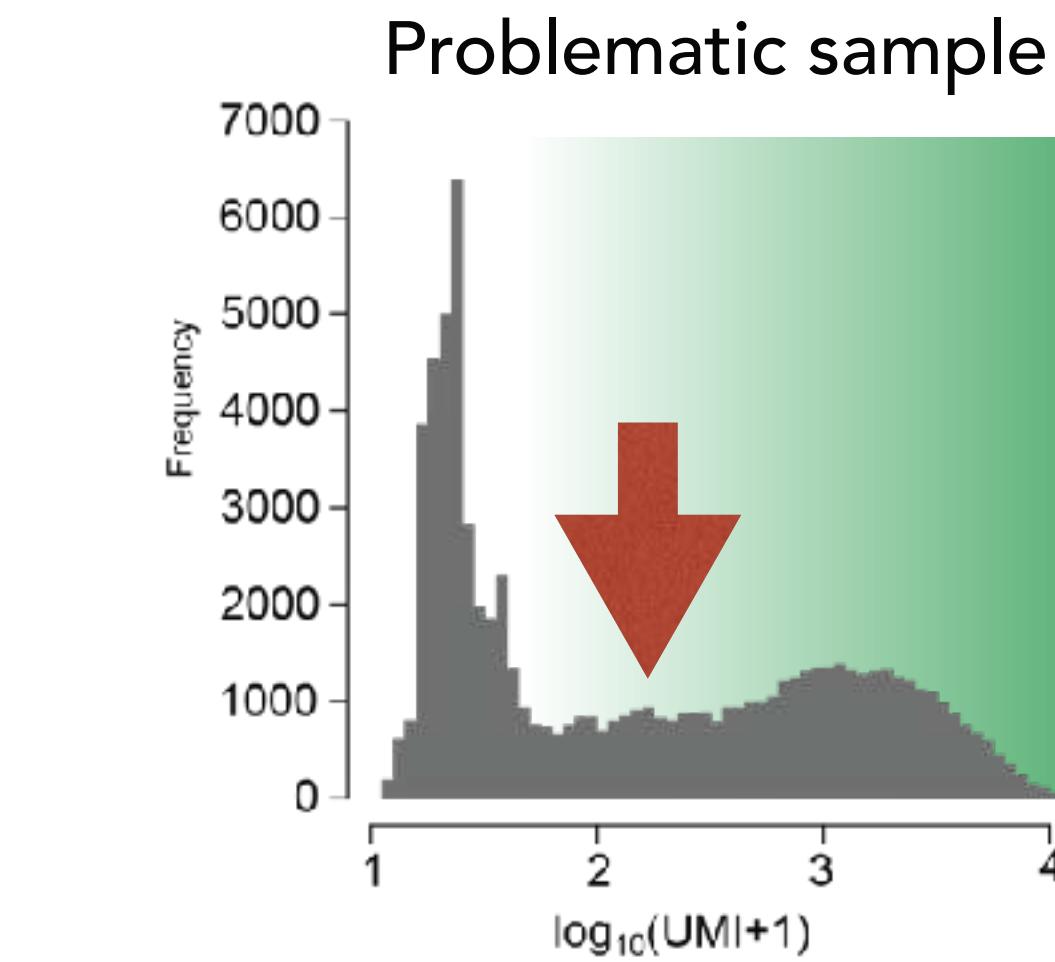
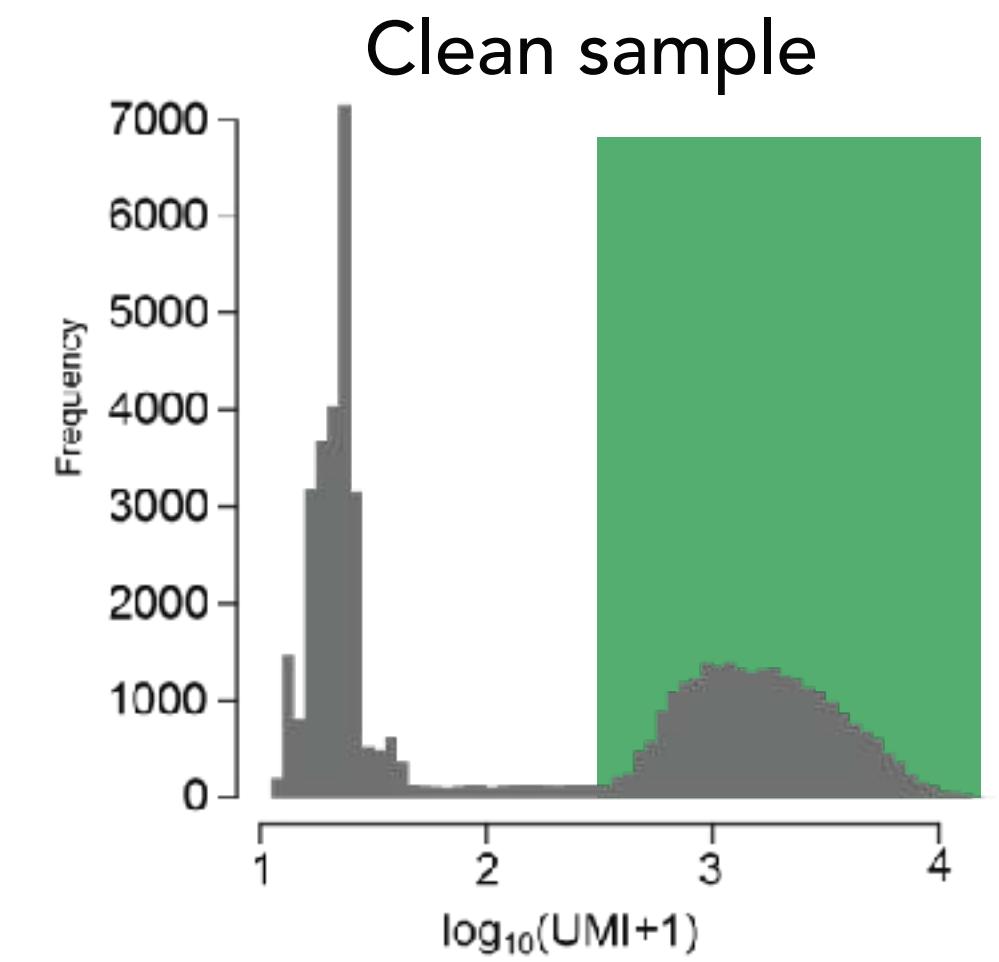
Cell death, debris and multiples



Dead cells and non-cellular particles

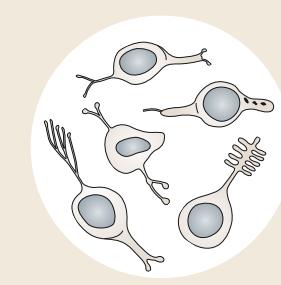
Physical doublets/ multiples

Ambient RNA



Problems:

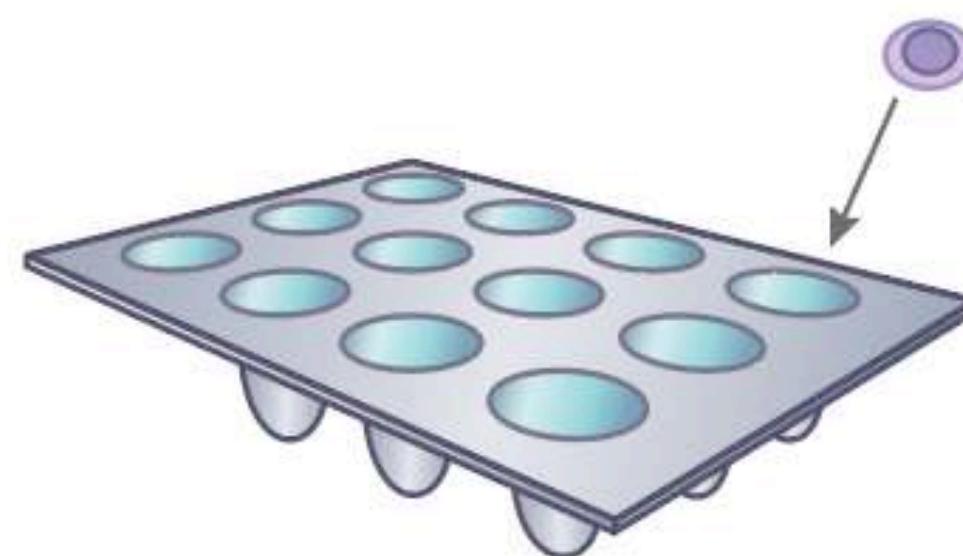
- Difficult to determine cells from non-cells (empty barcodes)
- Transcriptionally quiescent cells (low UMs/cell) are “swallowed” by background RNA signal
- Major factor explaining batch effects.



Basic steps in single-cell transcriptomics: from cells to RNA

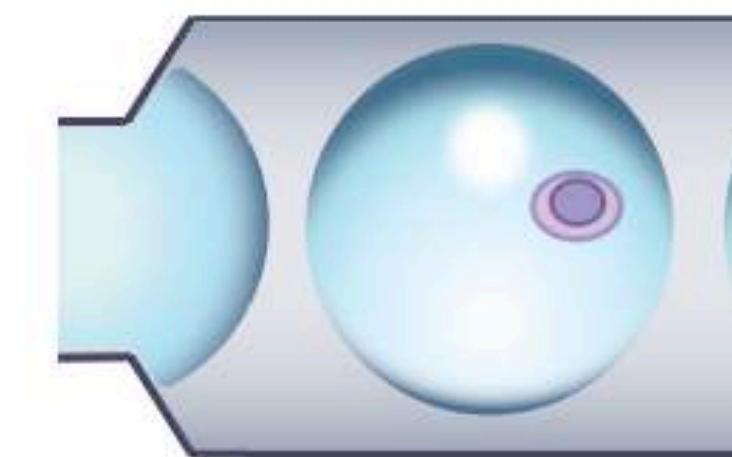
Cell encapsulation and lysis

Multi-well plates



SMART-seq2
MARS-seq
mcSCRB-seq
CELseq2
Quartz-seq2

Droplets

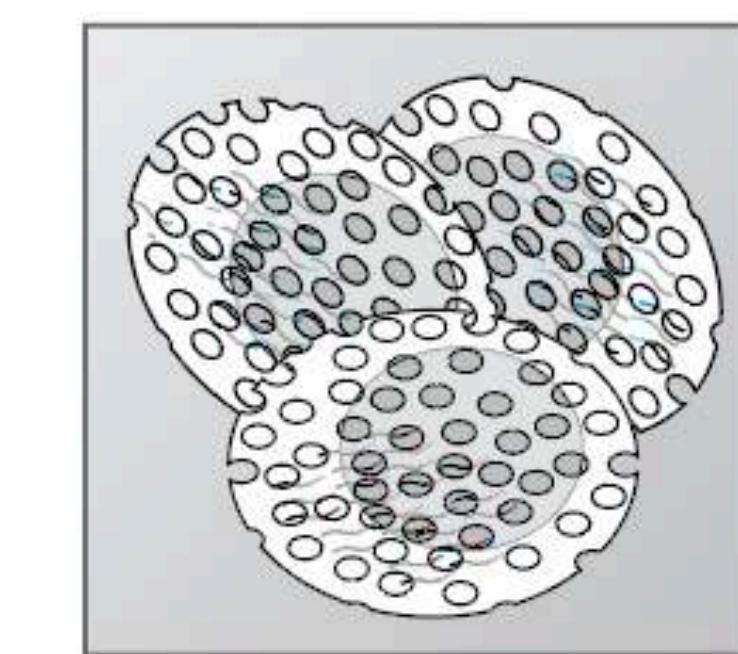


inDrops
Drop-seq
10X Chromium*

Nanowells

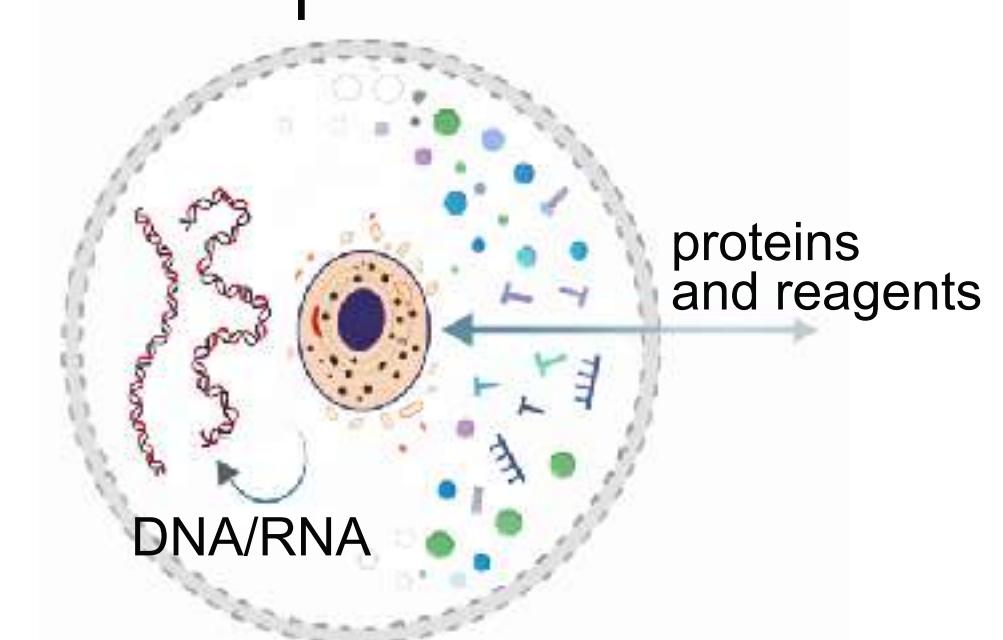
Microwell-seq
Seq-well
Tanaka ICell8*
BD Rhapsody*

in-cell barcoding



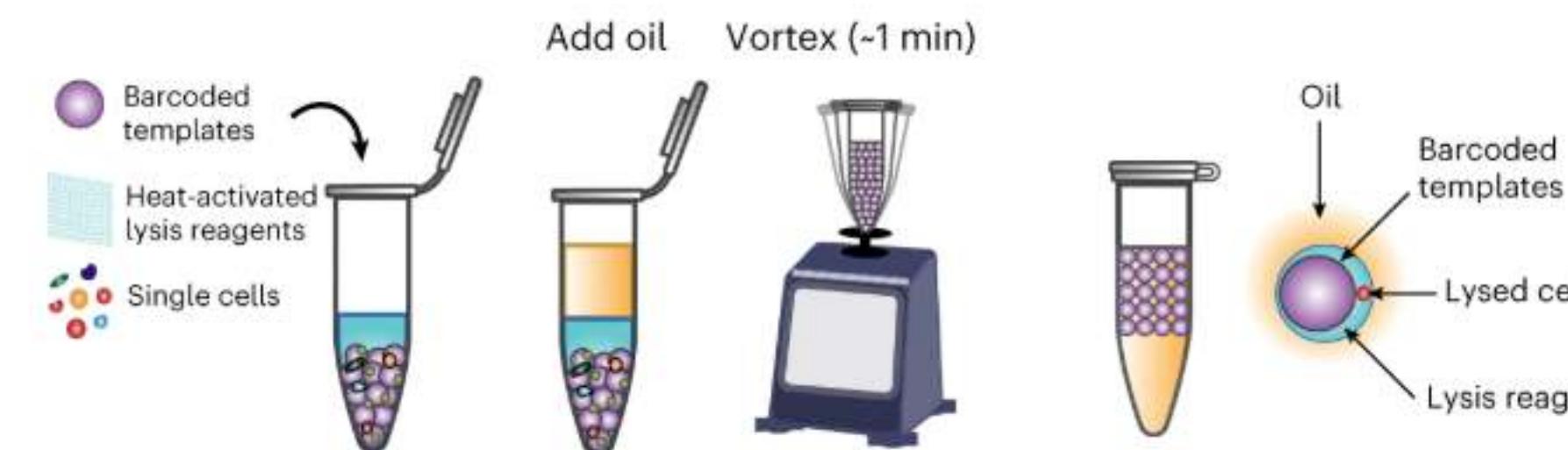
SPLIT-seq
sciRNA-seq
ParseBio* (Qiagen)
ScaleBio* (10X)

Semi-permeable capsules

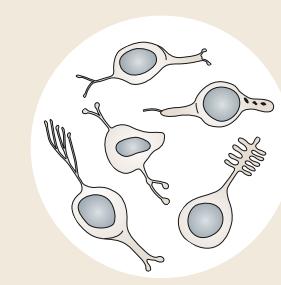


AtrandiBio*

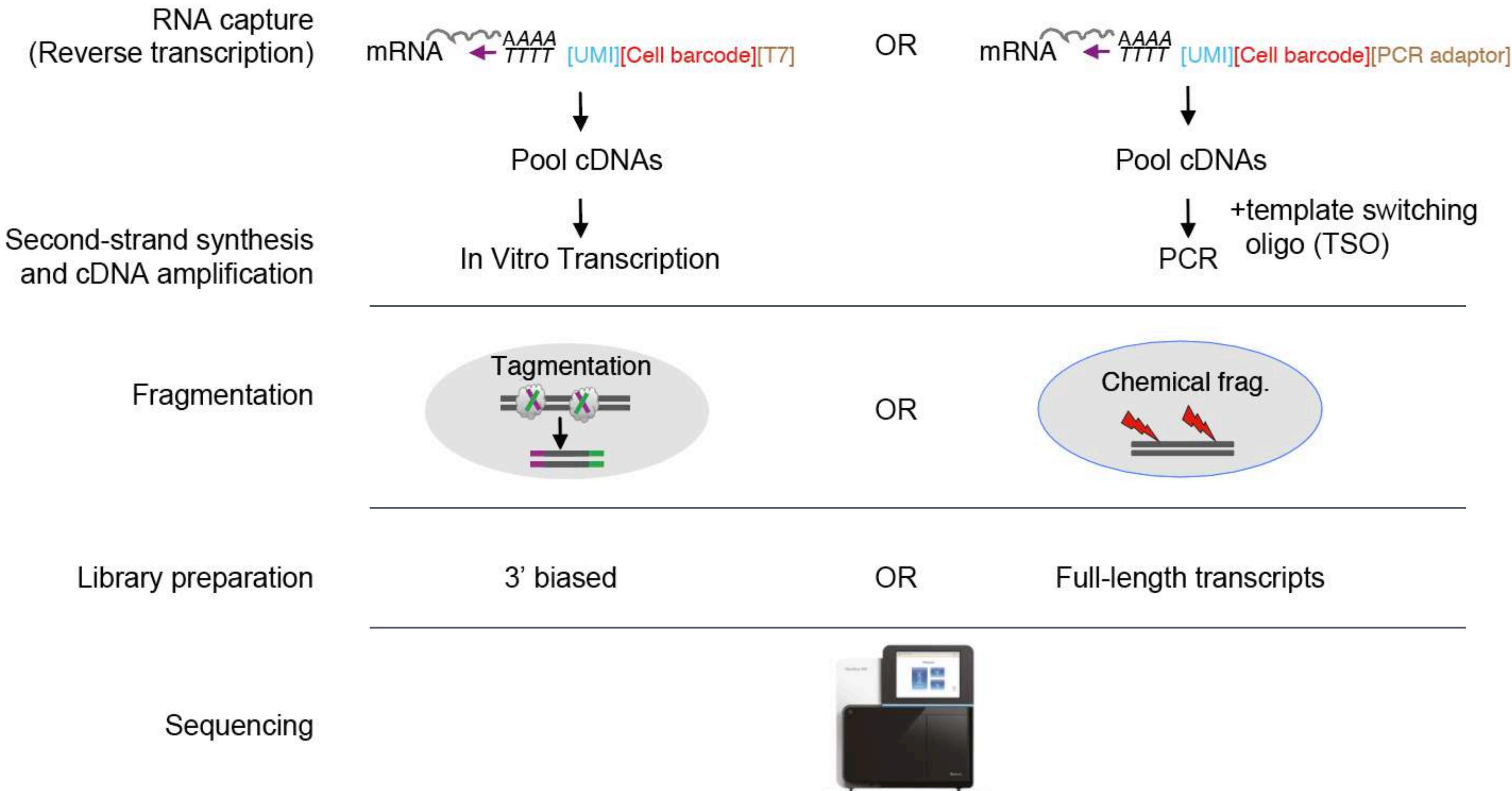
PIP-seq/FluentBio*

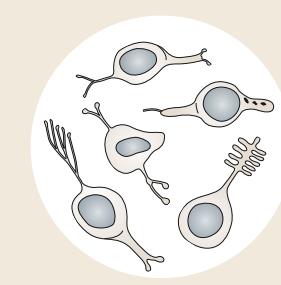


*commercial



Basic steps in single-cell transcriptomics: from RNA to cDNA libraries to sequences

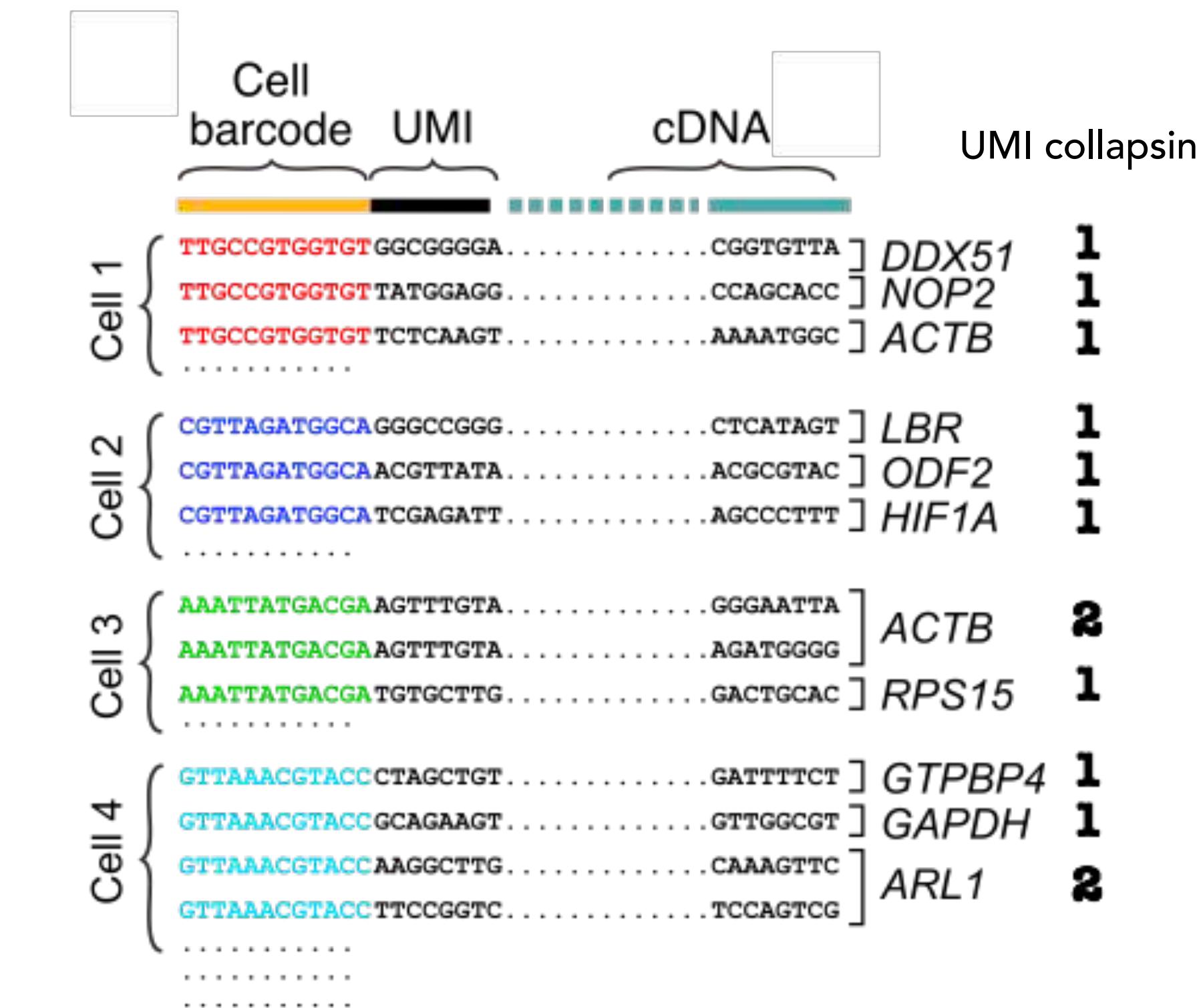




Unique Molecule Identifiers (UMIs) and ERCC spike-ins

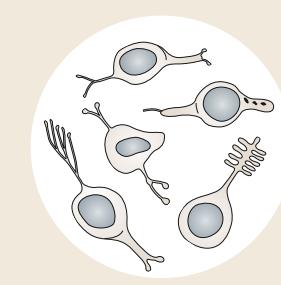
Quantitative single-cell RNA-seq with unique molecular identifiers

Saiful Islam¹, Amit Zeisel¹, Simon Joost²,
Gioele La Manno¹, Paweł Zajac¹, Maria Kasper²,
Peter Lönnerberg¹ & Sten Linnarsson¹



ERCC: External RNA Controls Consortium

- Set of external RNA transcripts with known concentrations.
- Represent diverse lengths and sequence composition.
- Internal control used to measure method performance.
- Originally used for internal expression normalization.

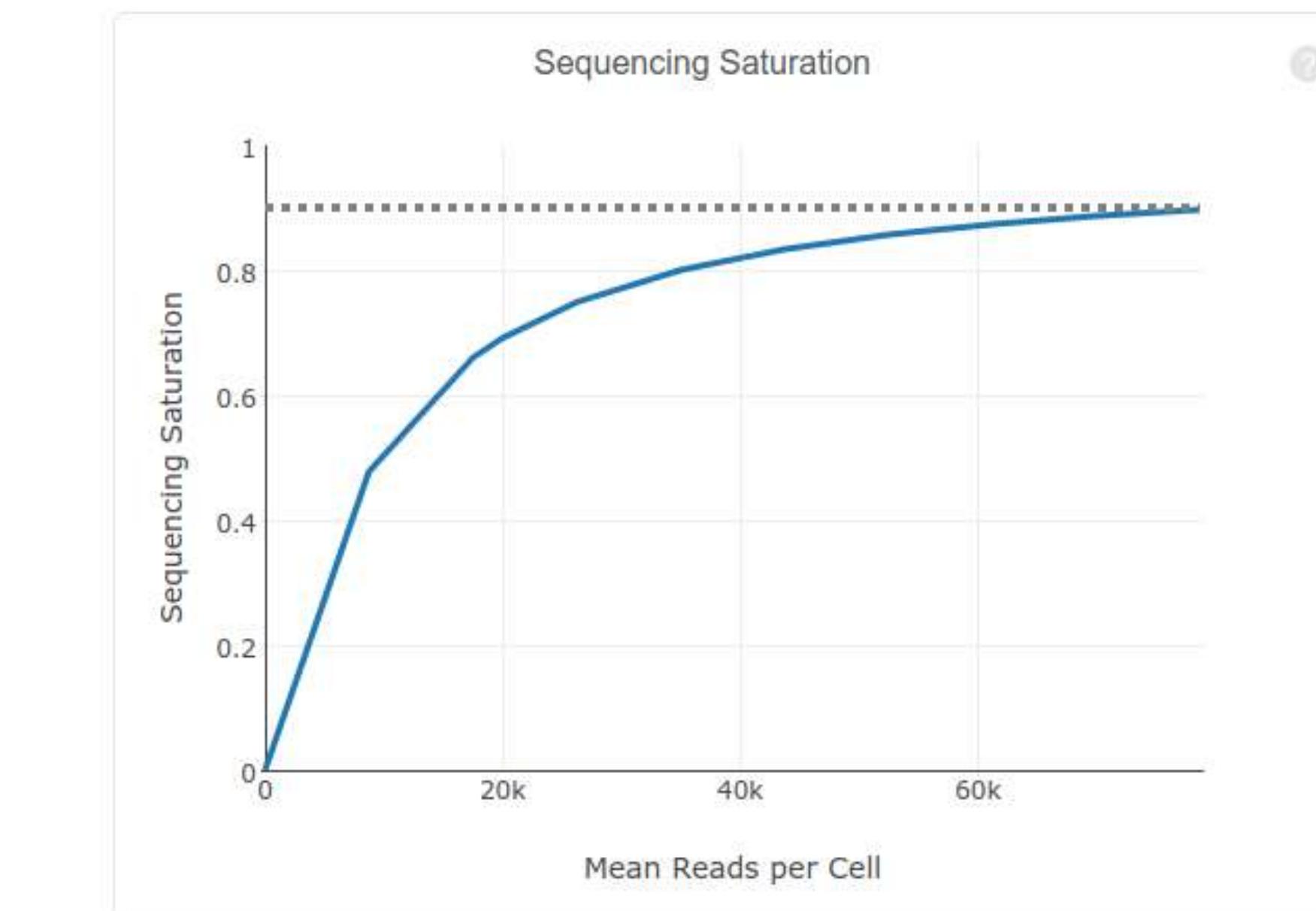


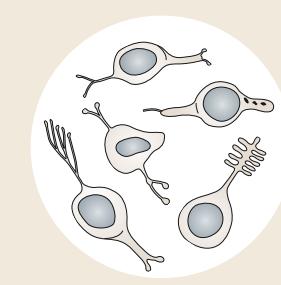
How much should I sequence my cells?

- In most situations: $\pm 30\text{-}50\text{K}$ reads per cell (e.g. 5 billion reads for 100K cells).
- Library saturation can be measured: reads/UMI ($\pm 4\text{-}5$ is enough, 0.7-0.8 saturation)
- *De novo* cell type atlas versus resampling (can be shallower).
- Remember, for most applications: **More cells, better than more reads!**

$$\text{Saturation} = 1 - \frac{n_{\text{dedup_reads}}}{n_{\text{reads}}}$$

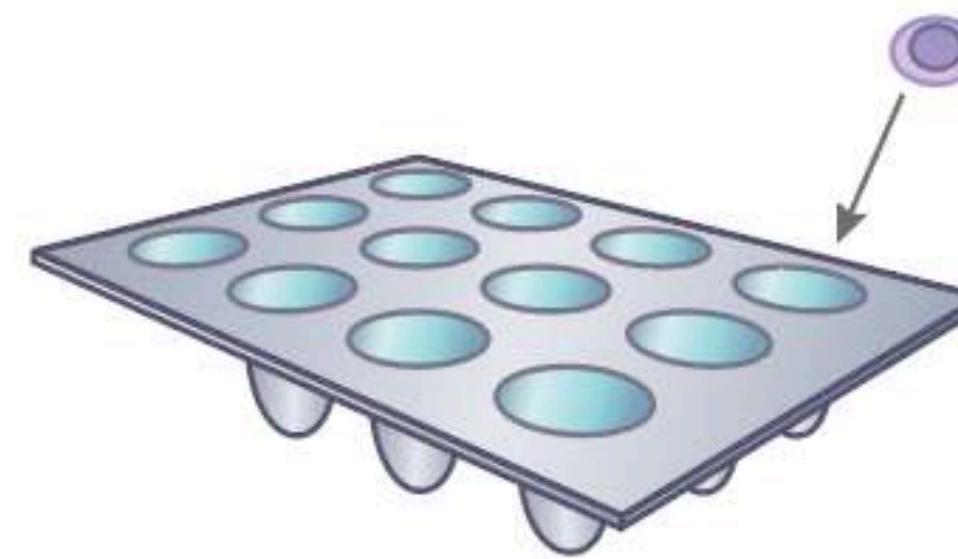
$$\text{Saturation} = \frac{n_{\text{duplicated_reads}}}{n_{\text{reads}}}$$



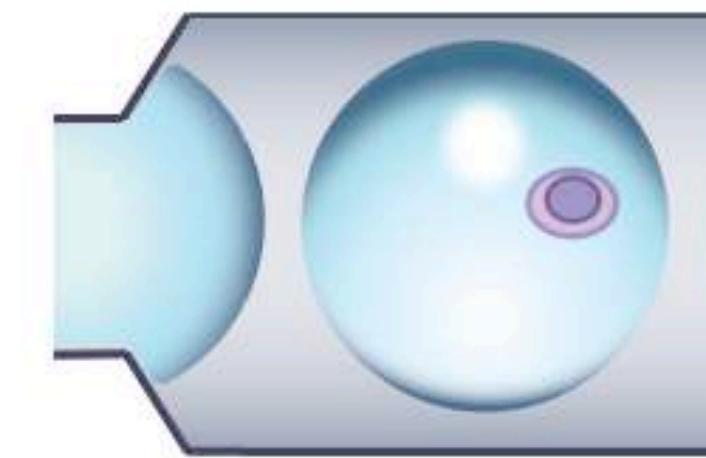


Three examples of scRNA-seq methods

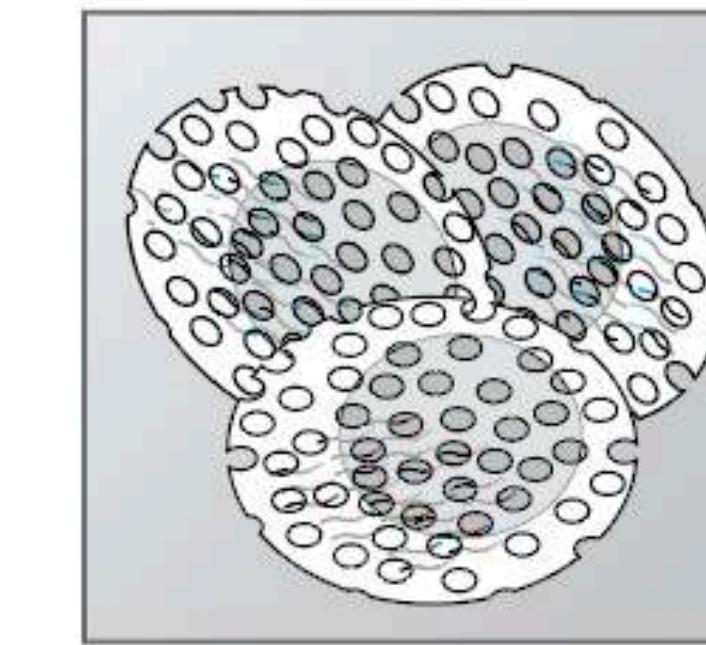
Multi-well plates



Droplets



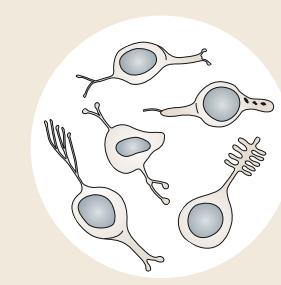
Combinatorial in-cell barcoding



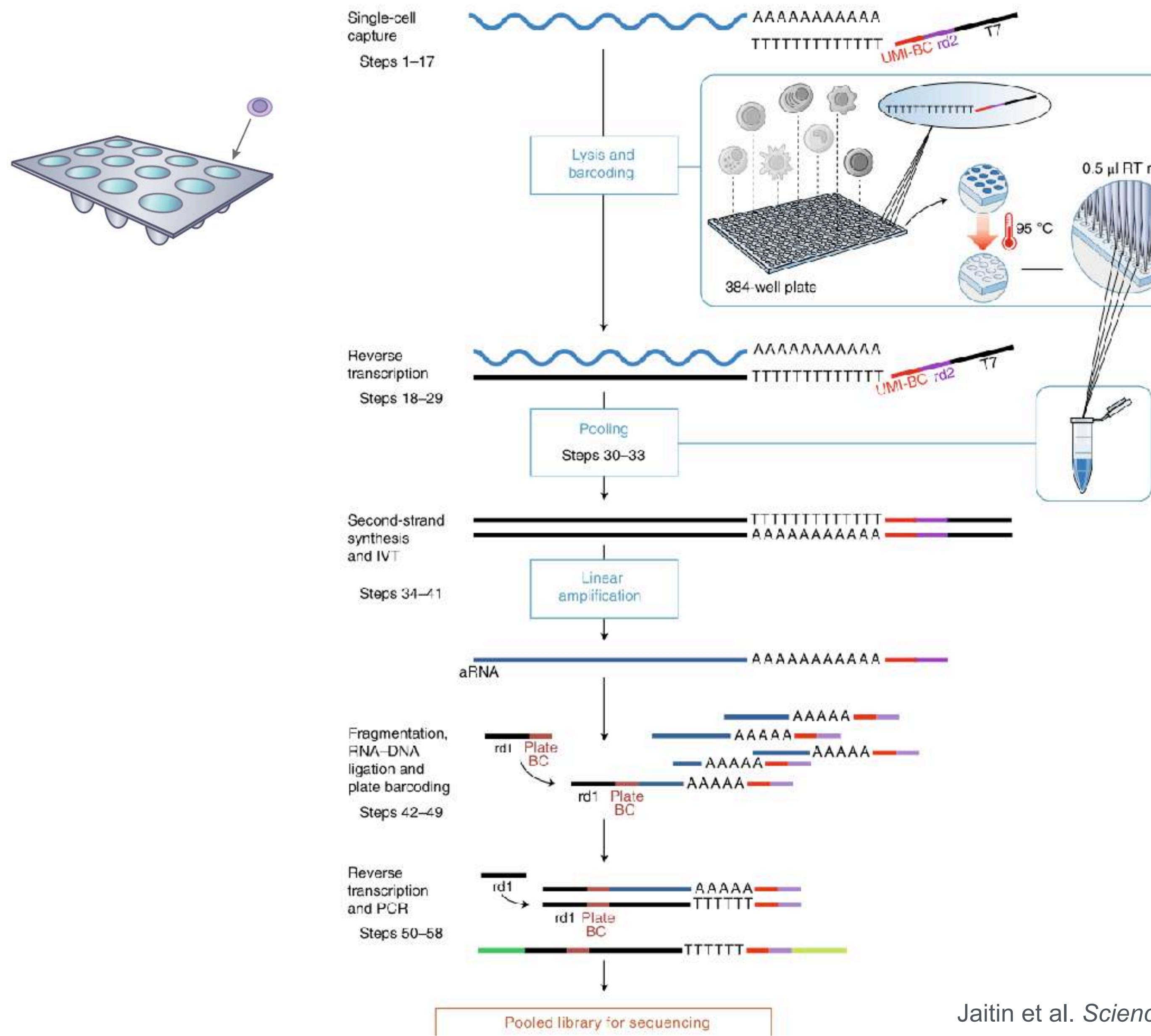
MARS-seq

inDrops

sciRNA-seq



Example 1: MARS-seq plate-based multi-tiered barcoding

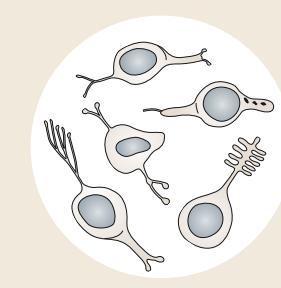


Pros:

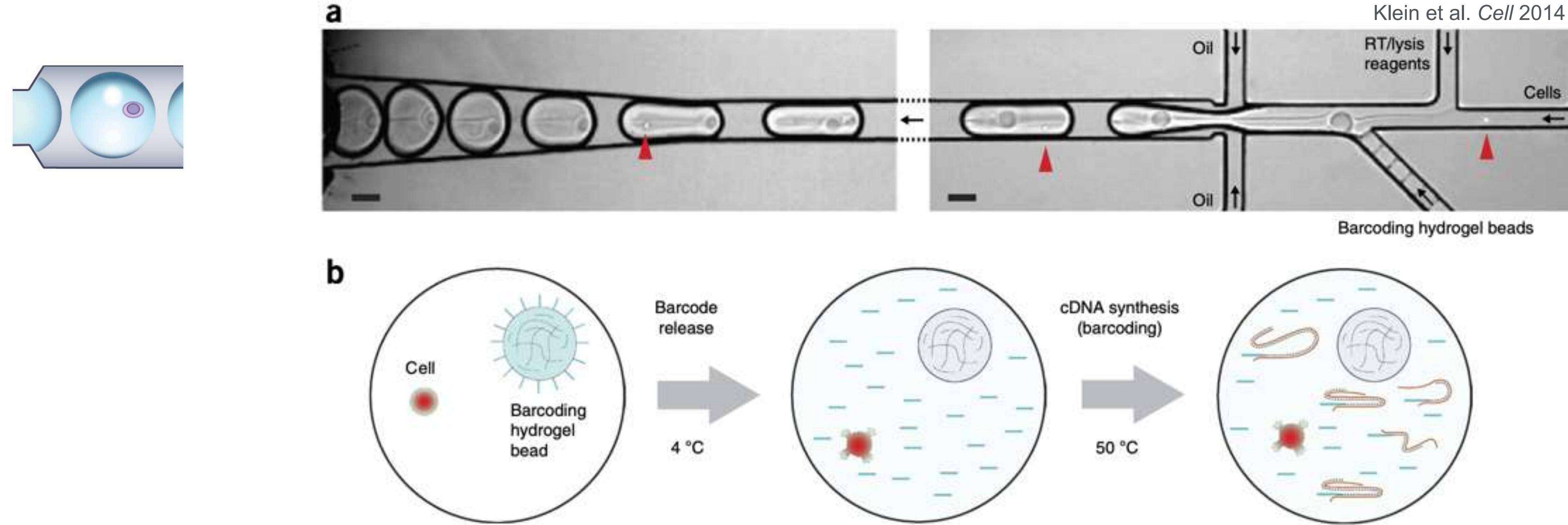
- Accurate selection of single-cell, possibility to target populations.
- Transcriptome+FACS index data.
- Versatile (easy to modify)
- Harsh lysis conditions

Cons:

- Mid-throughput
- More expensive than (in-home) droplet methods.
- Needs FACS-sorting.
- Slow protocol



Example 2: inDrops microfluidics droplet encapsulation and barcoding

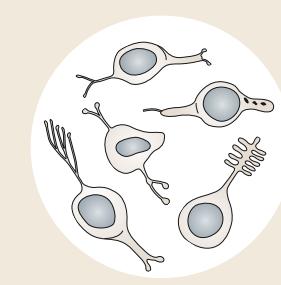


Pros:

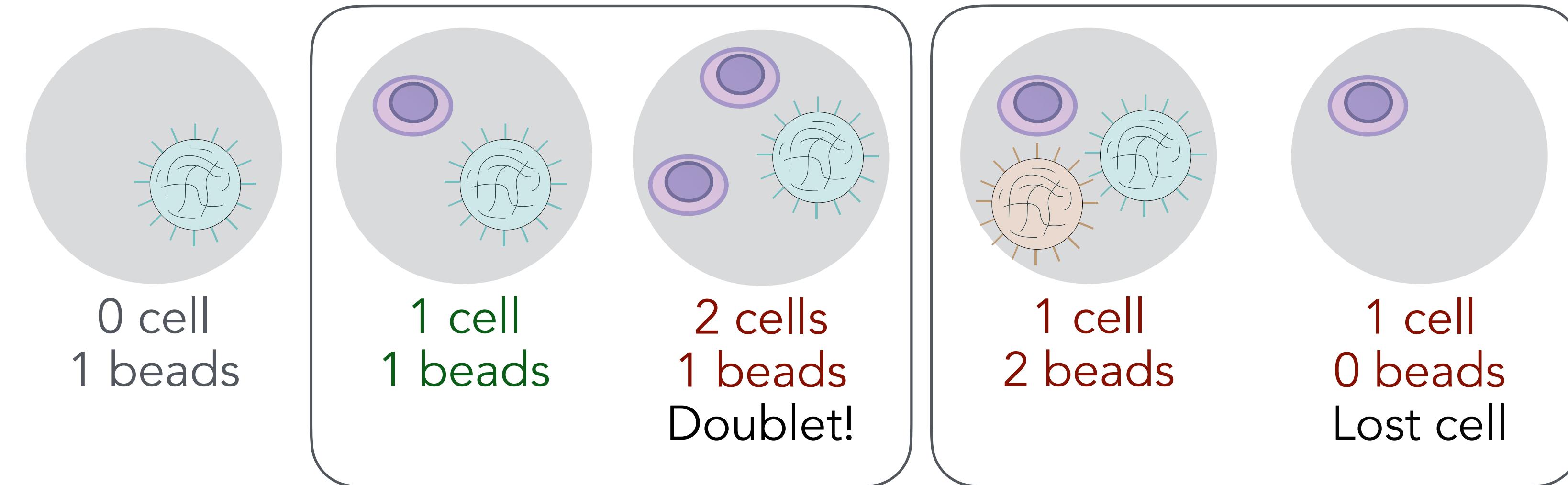
- High-capture efficiency ($\pm 80\%$)
- Good sensitivity.
- Fast encapsulation

Cons:

- Doublet rates
- Mild cell lysis.
- Cell size limits ($\sim 30 \mu\text{m}$)



Poisson loading and capture rates



Cell encapsulation is explained by a Poisson distribution

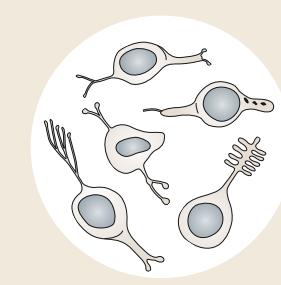
$$\mathbb{P}(\text{droplet has } k \text{ cells}) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

λ is the average number of cells per

$$\lambda = \frac{N_{\text{cells loaded}}}{N_{\text{droplets}}}$$

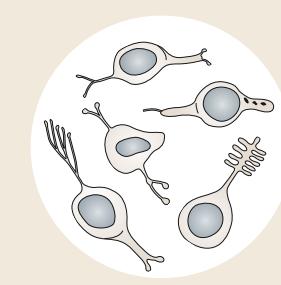
UNLIKELY - bead encapsulation can be forced into a sub-Poisson distribution

Using tightly packed hydrogel beads (10x chromium, Indrop) instead of polystyrene beads (Drop-seq) massively reduce variance, resulting in practice in 1 bead per droplet.

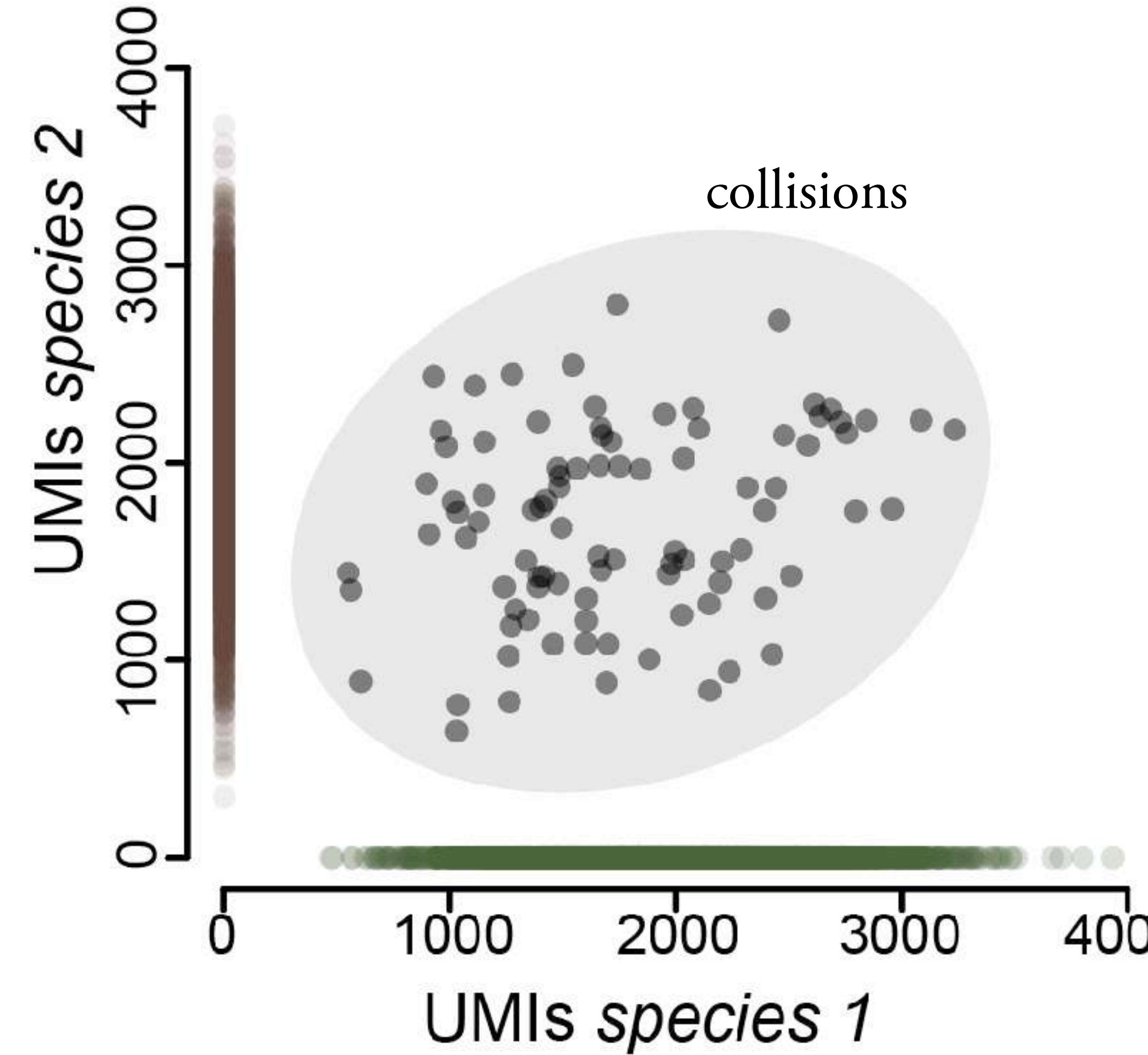


Estimating technical multiplet rates

Multiplet Rate (%)	# of Cells Loaded	# of Cells Recovered
~0.4%	~800	~500
~0.8%	~1,600	~1,000
~1.6%	~3,200	~2,000
~2.3%	~4,800	~3,000
~3.1%	~6,400	~4,000
~3.9%	~8,000	~5,000
~4.6%	~9,600	~6,000
~5.4%	~11,200	~7,000
~6.1%	~12,800	~8,000
~6.9%	~14,400	~9,000
~7.6%	~16,000	~10,000



Estimating technical multiplet rates



$$N = \frac{N_1 N_2}{N_{1,2}}$$

number of cells species 1

number of cells species 2

number of droplets

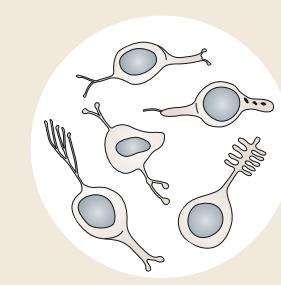
Observed collisions

$$\mu_1 = -\ln\left(\frac{N - N_1}{N}\right) \quad \mu_2 = -\ln\left(\frac{N - N_2}{N}\right)$$

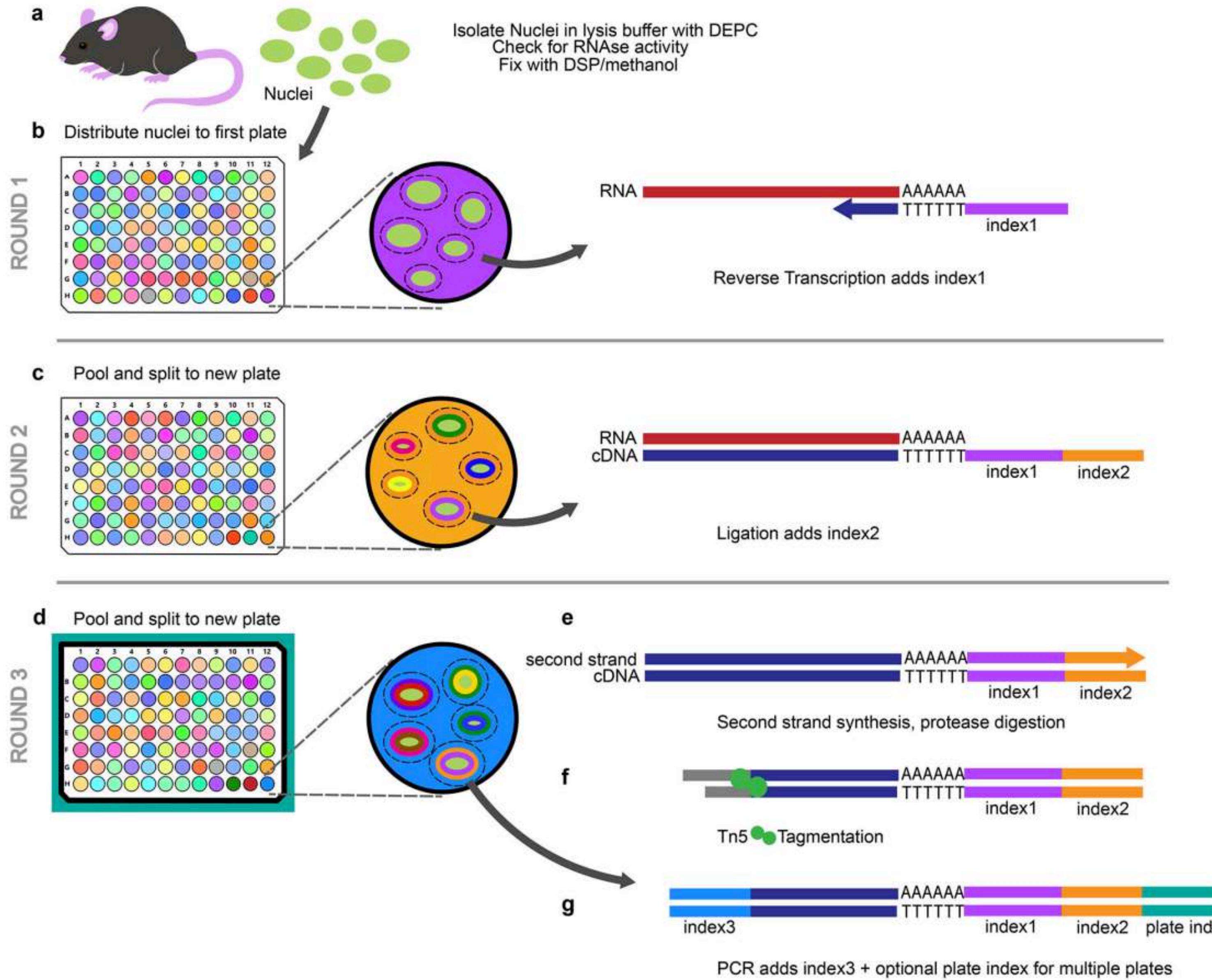
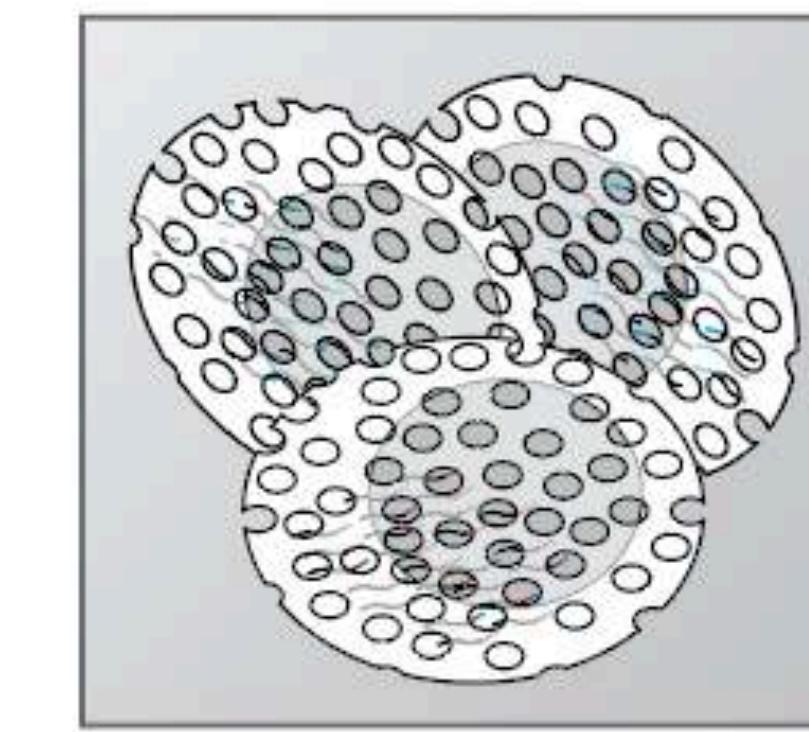
Average number of cells species 1 or 2

$$M = 1 - \frac{(\mu_1 + \mu_2)e^{-\mu_1 - \mu_2}}{1 - e^{-\mu_1 - \mu_2}}$$

Probability of a droplet with at least 1 cell containing multiple cells



Example 3: sci-RNA-seq3 split&pool combinatorial barcoding

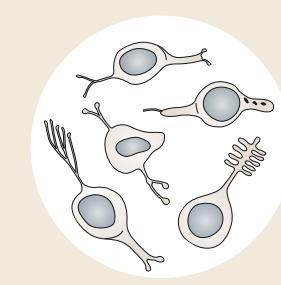


Pros:

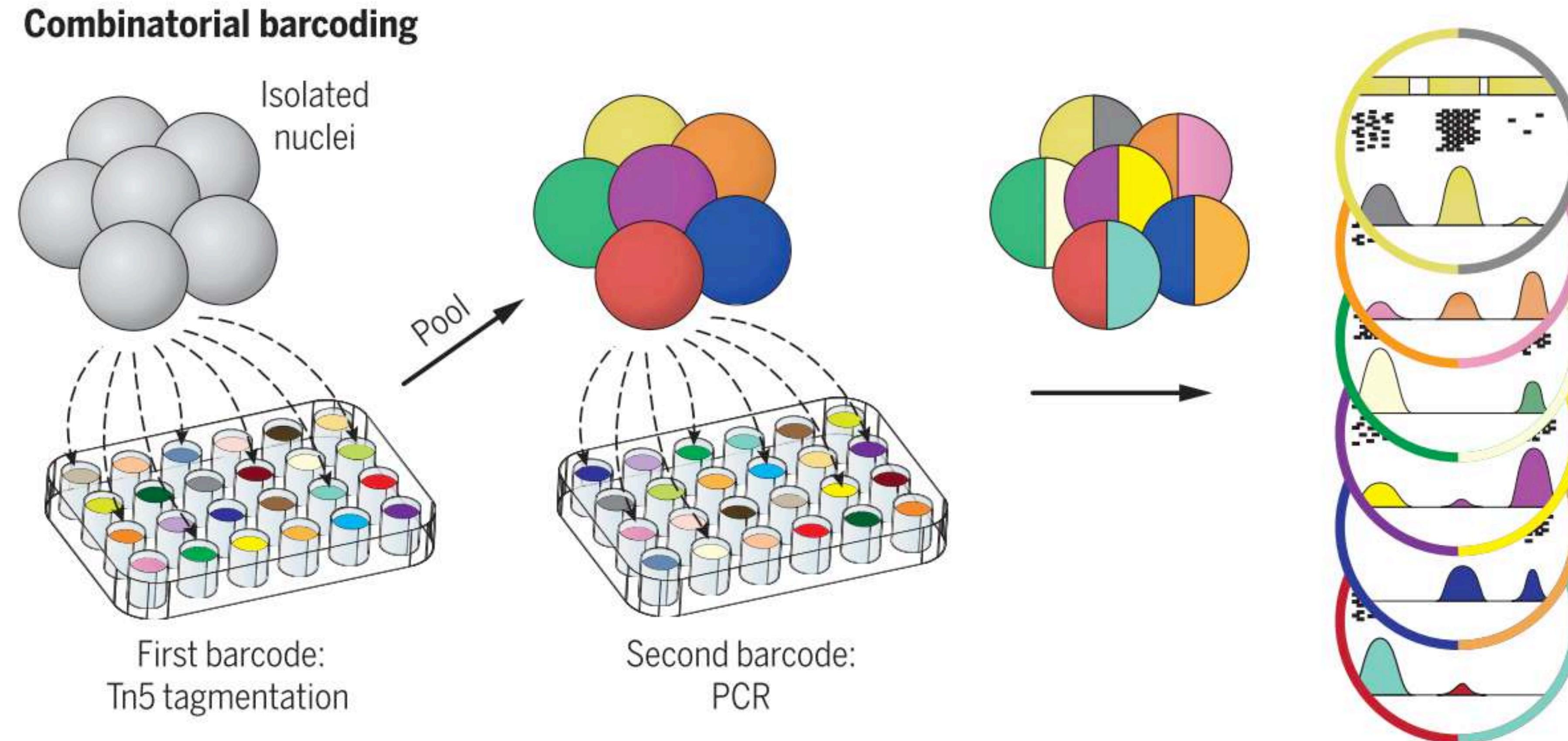
- Extremely high throughput
- Very low per-cell costs, <0.1 USD)
- No equipment required*

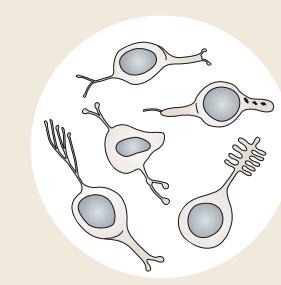
Cons:

- Very low sensitivity
- Requires fixed cells/nuclei
- Expensive initial set-up (BCs)
- 3'-biased, no full-length.

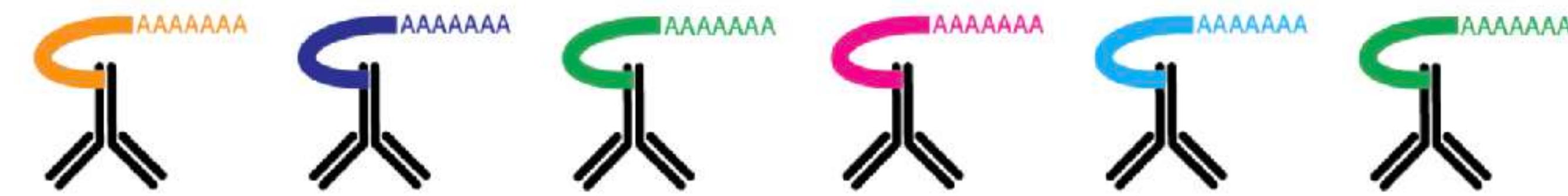


Combinatorial barcoding is at the core of many single-cell genomics methods!





Cell hashing for sample overloading

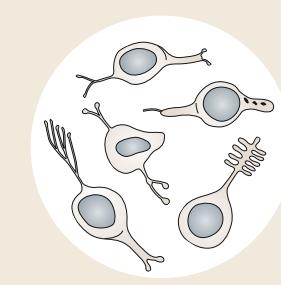


Antibodies (against ubiquitous surface proteins) loaded with unique polyA barcodes



Stoeckius et al. *Genome Biology* 2018

Importantly, it also allows improved capture rates (for low input samples, combined)



Cell hashing without antibodies: ClickTag oligonucleotides

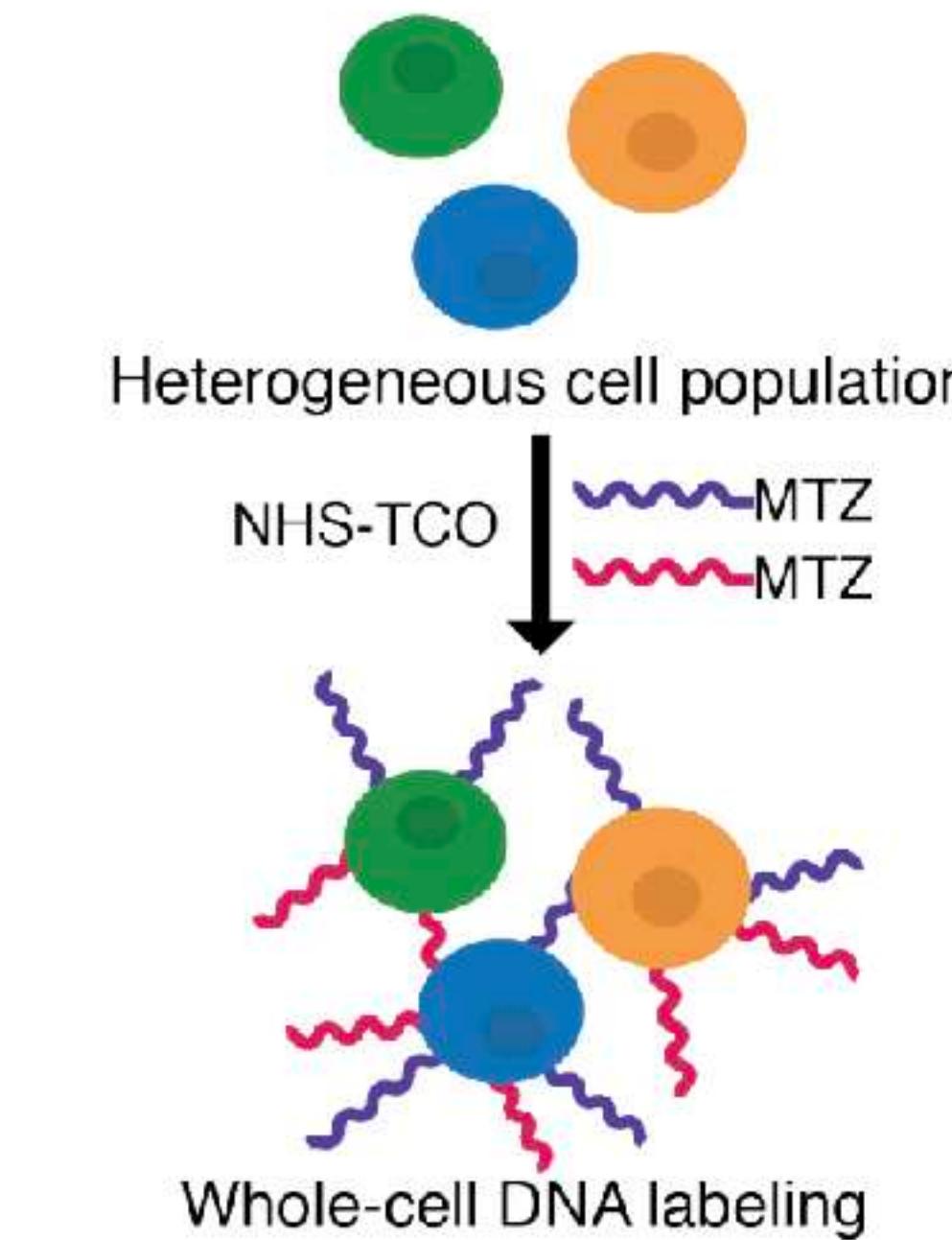
Universal sample multiplexing by chemically labelling cells.

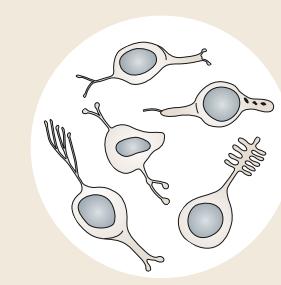
Highly Multiplexed Single-Cell RNA-seq for Defining Cell Population and Transcriptional Spaces

Jase Gehring, Jong Hwee Park, Sisi Chen, Matthew Thomson, Lior Pachter

doi: <https://doi.org/10.1101/315333>

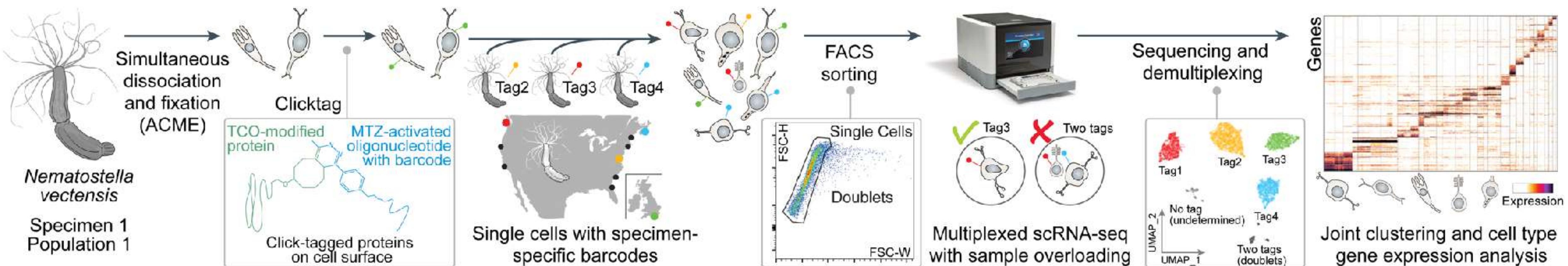
Methyltetrazine (MTZ)-activated barcoded oligonucleotides are attached to exposed NHS-reactive amines in a one-pot reaction.

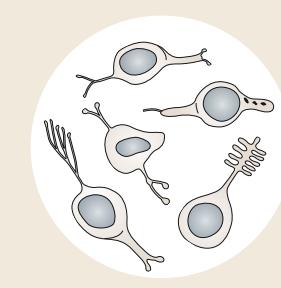




Cell hashing without antibodies: ClickTag oligonucleotides

Example application: low-input, specimen-resolved scRNA-seq atlases

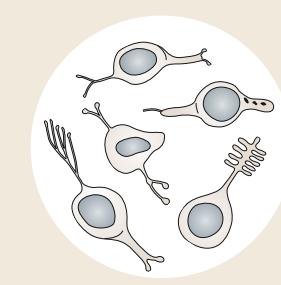




Open issues in scRNA-seq methods

- Sample prep (dissociation, nuclei extraction, etc.) is still the major bottleneck.
- Reaching very high capture efficiencies: studying small specimens (e.g. embryos) without pooling.
- Cell fixation/preservation: decoupling sampling from single-cell processing (e.g. field work).
- Trade-off between sensitivity & scalability/costs.
- Glass ceiling: sequencing costs... (new sequencing technologies, e.g. UltimaGenomics)

Part 2 - scRNA-seq analysis



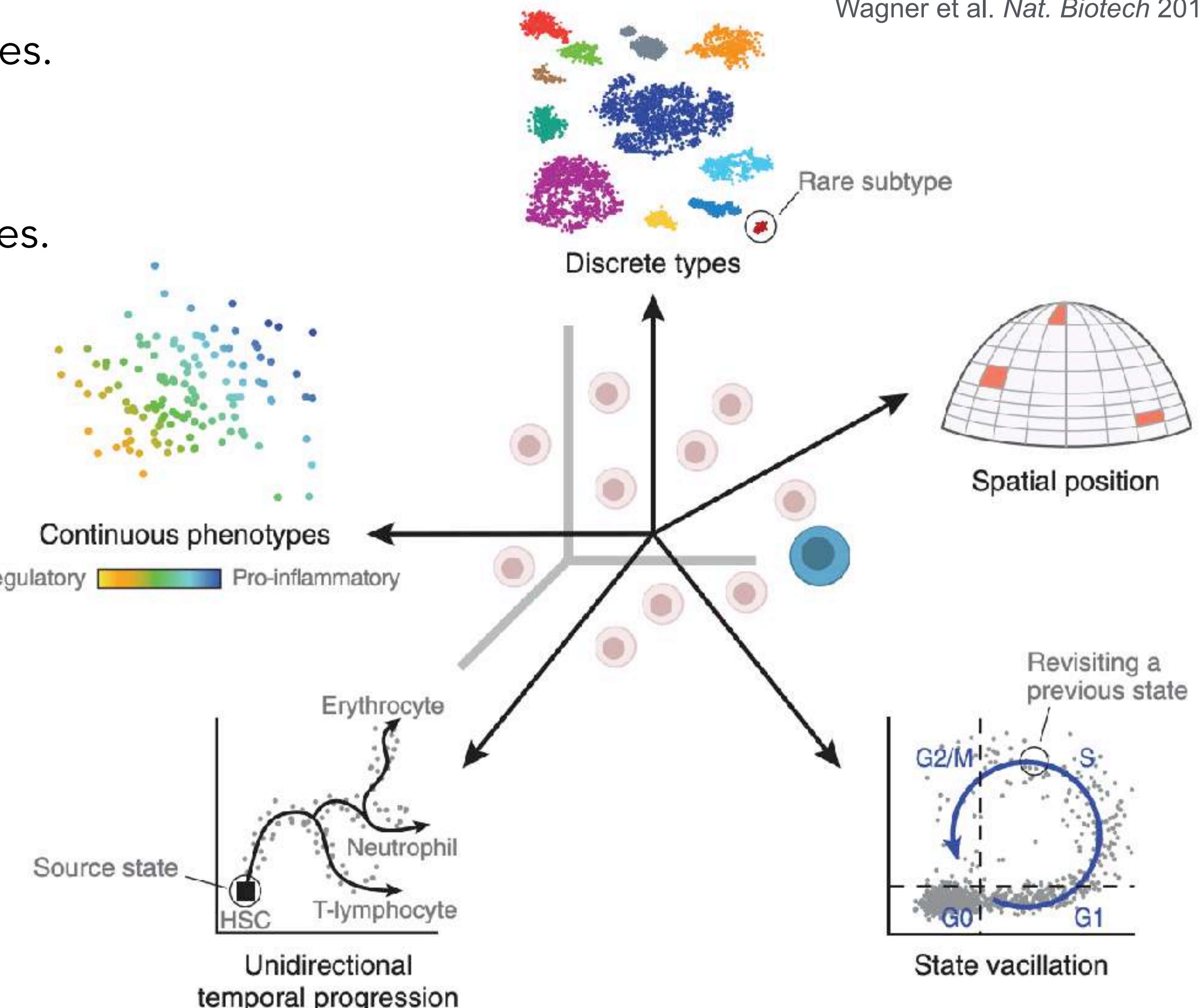
The vectors of cellular identity

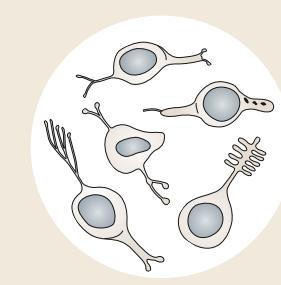
Multiple factors define cell type identity:

- Membership in a hierarchy/taxonomy of cell types.
- Time-dependent processes (e.g. cell cycle).
- Response to the environment/physiological states.
- Spatial position

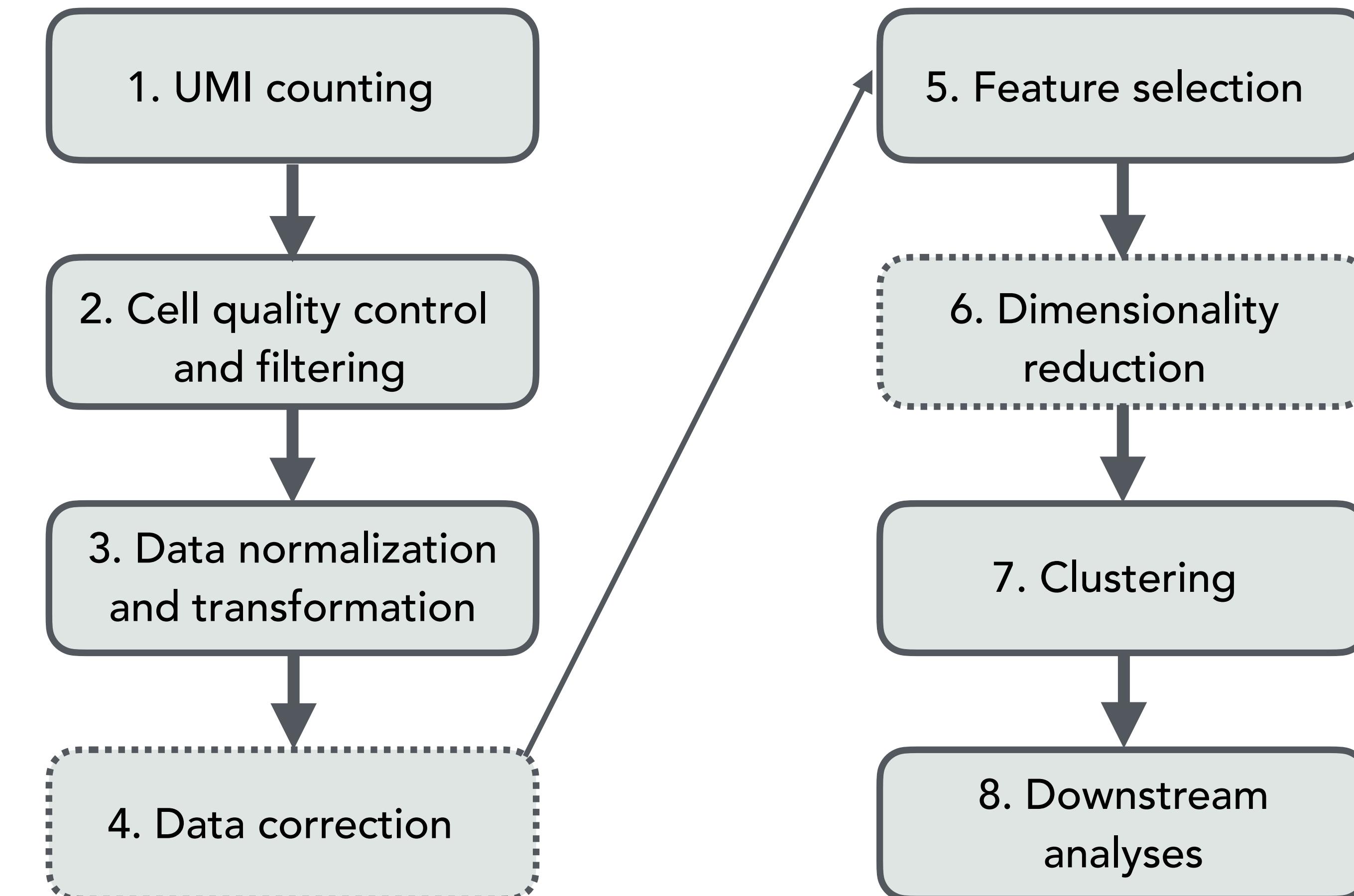
In practice, in most situations the cell type identity signal dominates the transcriptional profile.

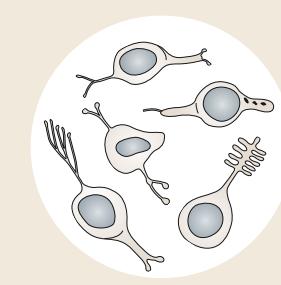
Wagner et al. *Nat. Biotech* 2017



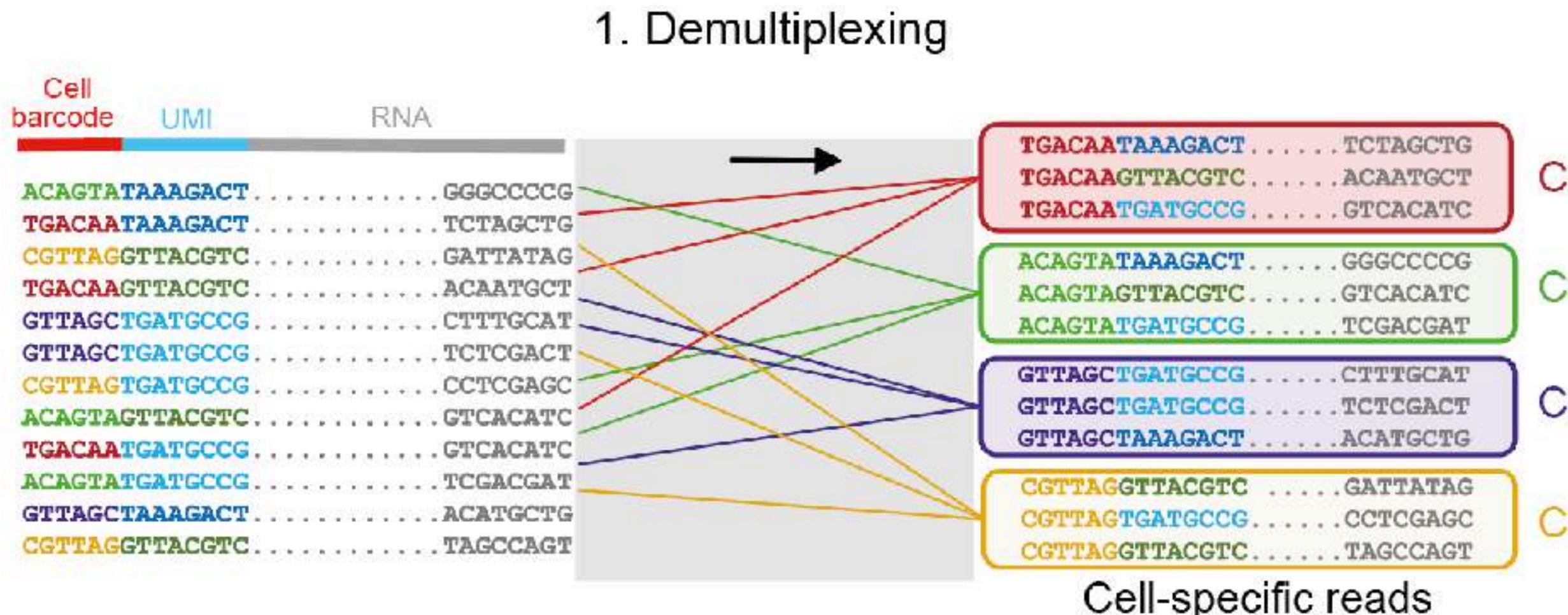
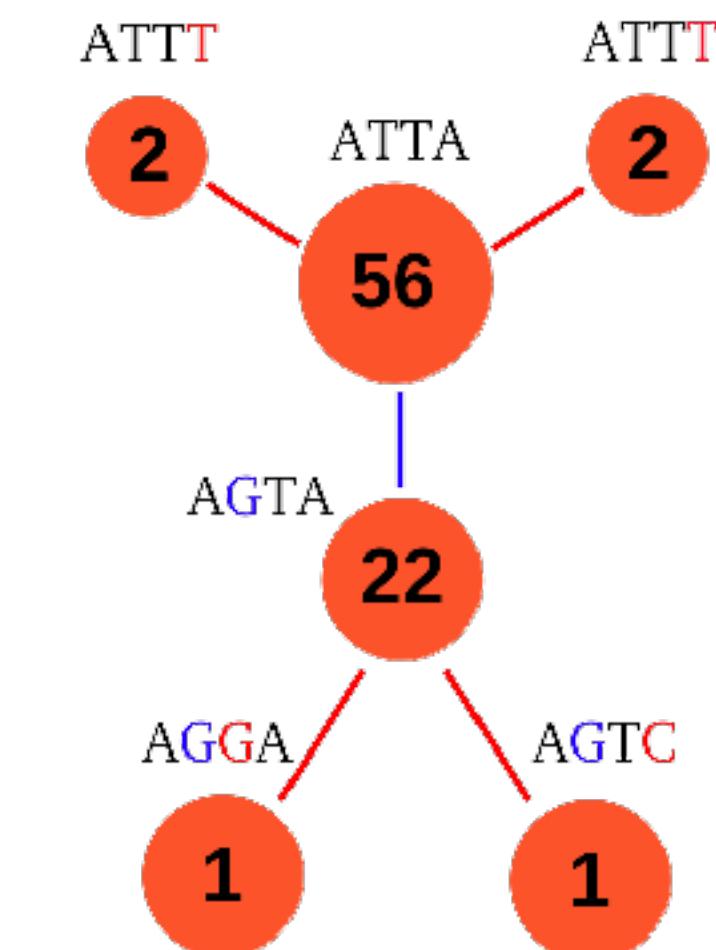


Standard scRNA-seq analysis pipeline





1. Demultiplexing and transcript counting (assigning reads to cells and to genes)

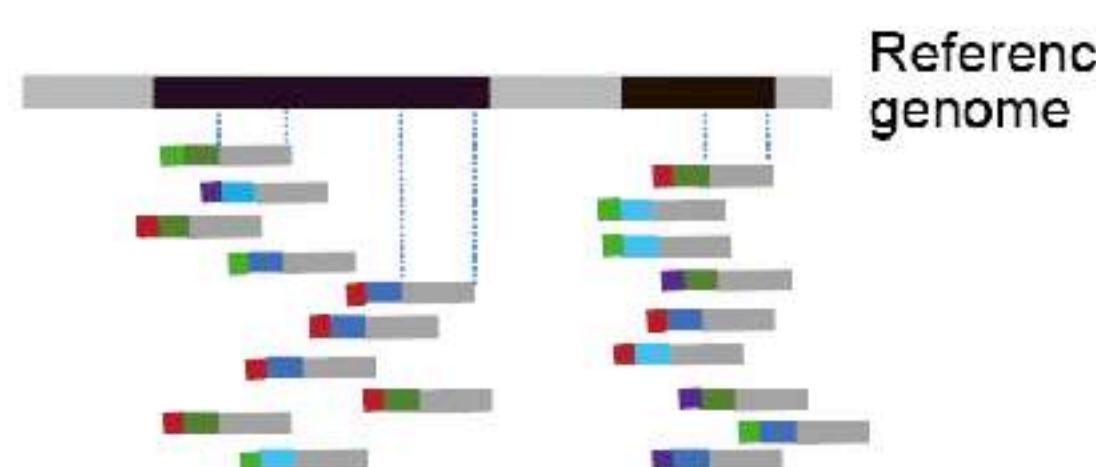


Sequencing errors
PCR errors

Informative features:

1. Base-call quality
2. Adjacency structure
3. Gene expression level
4. Mapping position

2. Mapping



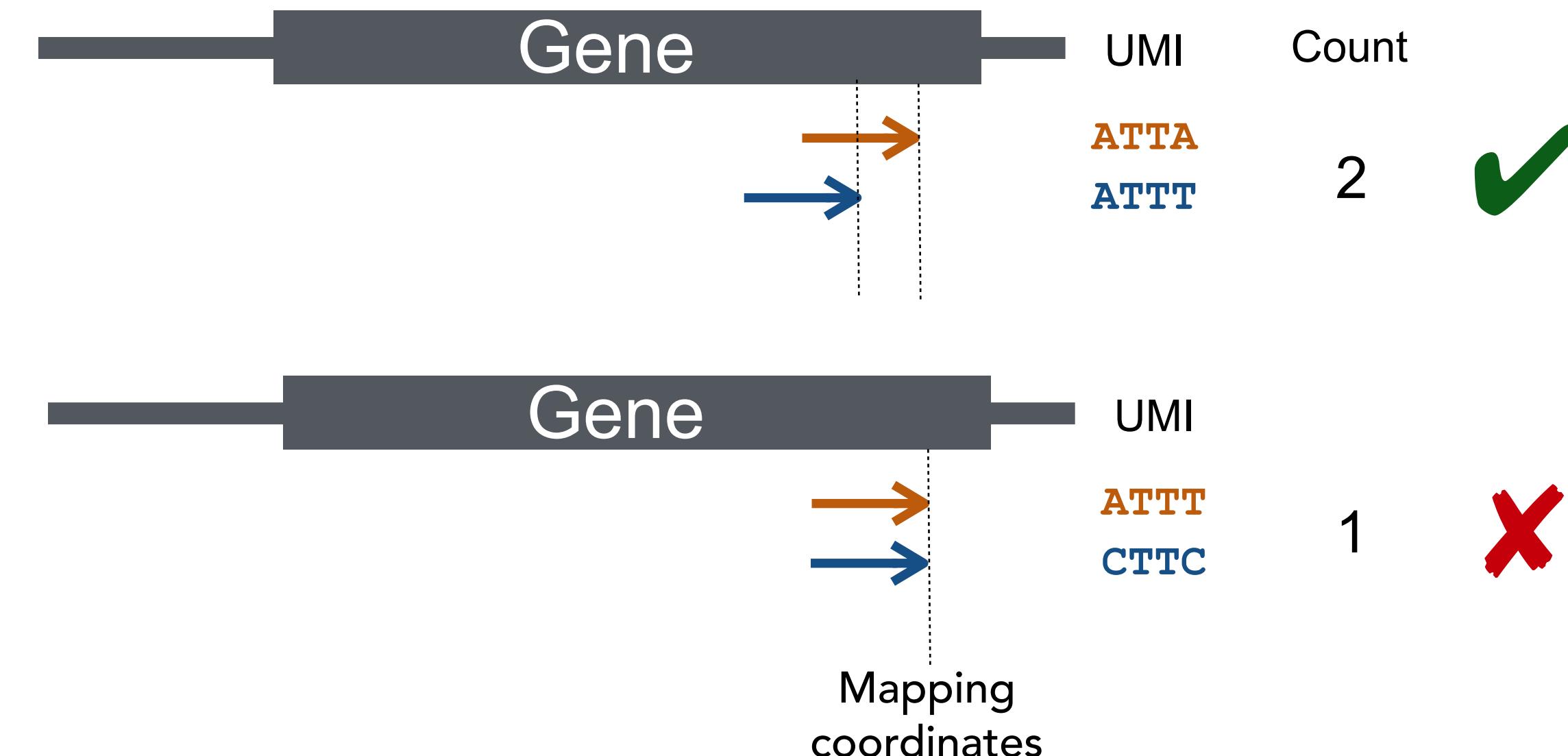
Reads to genes

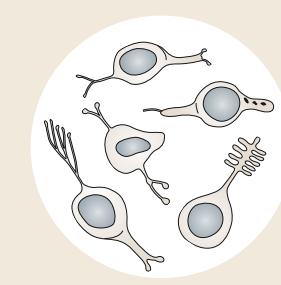
3. Quantification

	Cell1	Cell2	...	CellN
Gene1	3	2	.	13
Gene2	2	3	.	1
Gene3	1	14	.	18
...
...
...
GeneM	25	0	.	0

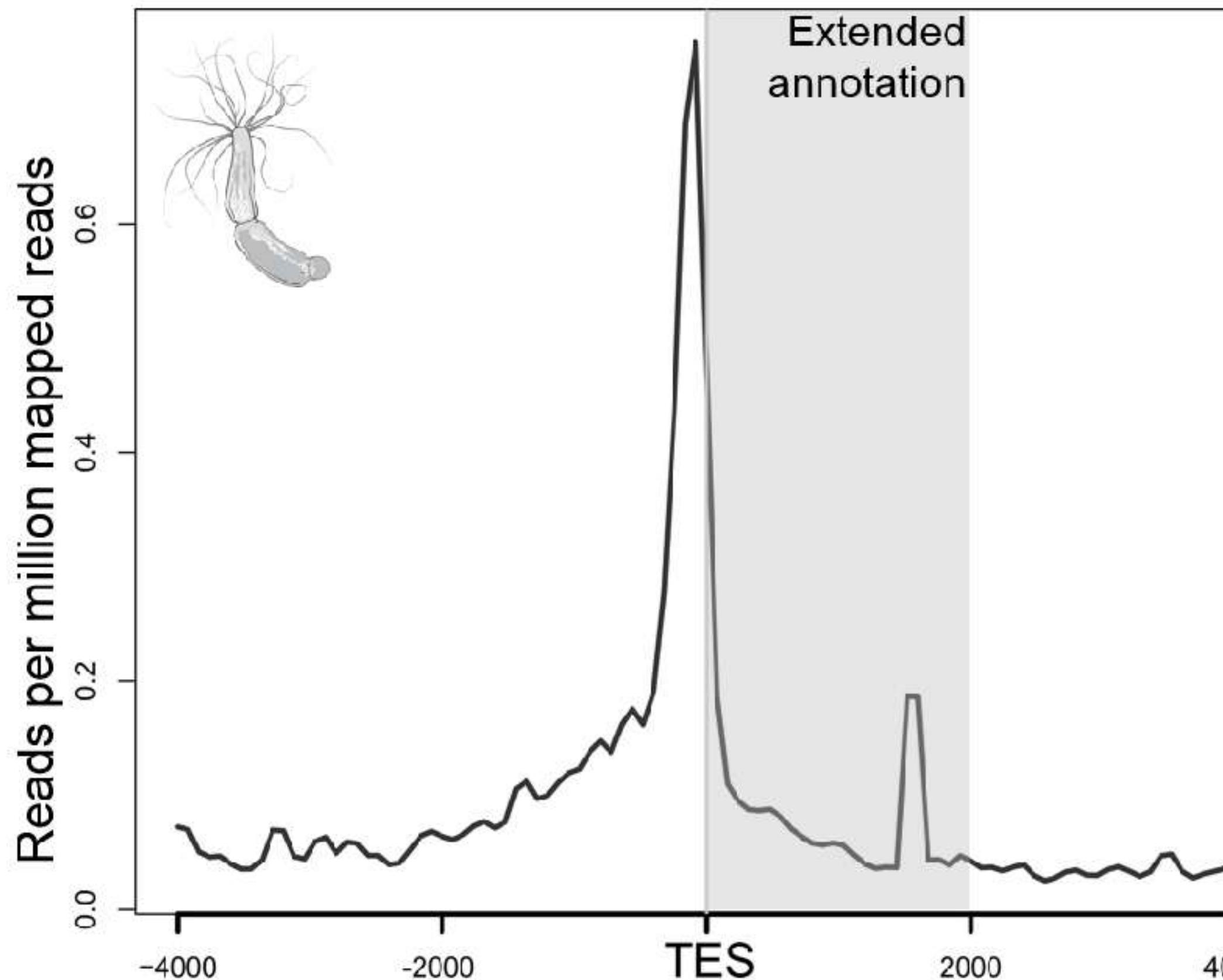
Gene expression matrix

Modified from Lafzi et al. *Nat. Protocols* 2018





The impact of incomplete gene models in scRNA-seq data analysis

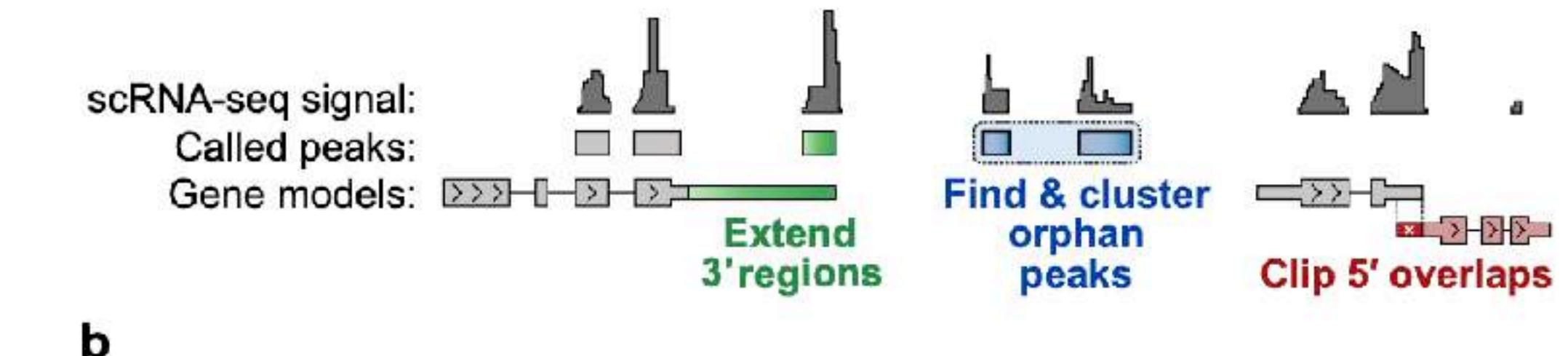


GeneExt: a gene model extension tool for enhanced single-cell RNA-seq analysis

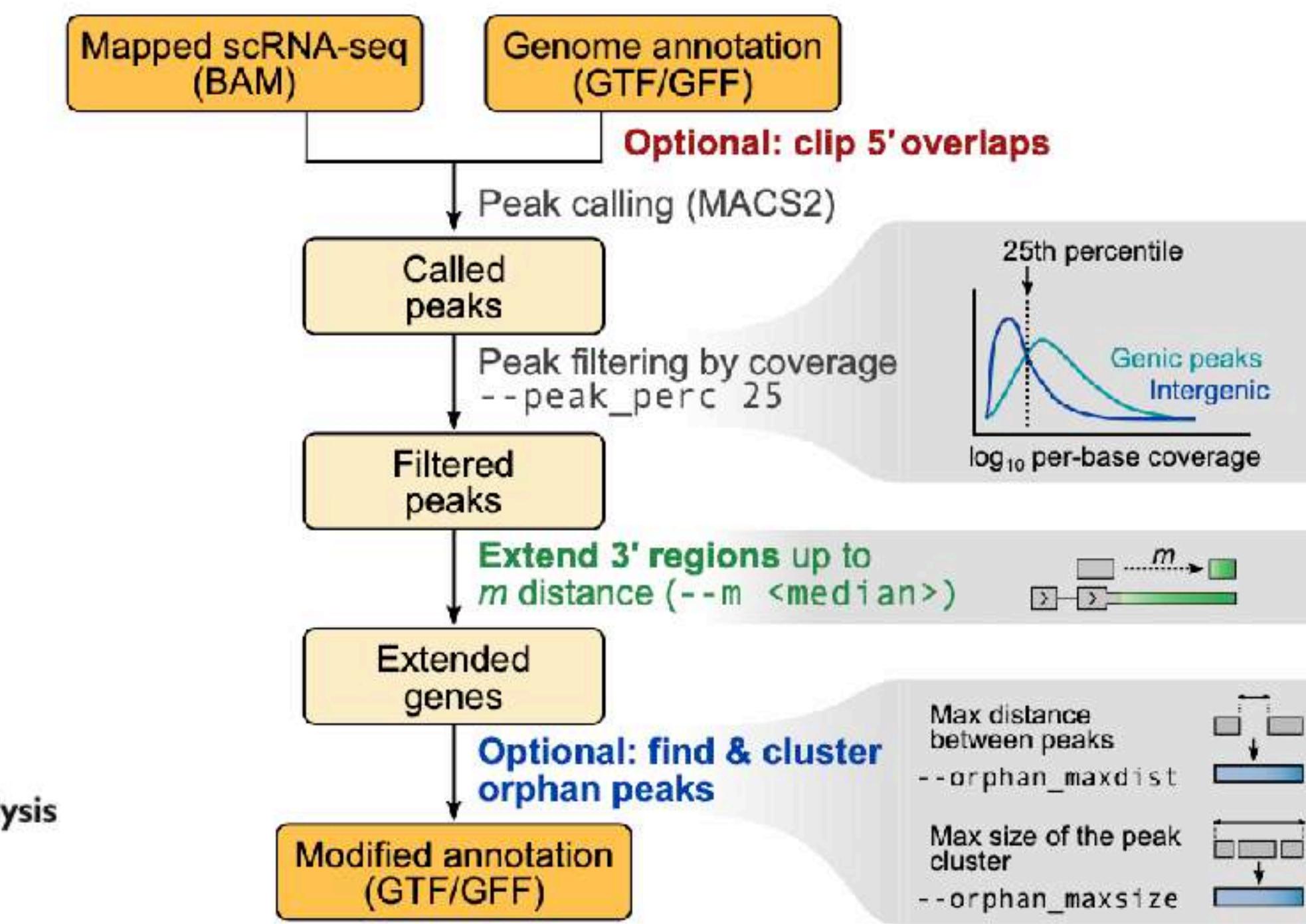
✉ Grygoriy Zolotarov, ✉ Xavier Grau-Bové, ✉ Arnaud Sebé-Pedrós

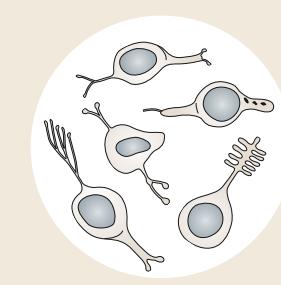
doi: <https://doi.org/10.1101/2023.12.05.570120>

Recover unassigned reads by
3' extension and intergenic bins



b

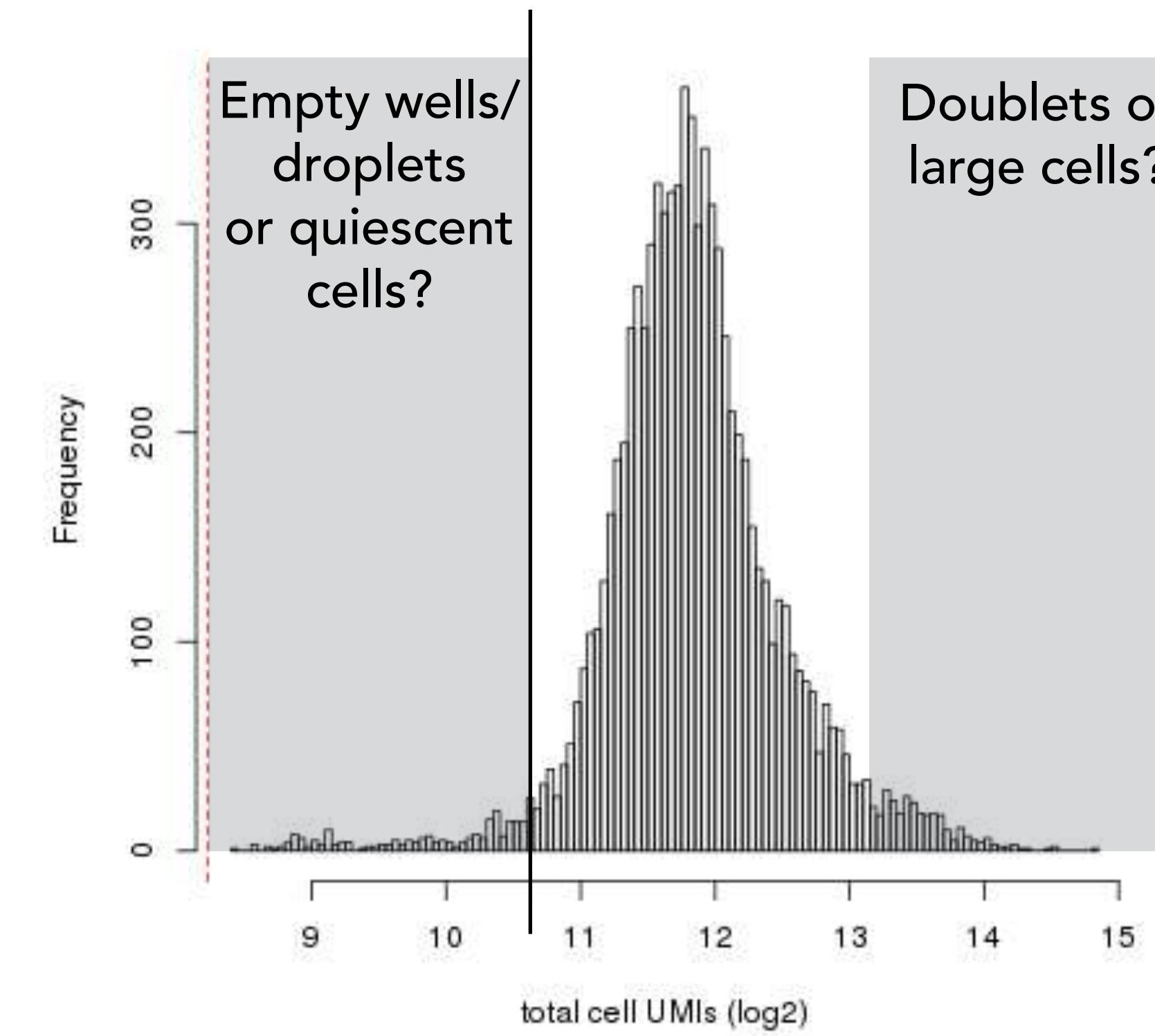
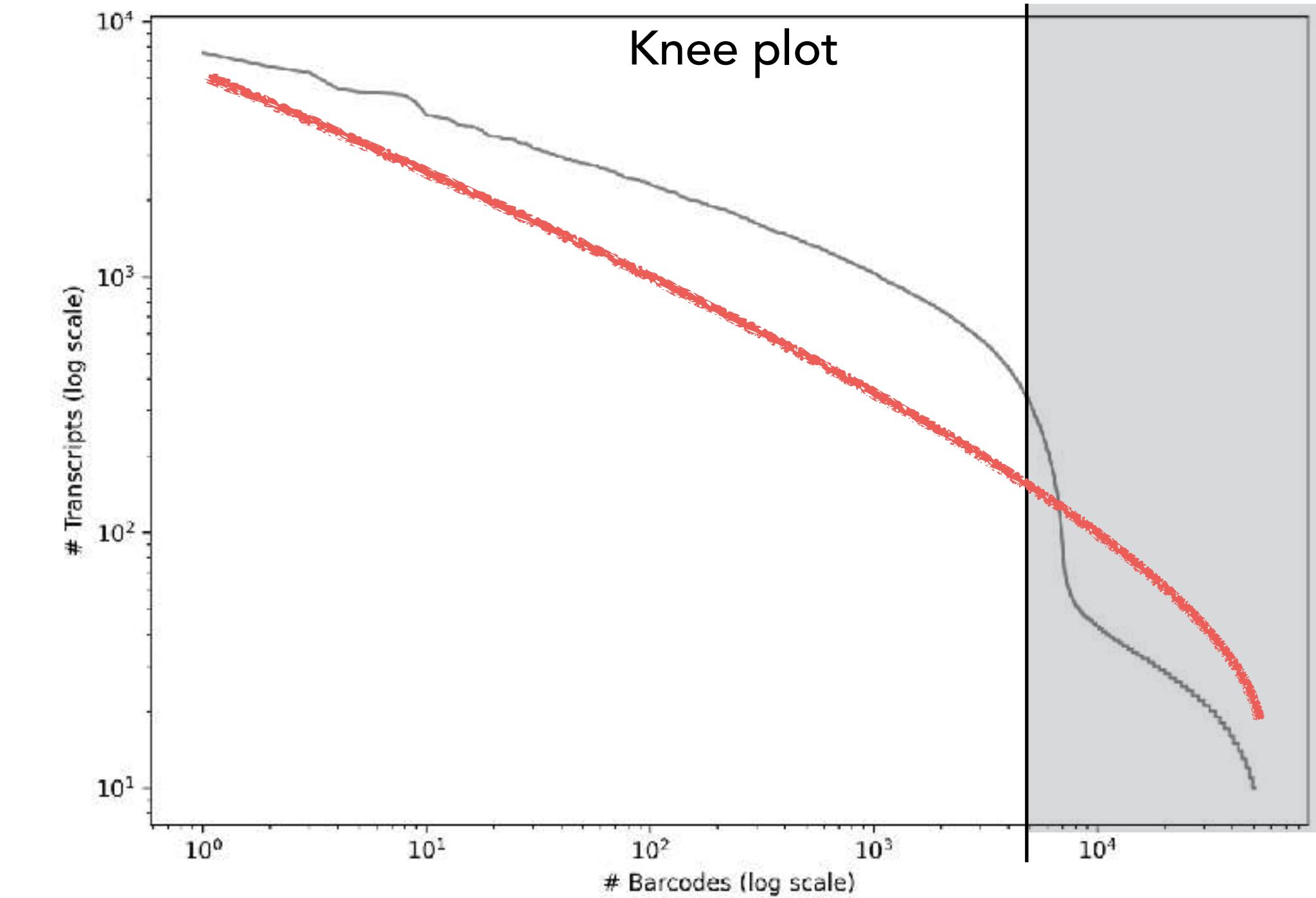




2. Calling cells from non-cells and filtering bad cells

Informative features:

1. UMI counts per cell (cell size)
2. mitochondrial genes
3. ribosomal rRNAs
4. initial cell input (expected N of cells)

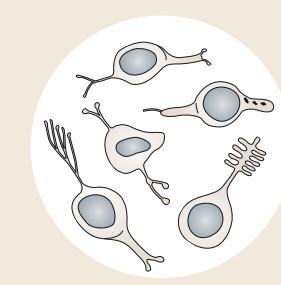


Example tools/strategies:

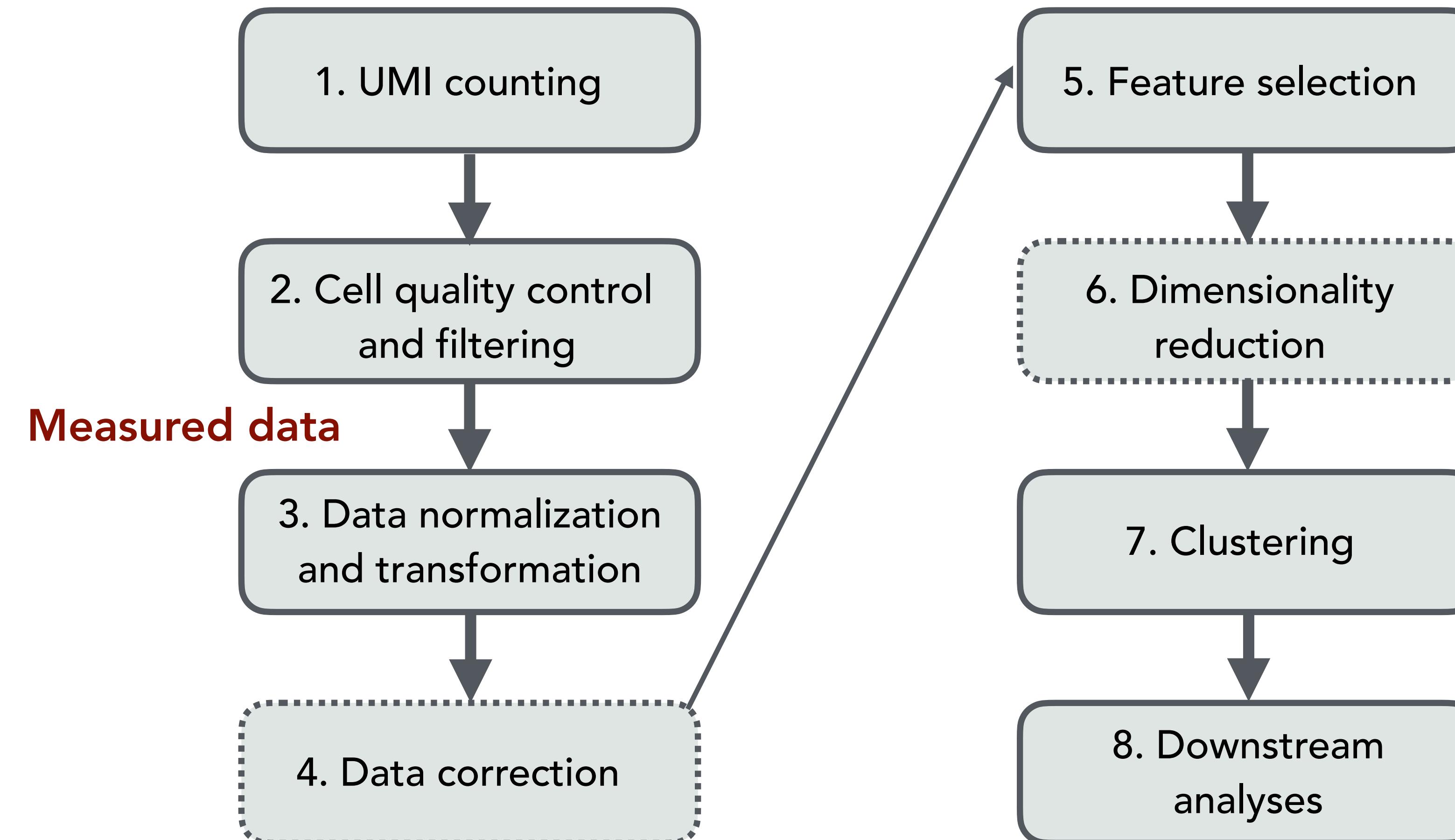
- *dropEst*: cell calling, based of cell UMI counts distribution. Used by CellRanger.
- *emptyDrops*: cell calling, based on deviations from background RNA distribution.
- *Scrublet*: doublet identification by simulation from observed expression.
- *DoubletFinder*: similar to Scrublet.

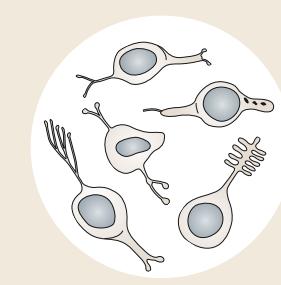
General QC tips:

- Be permissive
- Do not attempt to model what we don't understand
- Perform QC iteratively



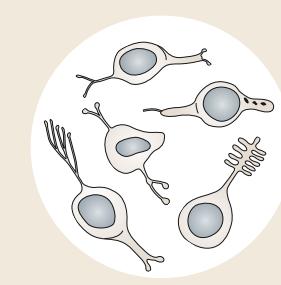
Standard scRNA-seq analysis pipeline





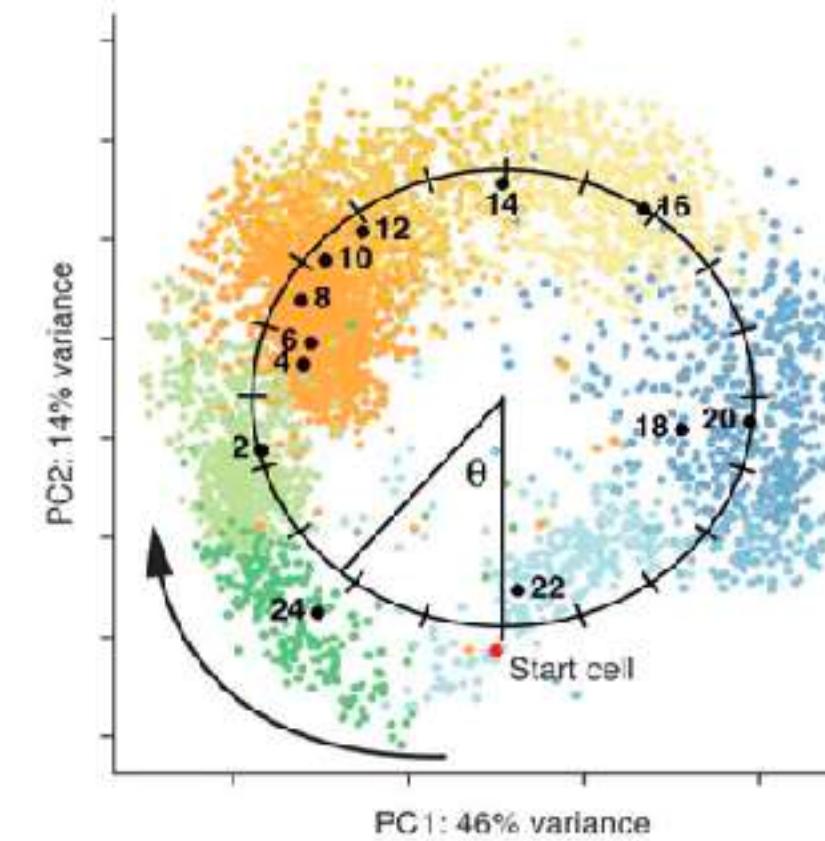
3. Data normalization and transformation

- Count depth scaling (scaling factor: 10,000 or 1,000,000).
- Random downsampling (only if small cell size variance, severe data loss)
- Size factor estimation (e.g. in *scran*), assumes most genes stable, diff. technical
- Parametric normalisation (e.g. neg binomial), principled variance stabilisation.
- No normalisation, if you use similarity metrics that are scale-invariant (e.g. correlation).
- Binary transformation
- Model-based latent representations (good for data integration/batch correction, e.g. *scVI*)
- Log-transformation: stabilise variance and reduce skewness (compress large values). Often used with count depth scaling.

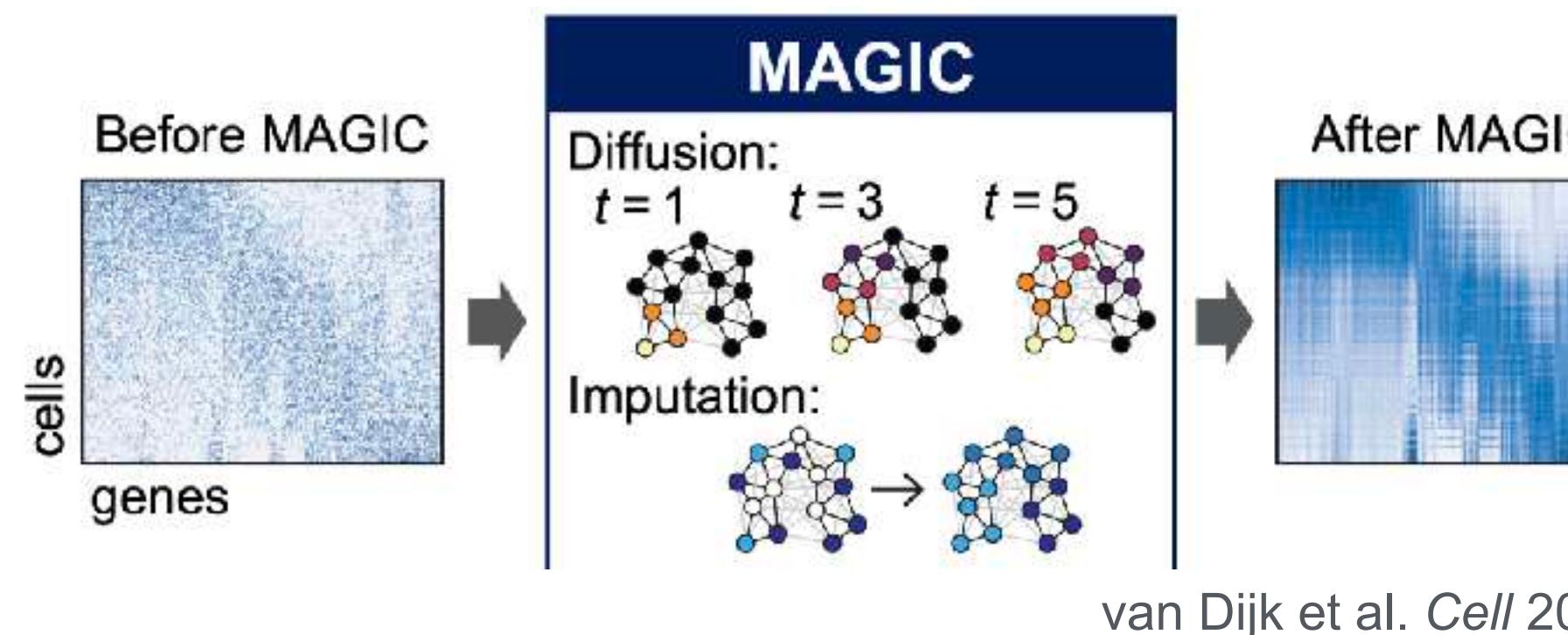


4. Data correction: regressing out unwanted covariates and imputing data

1. Biological effects. e.g. cell cycle.



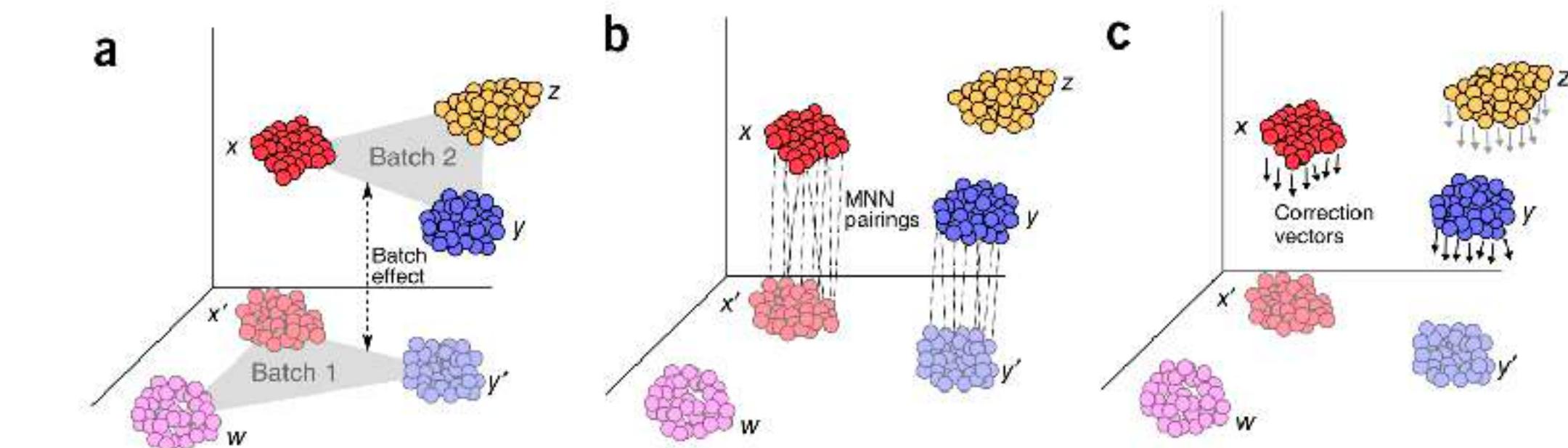
3. Data imputation to compensate for the sparsity of single-cell data



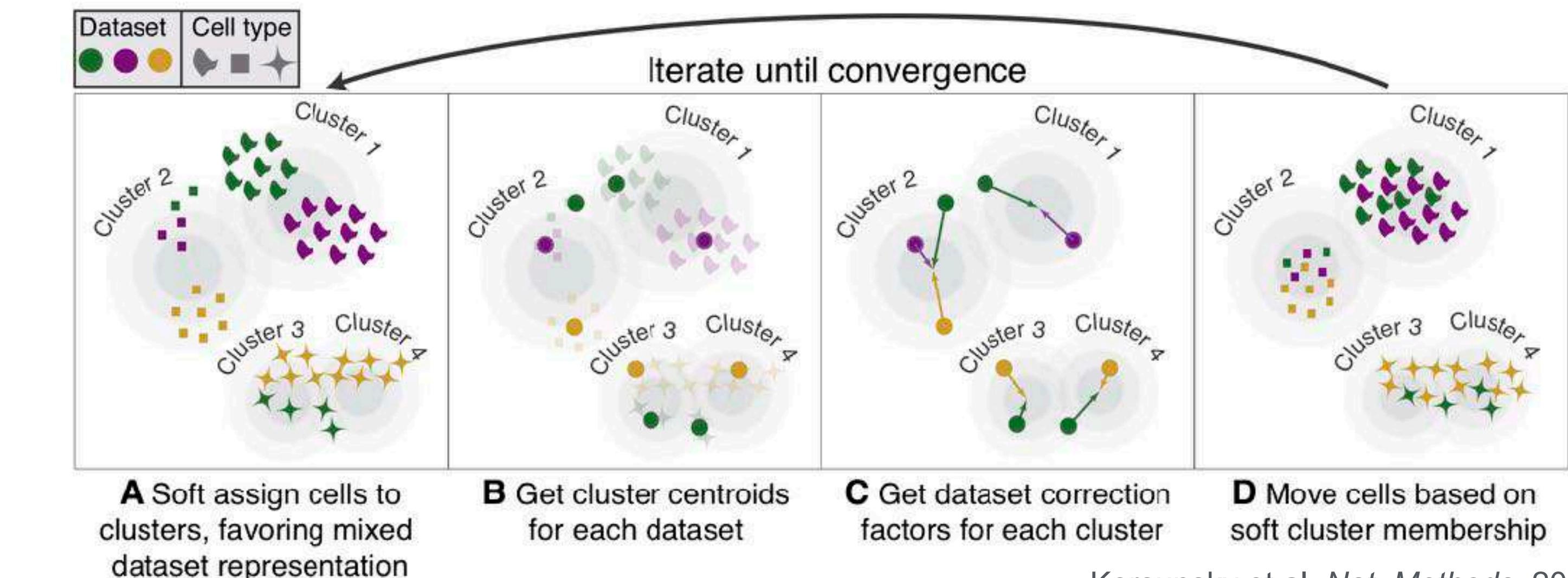
Generally a bad idea - instead, use metacells!

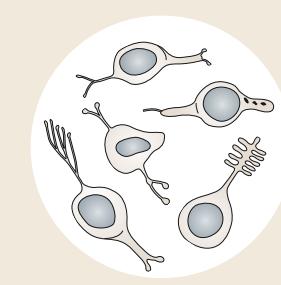
2. Batch effects. Methods:

- Identify and remove “batchy” genes.
- Mutual Nearest Neighbors (MNN): handles compositional differences between datasets.

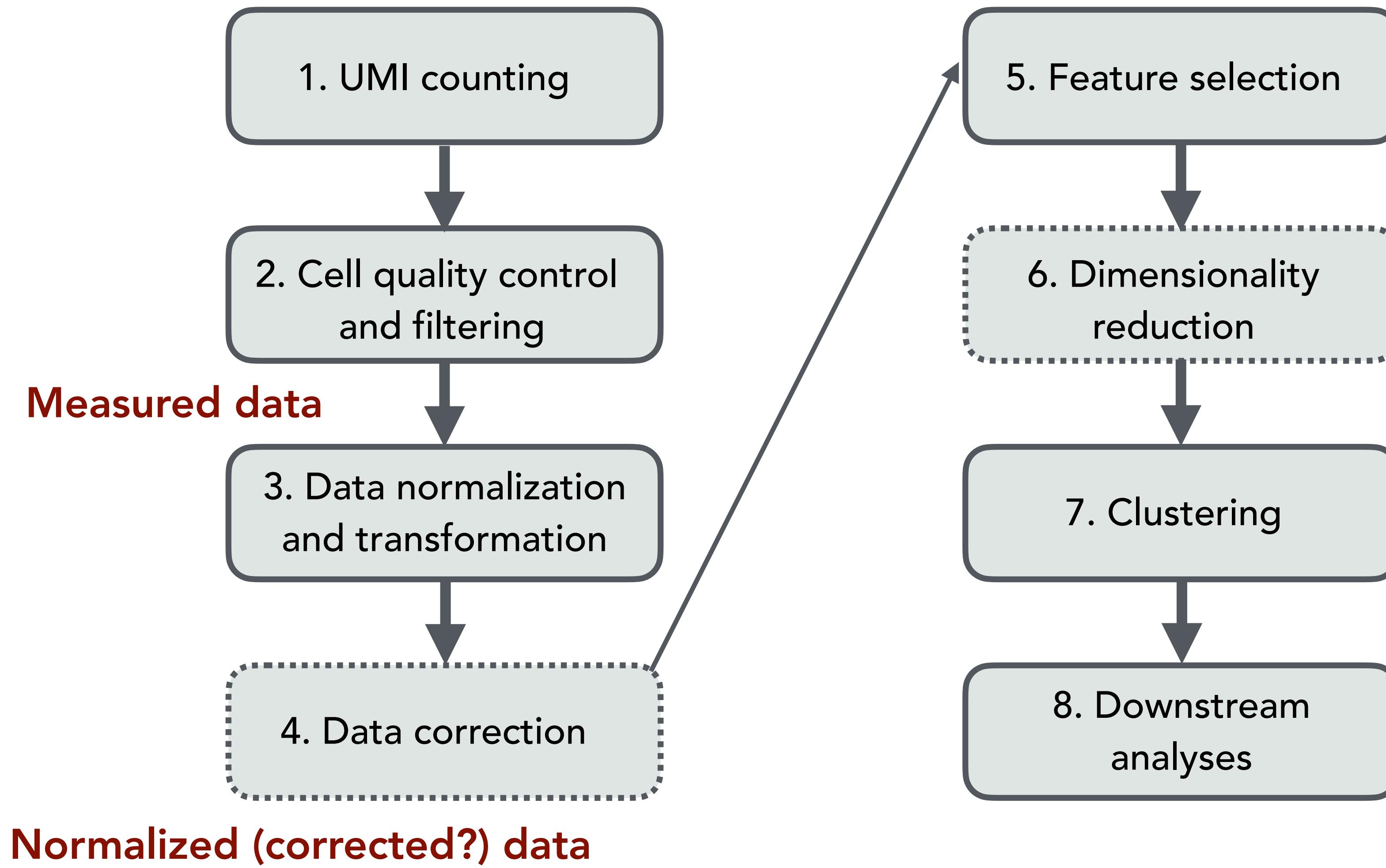


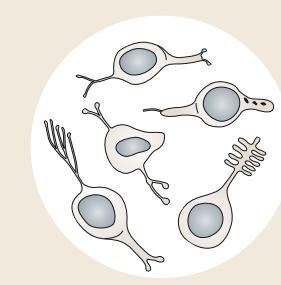
• Harmony





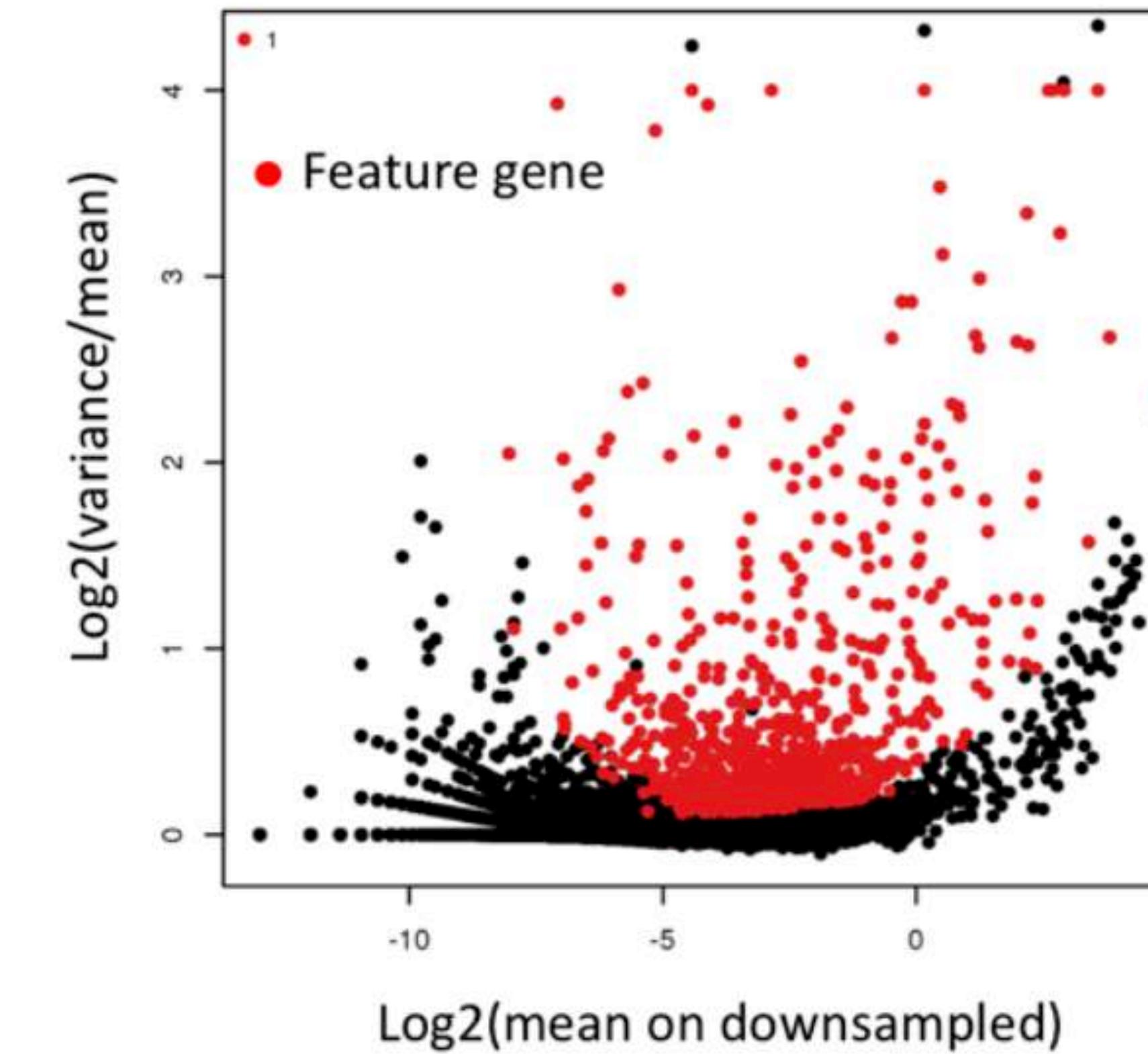
Standard scRNA-seq analysis pipeline



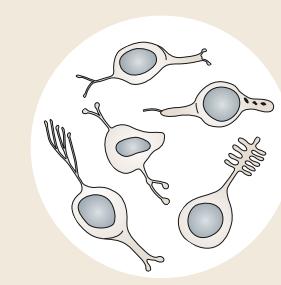


5. Feature selection: variable genes for downstream clustering

Select genes with high variance (normalized by the mean) and a minimal total expression.

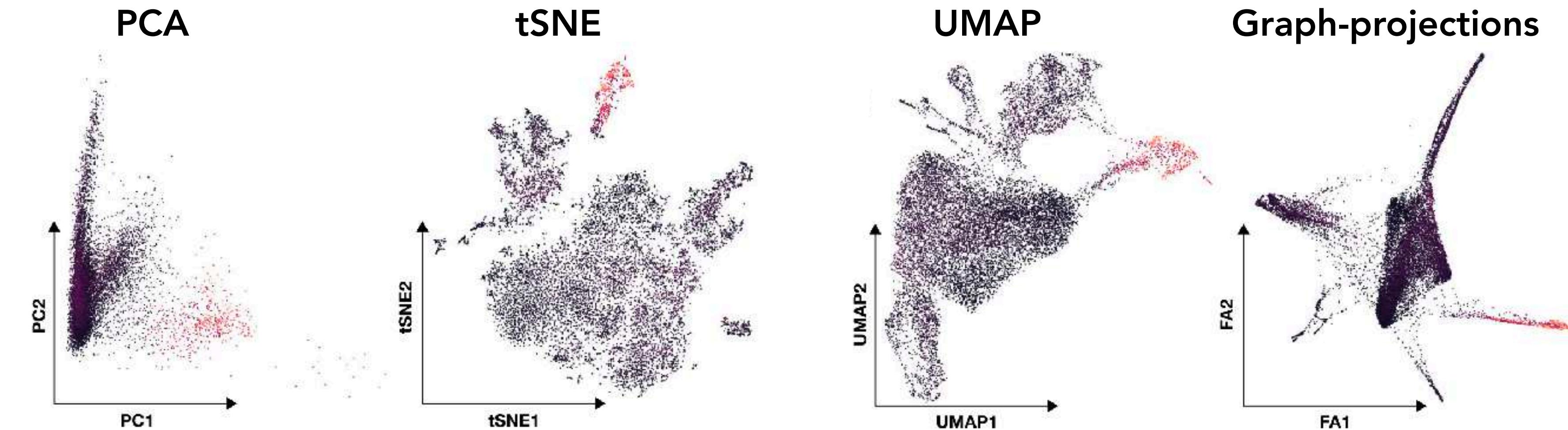


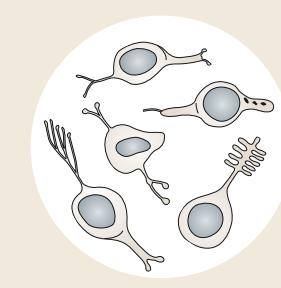
Not critical how many genes we select (usually 1,000s)



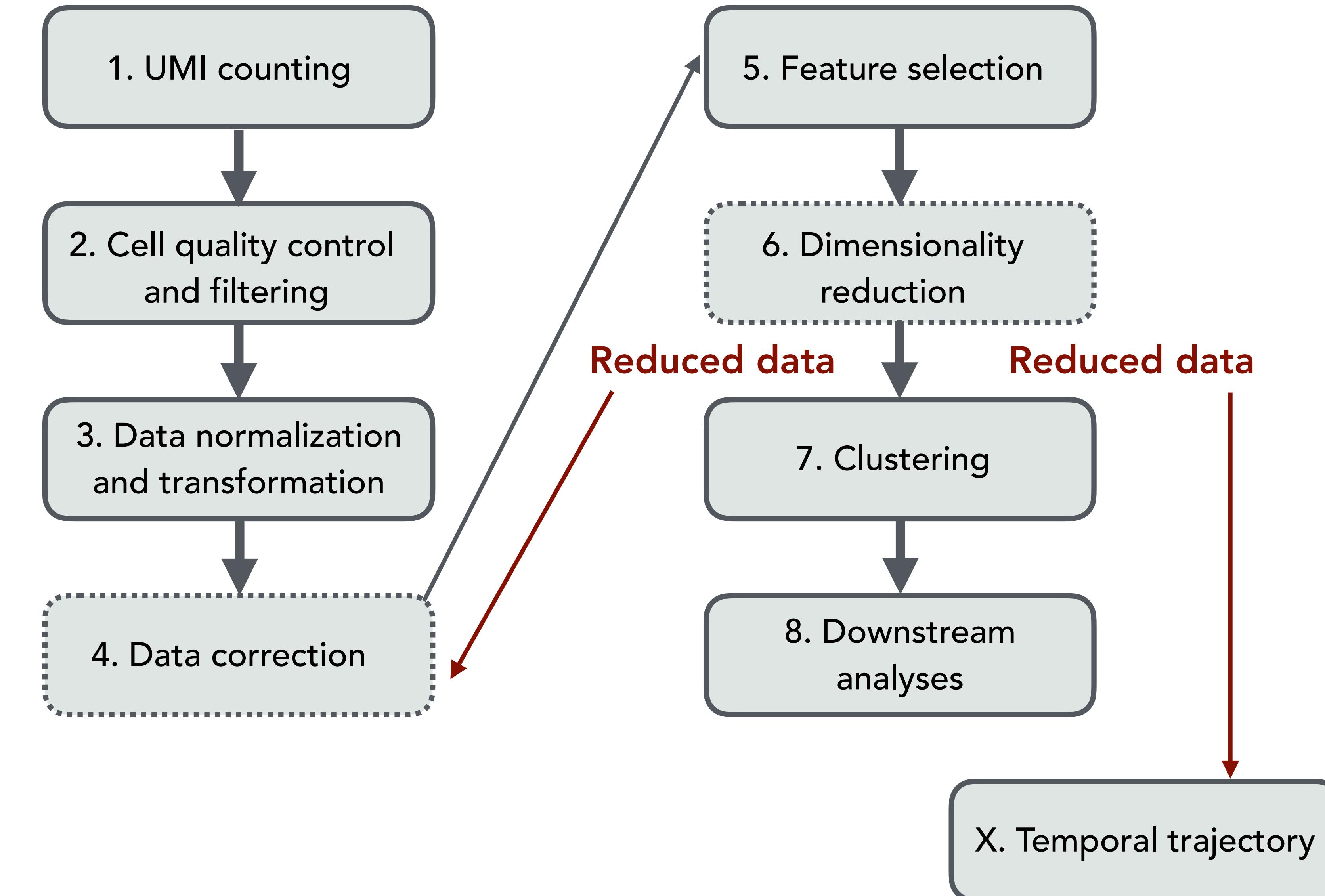
6. Dimensionality reduction

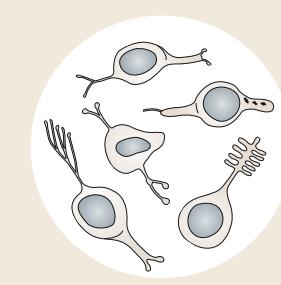
1. Summarization: reduces data to essential components for downstream analyses.
E.g. PCA (clustering), Diffusion maps (trajectory).
2. Visualization: project dataset in two dimensions.





Standard scRNA-seq analysis pipeline

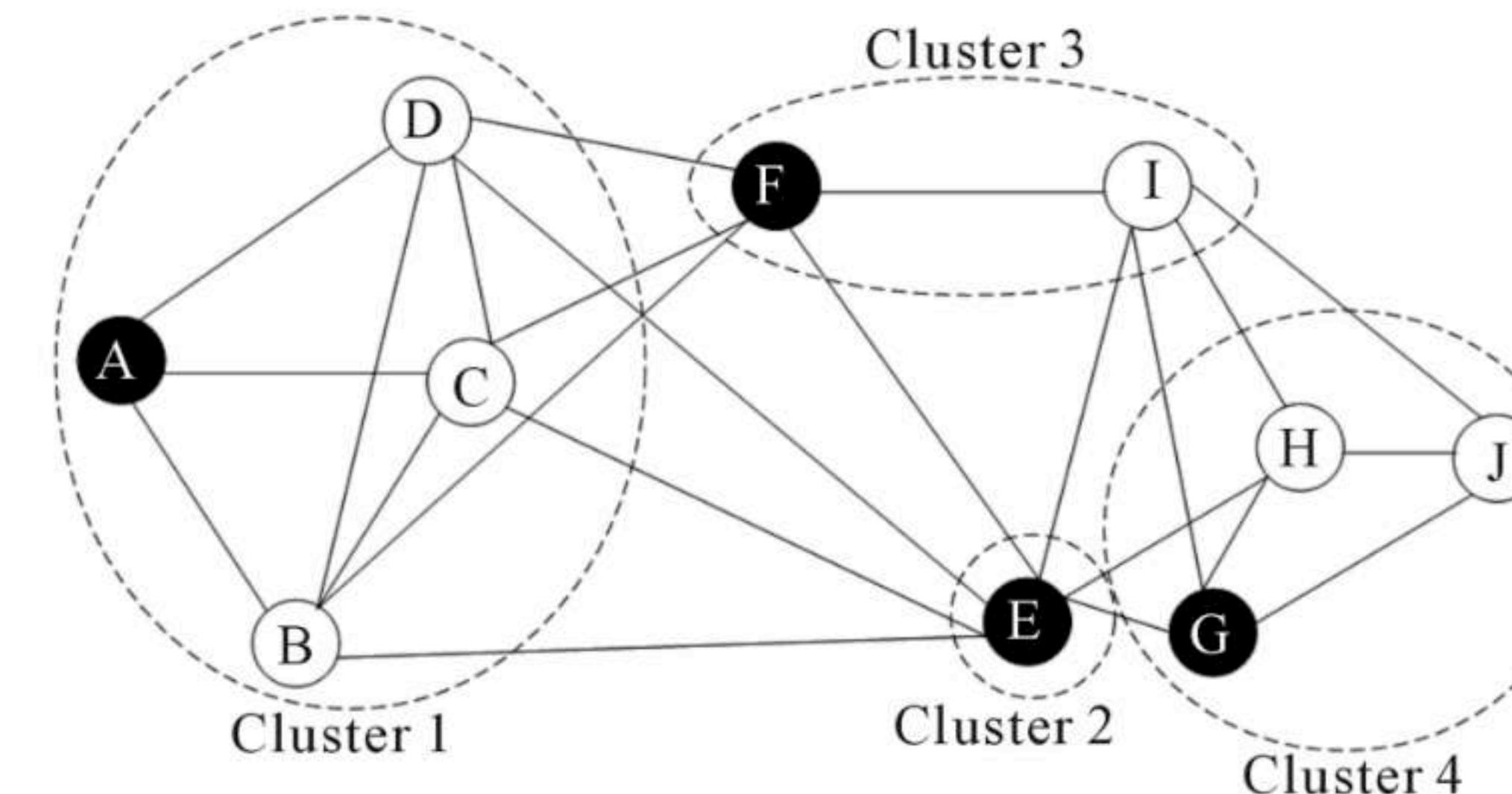




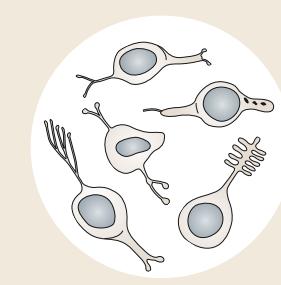
7. Cell clustering

1. Cell-cell distance matrix. E.g. correlation-based, cosine similarity, Euclidean distance in PC-reduced space.

2. Cell clustering:
 - i. Clustering algorithms. E.g. HC, k-means.
 - ii. Graph-partitioning algorithm: k-NN graph construction followed by community detection (e.g. Louvain algorithm).

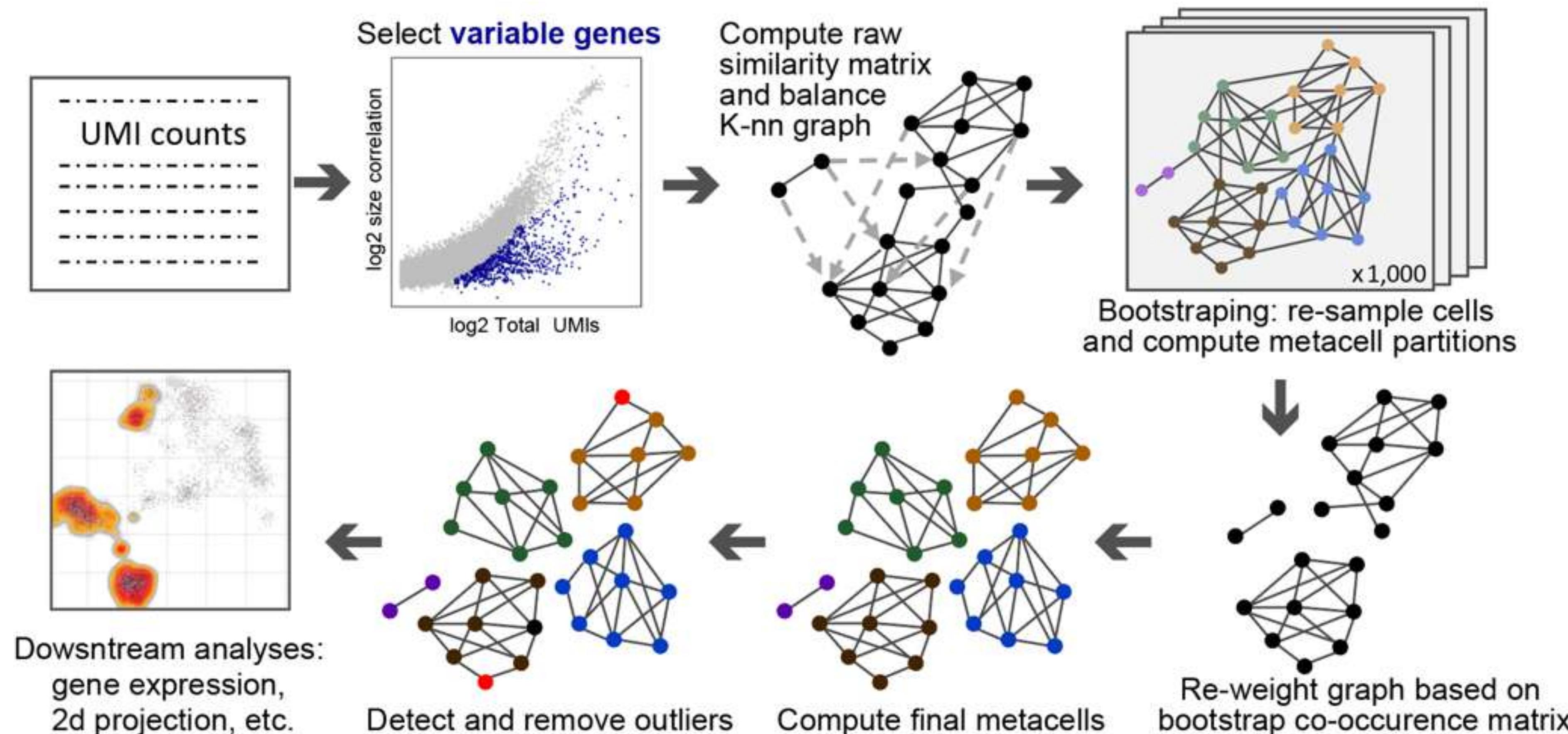


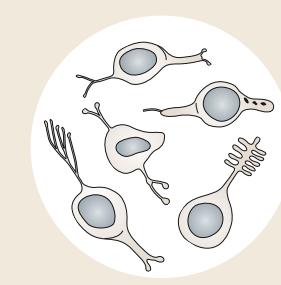
Cells (nodes) connected to K most similar cells.



7. Cell clustering: Metacells

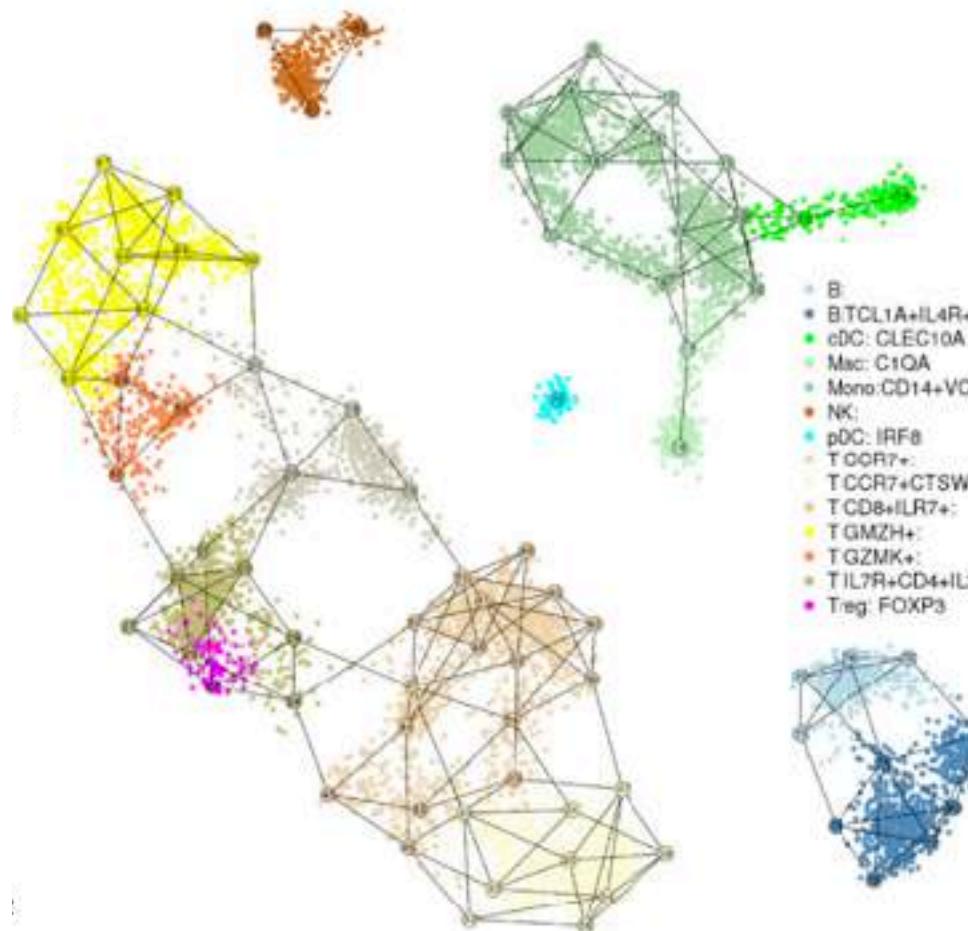
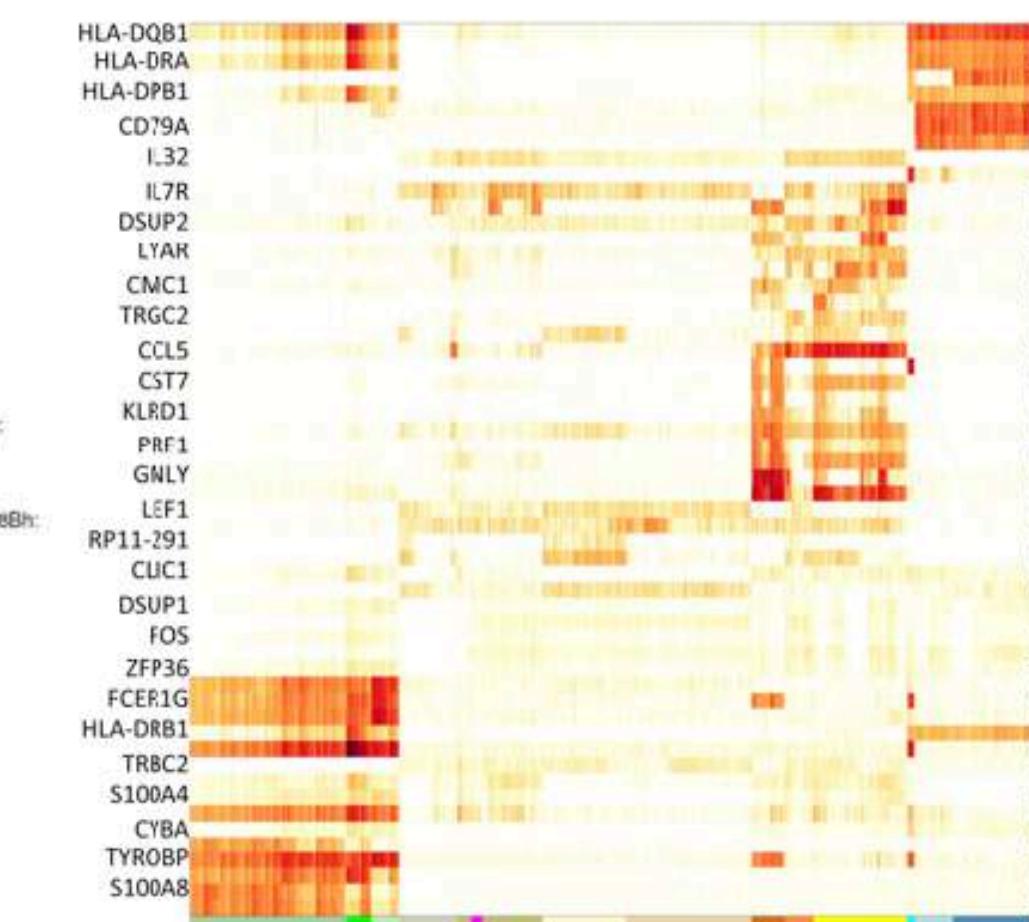
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions



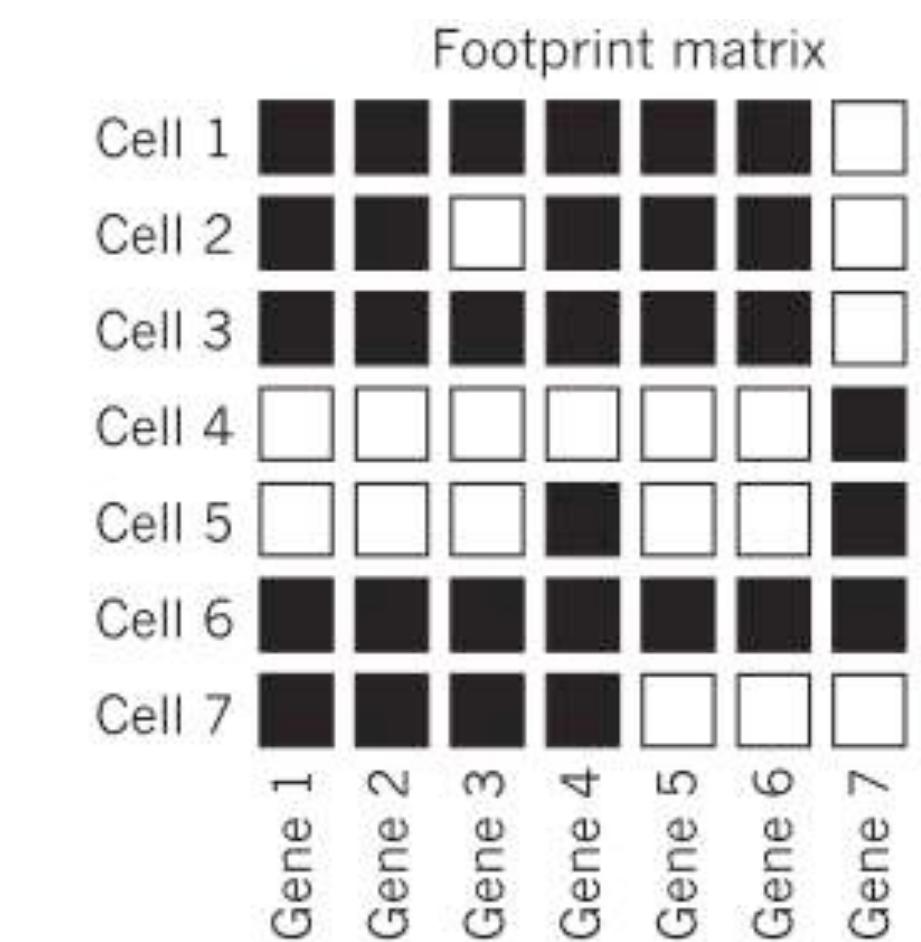
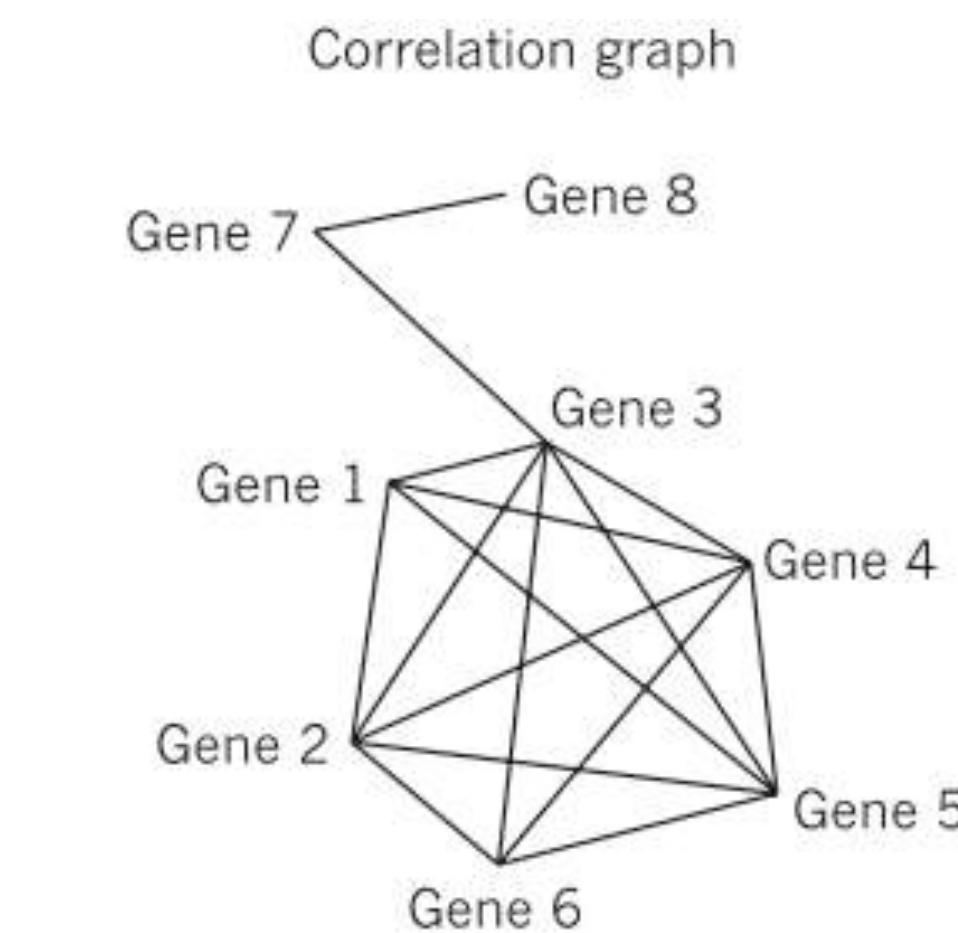


8. Downstream data analysis: annotation, integration, gene module inference, etc.

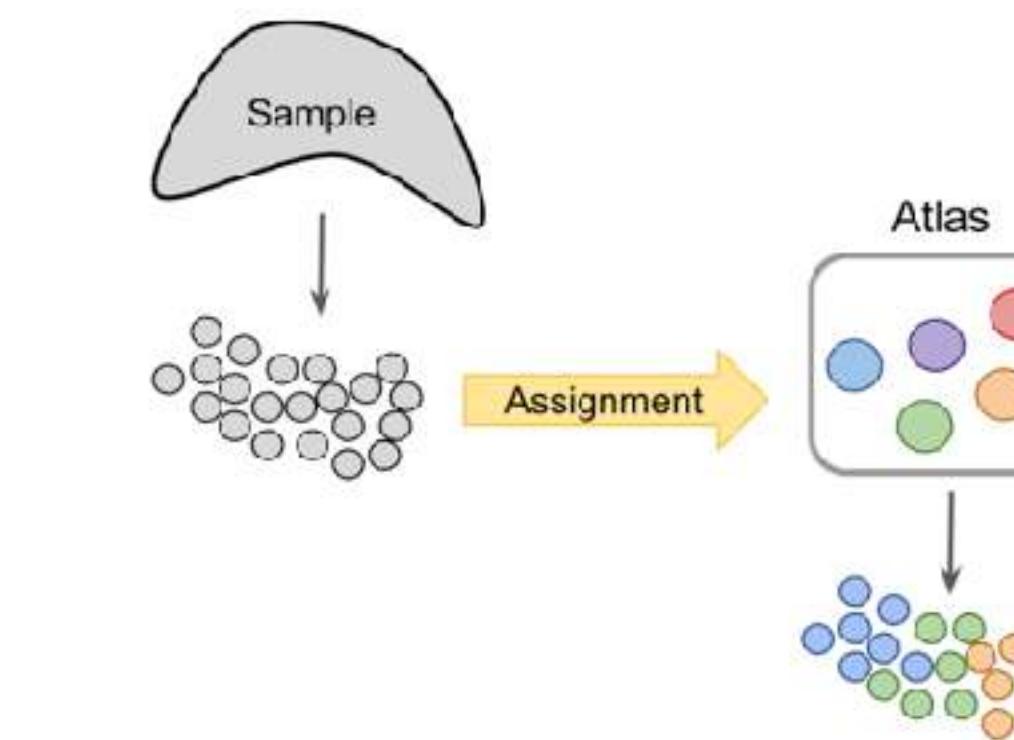
Project expression of known *marker genes* and/or the top specific genes per each cluster.



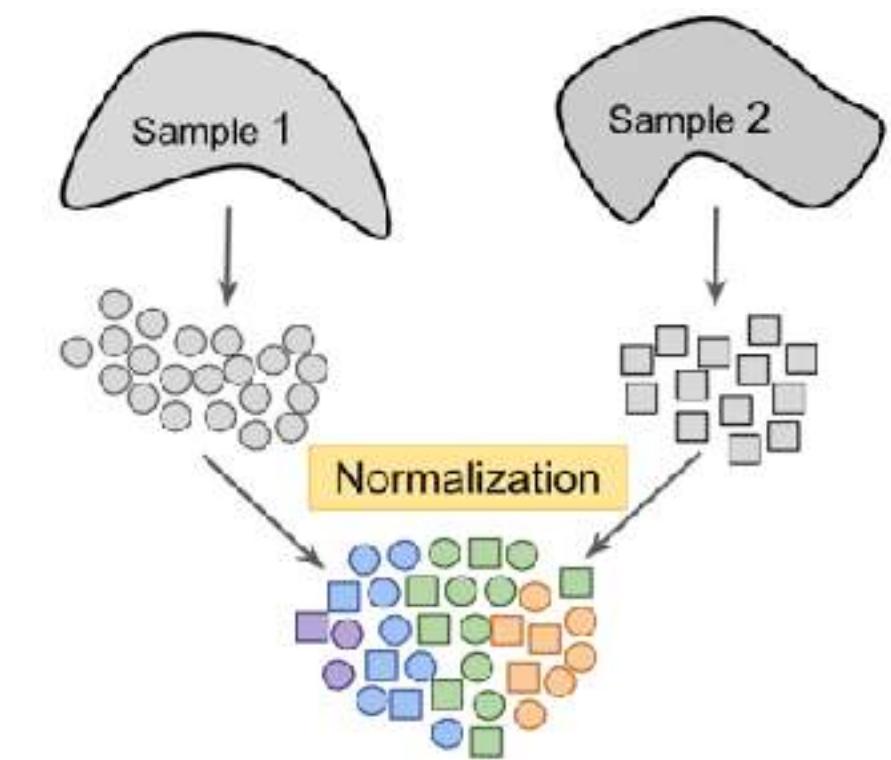
Gene-gene expression correlation to infer co-regulated gene modules



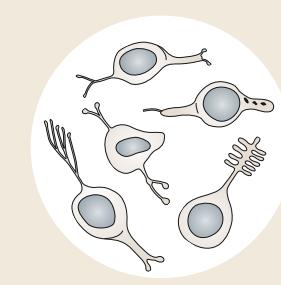
Comparative cell type annotation



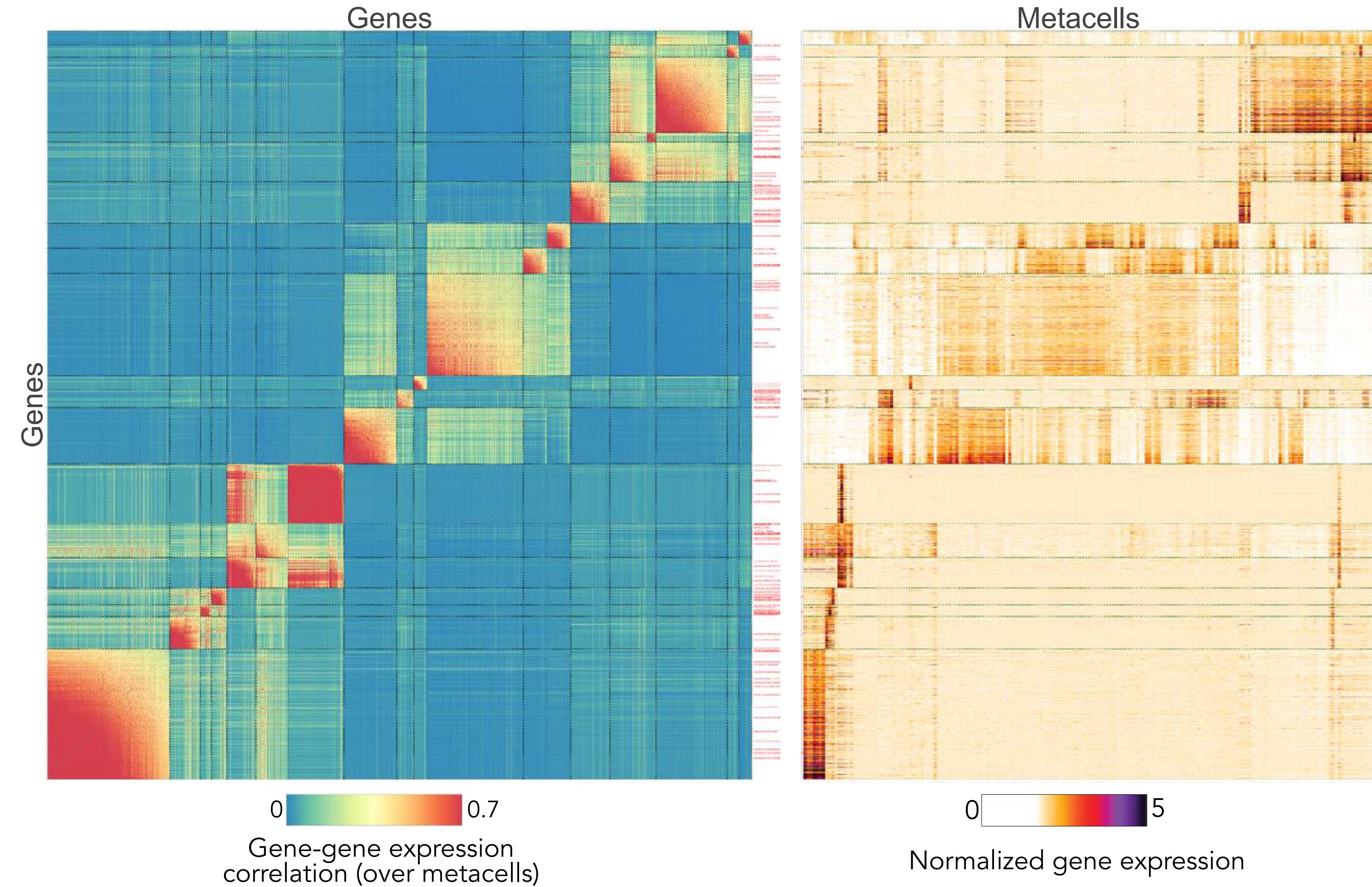
Projection to a reference atlas

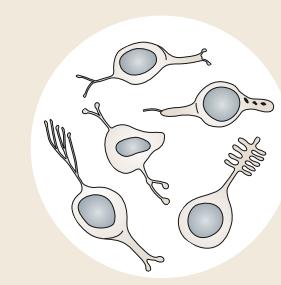


Alternative: joint analysis



8. Downstream data analysis: gene modules





8. Downstream data analysis: cross-species comparisons, overview of strategies

1. Ortholog selection:

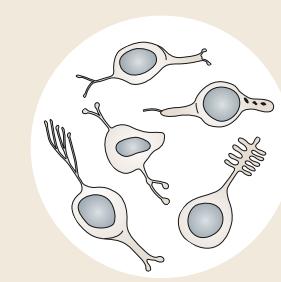
- strict one-to-one orthologs
- homologs
- Protein Language Models

2. Resolution

- single cells
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation
- train classifiers
- sample integration
- DL universal cell embeddings



8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

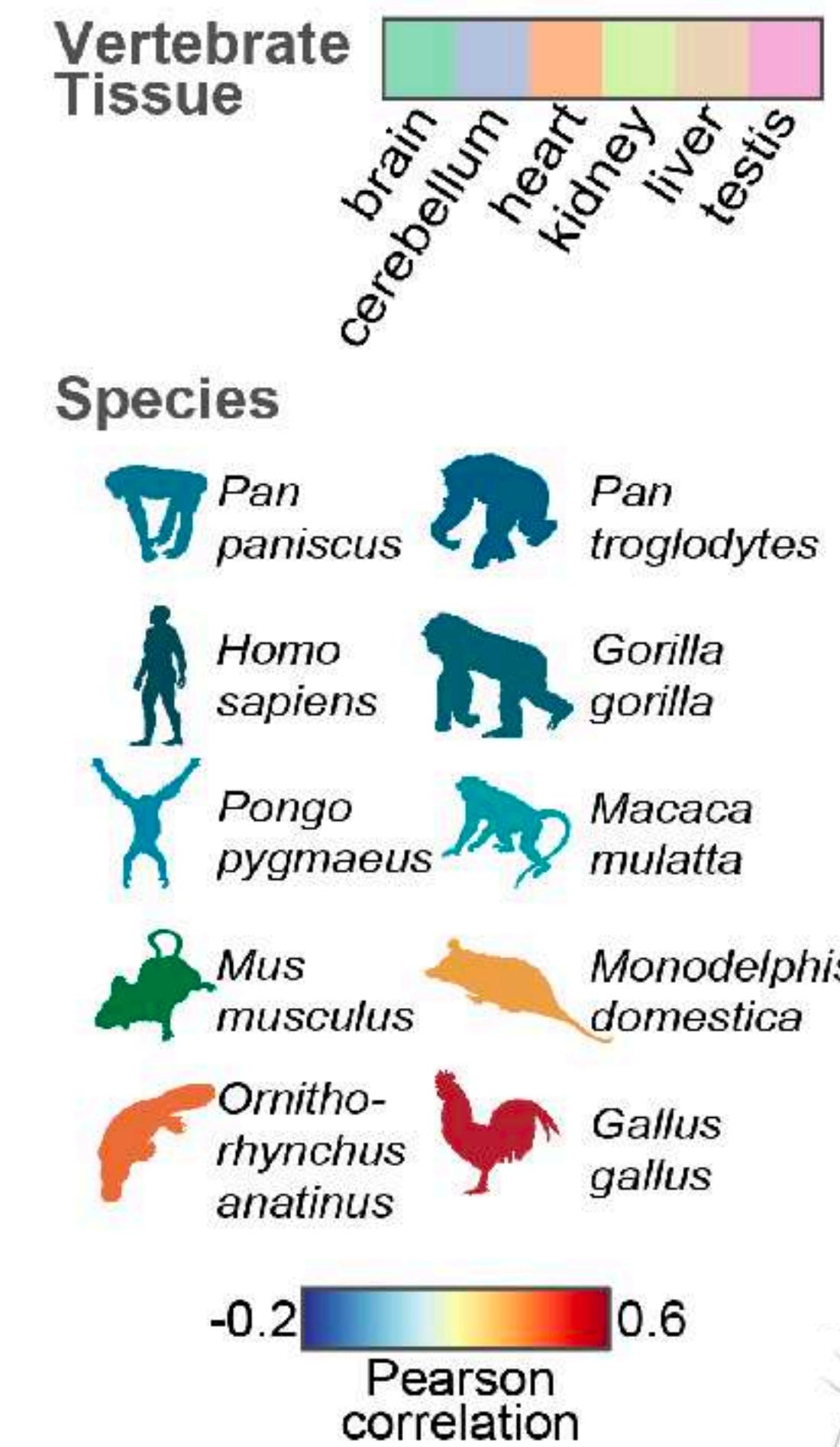
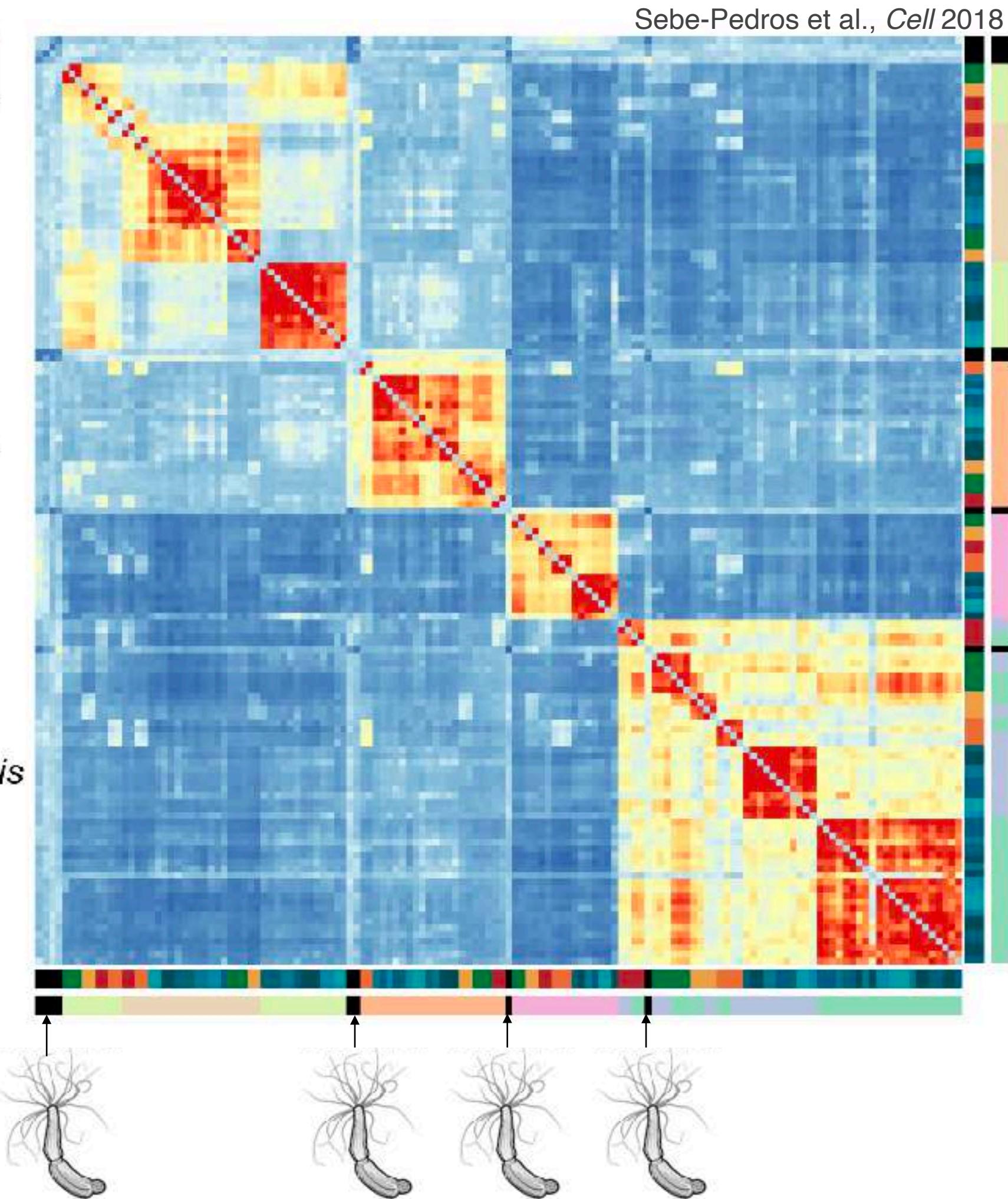
- strict one-to-one orthologs
- homologs
- Protein Language Models

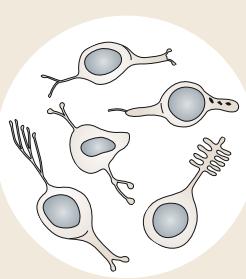
2. Resolution

- single cells
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation
- train classifiers
- sample integration
- DL universal cell embeddings





8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection

- strict one-to-one orthologs
- homologs
- Protein Language Models

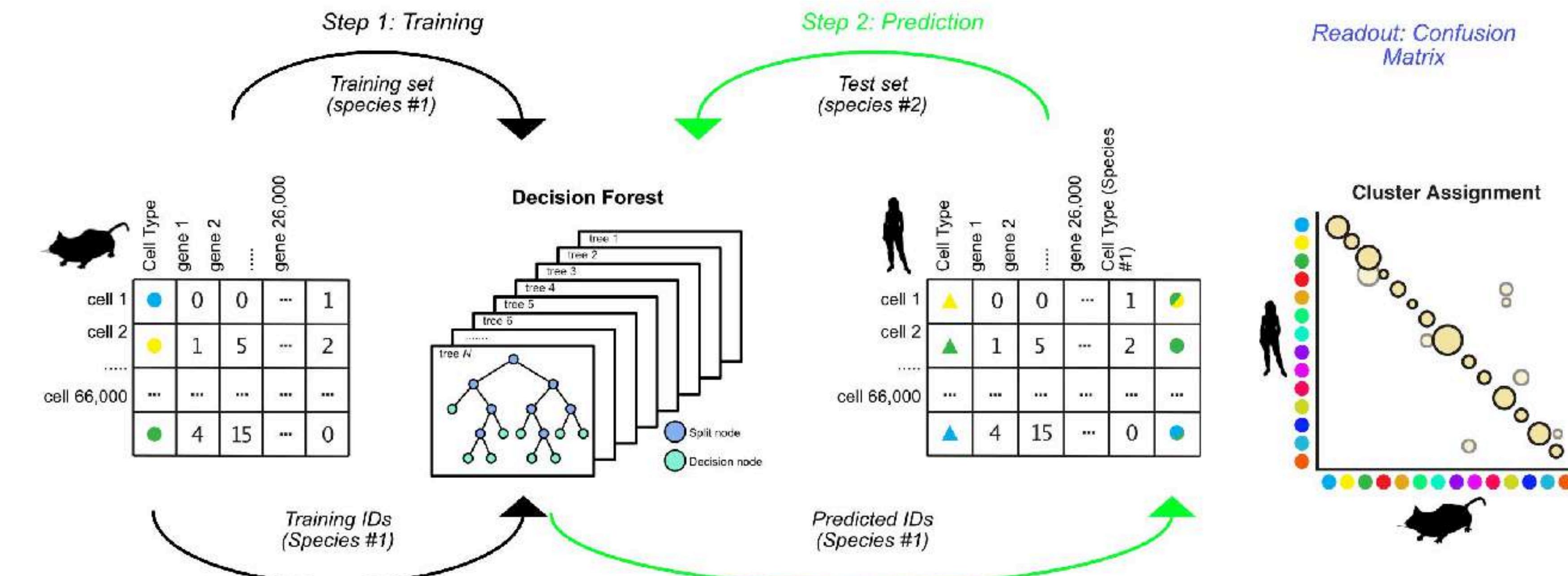
2. Resolution

- single cells
- cell clusters/cell types

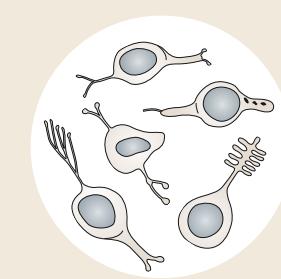
3. Comparison strategies

- gene expression correlation
- train classifiers
- sample integration
- DL universal cell embedding

Random forest classifiers trained in one species and applied to another



Shafer *Front. Cell Dev. Biol.* 2019



8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

- strict one-to-one orthologs
- homologs
- Protein Language Models

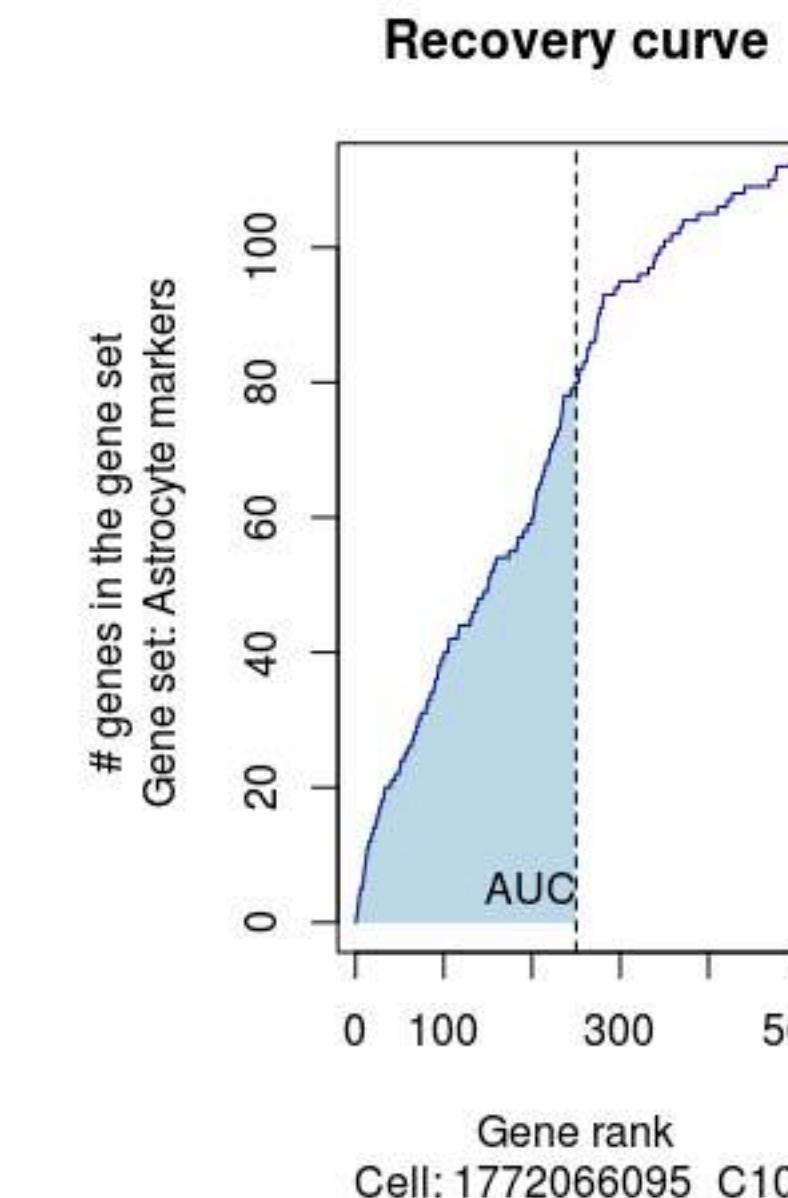
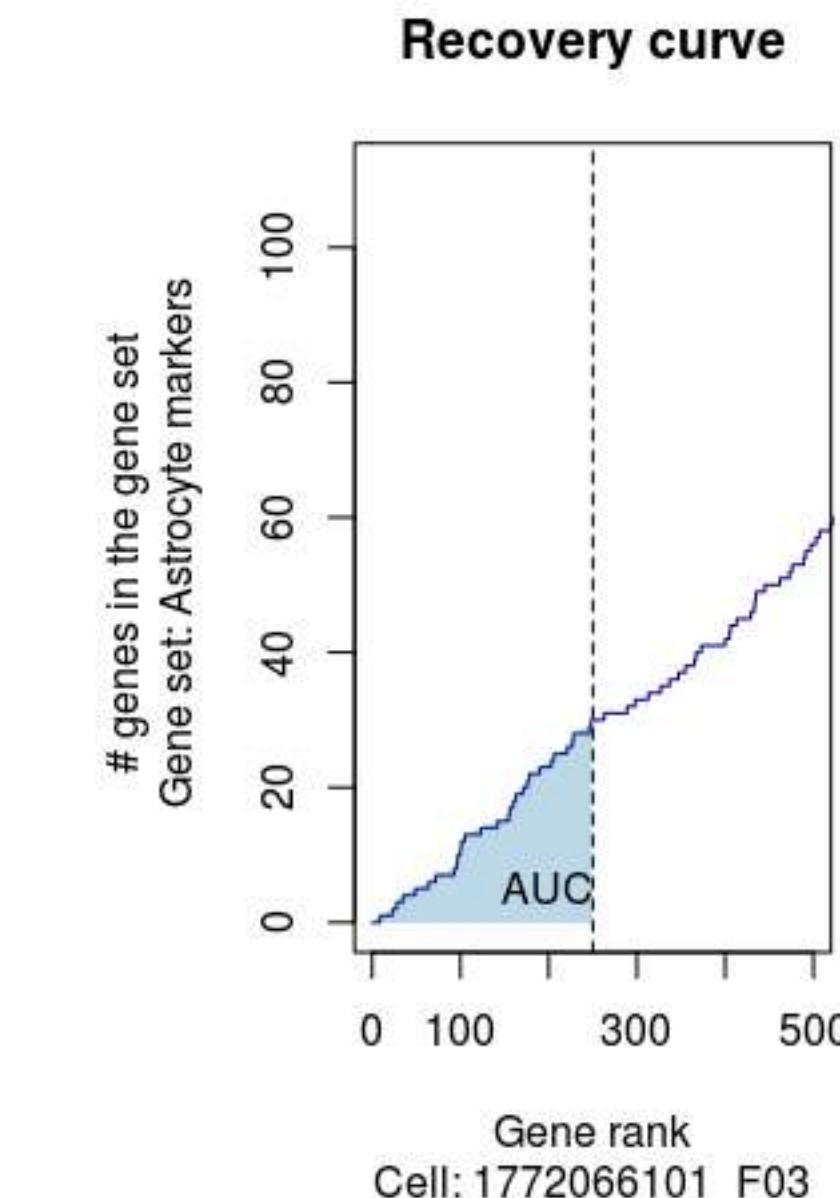
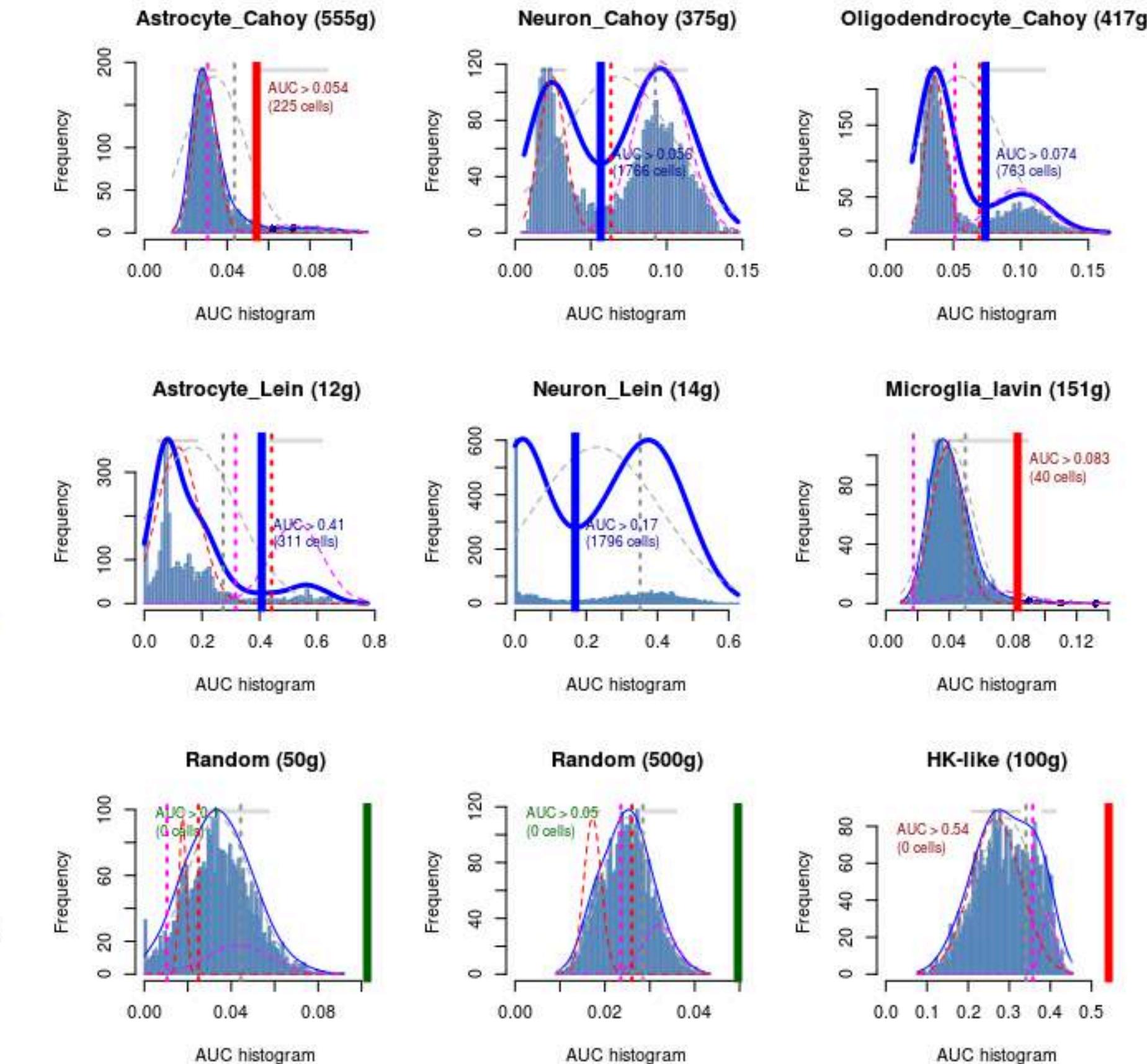
AUCCell: Area Under the Curve for Gene Sets

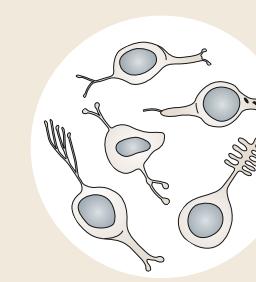
2. Resolution

- single cells
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation
- train classifiers
- sample integration
- DL universal cell embeddings





8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

- strict one-to-one orthologs
- **homologs (many-to-many)**
- Protein Language Models

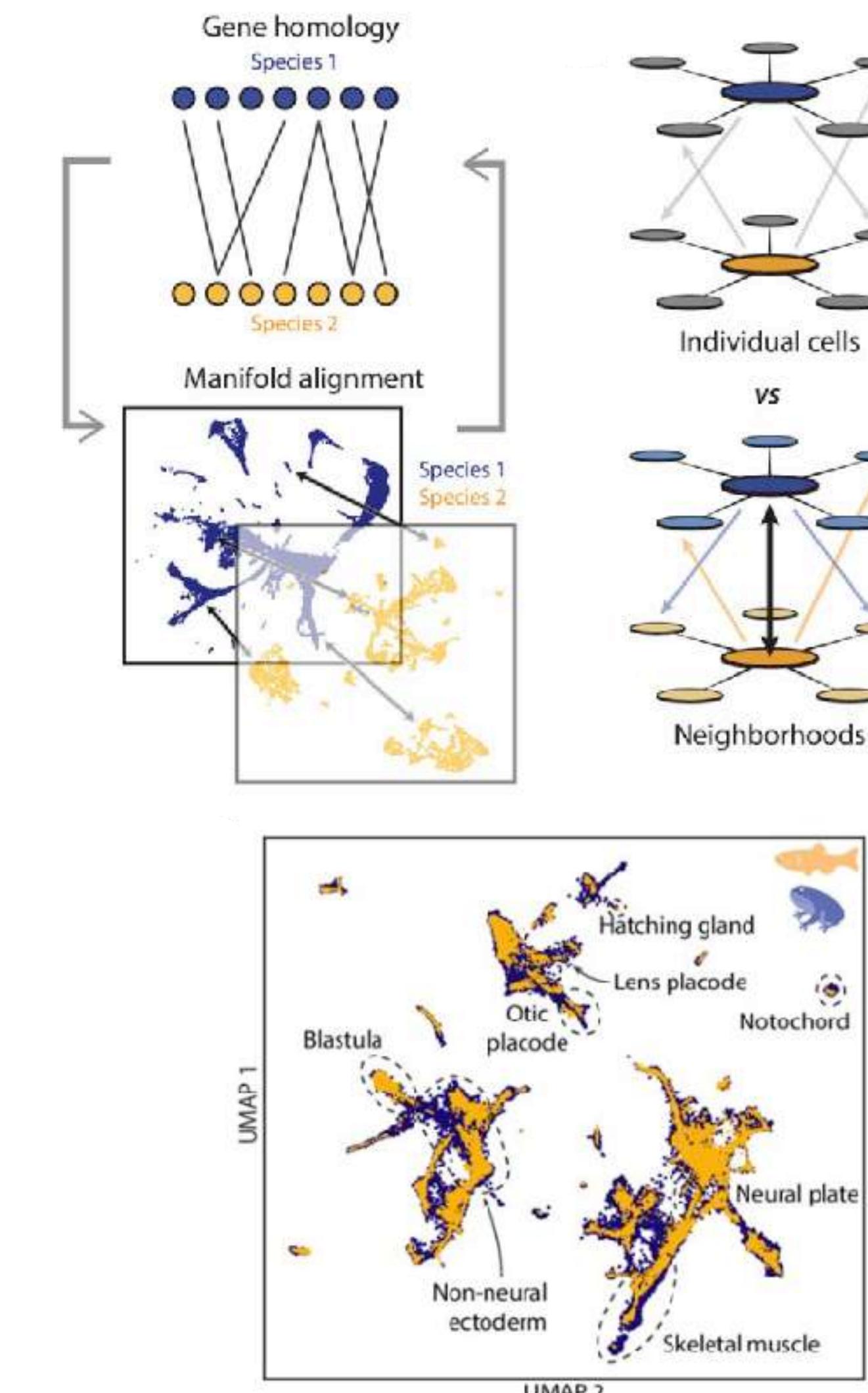
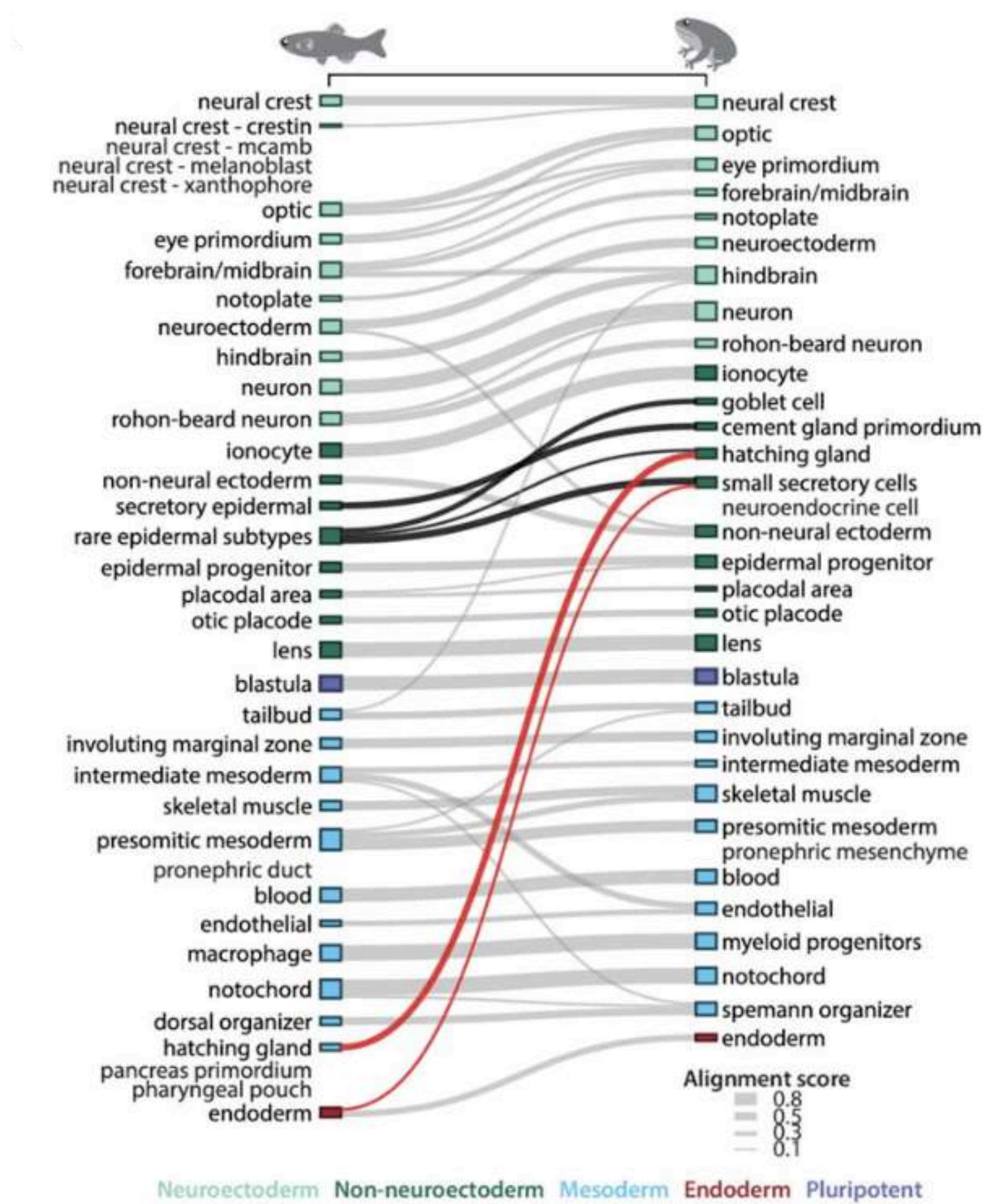
2. Resolution

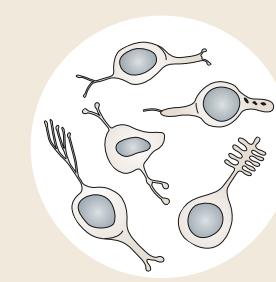
- **single cells**
- **cell clusters/cell types**

3. Comparison strategies:

- gene expression correlation
- train classifiers
- **sample integration**
- DL universal cell embeddings

SAMap: cross-species self-assembling manifolds





8. Downstream data analysis: cross-species comparisons, examples

1. Ortholog selection:

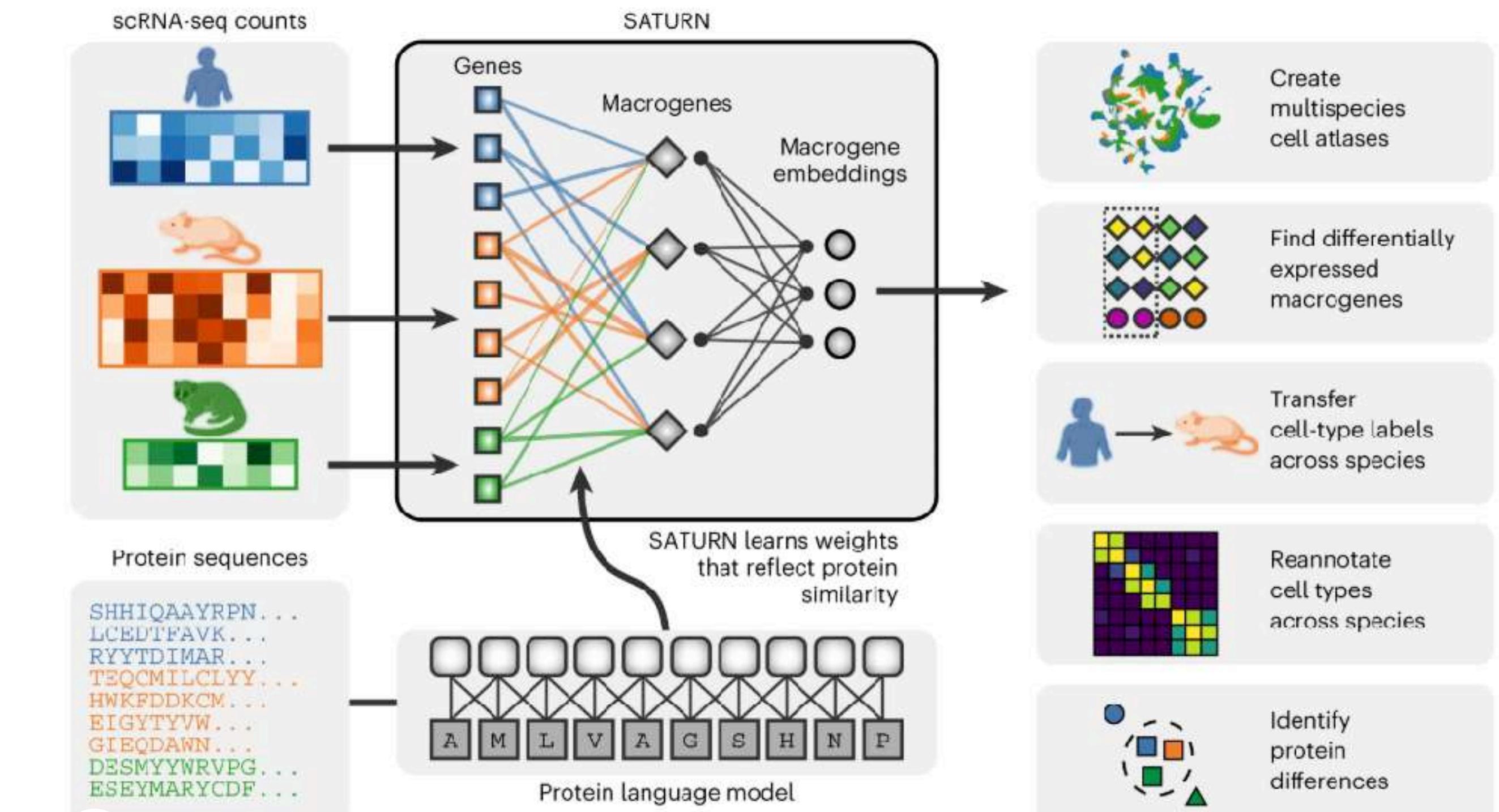
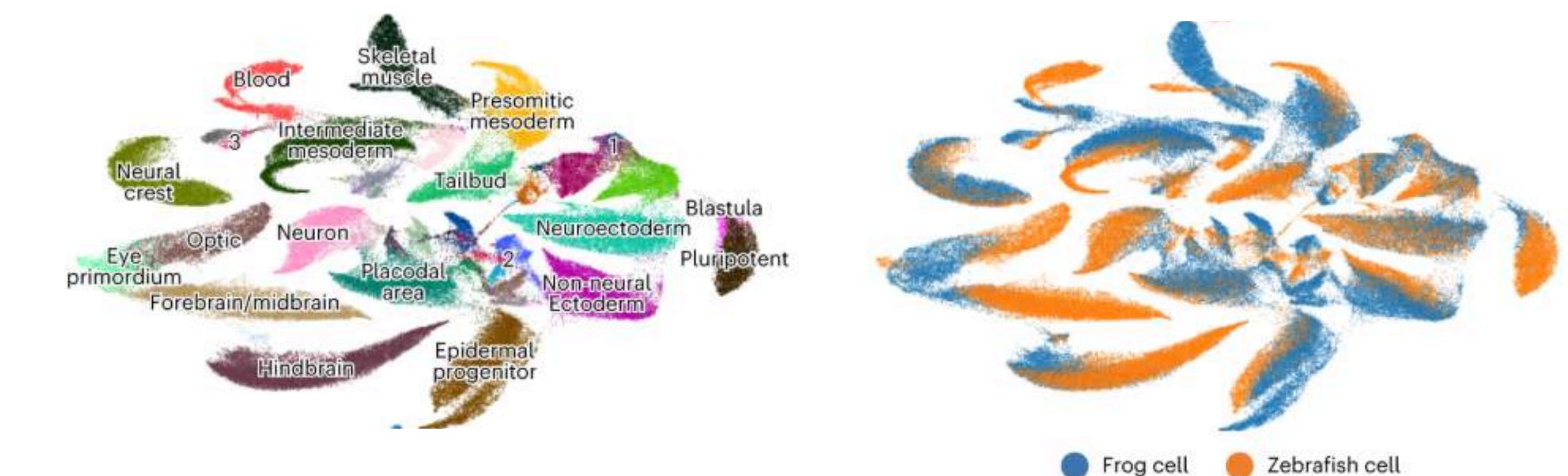
- strict one-to-one orthologs
- homologs
- **Protein Language Models**

2. Resolution

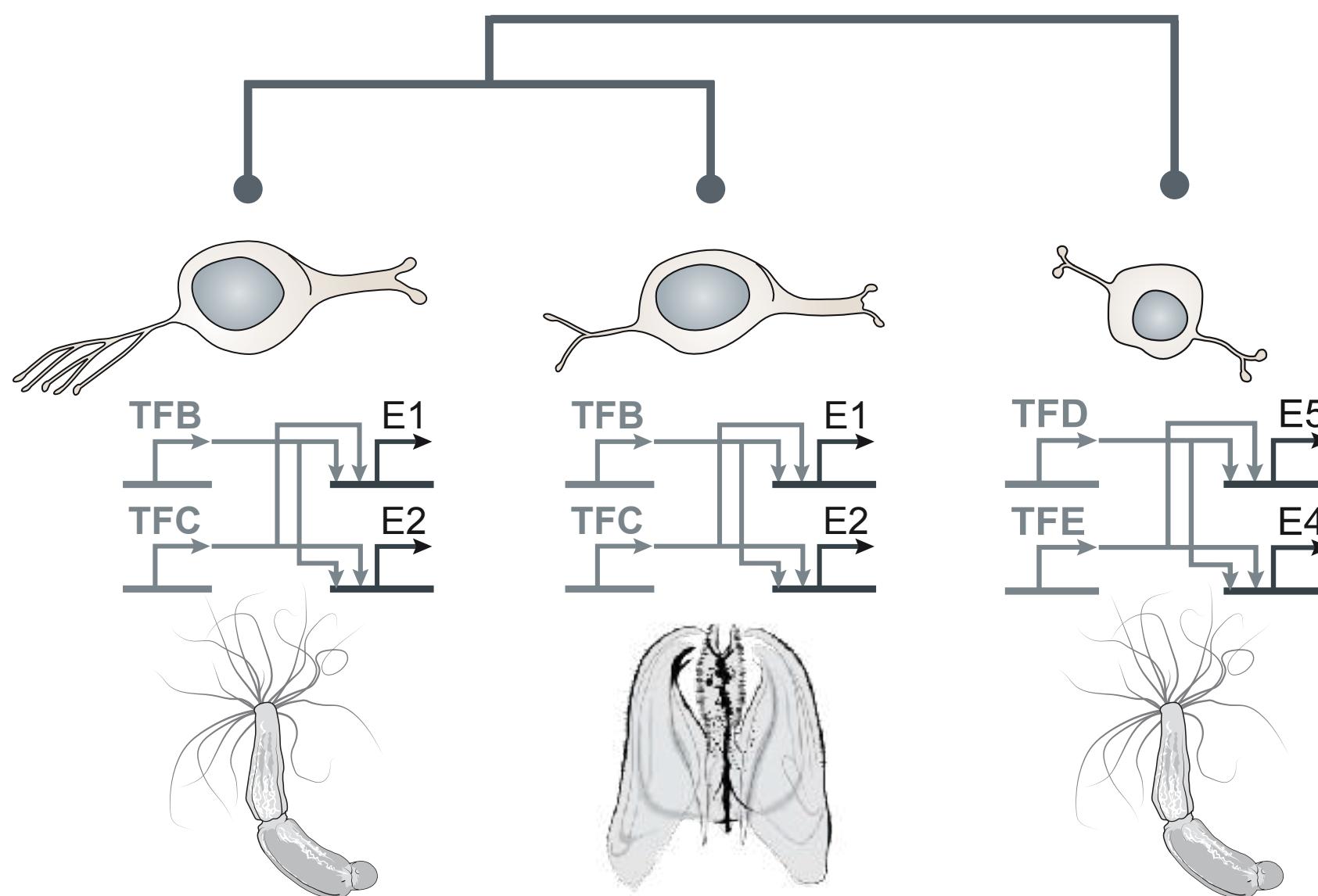
- **single cells**
- cell clusters/cell types

3. Comparison strategies:

- gene expression correlation
- train classifiers
- sample integration
- **DL universal cell embeddings**

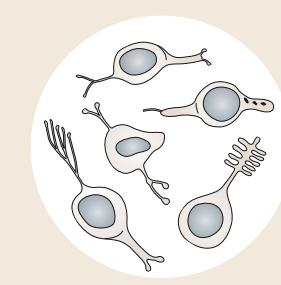


Early animal cell type diversity, evolution and regulation



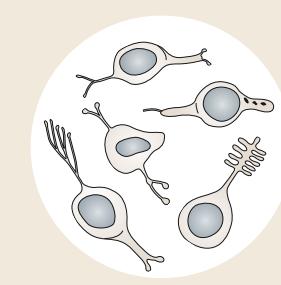
Arnau Sebé-Pedrós

www.sebepedroslab.org

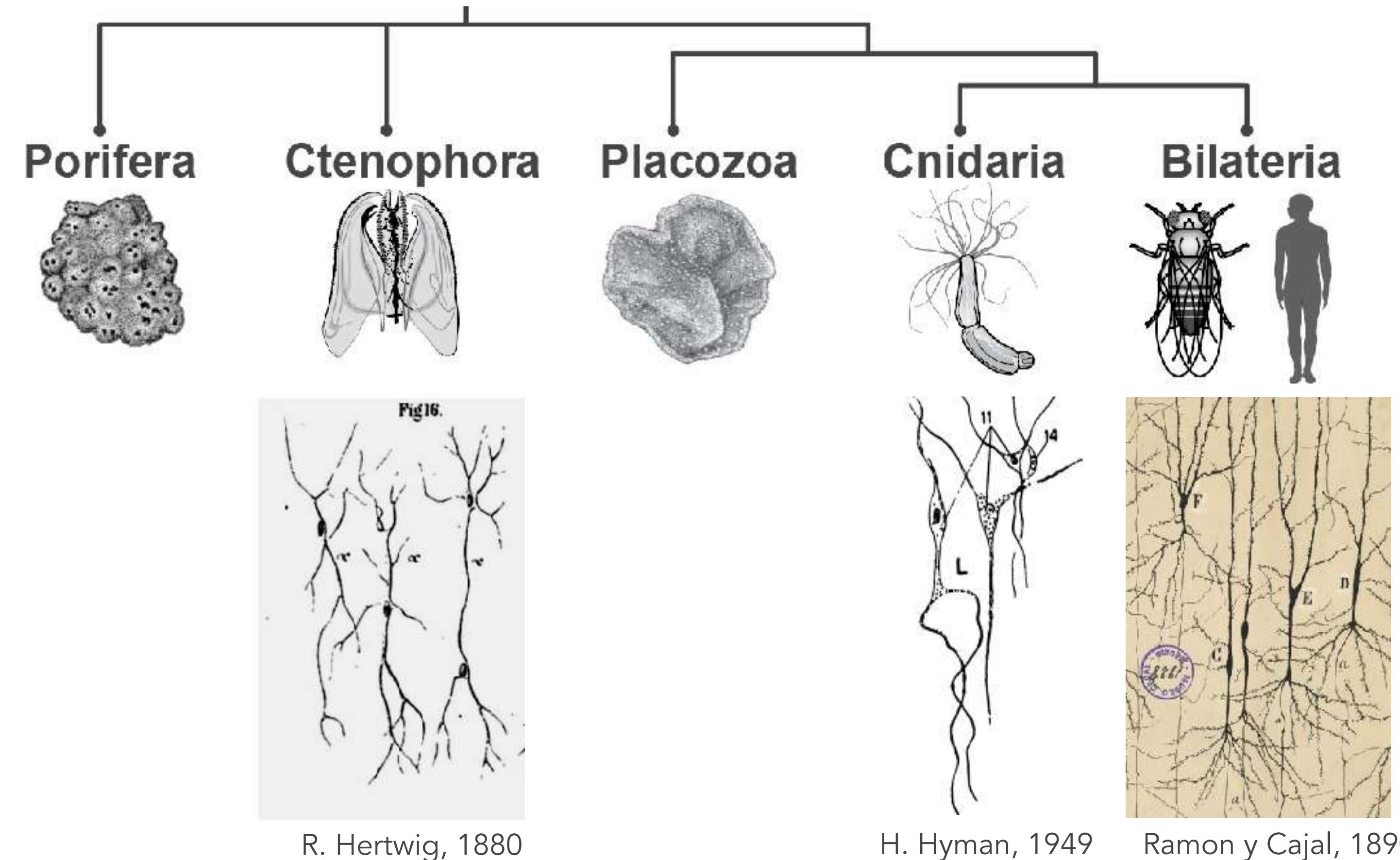


Cell types are the **functional and evolutionary units** of animal multicellularity

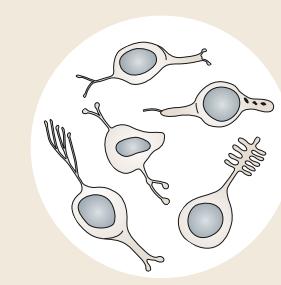




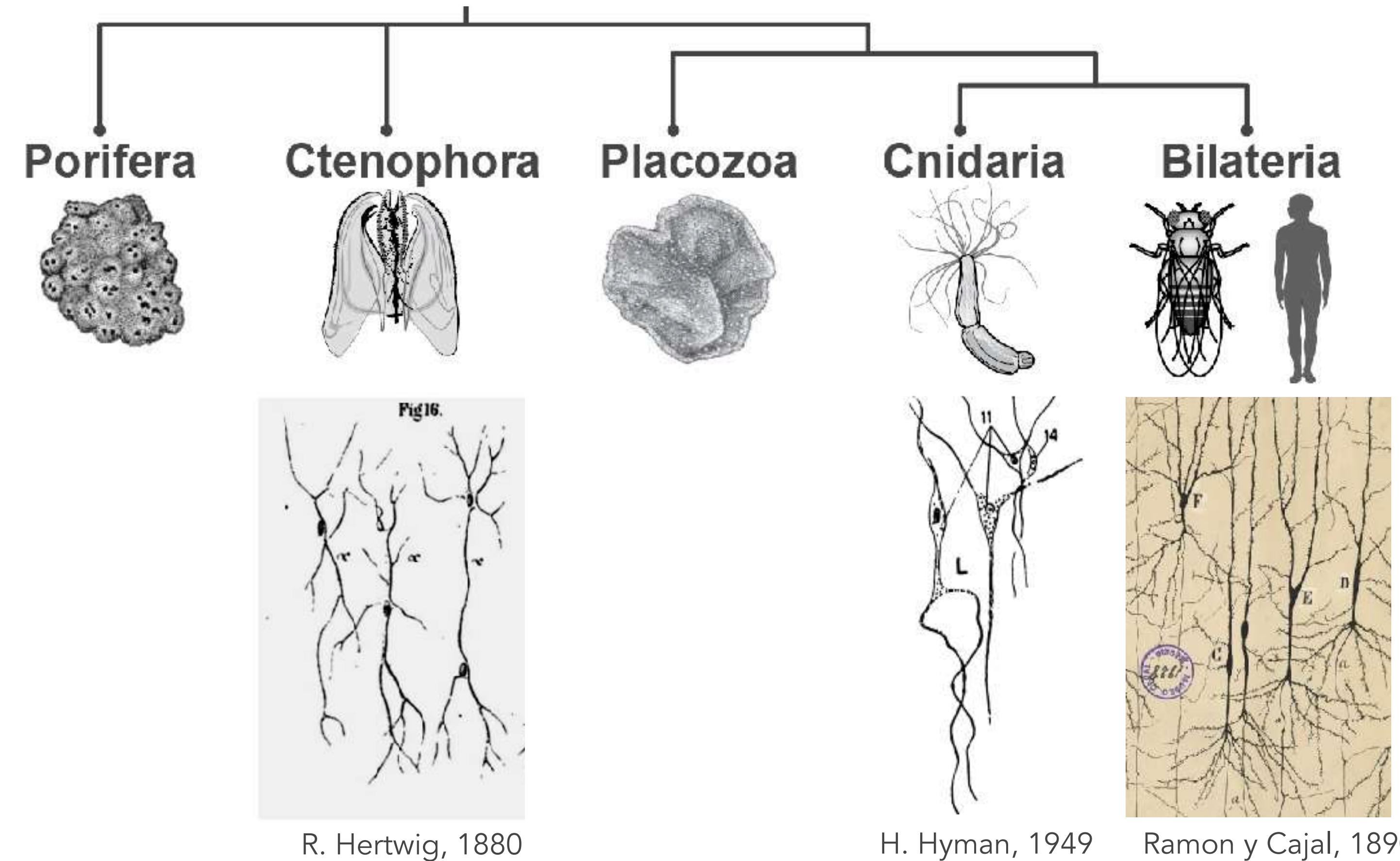
Cell types are the **functional and evolutionary units** of animal multicellularity



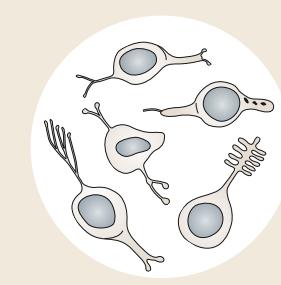
Morphological similarities across animal phyla suggest **conserved cell types**



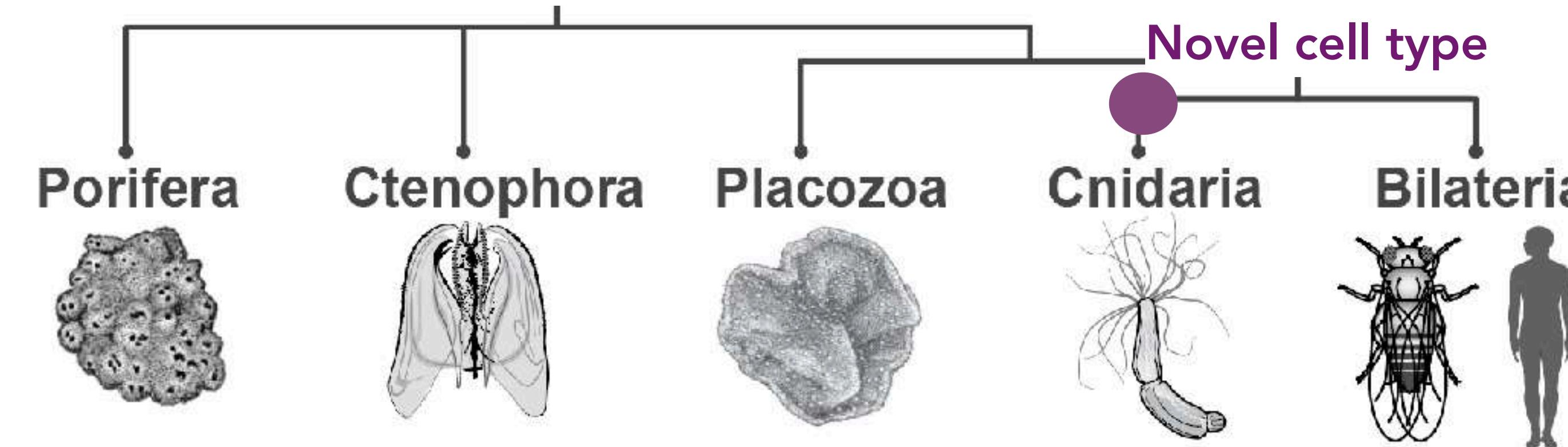
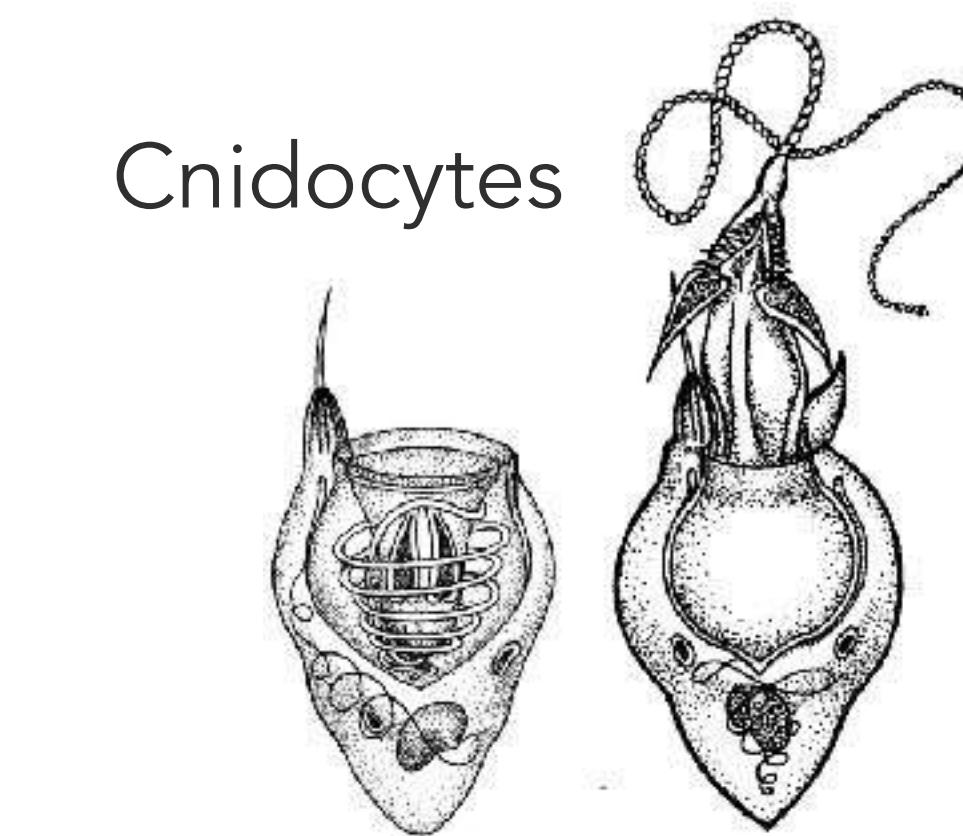
Cell types are the **functional and evolutionary units** of animal multicellularity



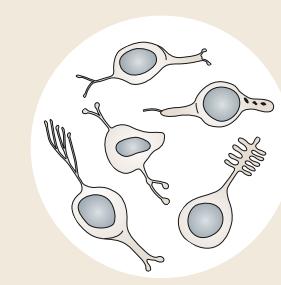
A major question is **when cell types originated**



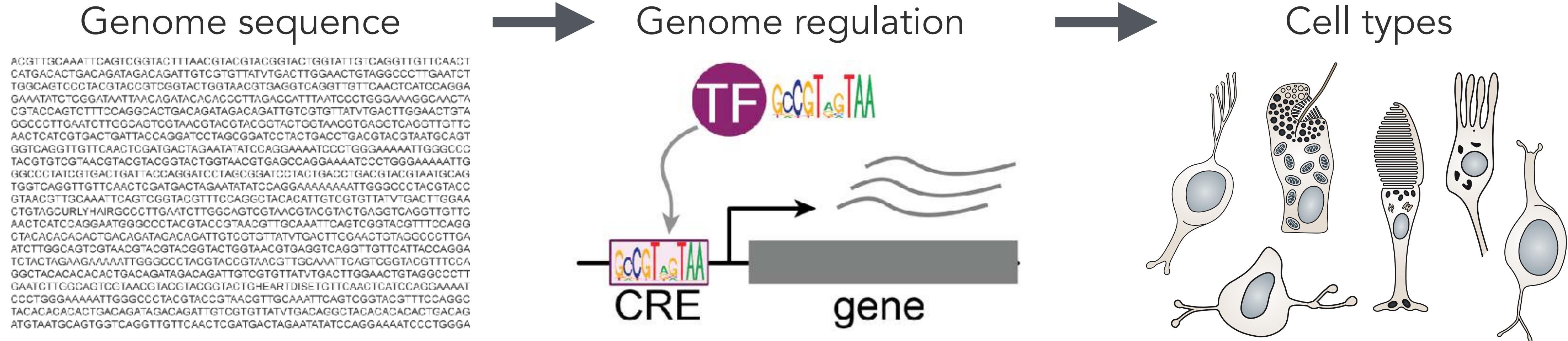
Cell types are the **functional and evolutionary units** of animal multicellularity

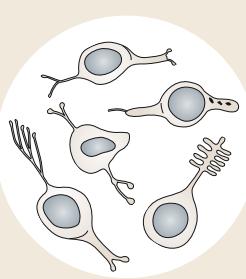


A major question is when cell types originated **and how novel cell types evolve**



Cell types are genetically defined by specific **regulatory programs**





Cell types are genetically defined by specific **regulatory programs**

Genome sequence

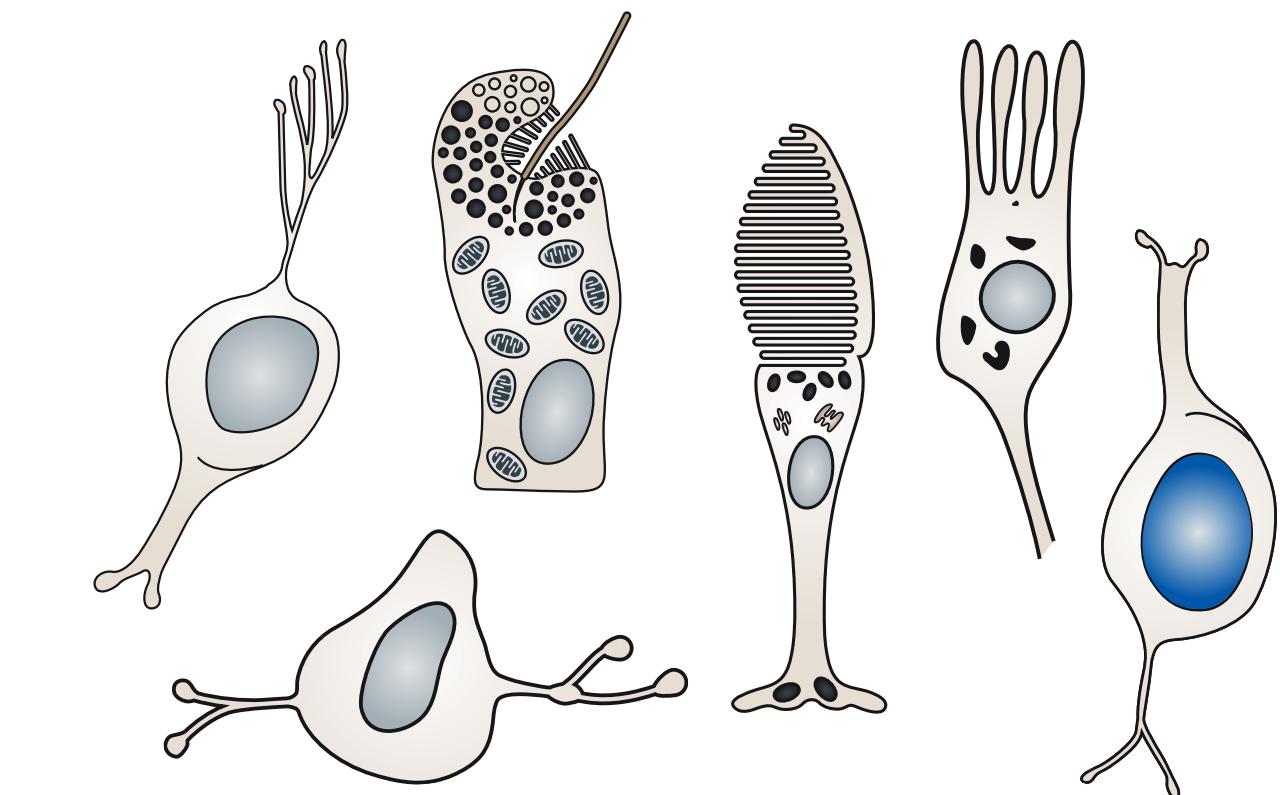
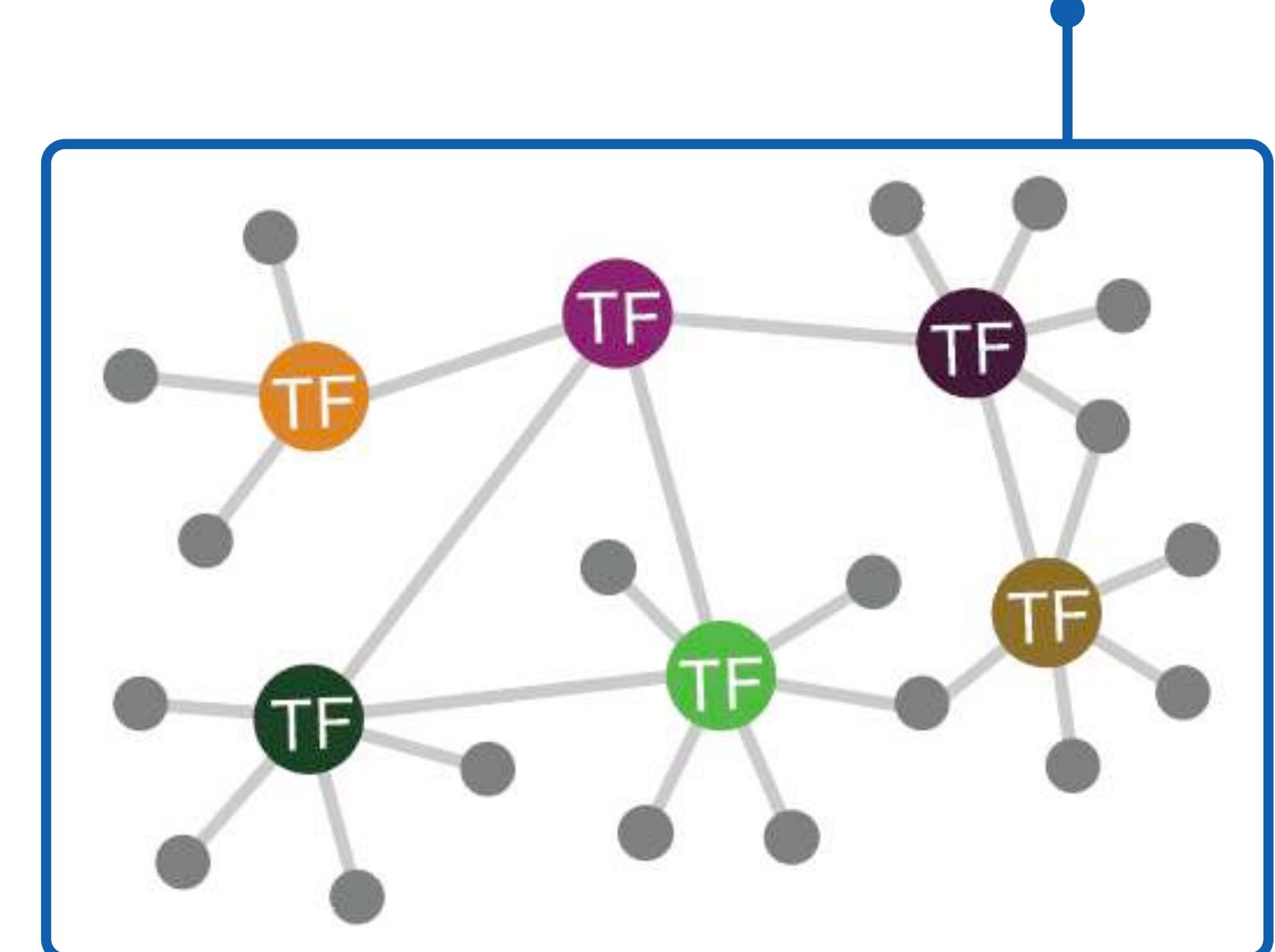
ACGTTGCAAATTAGTCGGTACCTAACGTACGTACGGTACTGGTATTGTCAAGGTTGTC
CATGACACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACTGTAGGCCCTTGA
TGGCACTCCCTACGTACCGTACGGTACTGGTAAACGTGAGGTGAGGTTGTTCAACTCATCCA
GAAATATCTCGGATAATTAAACAGATACACACCCCTAGACCATTTAATCCCTGGGAAAGGCA
CGTACCACTGCTTCCAGGCACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACT
GGCCCTTGAATCTTCCGAGTGGTAAACGTACGGTACTGGTAAACGTGAGGTGAGGTTG
AACTCATCGTGAETGATTACCAAGGACTCTAGCGGATCCTACTGACCTGACGTACGTAATG
GGTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGGAAAATCCCTGGGAAAATGGG
TACGTGTCGTAACGTACGGTACTGGTAAACGTGAGCCAGGAAAATCCCTGGGAAAATGGG
GGCCCTATCGTGAETGATTACCAAGGACTCTAGCGGATCCTACTGACCTGACGTACGTAATG
TGGTCAGGTTGTTCAACTCGATGACTAGAATATATCCAGGAAAATGGGAACTGTAGGTT
GTAACGTTGCAAATTAGTCGGTACGTTCCAGGCTACACATTGTCGTGTTATVTGACTT
CTGTAGCURLYHAIRGCCCTTGAAATCTTGGCAGTCGTACGTACGTACTGAGGTGAGGTT
AACTCATCCAGGAATGGGCCCTACGTACCGTAACGTTGCAAATTAGTCGGTACGTTCC
CTACACACACACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACTGTAGGCC
ATCTTGGCAGTCGTAAACGTACGTACGGTACTGGTAAACGTGAGGTGAGGTTGTTCAATTACCA
TCTACTAGAAGAAAATGGGCCCTACGTACCGTAACGTTGCAAATTAGTCGGTACGTT
GGCTACACACACACTGACAGATAGACAGATTGTCGTGTTATVTGACTTGGAACTGTAGGCC
GAATCTTGGCAGTCGTAAACGTACGTACGGTACTGHEARTDISETGTCAACTCATCCAGGA
CCCTGGGAAAATGGGCCCTACGTACCGTAACGTTGCAAATTAGTCGGTACGTTCCAA
TACACACACACTGACAGATAGACAGATTGTCGTGTTATVTGACAGGCTACACACACACTG
ATGTAATGCAGTGGTCAGGTTGTTCAACTCGATGACTAGAATATCCAGGAAAATCCCTG

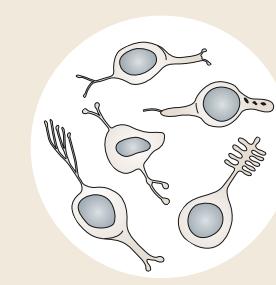
Study cell type evolution by defining
and comparing cell identity program

Genome regulation



Cell types



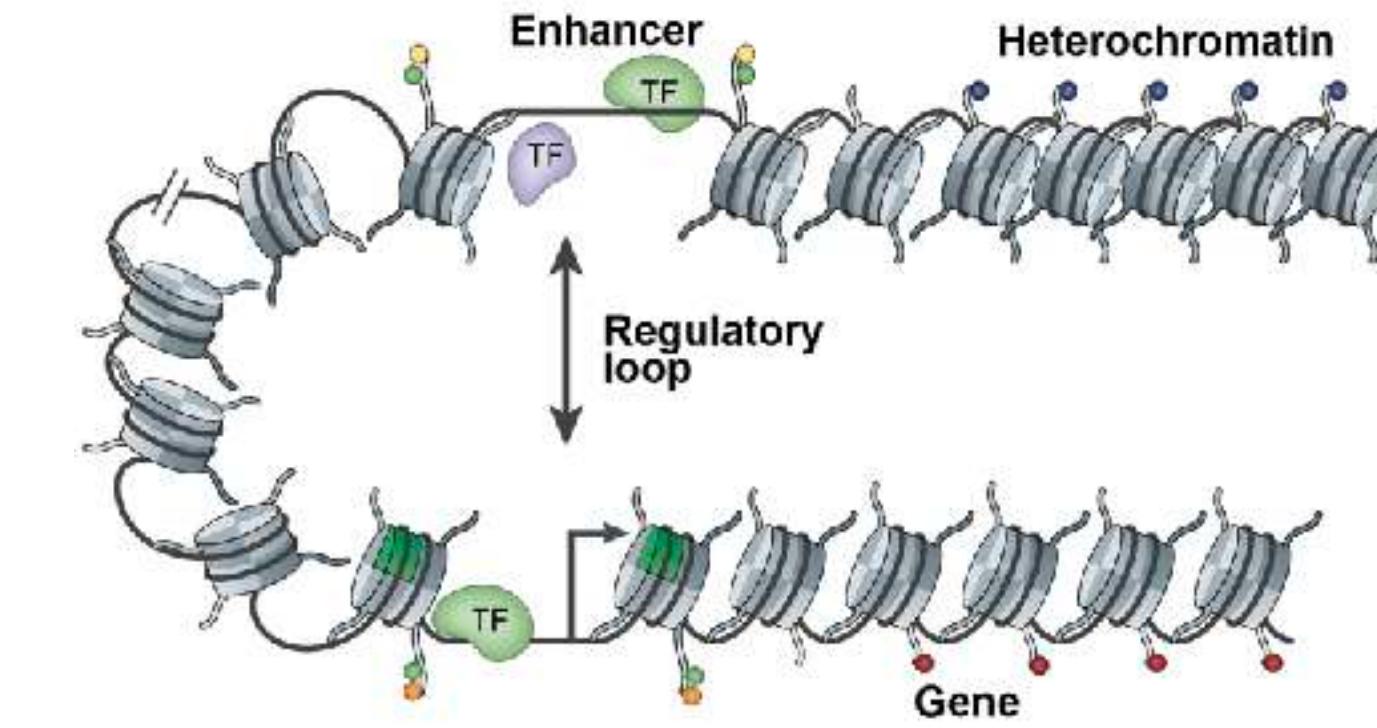


Phylogenetic sampling biases preclude the systematic comparative study of cell types

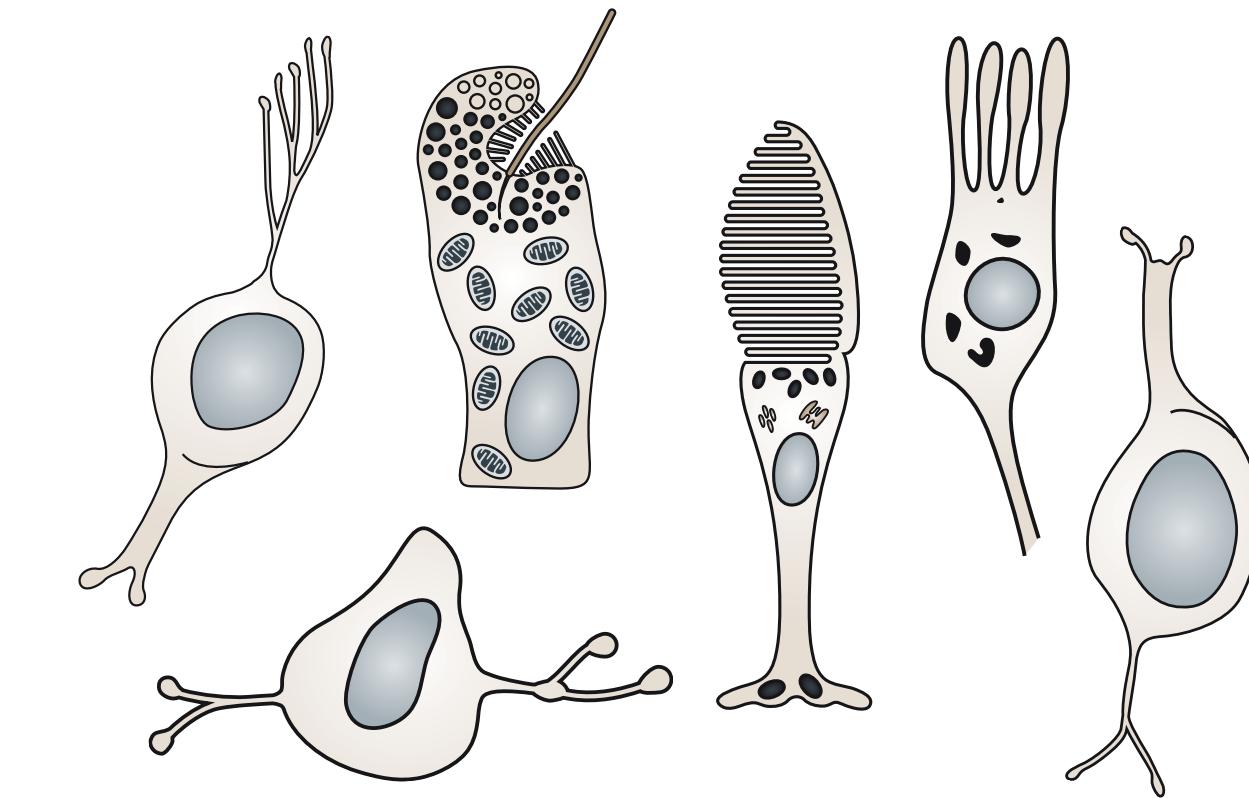
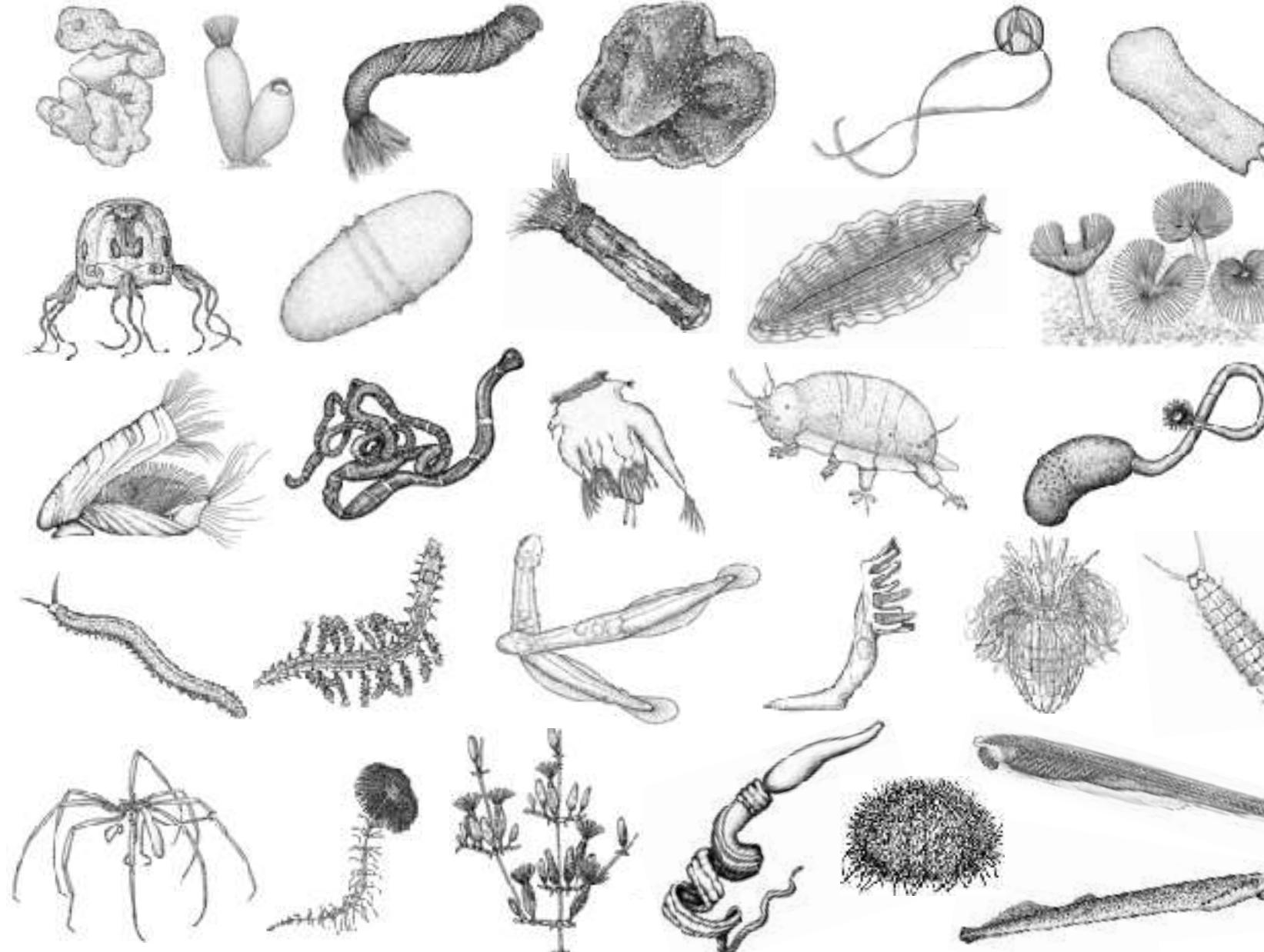
Genome sequence

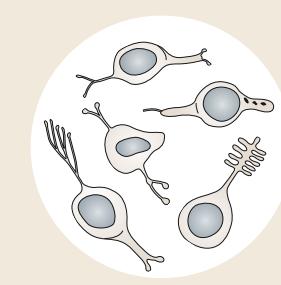
```
ACGTTGCAAAATTCACTCGGTACTTTAACGTAACGTACGGTACTGGTATTGTCAGGTGTTCACT  
CATGACACTGACAGATAGACAGATTGTCGTGTTATVGA...TTGGAACTGTAGGCCCTTGAATCT  
TGGCAGTCCTACGTACCGTACGGTACTGGTAACGTAGGGTGTTCAC...CTCATCCAGGA  
GAAATATCTCGGATAATTACAGATACAGACGGCTTAGACCATTAA...CCCTGGGAAAGGCAACTA  
CGTAC...AGTCTTCCAGGCACTGACAGATAGACAGATTGTCGTGTTATVGA...CTGGAAACTGT  
GGCCCTTGAATCTTCCAGGCACTGTAACGTACGGTACTGGTAACGTAG...CTCAGGTTTC  
AACTCATCGTACTGATTACCAAGGATCTAGCGATCCTACTGACCTGACGTACGTAA...GAGT  
GGTCAGGGTGTCAACTGATGACTAGAATATACCAAGGAAATACCTGGGAAATGGGCCC  
TACGTGTGTAACGTACGGTACTGGTAACGTAGGCCAGGAAATCCTGGGAAATGG  
GGCCCTATCGTACTGATTACAGGATCTAGCGGATCCTACTGAC...GTACGTAA...GAGT  
TGGTCAGGGTGTCAACTGATGACTAGAATATACCAAGGAAATGGGCCCCTACGTAC  
GTAACGTGCAAAATTCACTCGGTACGGTACGGCTACACATTGTCGTGTTATVGA...CTGGAA  
CTGTAGCURLYHAIRGCCCTTGAAATCTGGCAGTCGTACGTACGTAGGGTCAGGGTGT  
AACTCATCAGGAATGGGCCCTACGTACCGTAACGTTGCAAAATTCACTCGTACGTTCCAGG  
CTACACACACTGACAGATACACAGATTGTCGTGTTATVGA...CTGGAAACTGTAGGCCCT  
ATCTGGCAGTCGTACGTACGGTACTGGTAACGTAGGTAGGGTGTGTTATTACAGGA  
TCTACTAGAAGA...ATTGGGCCCTACGTACCGTAACGTACGGTACGGTACGTTCCA  
GGCTACACACACTGACAGATAGACAGATTGTCGTGTTATVGA...CTGGAAACTGTAGGCCCT  
GAAITCTGGCAGTCGTACCGTAACGTACGGTACGGTACGTTCCA  
CCCTGGGAAATGGGCCCTACGTACCGTAACGTACGGTACGGTACGTTCCA  
TACACACACACTGACAGATAGACAGATTGTCGTGTTATVGA...CTGGAAACTGTAGGCCCT  
ATGTAATGCACTCGTACGGTGTCAACTCGTACGTACGAGAATATACCAAGGAAATCCCTGGG  
ATGTAATGCACTCGTACGGTGTCAACTCGTACGTACGAGAATATACCAAGGAAATCCCTGGG
```


Genome regulation

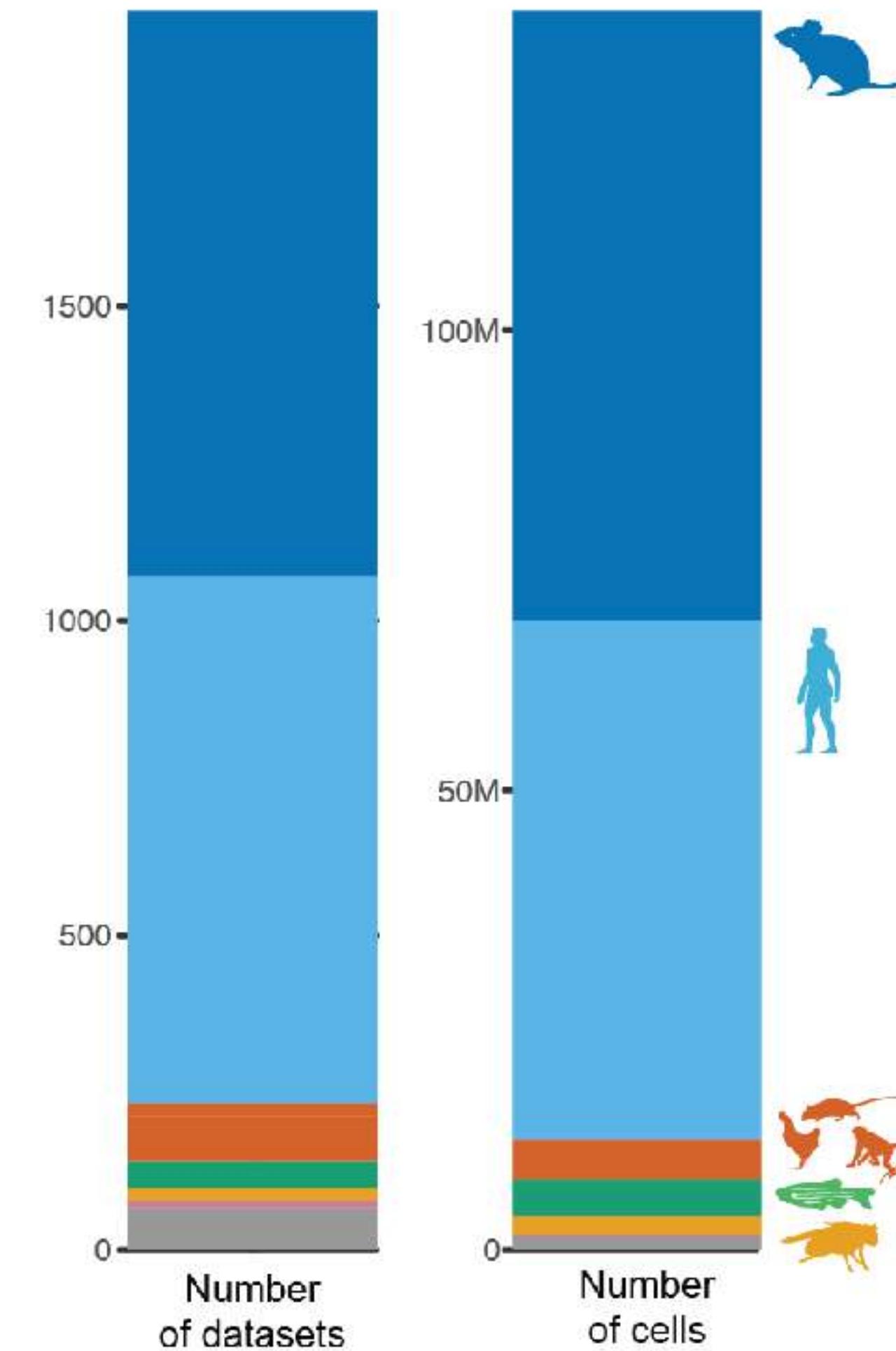
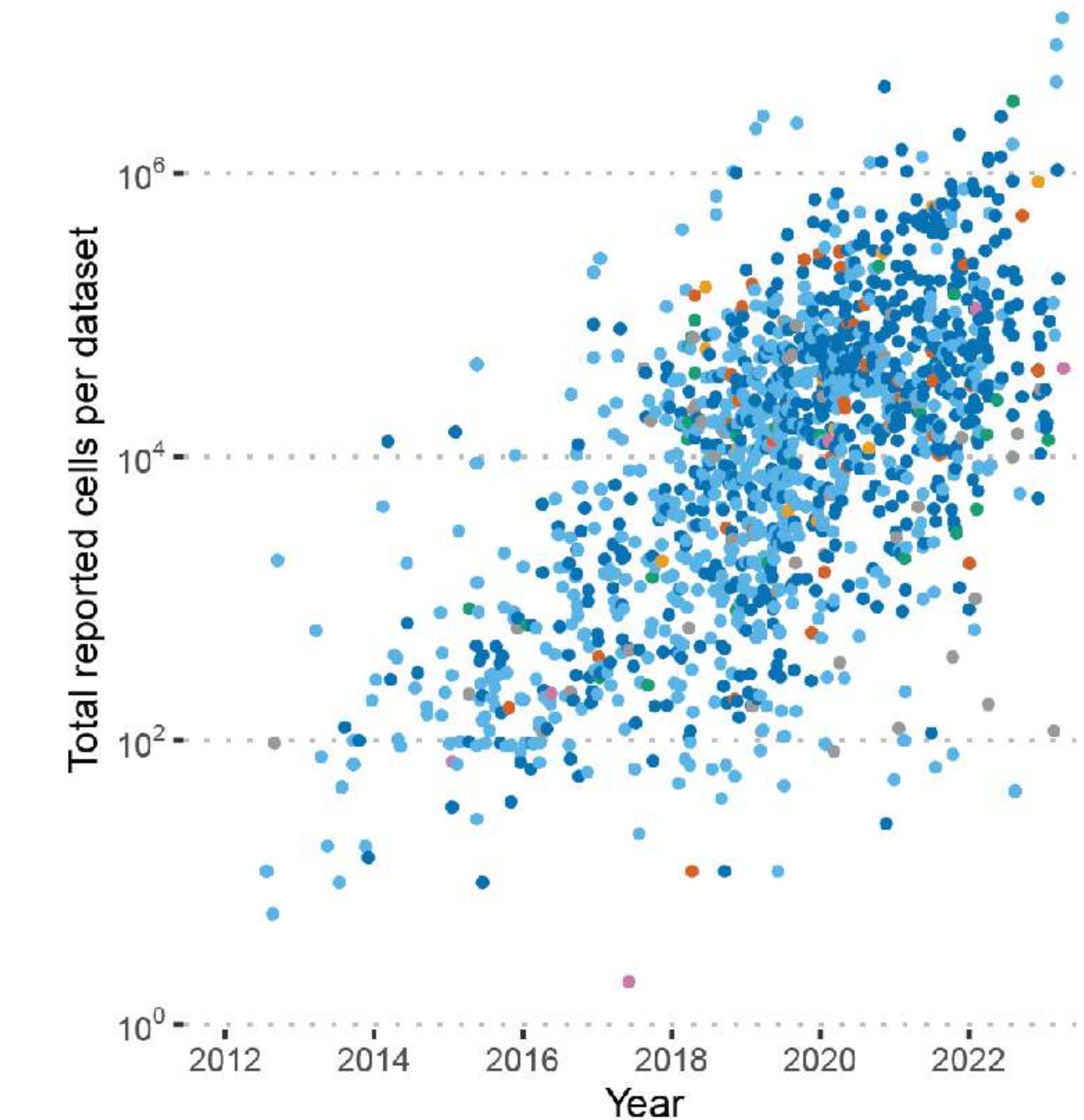


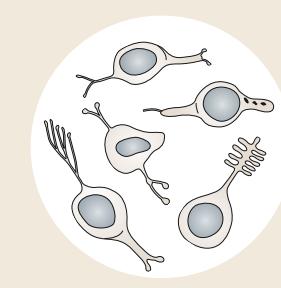
Cell types



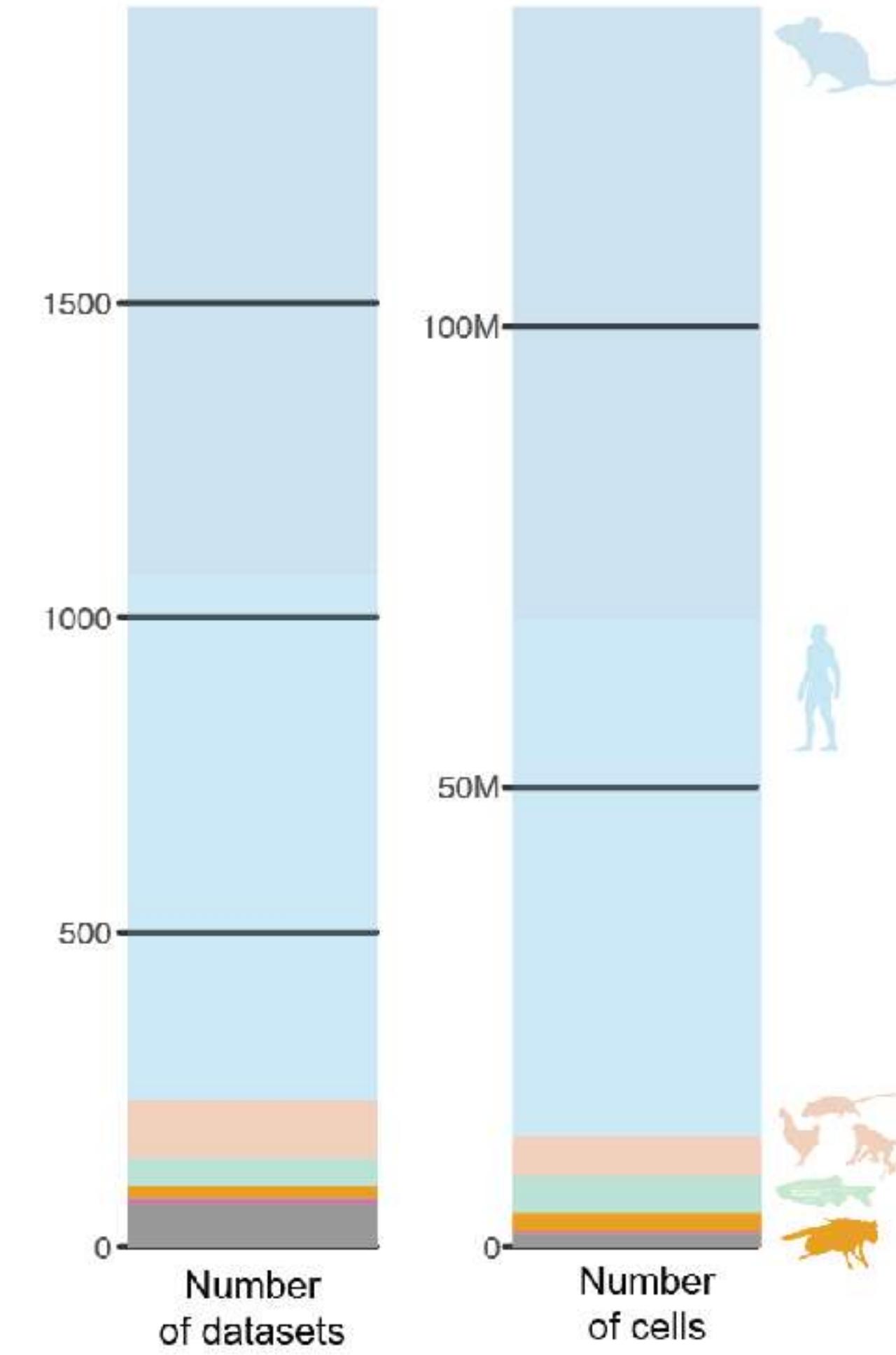
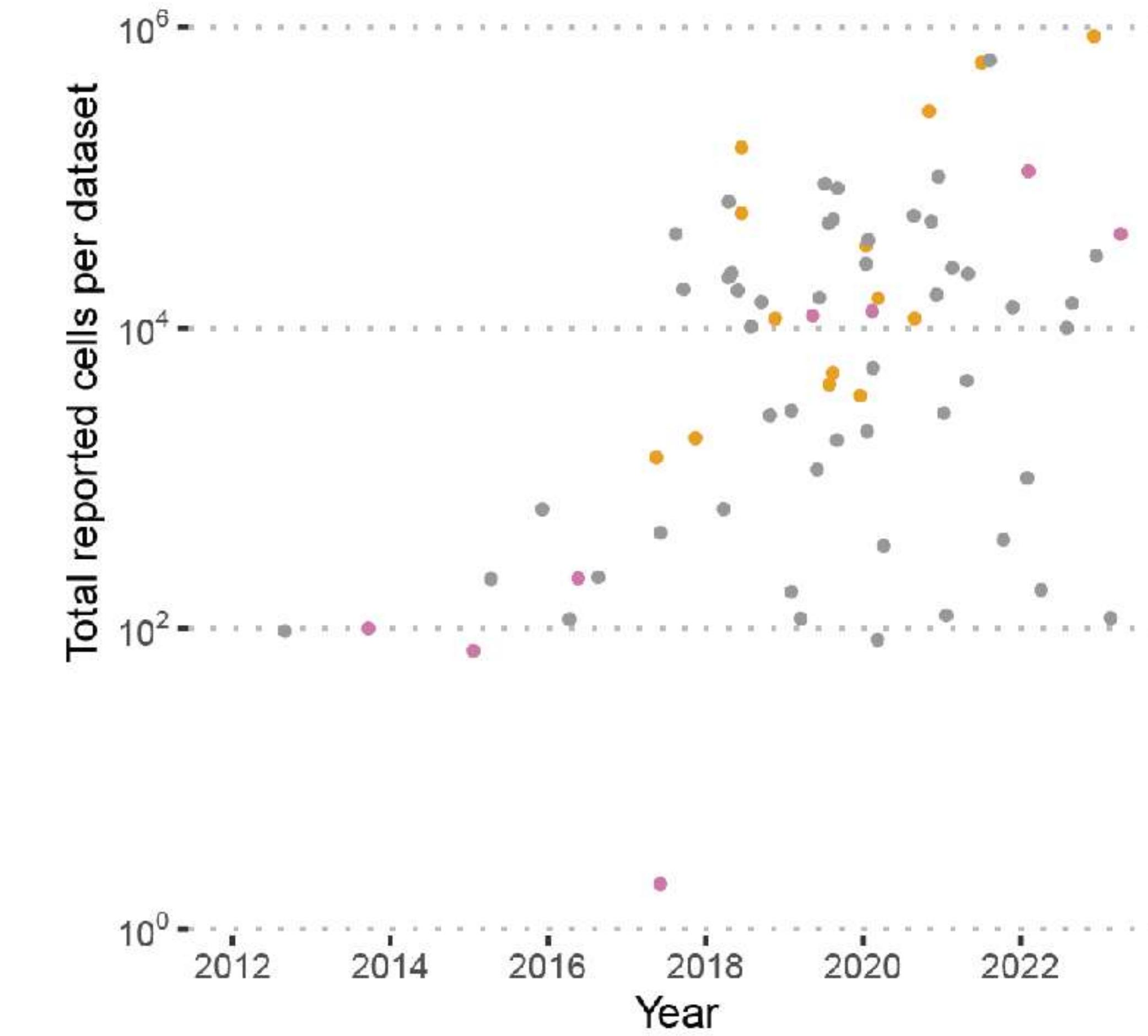


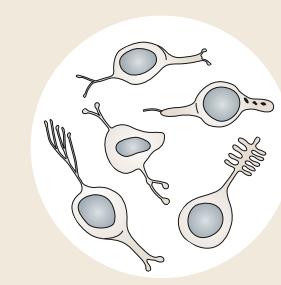
Single-cell transcriptomics: phylogenetic state-of-the-art



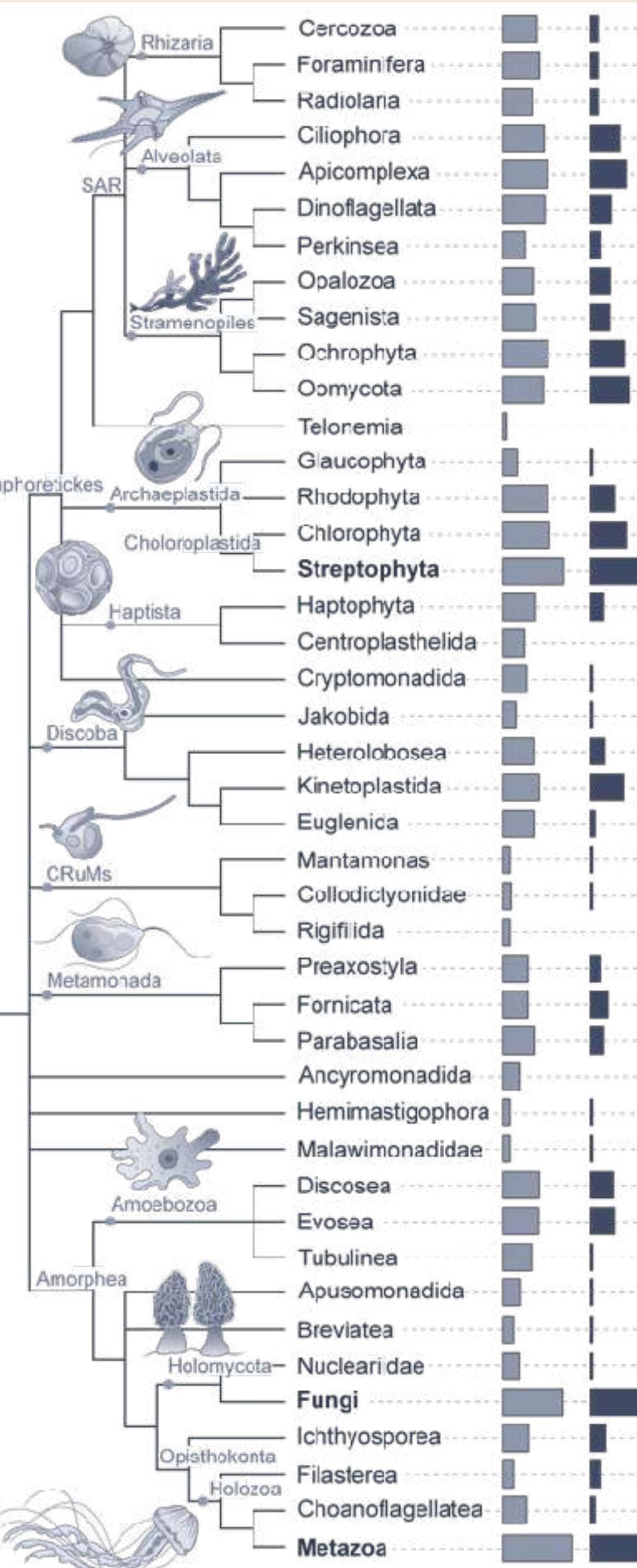
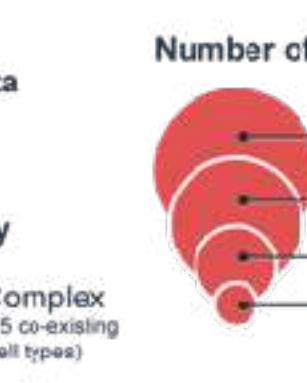


Single-cell transcriptomics: phylogenetic state-of-the-art





Single-cell transcriptomics: phylogenetic state-of-the-art

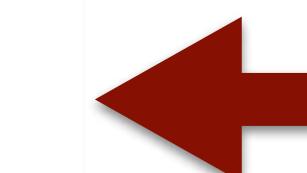


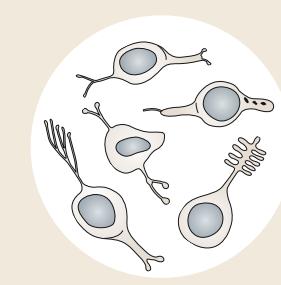
<https://www.biodiversitycellatlas.org/>

Biodiversity Cell Atlas

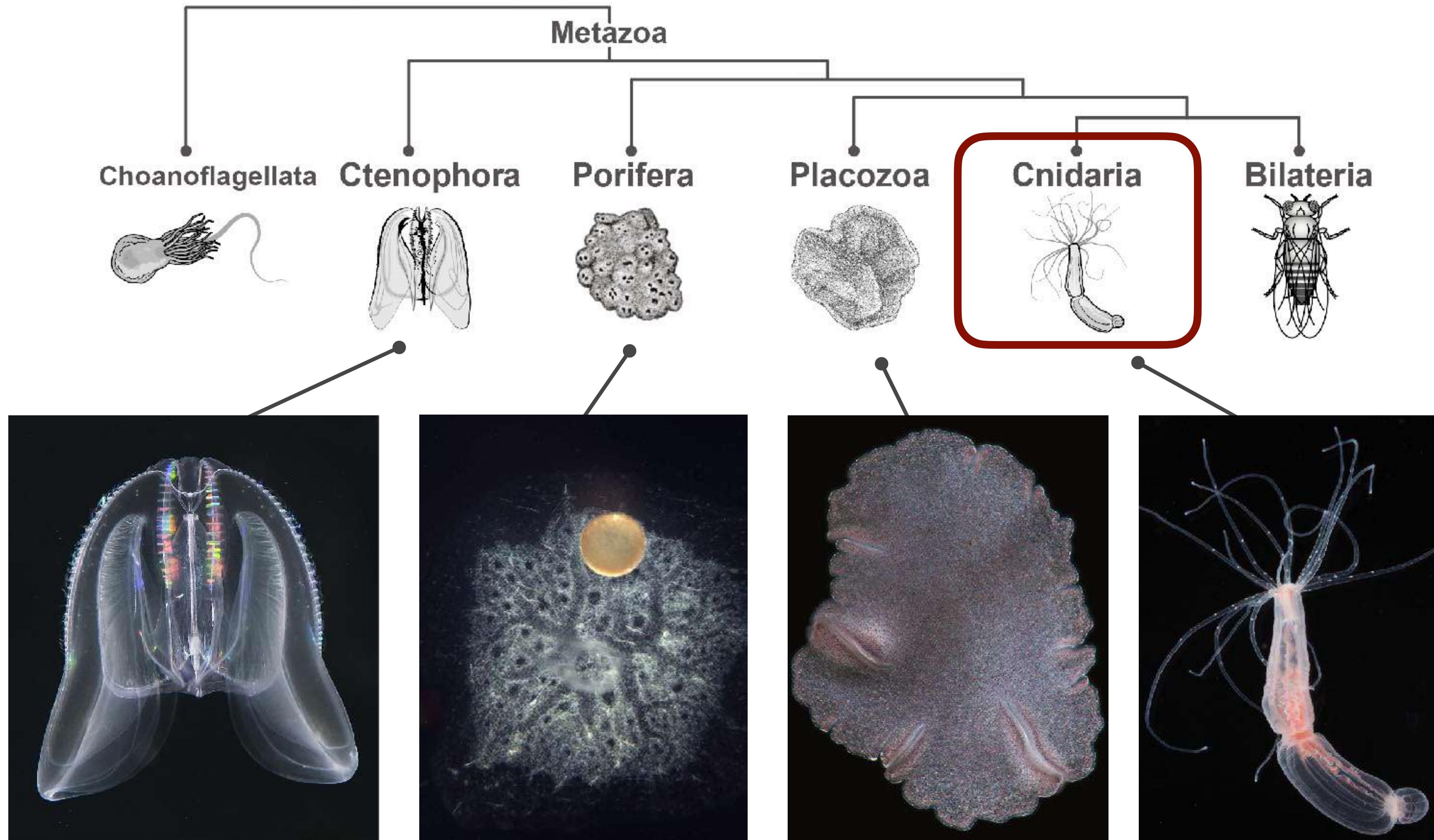
- Taxonomic prioritization and coordination
- Methods *decision tree* and validated protocols
- Shared atlas standards relevant across species
- Scale-up phylogenetic coverage

GORDON AND BETTY
MOORE
FOUNDATION

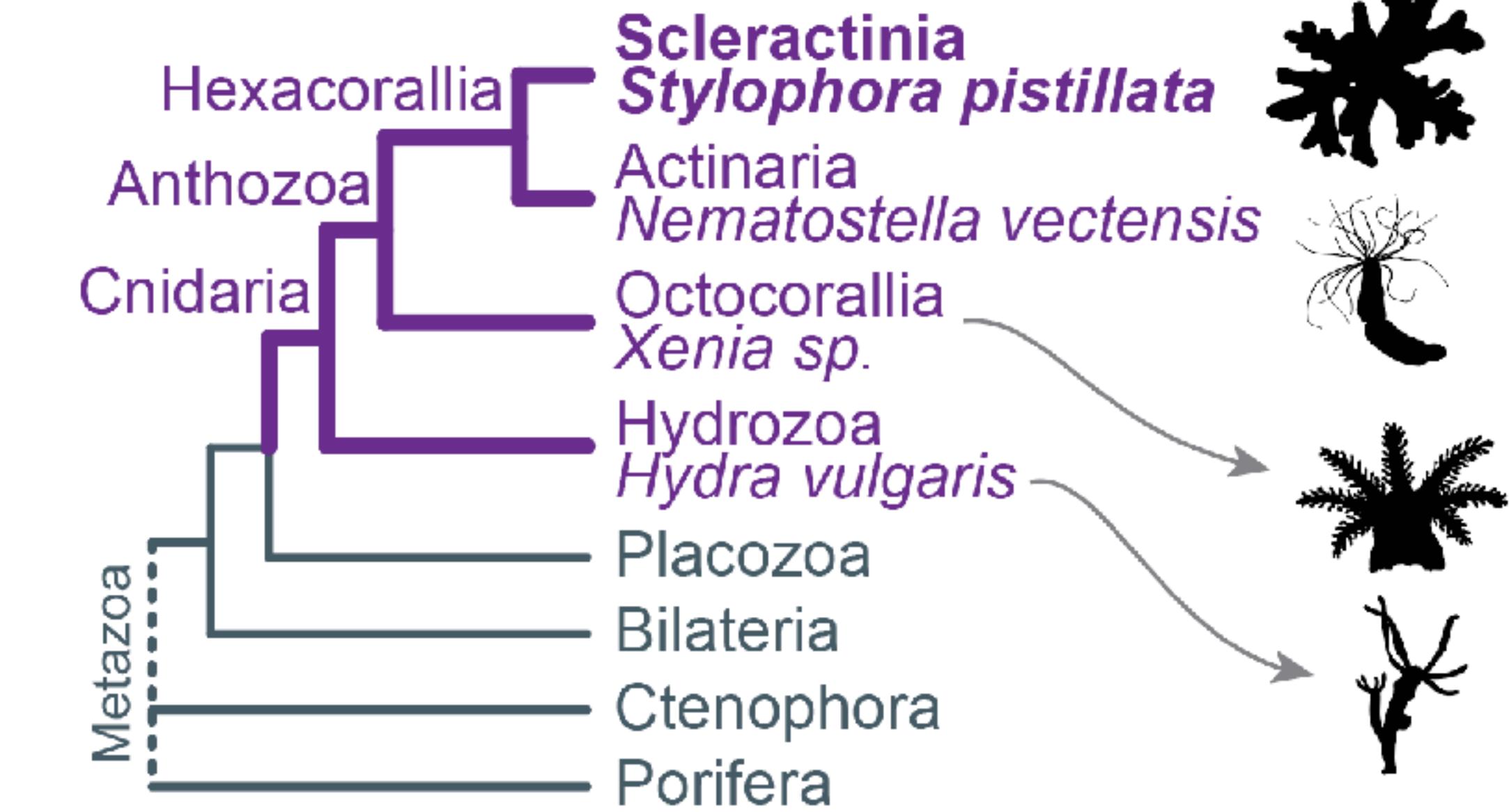
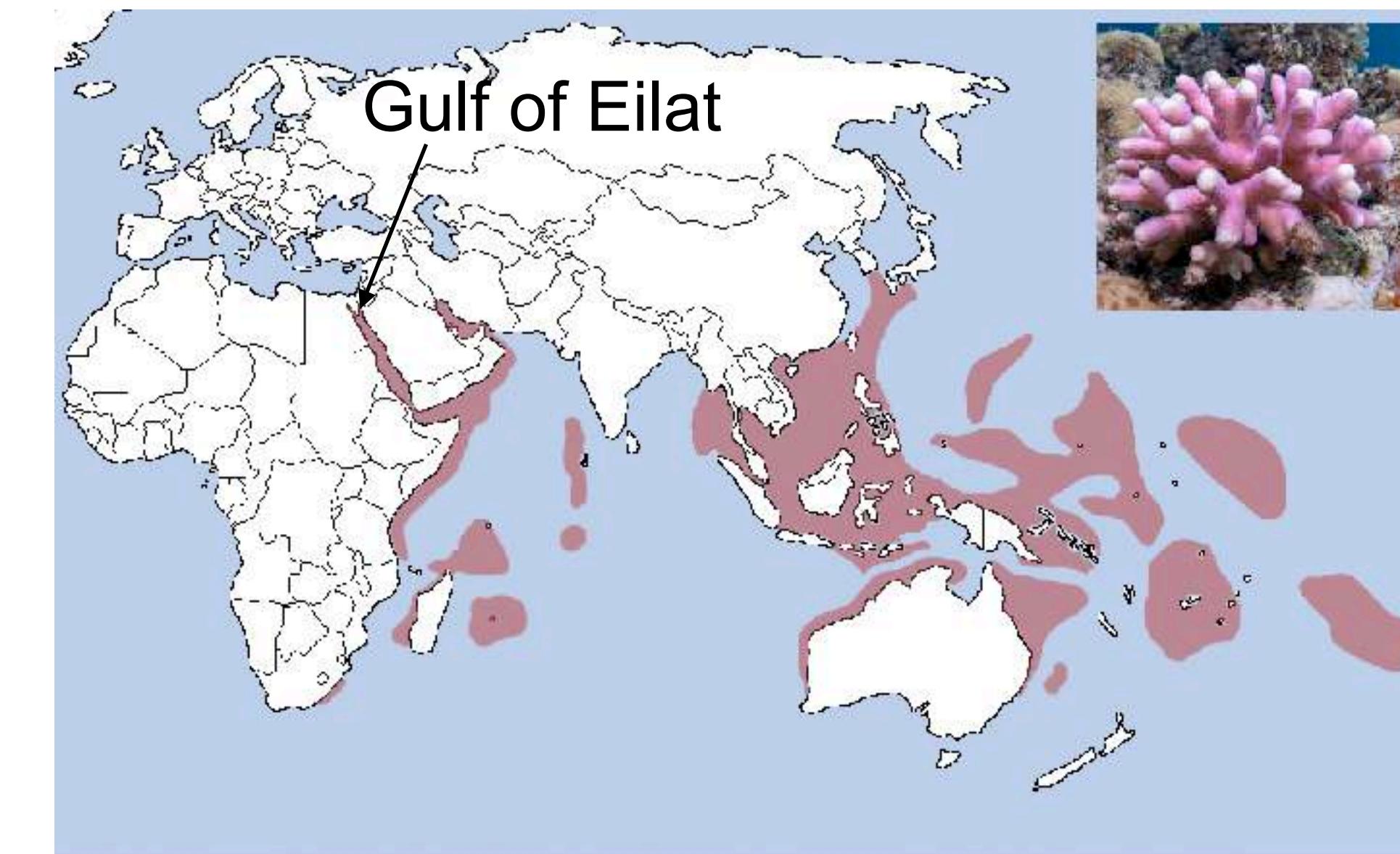




Story 1: Coral cell type diversity and evolution



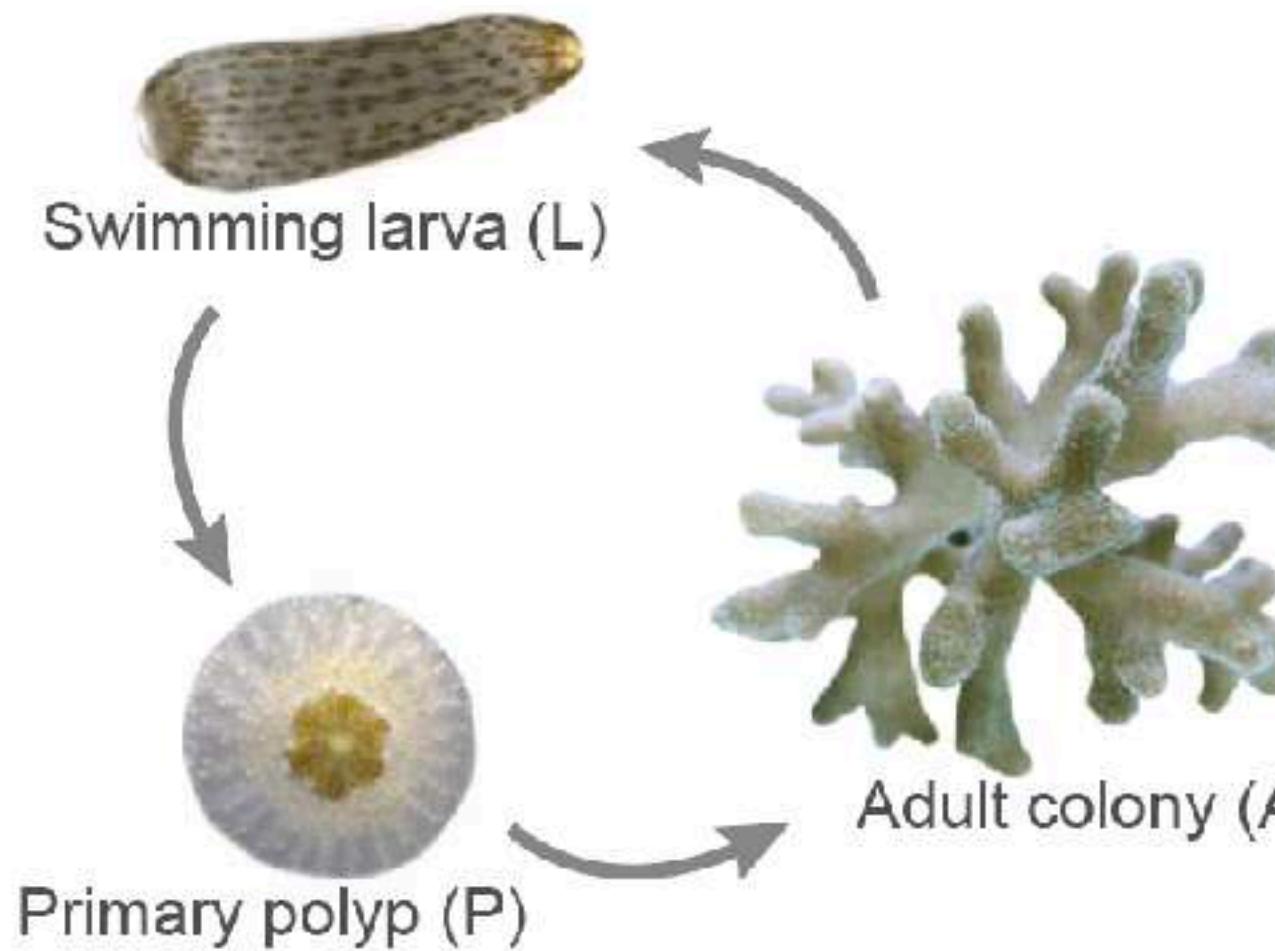
A multi-stage cell atlas reveals stony coral cell type diversity and evolution



Stylophora pistillata cell type atlas

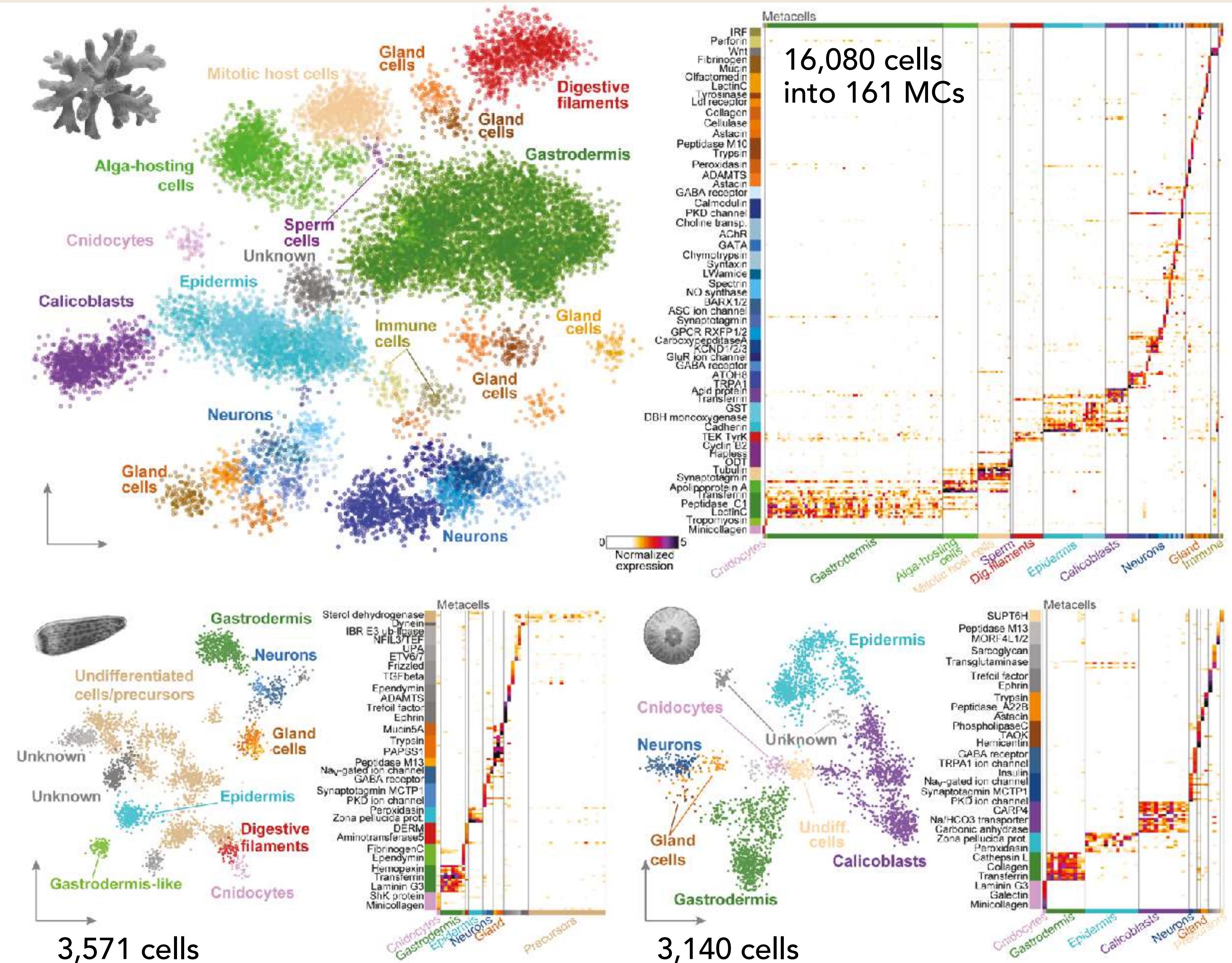
H. Nativ - The Morris Kahn Marine Research Centre

A multi-stage cell atlas reveals stony coral cell type diversity and evolution

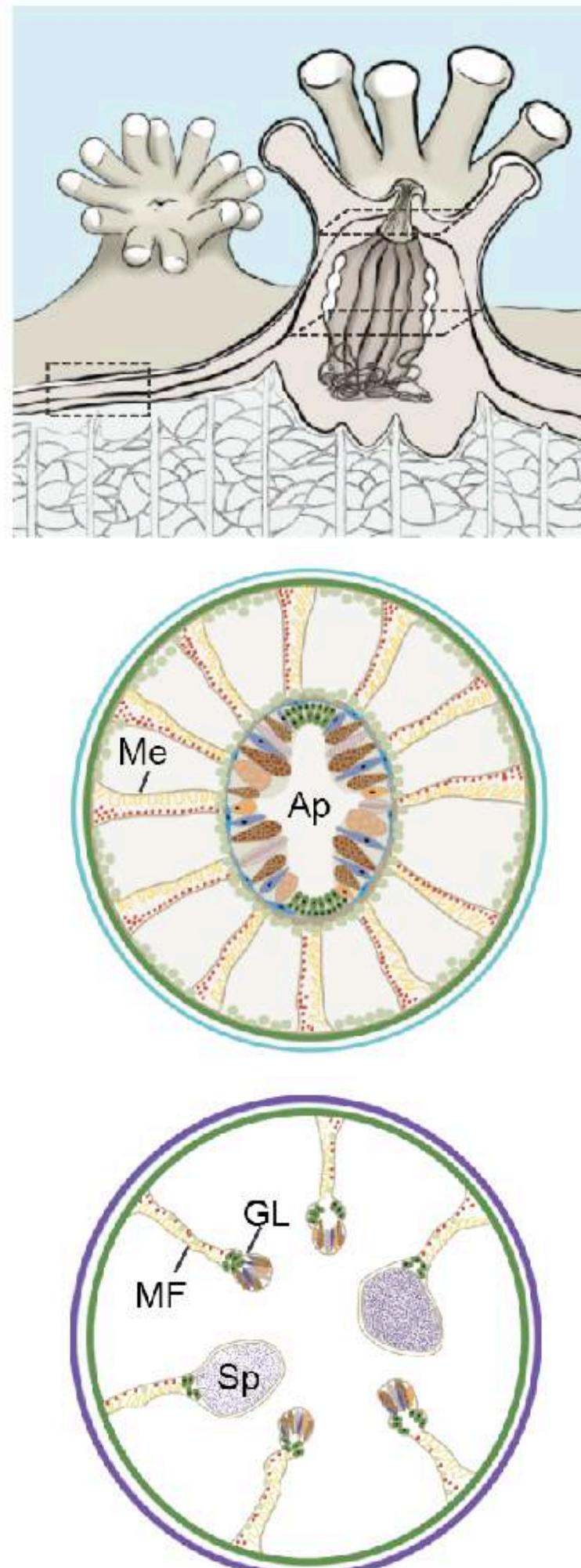
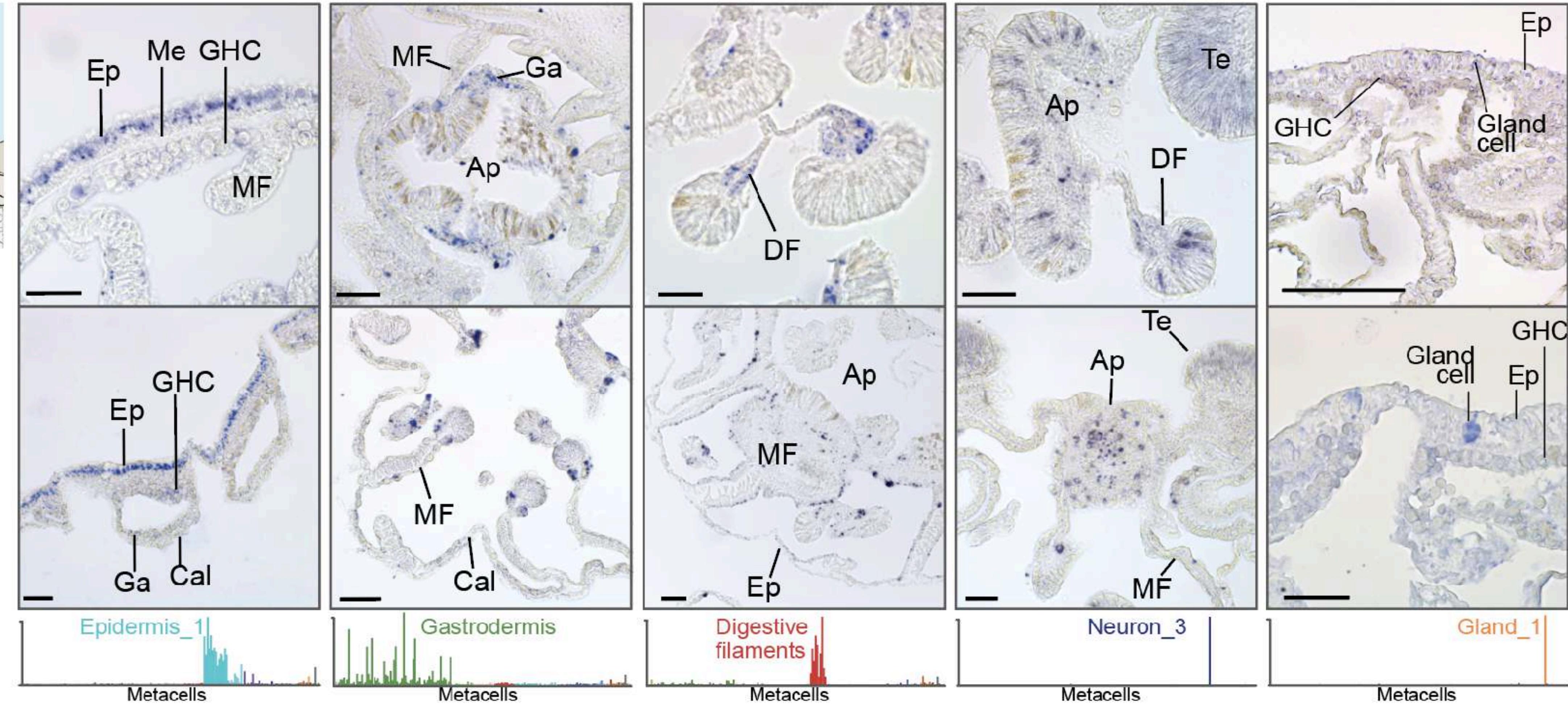


Levy, Elek, et al. Cell 2021

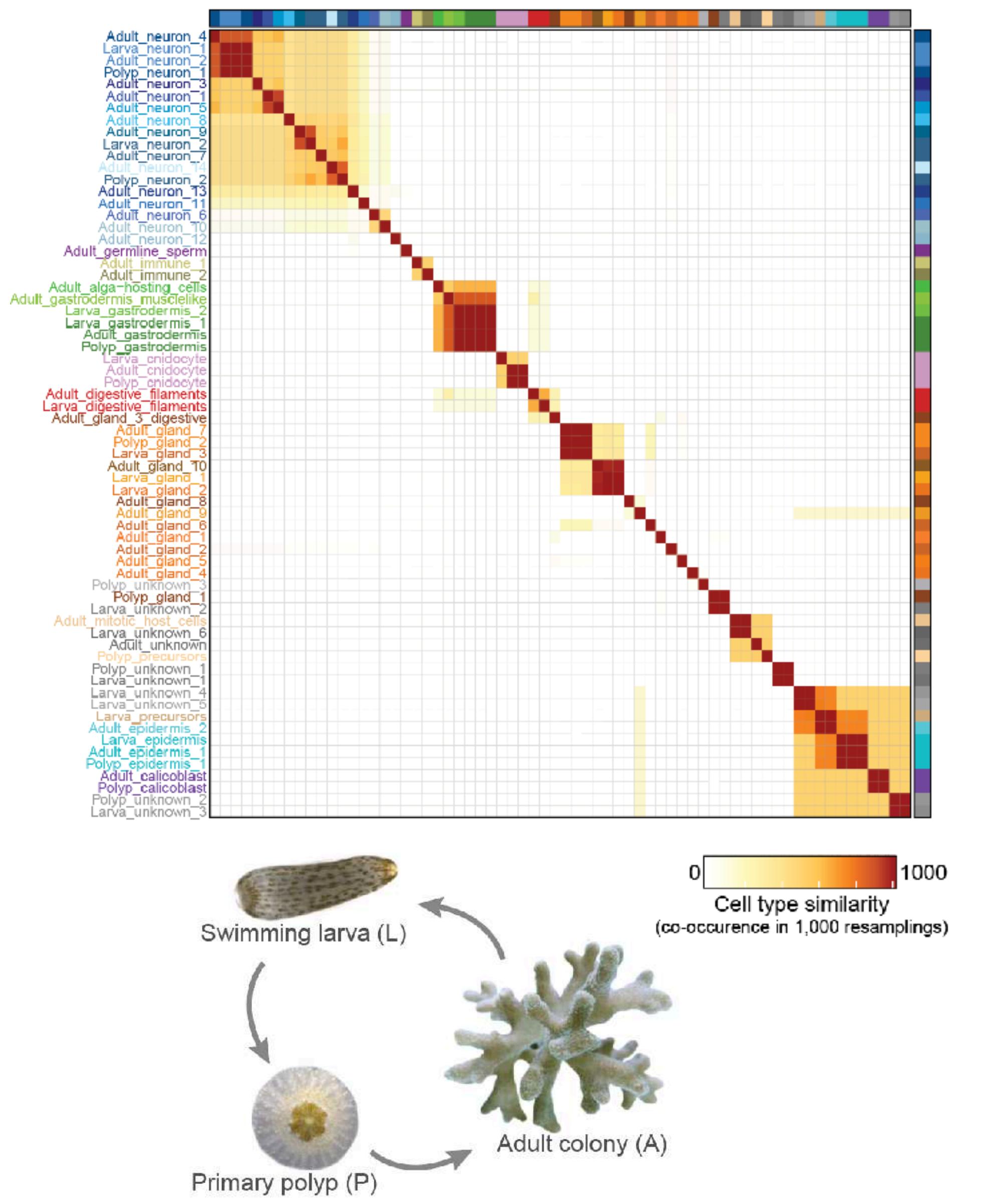
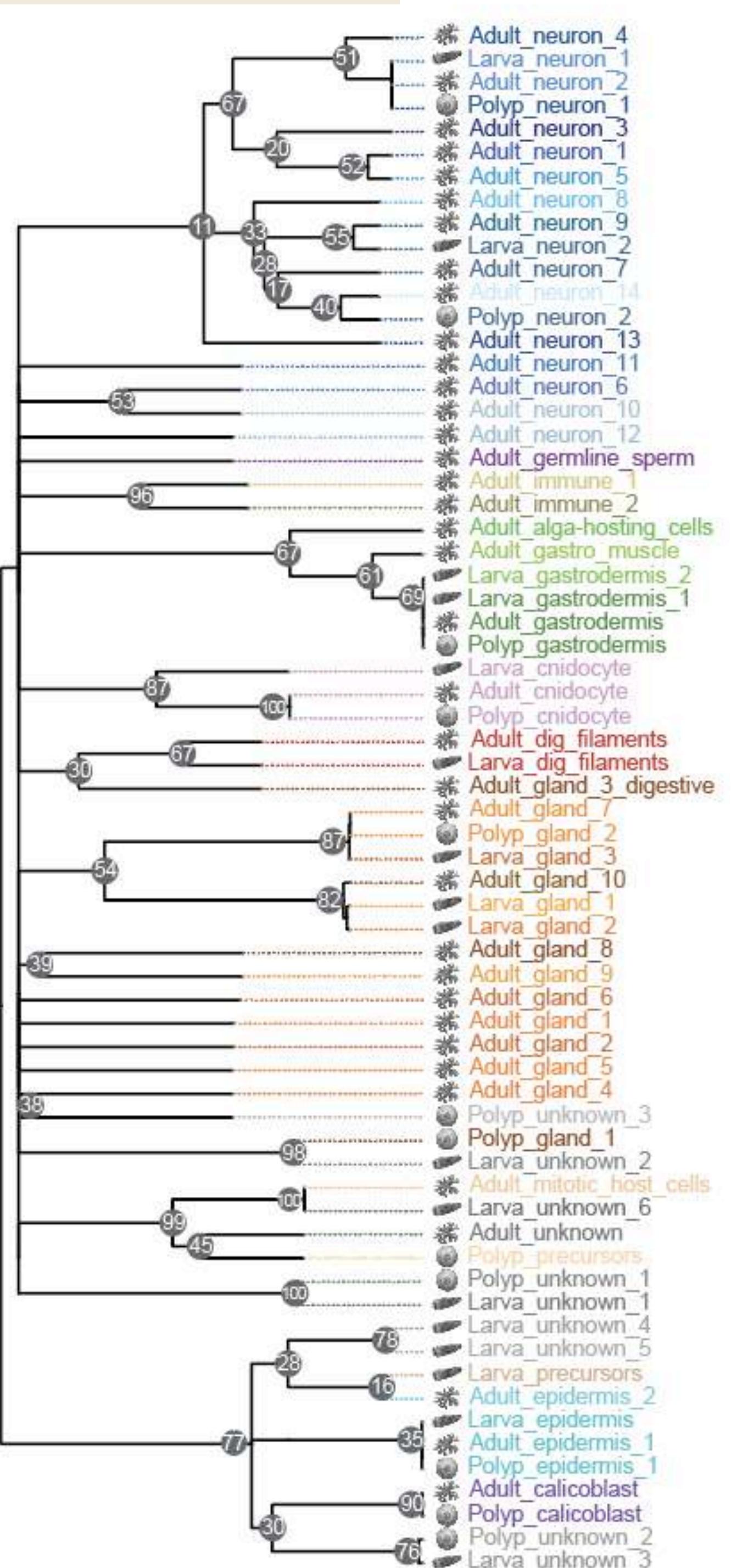
Anamaria
Elek



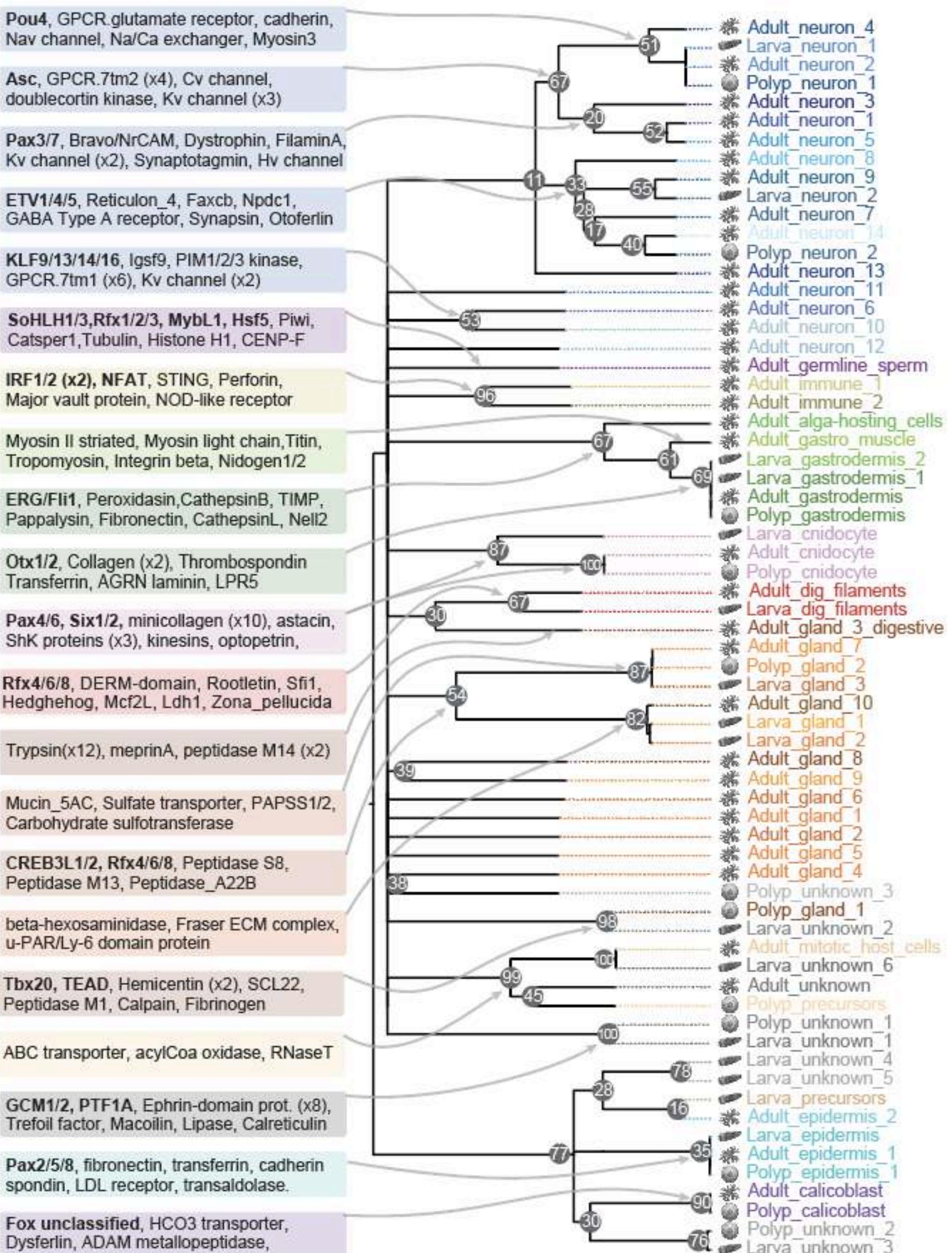
Stylophora cell atlas interpretation: *in situ* hybridization validations



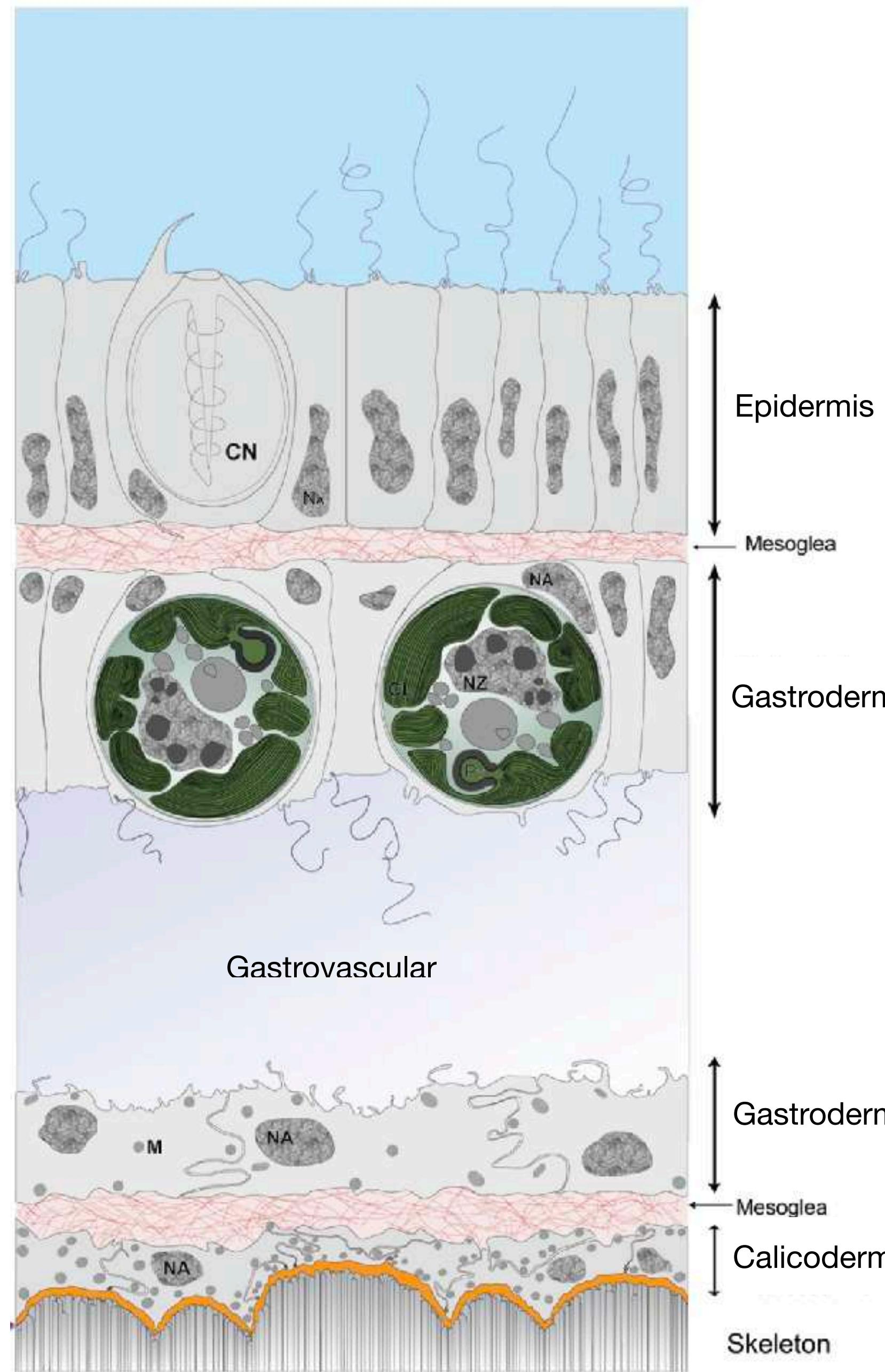
Cross-stage comparisons



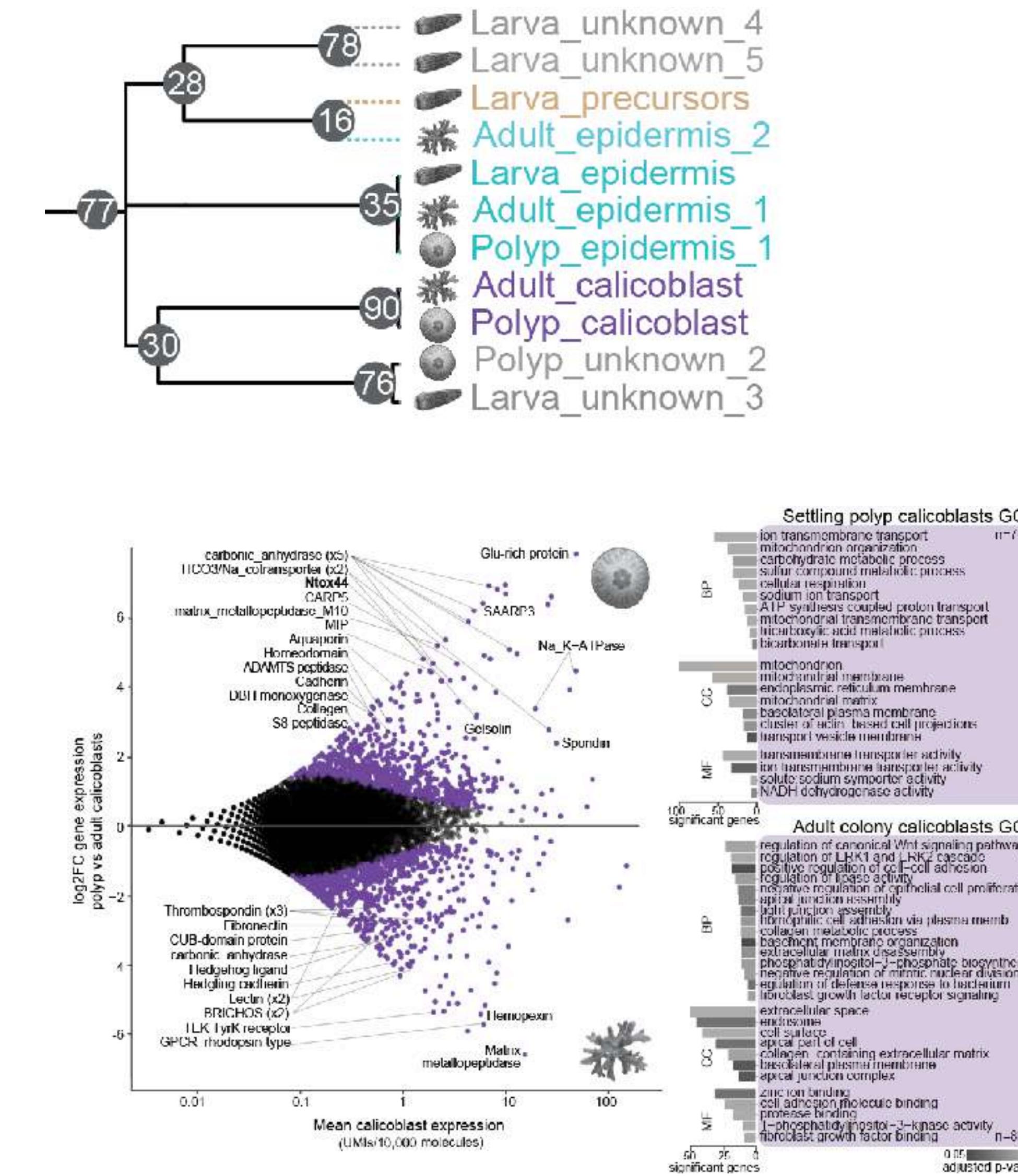
Shared and cell type-specific genes



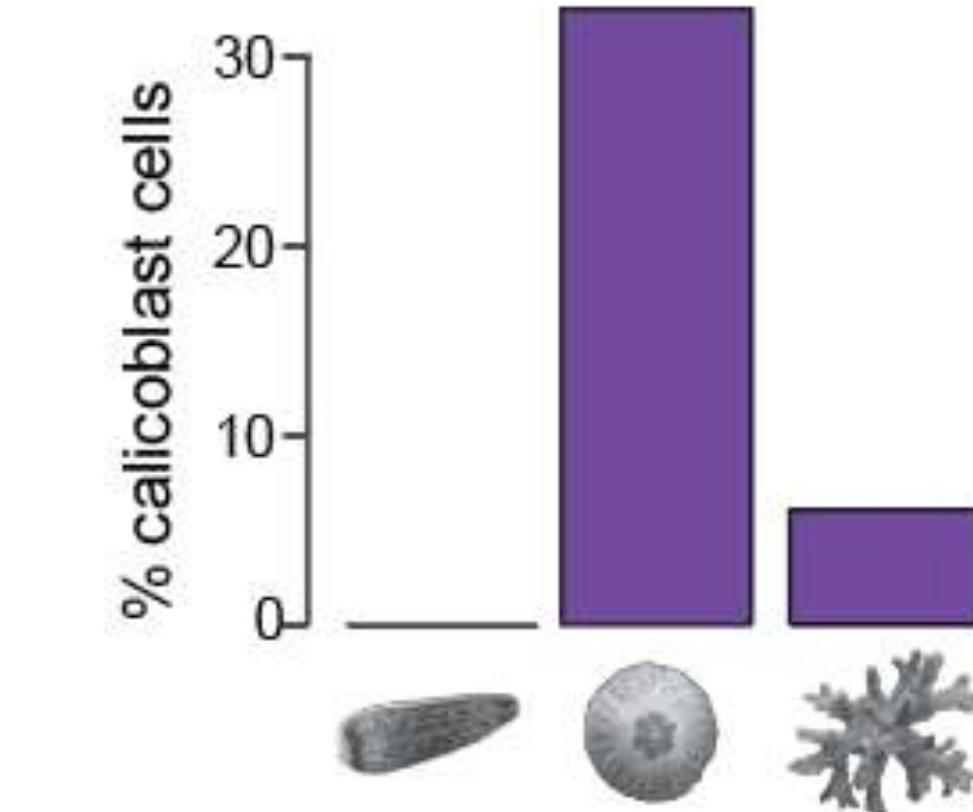
Transcriptional dynamics of skeleton formation



Calicoblasts are transcriptionally similar to epidermal cells



Calicoblasts are abundant in settling polyps, absent in larva



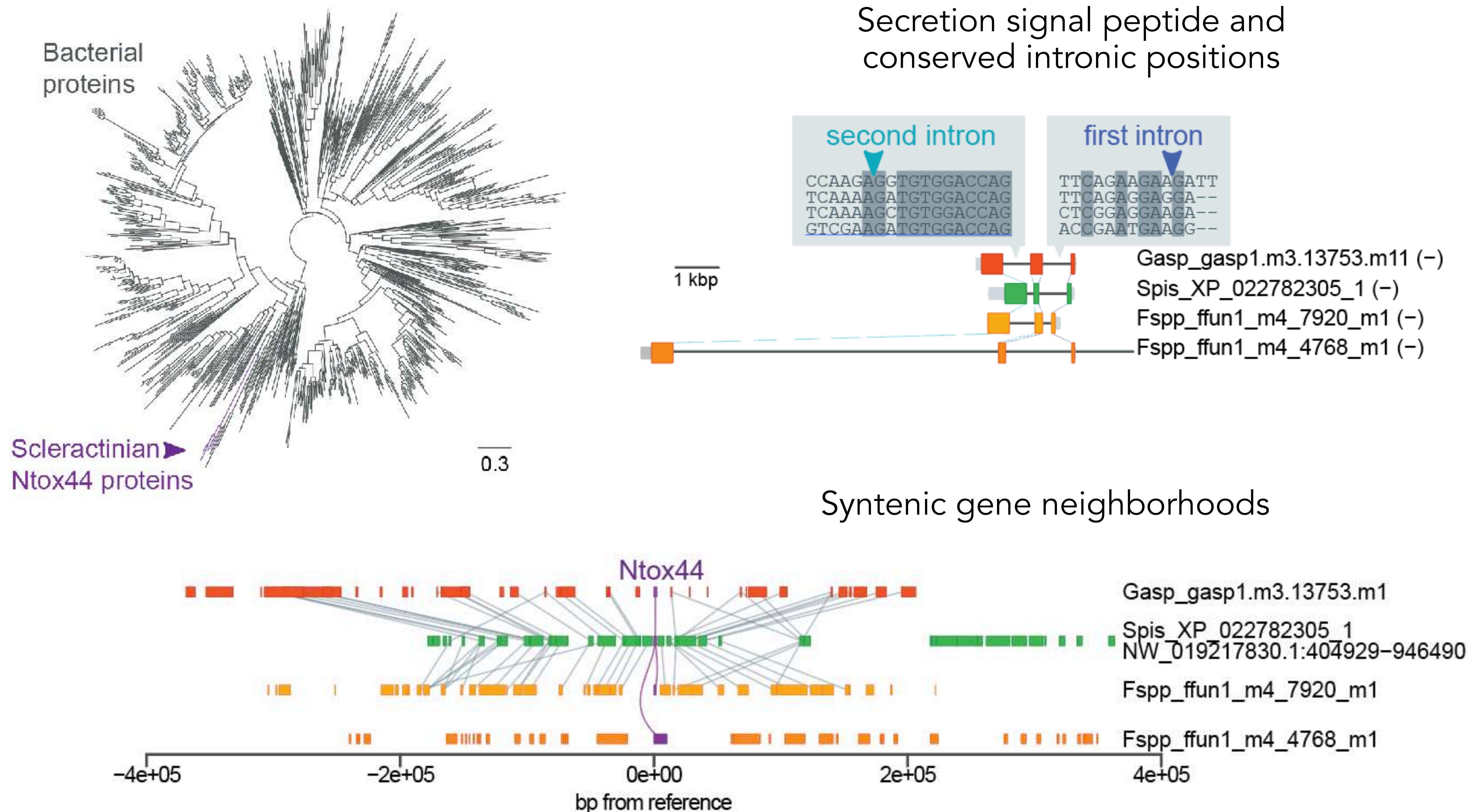
Skeleton production metabolism

Fox XP_022788808_1
Homeobox XP_022801442_1

Epidermal-like identity

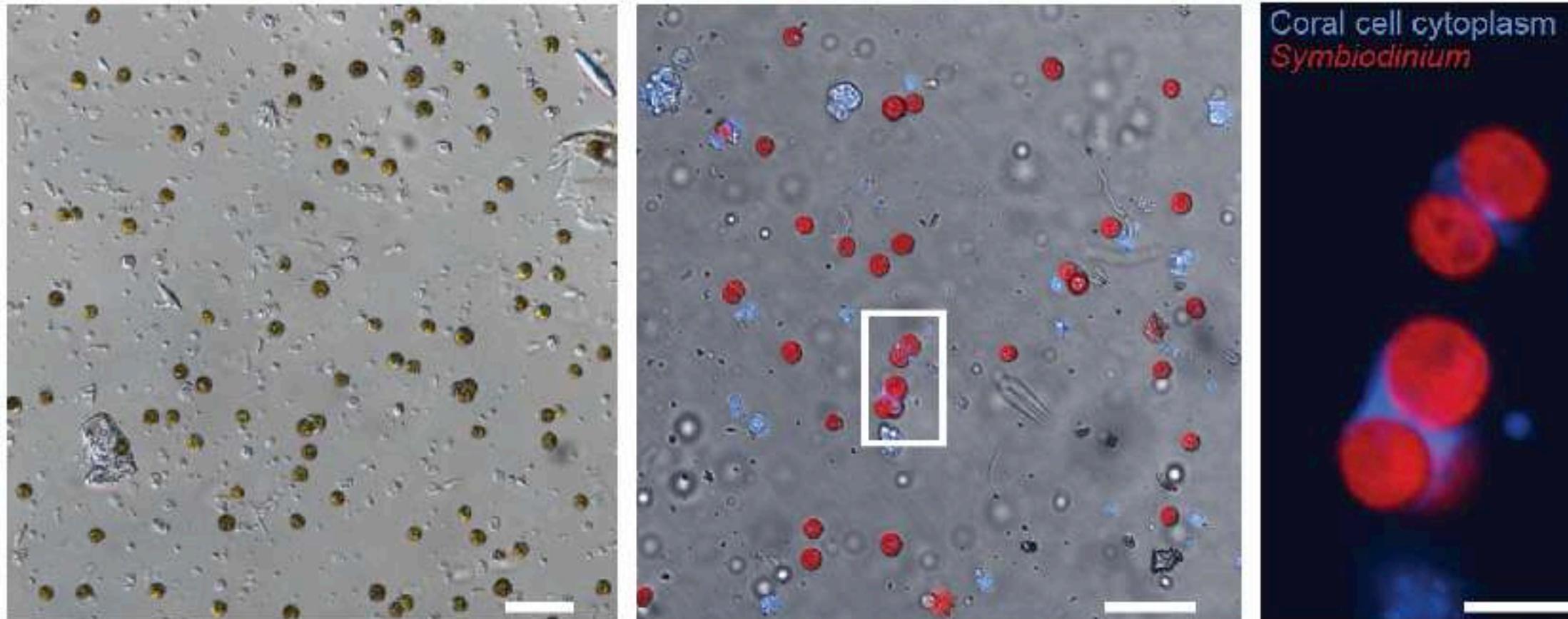
Fox XP_022788808_1
Bach/Nfe2
Pax2/5/8 (Epidermal TF)

A bacteria-to-corals HGT toxin expressed in calicoblasts during skeleton formation



Host-symbiont gene expression at single-cell resolution

Host cells targeting strategy



USF1 (bHLH), Zic1 (zfC2H2)

Leloir pathway -> Galactose metabolism

Fatty acid metabolism (Elov, Pas2,...)

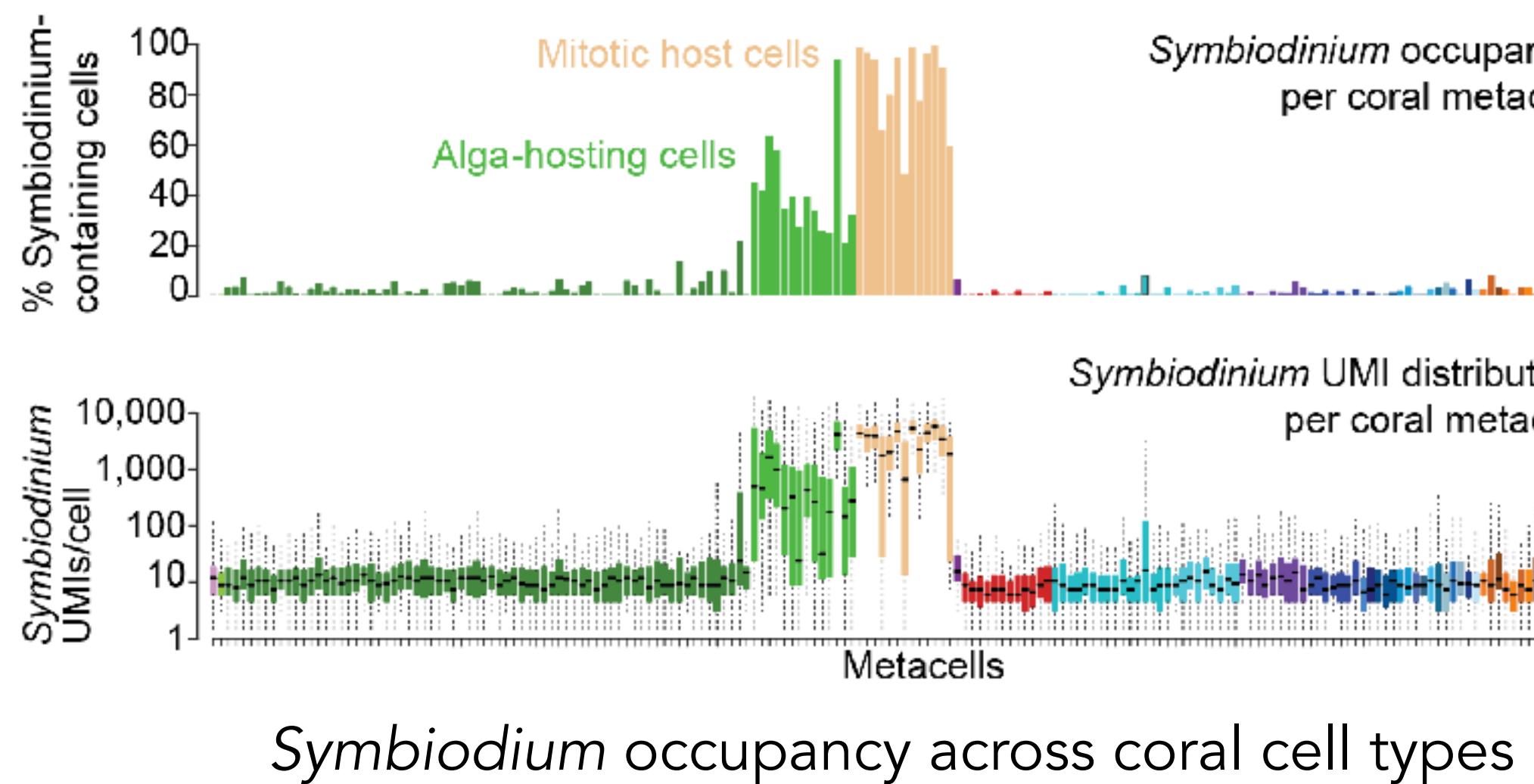
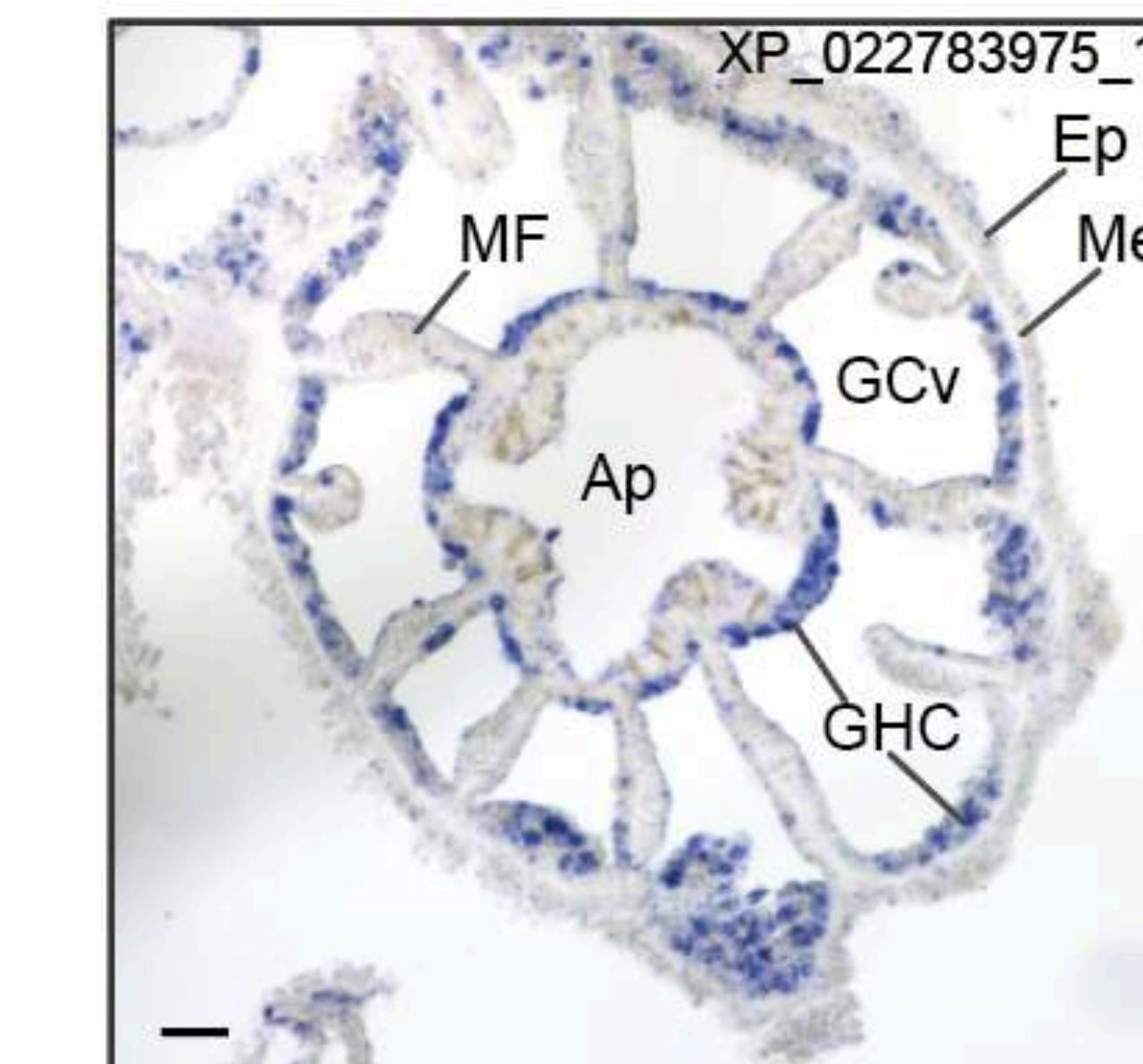
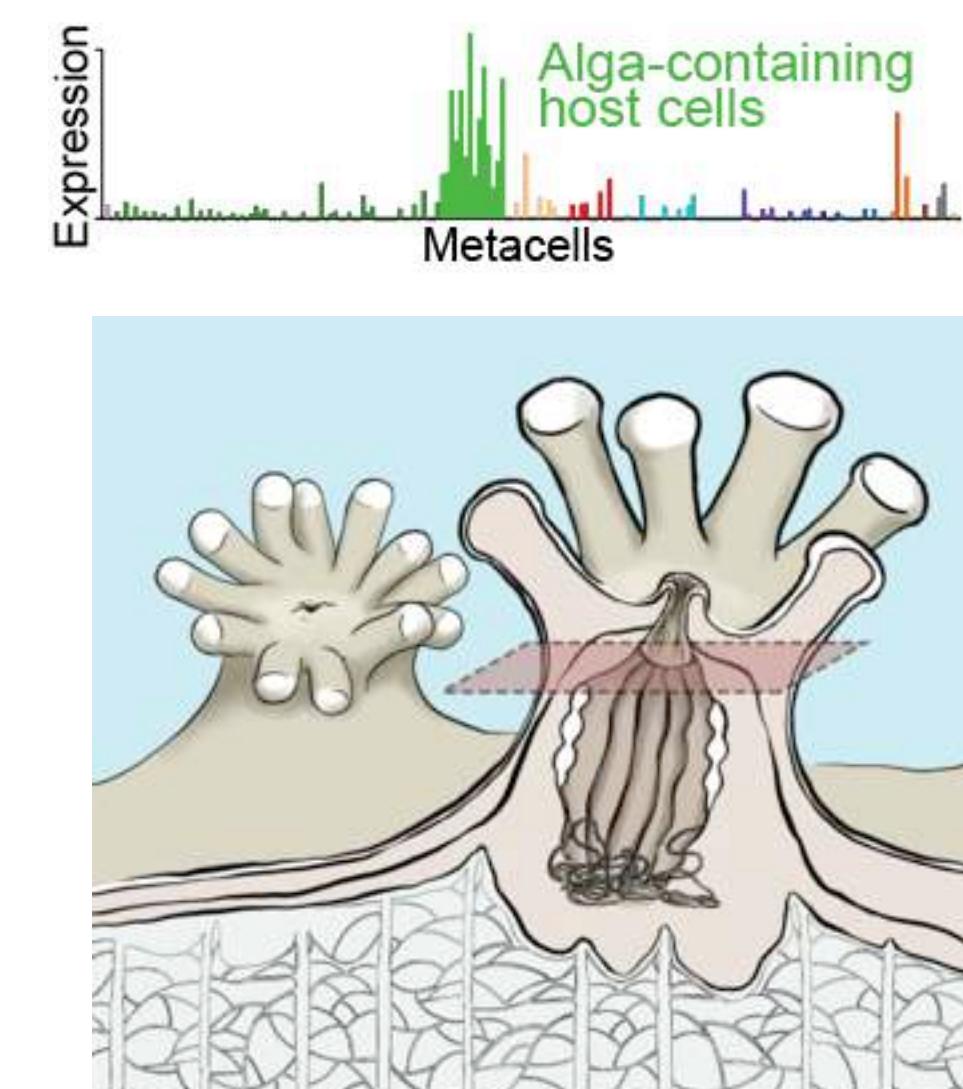
Lipid transporters (NPC1, ApoD)

Carbonic anhydrase -> CO₂ availability

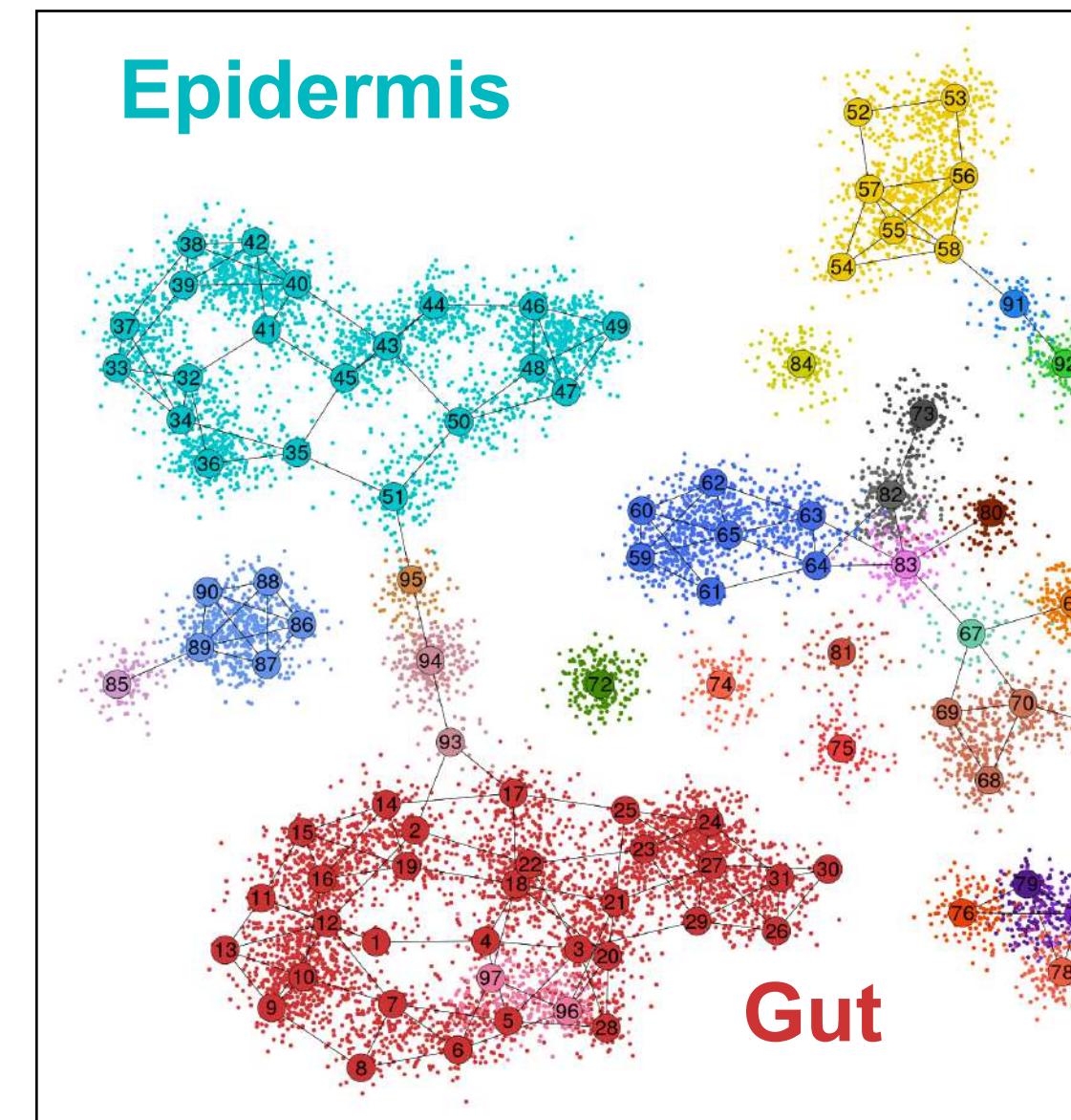
Glutathione pathway -> Oxidative stress

Ammonium transporters

Aminoacid transporters

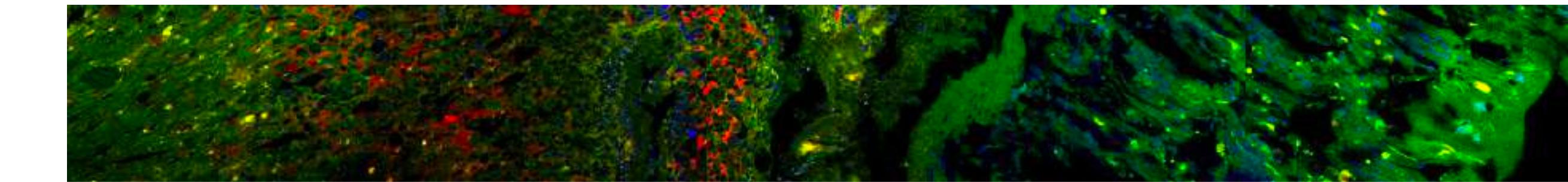
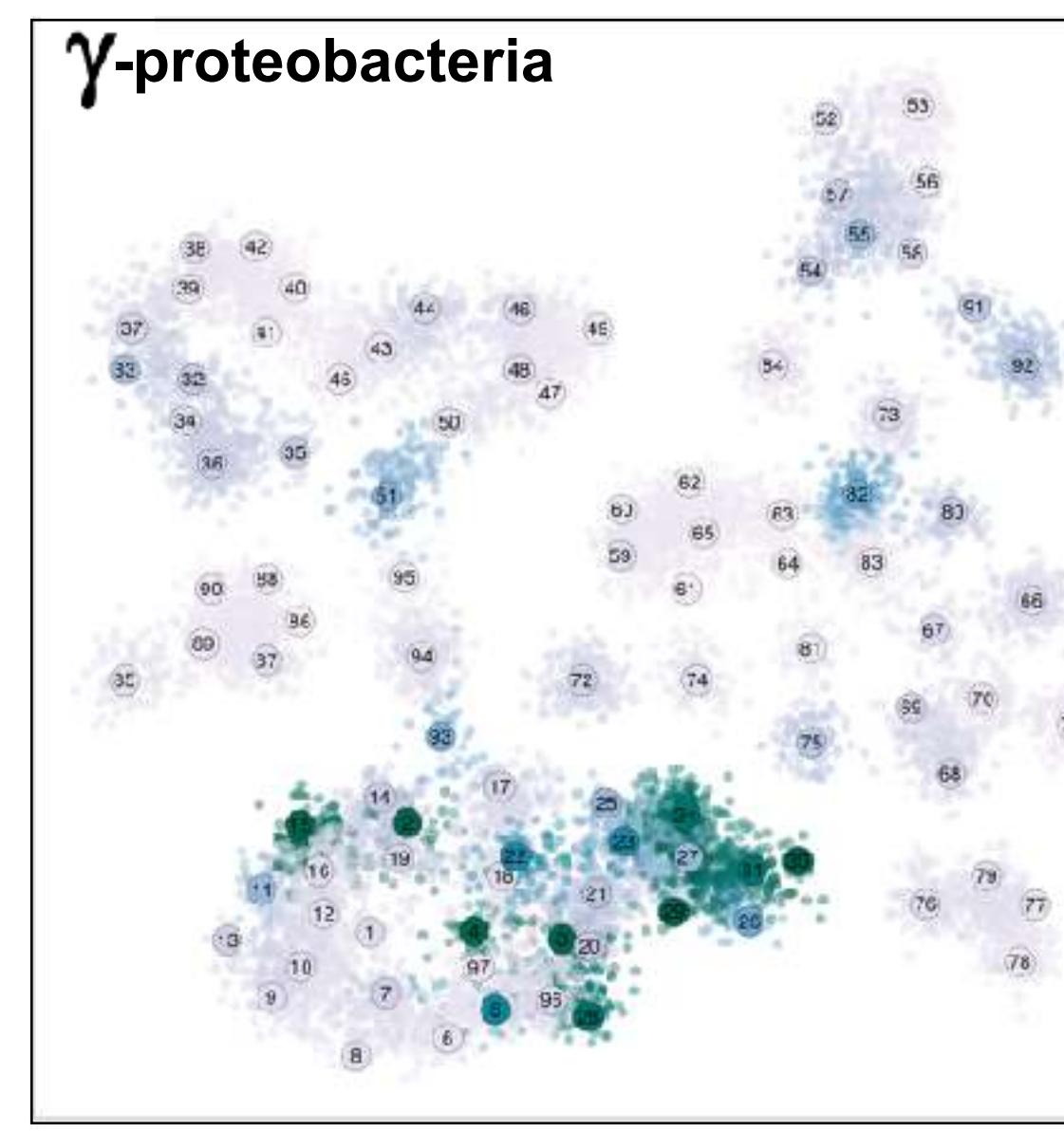
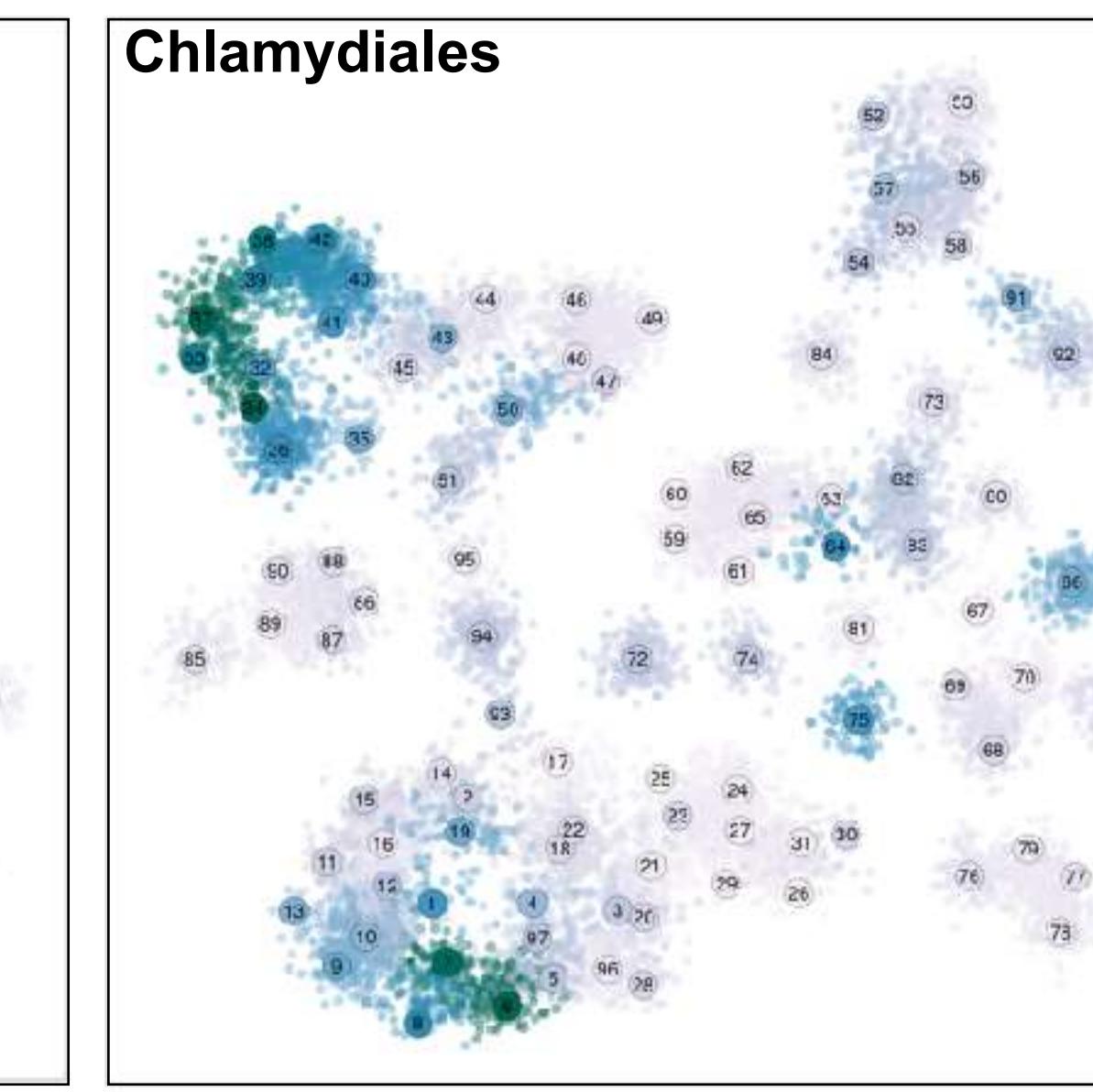
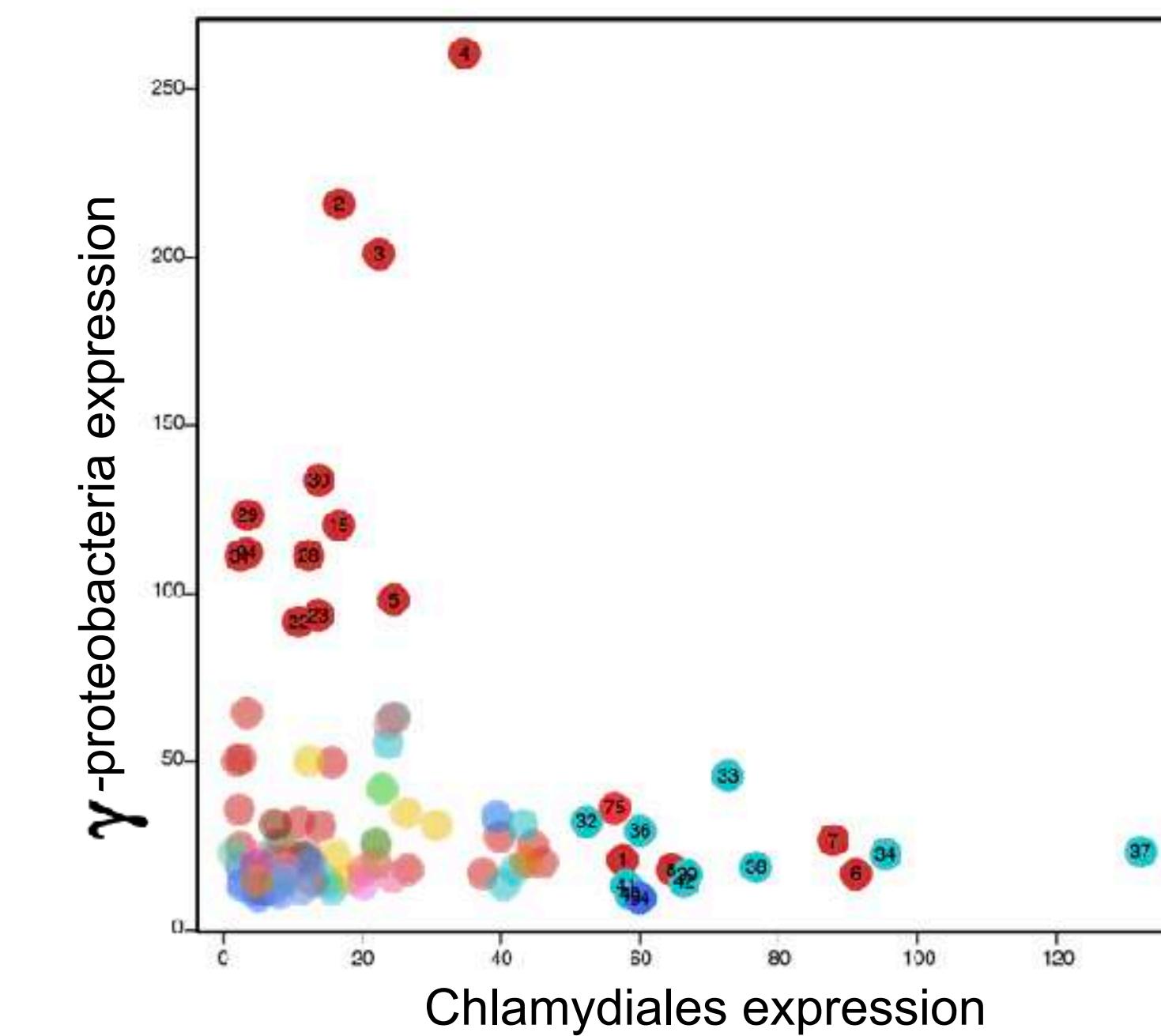


Mapping symbioses at single-cell resolution

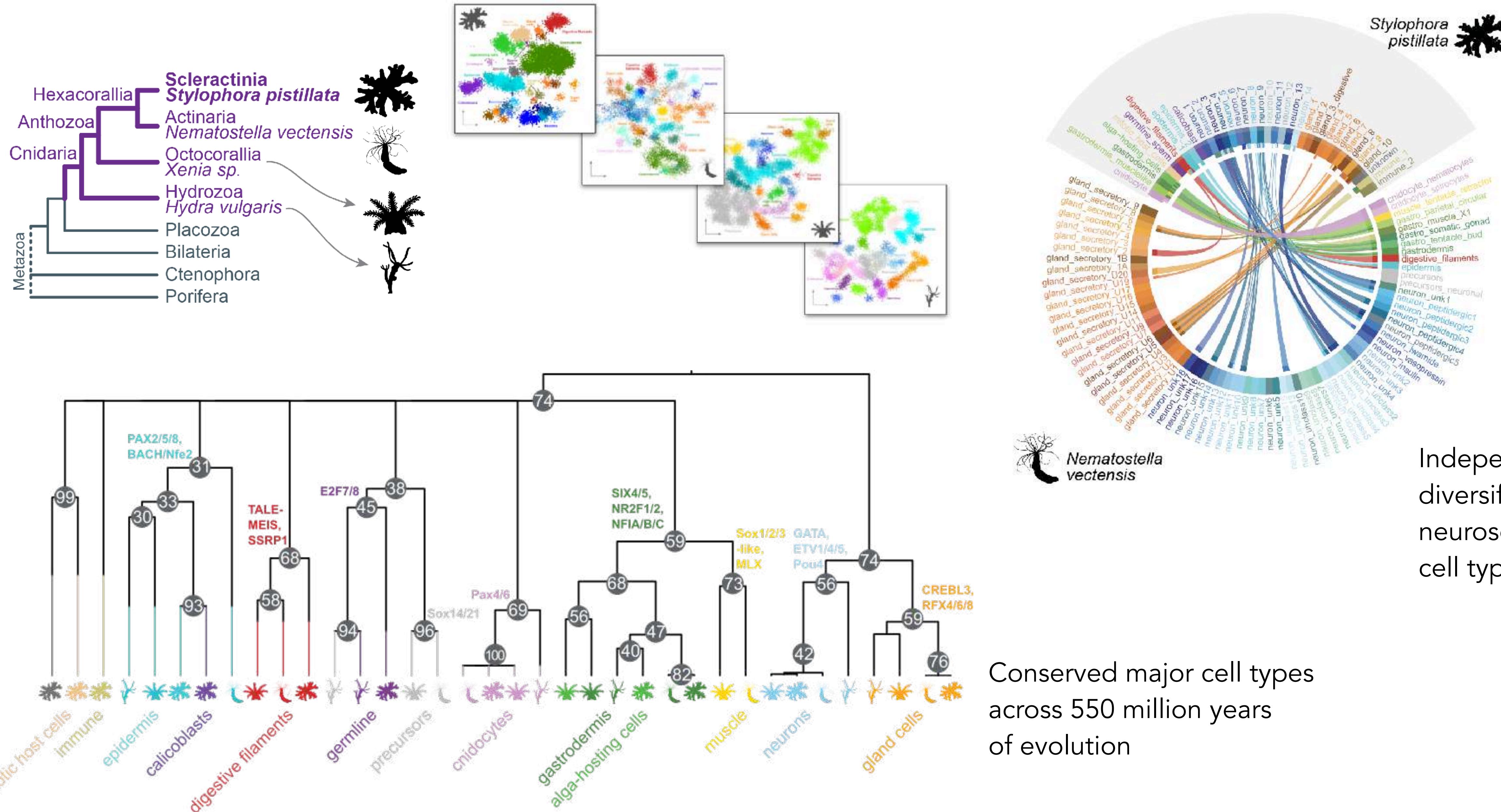


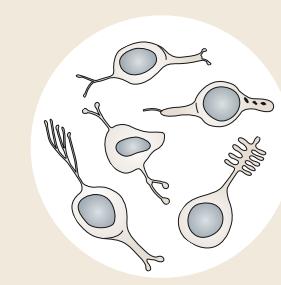
Xenoturbella cell atlas of endosymbiotic interactions

proteobacteria 16S FISH

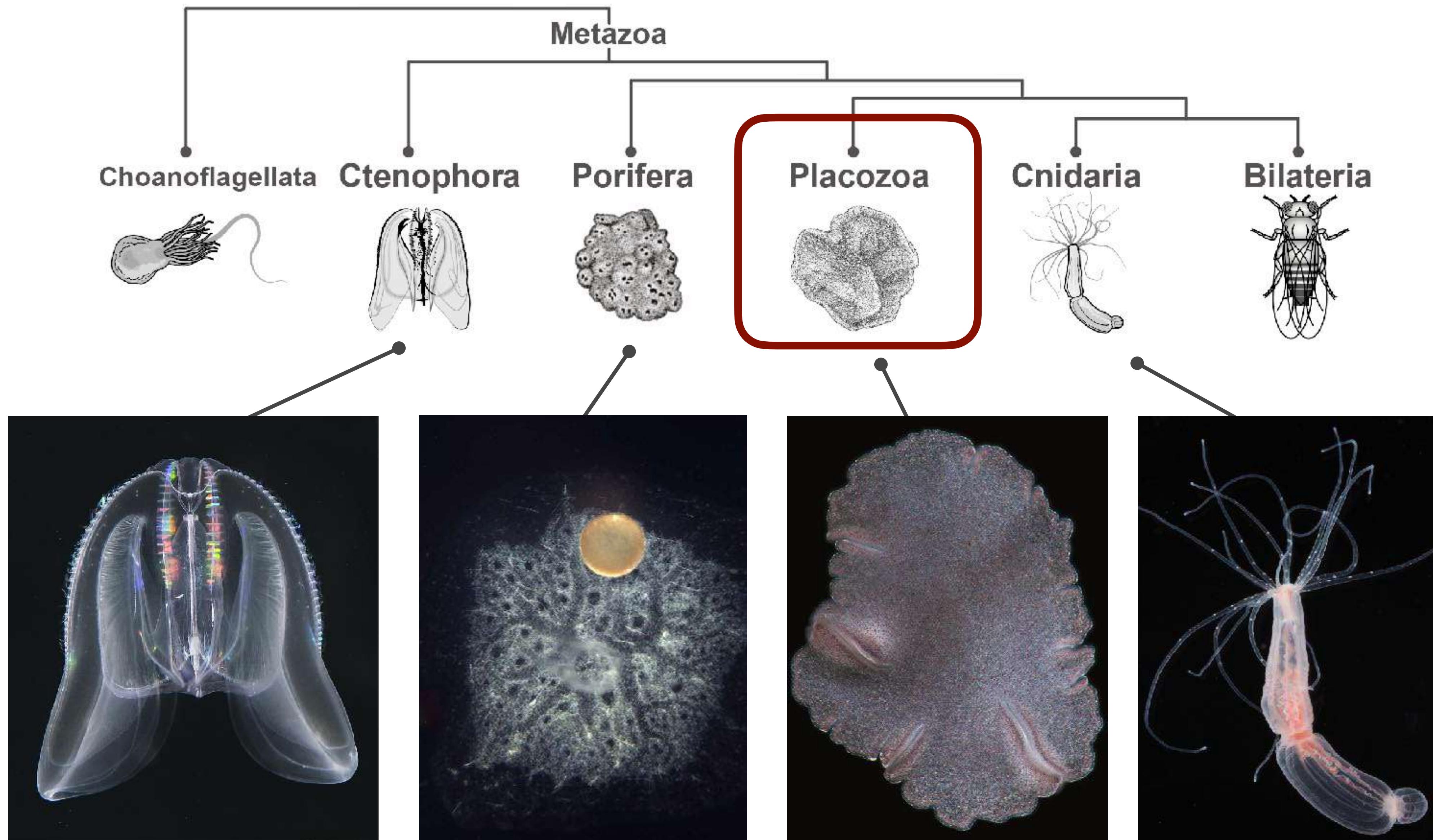


Cnidarian cell type evolution



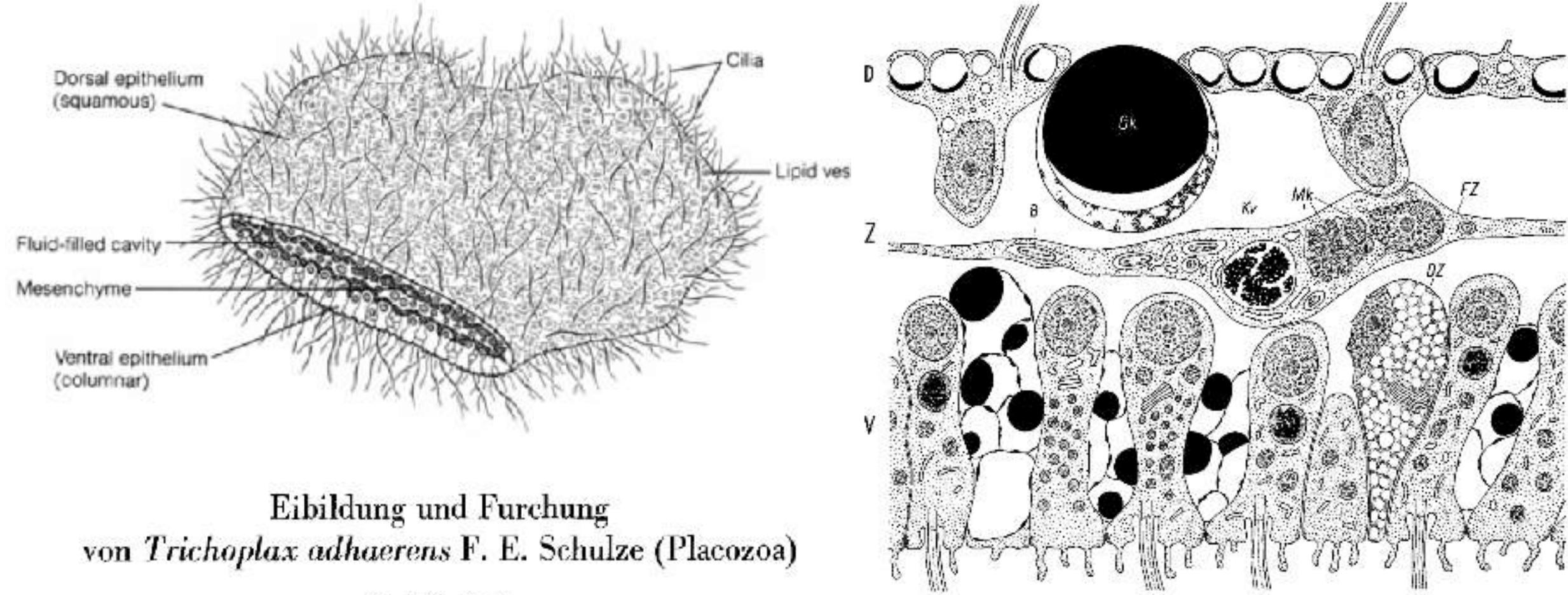


Story 2: The evolution of the neuronal gene expression program



Phylogenetic framework: placozoans

Simple bodyplan and six/nine cell types



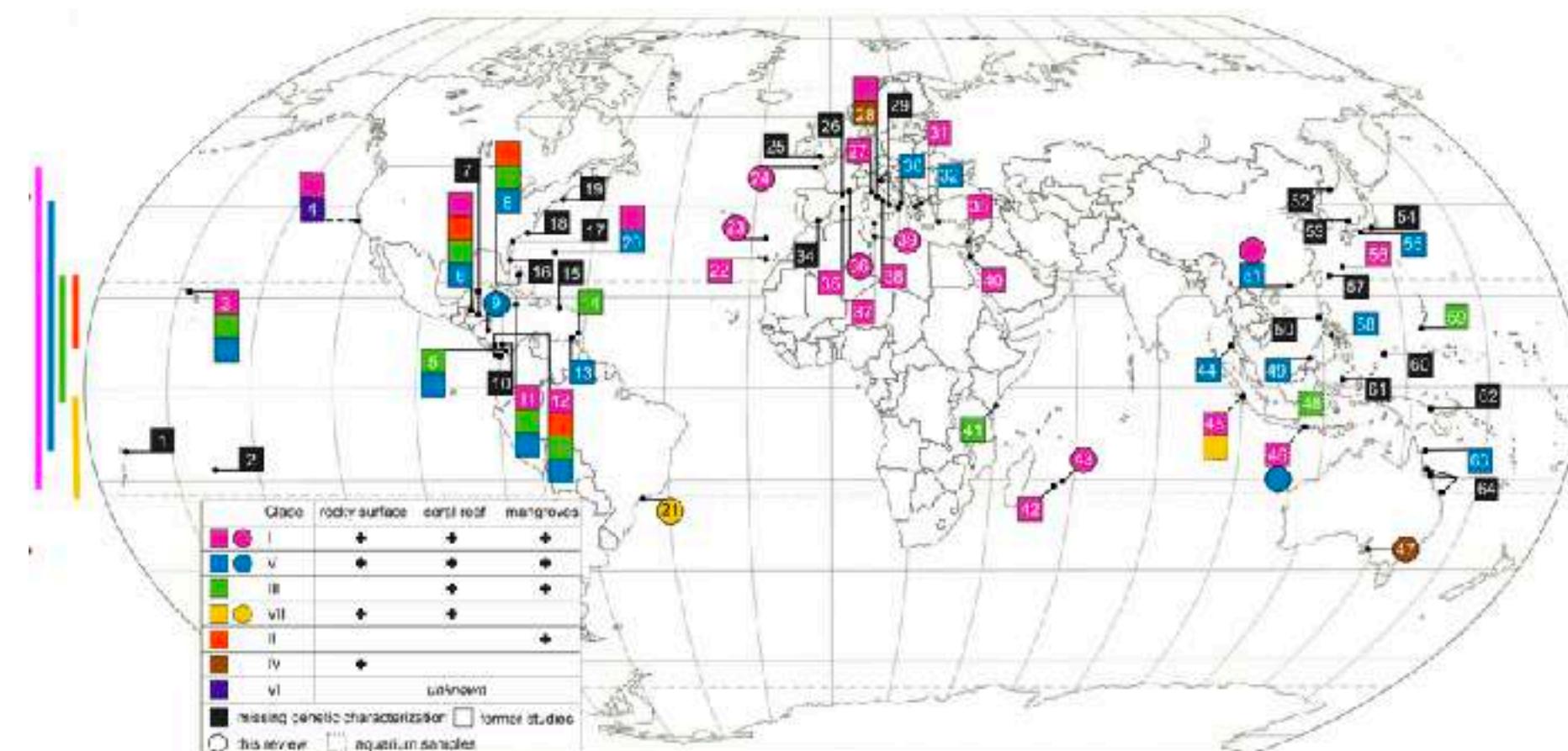
Eibildung und Furchung
von *Trichoplax adhaerens* F. E. Schulze (Placozoa)

Karl G. Grell
Zoologisches Institut der Universität Tübingen

Eingegangen am 2. Juli 1972

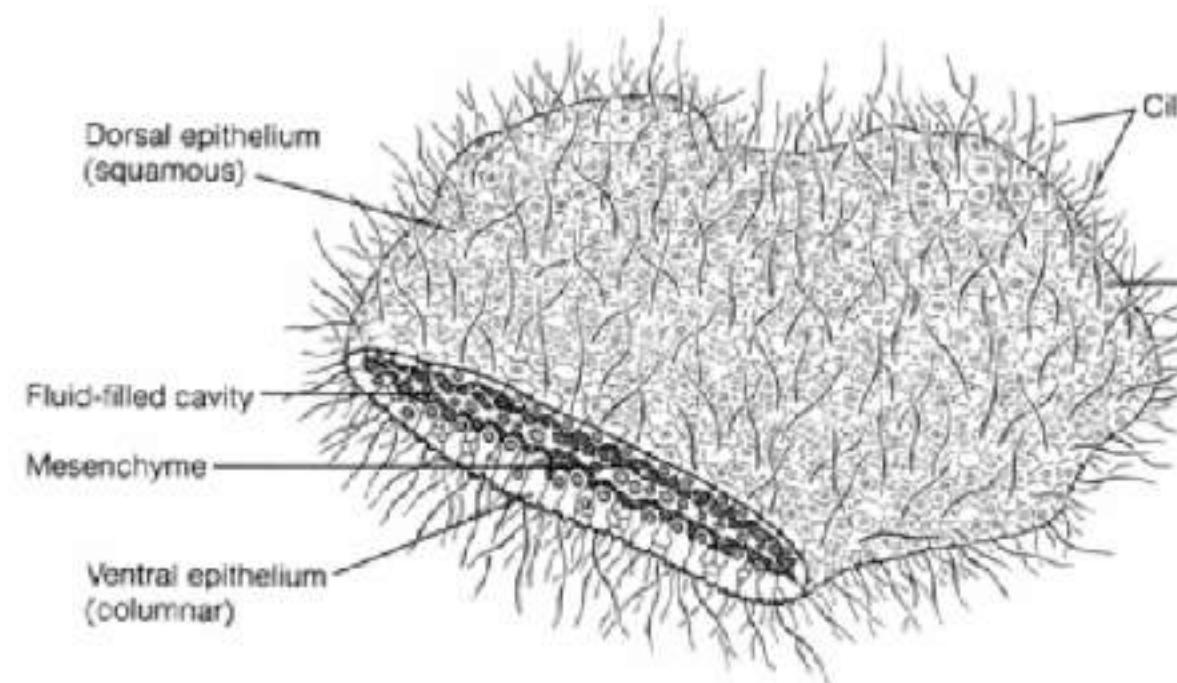
Abb. 1. *Trichoplax adhaerens*. Schema des histologischen Aufbaues. D Dorsalepithel, Z Zwischenschicht, V Ventralepithel, Gk Glanzkugel, FZ Faserzelle mit Mitochondrienkomplex Mk, Konkrementvakuale Kv und Bakterien B, DZ Drüsenzelle.

Biogeography - tropical and subtropical seas



Phylogenetic framework: placozoans

Simple bodyplan and six/nine cell types



Eibildung und Furchung
von *Trichoplax adhaerens* F. E. Schulze (Placozoa)

Karl G. Grell

Zoologisches Institut der Universität Tübingen

Eingegangen am 2. Juli 1972

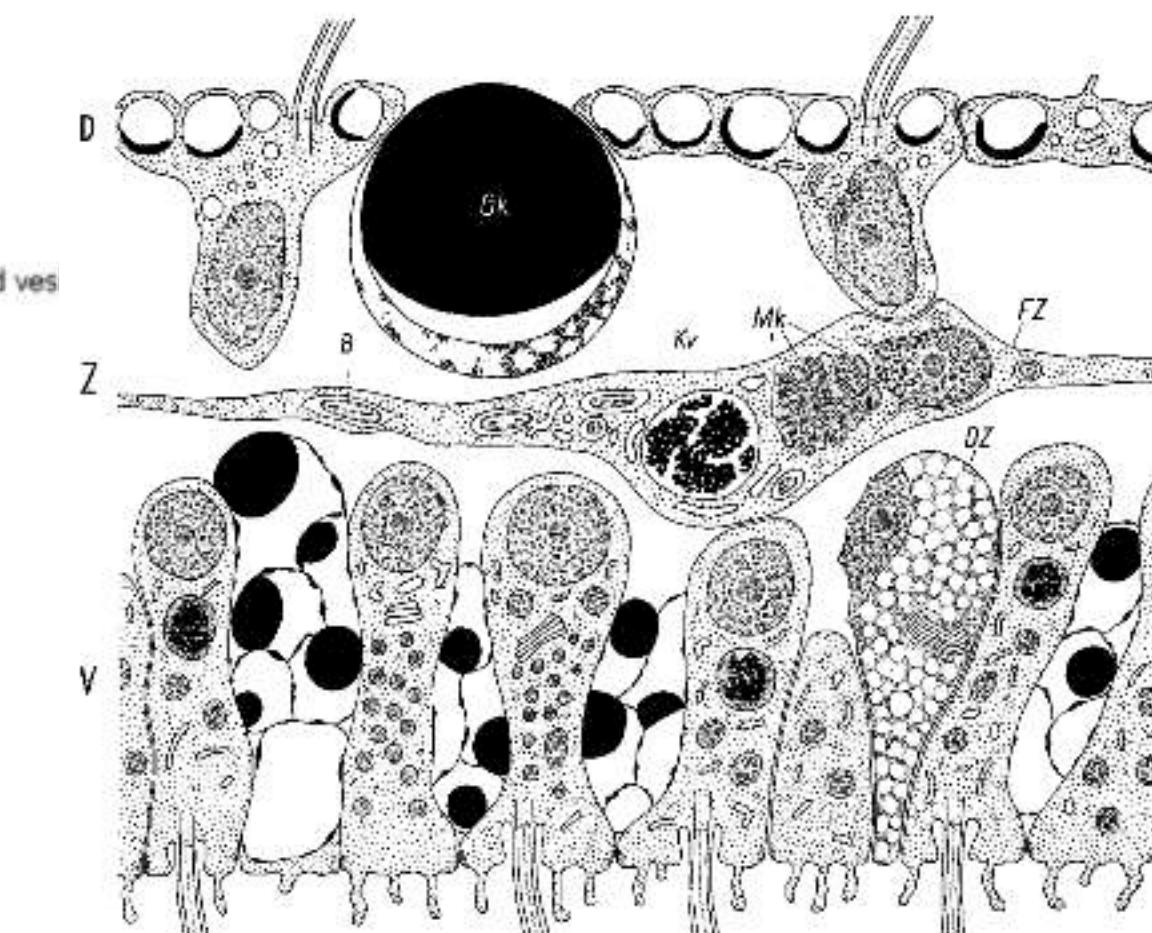
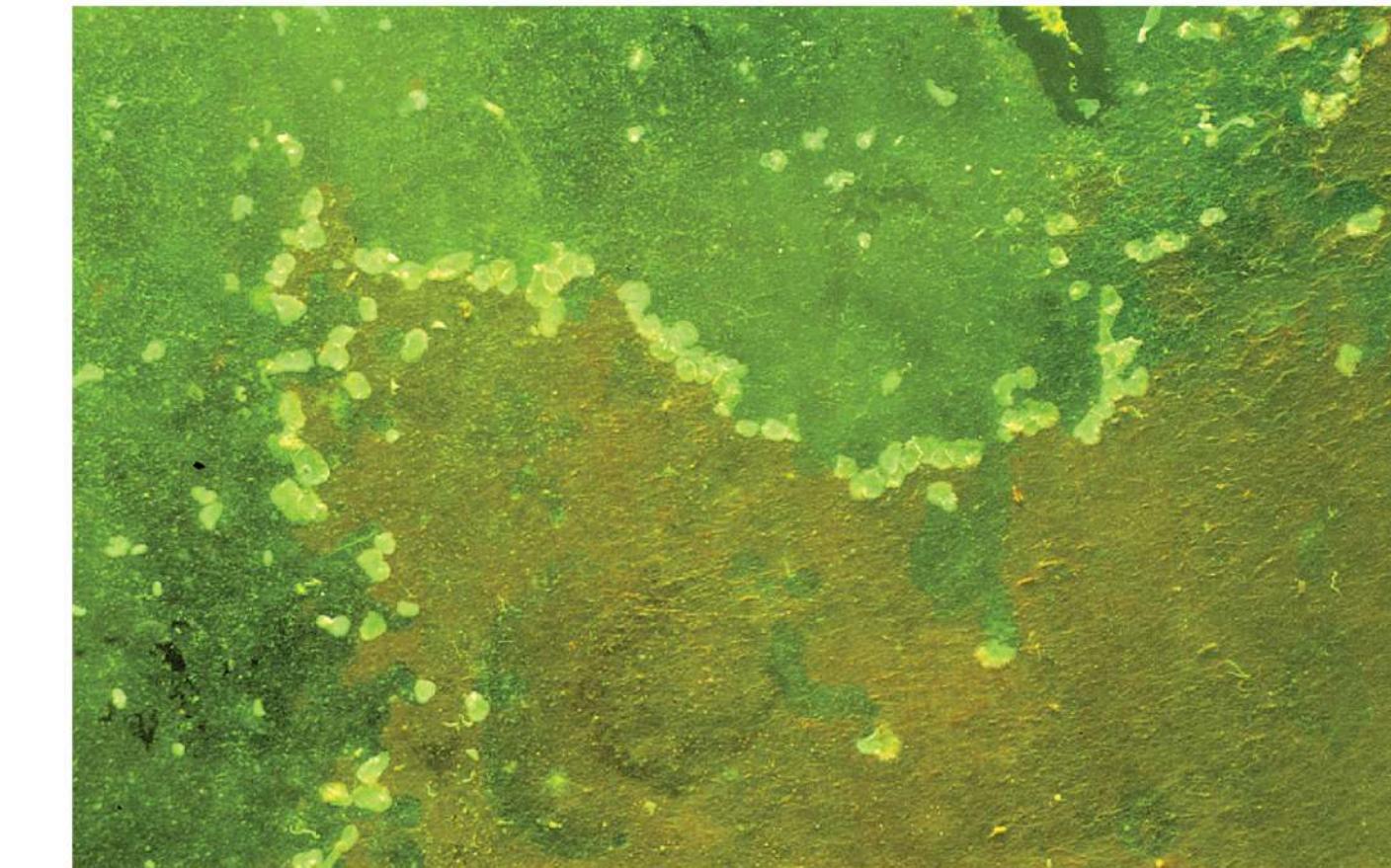
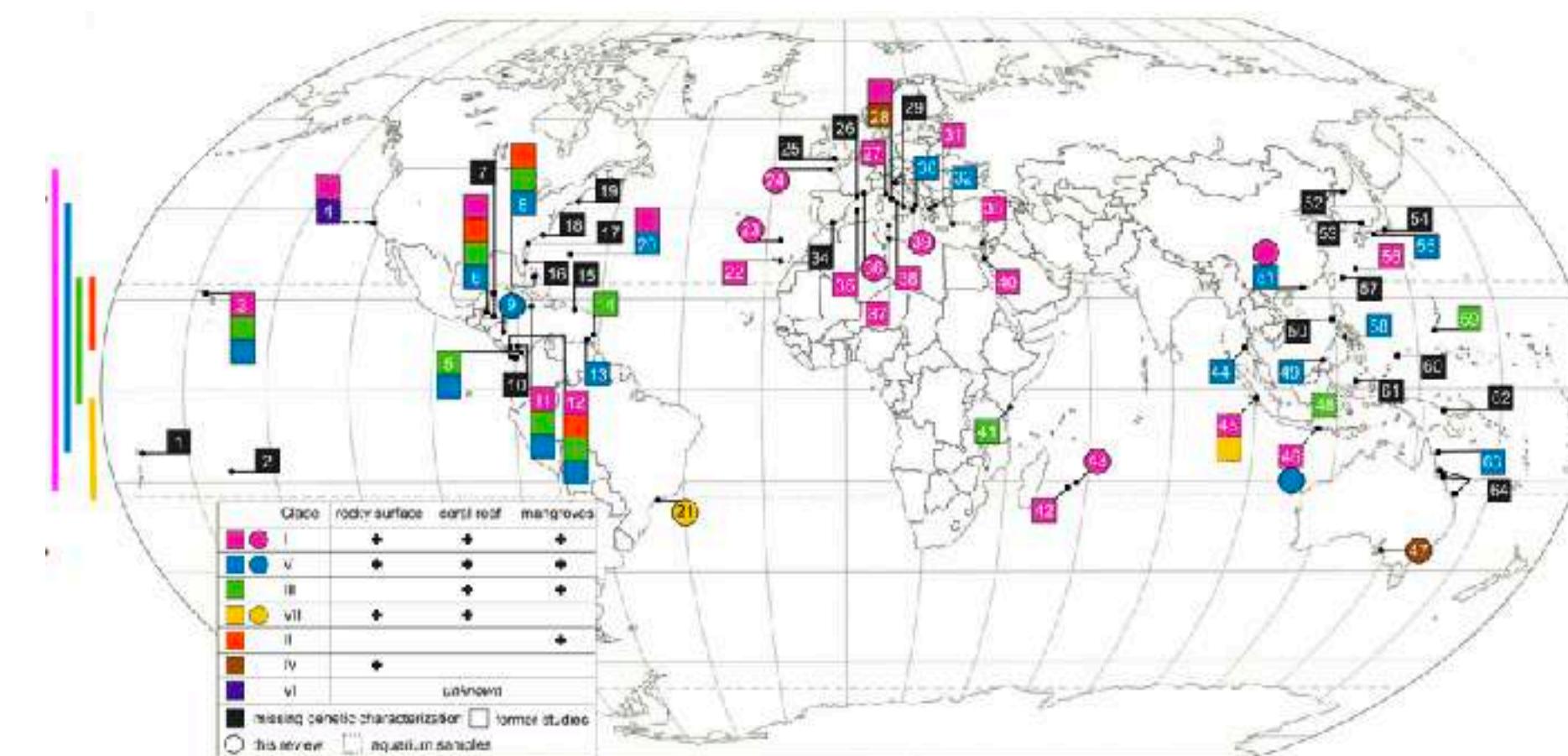


Abb. 1. *Trichoplax adhaerens*. Schema des histologischen Aufbaues. D Dorsalepithel, Z Zwischenschicht, V Ventralepithel, Gk Glanzkugel, FZ Faserzelle mit Mitochondrienkomplex (Mk), Konkrementvakuale (Kv) und Bakterien (B), DZ Drüsenzelle.

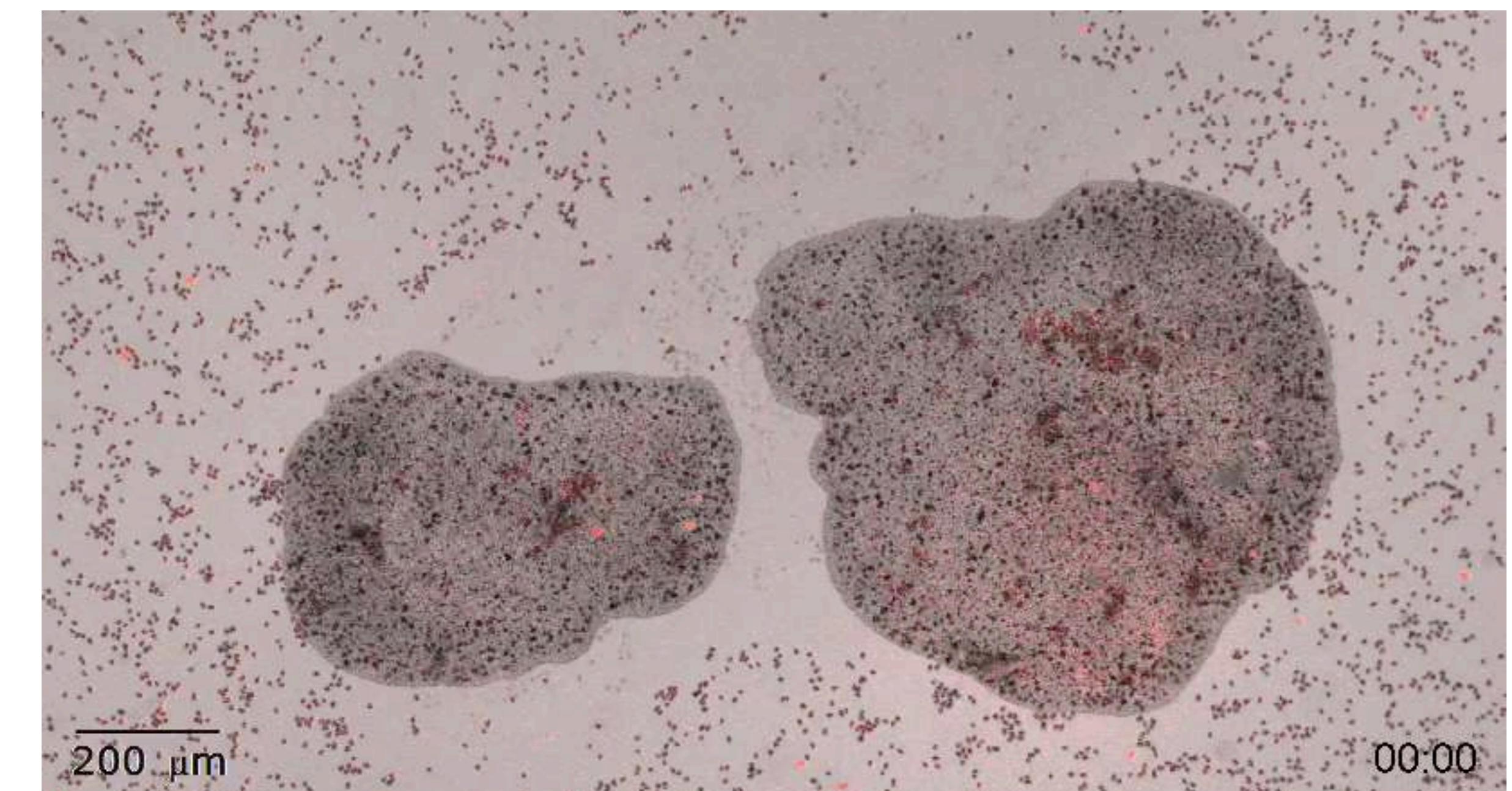
Habitat - microbial mats, feeding by extracellular digestion



Biogeography - tropical and subtropical seas



Eitel et al., PLOS One, 2013



Senatore et al., The Journal of Experimental Biology, 2017

Phylogenetic framework: **placozoans**

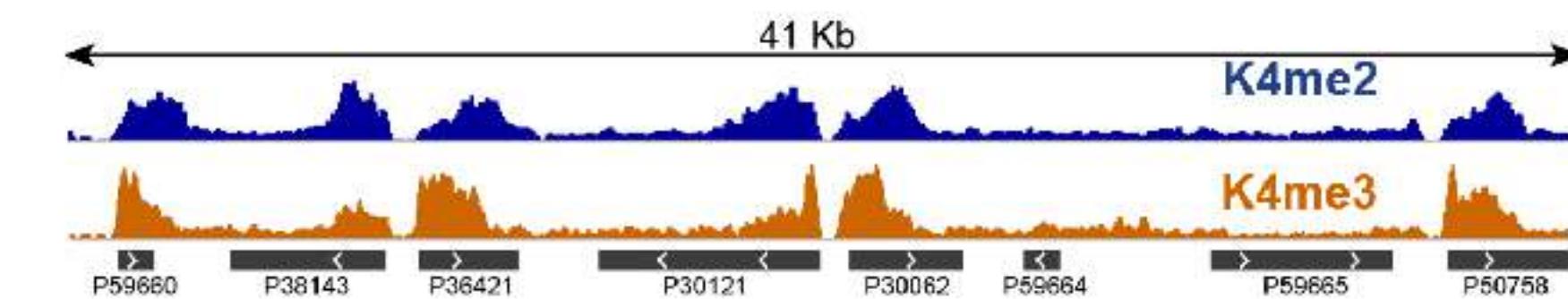
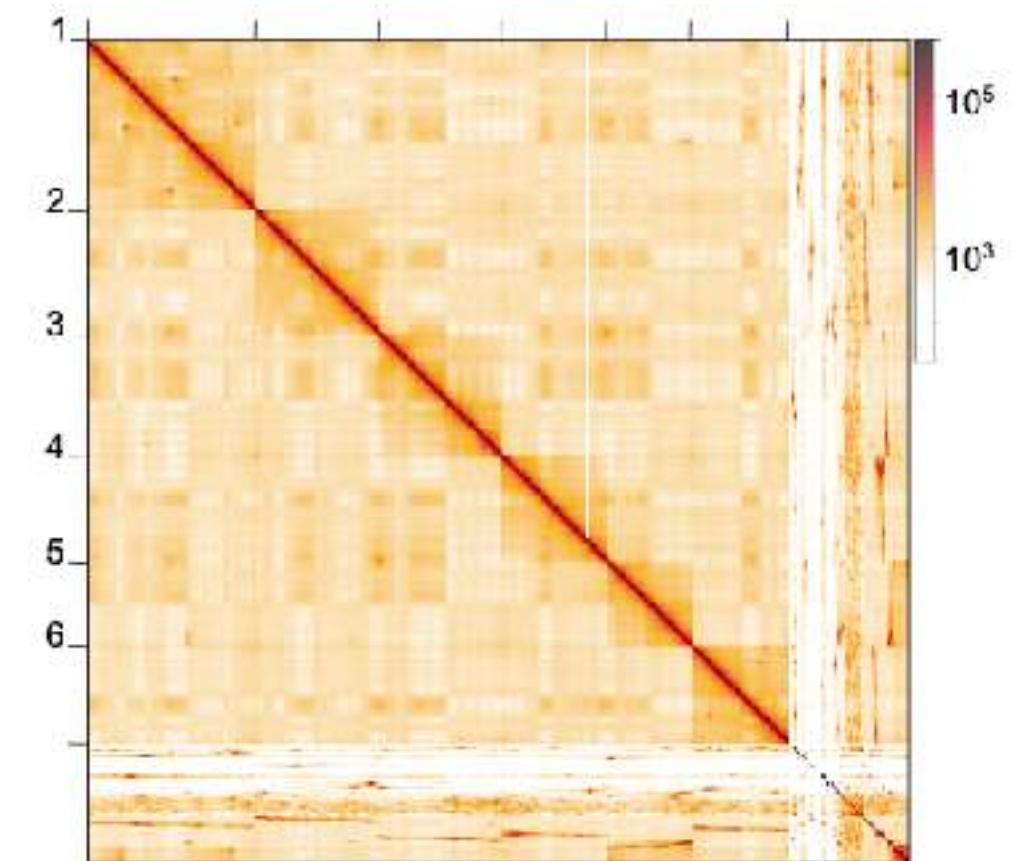
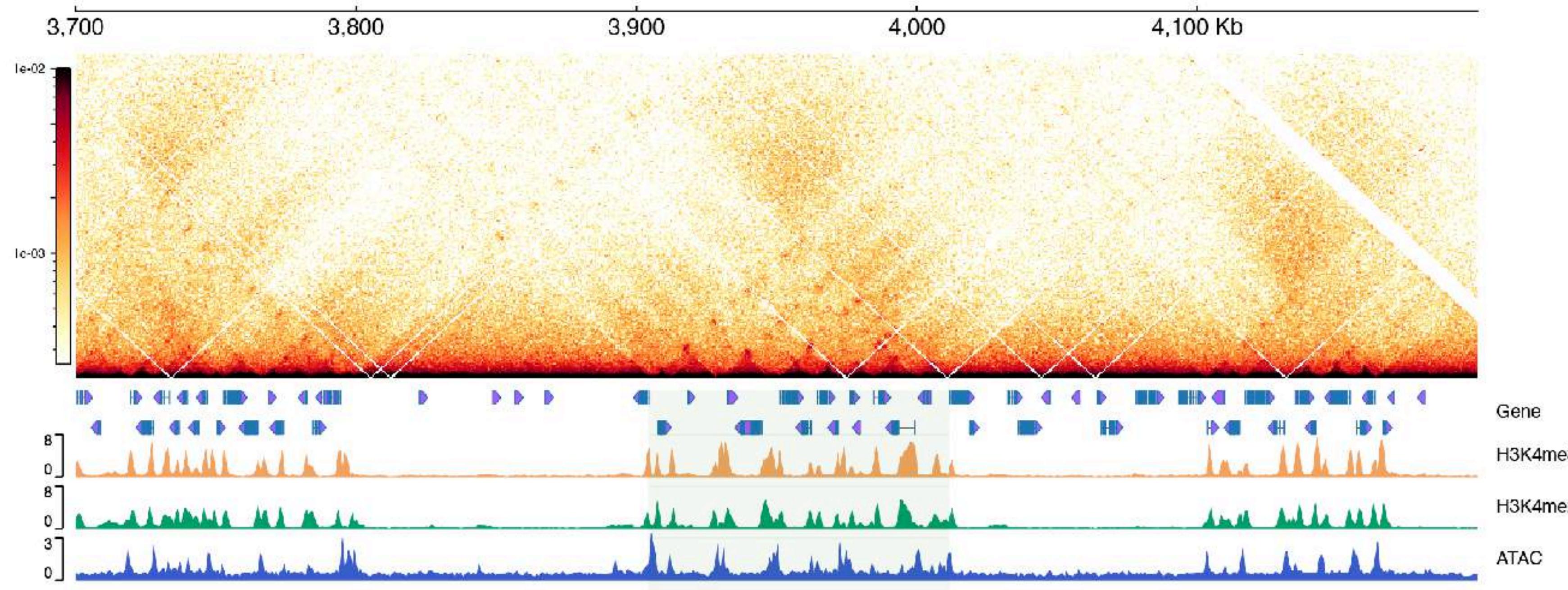
Asexual reproduction by fission

Collective cell behaviors controlled by small peptides

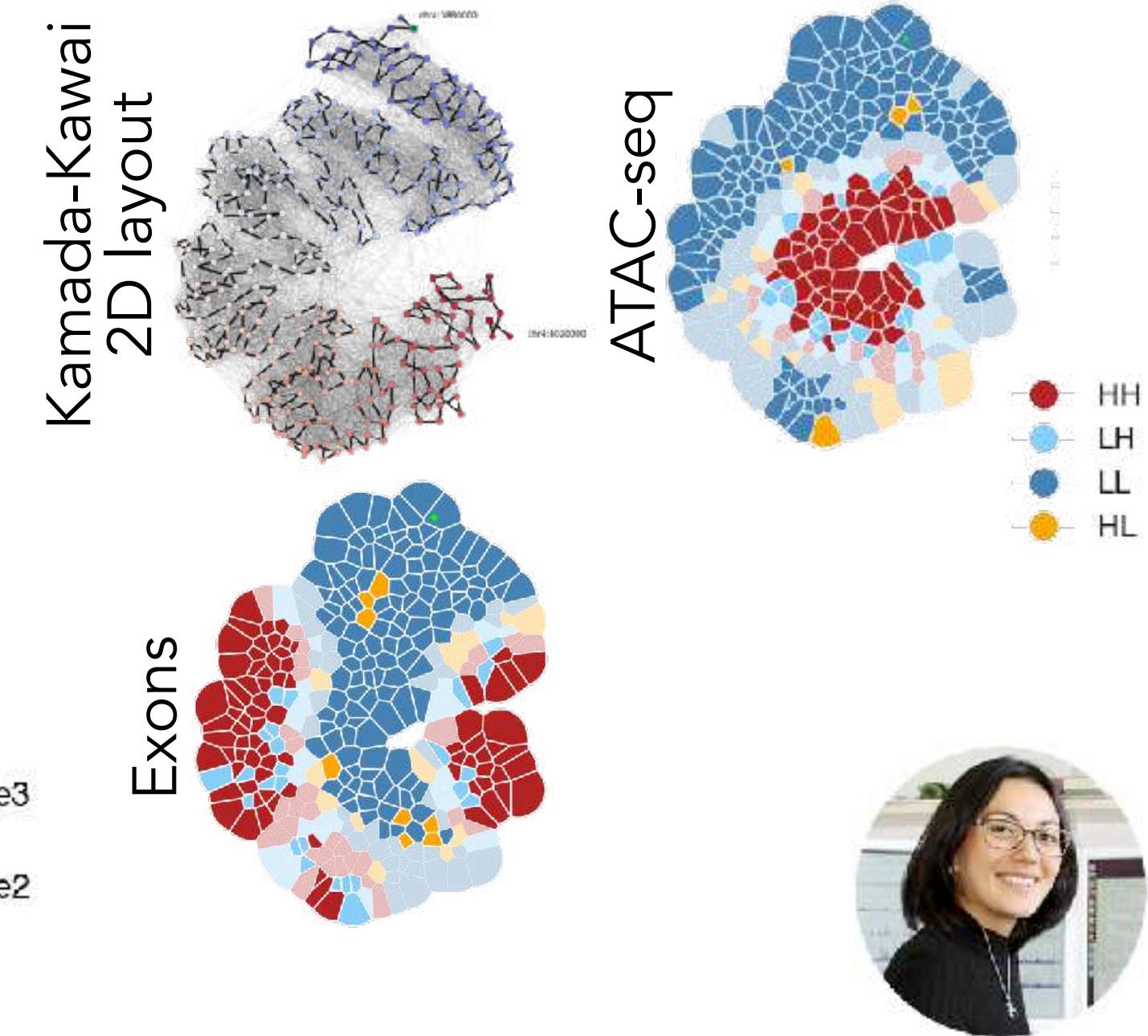


Phylogenetic framework: Placozoa genomes

- *Trichoplax adhaerens* (H1) in 2008 + 6 others in recent years
- 87-108Mb
- 6 chromosomes
- $\pm 12,000$ genes
- highly-conserved gene repertoire
- proximal promoter gene regulation



Kim et al., *Nature*, 2025



Iana Kim

A multi-species placozoan cell type atlas

- ***Trichoplax adhaerens* H1**
- ***Trichoplax* sp.H2**
- Cladhexea* sp.H11
- ***Hoilungia hongkongensis* H13**
- Hoilungia* sp.H4
- Cladertia* sp.H6
- ***Cladertia collaboinventa* H23**

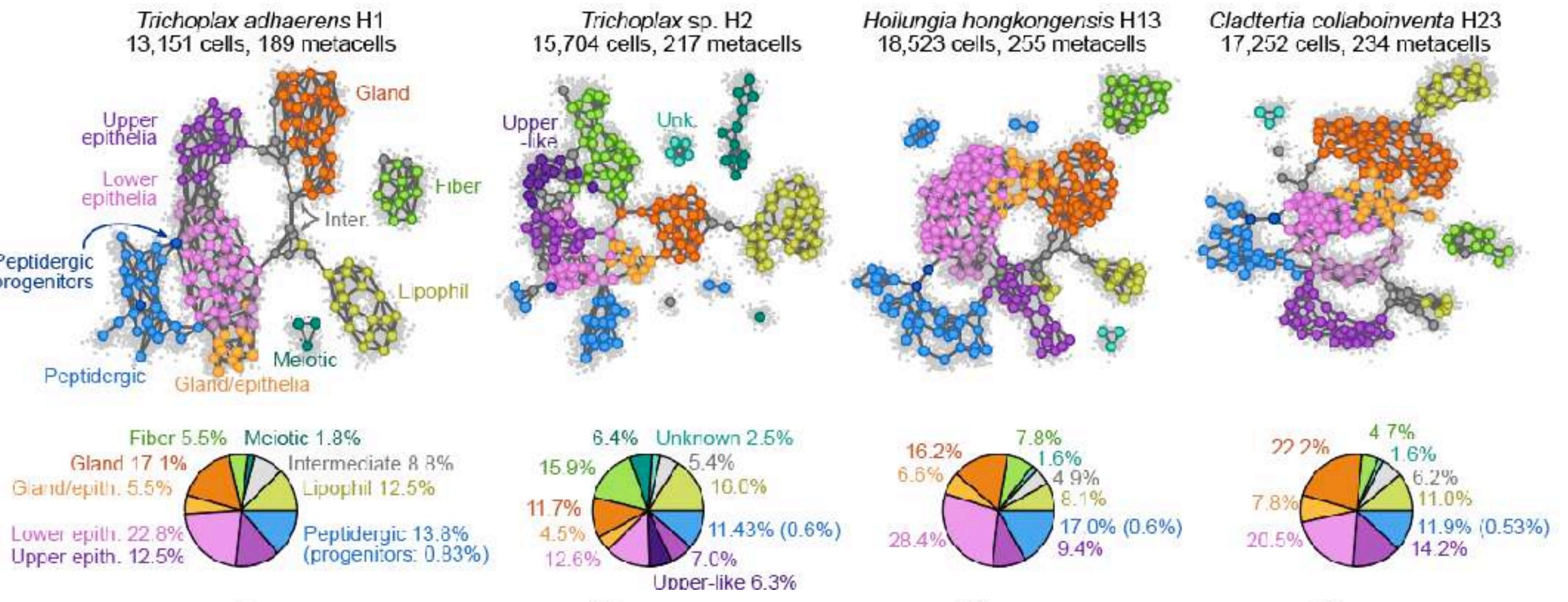
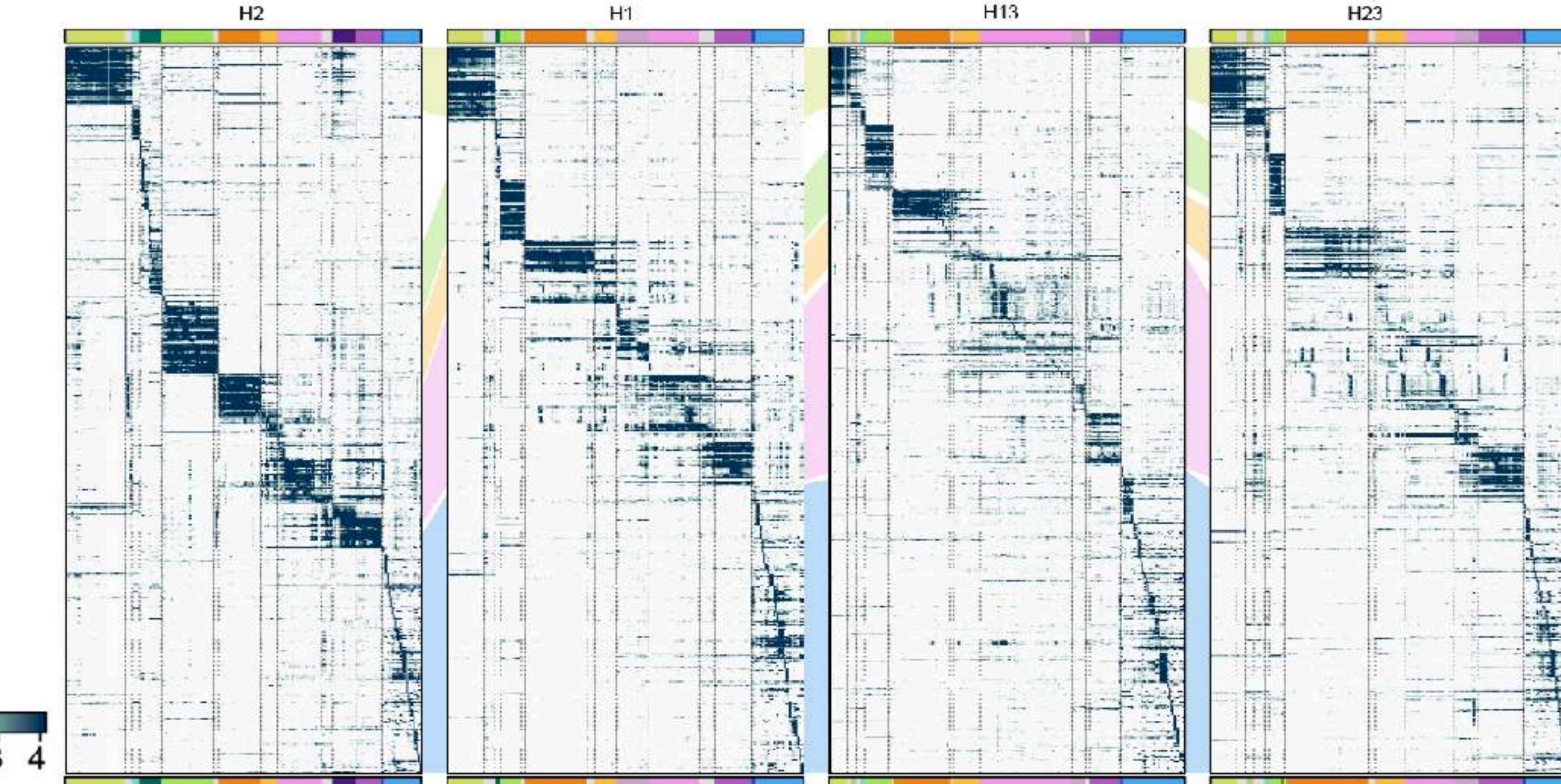
Bernd
Schierwater

Harald
Gruber-Vodicka

Sebastian
Najle

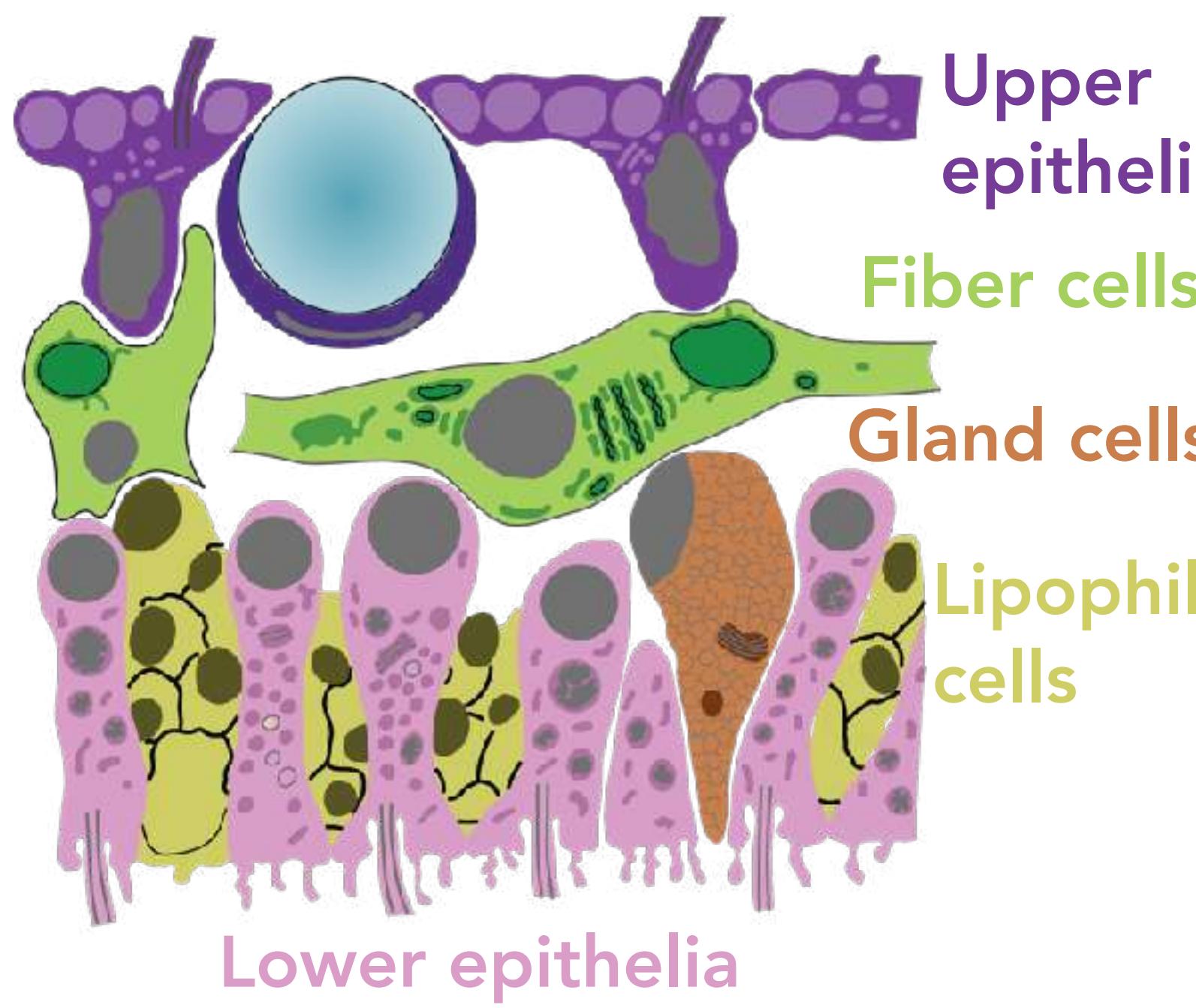
Xavier
Grau-Bové

Expression
fold change



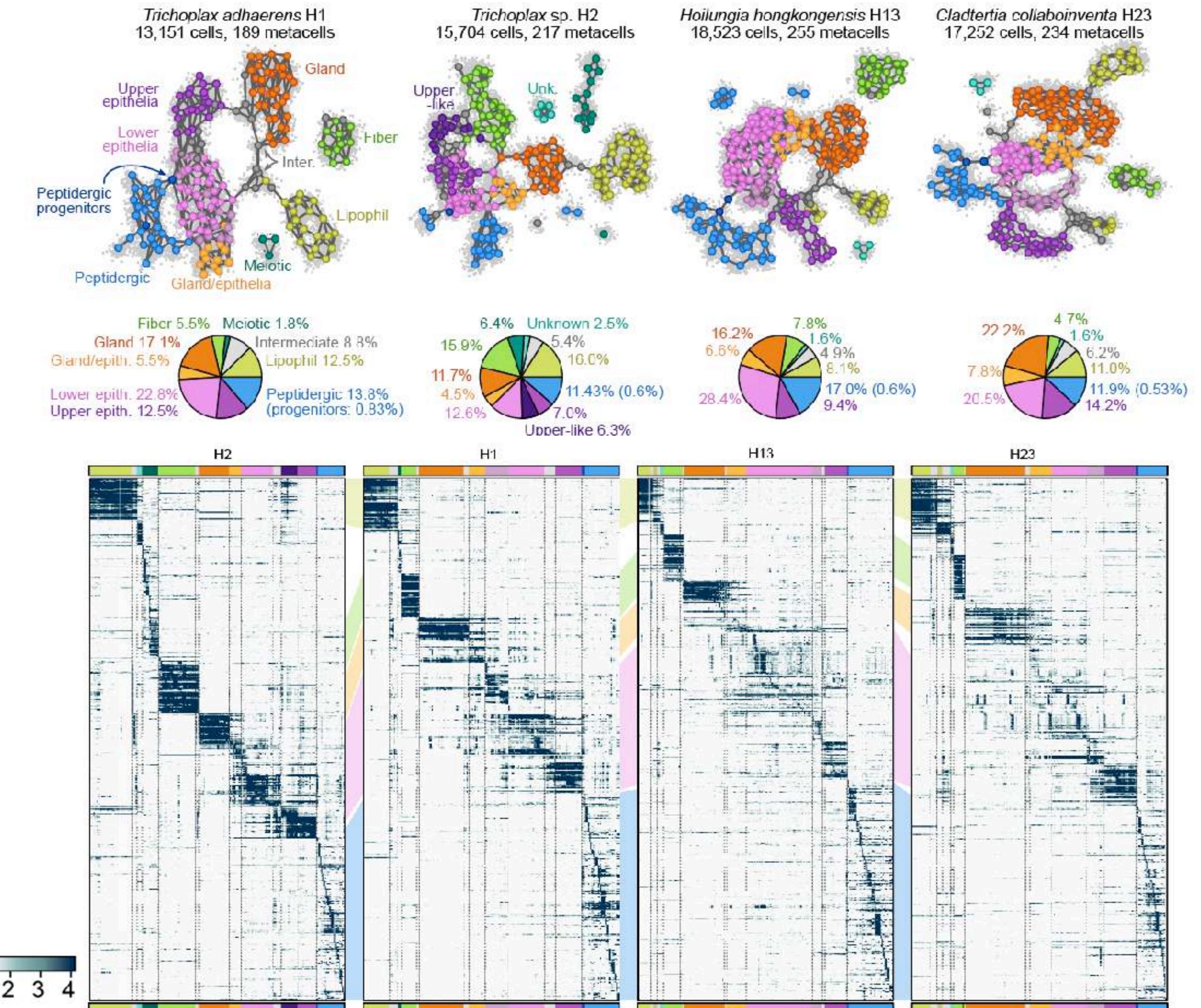
A multi-species placozoan cell type atlas

- ***Trichoplax adhaerens* H1**
- ***Trichoplax* sp.H2**
- Cladhexea* sp.H11
- ***Hoilungia hongkongensis* H13**
- Hoilungia* sp.H4
- Cladertia* sp.H6
- ***Cladertia collaboinventa* H23**



Expression
fold change

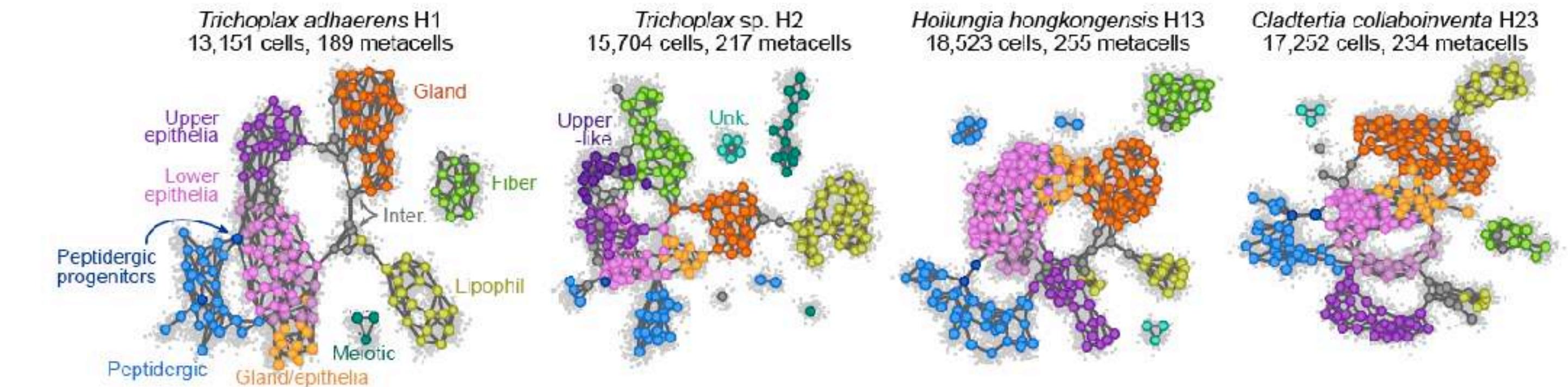
1 2 3 4



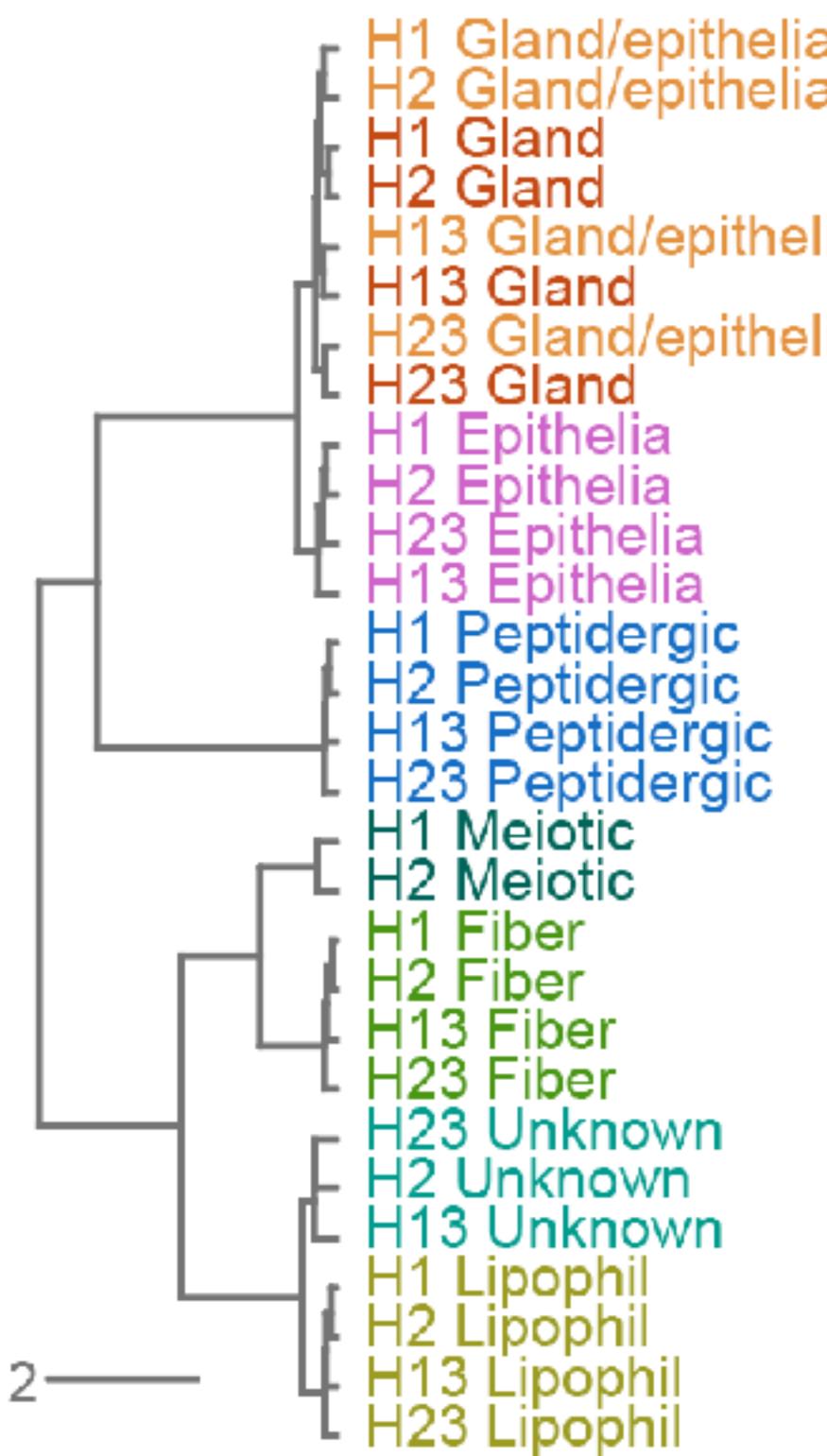
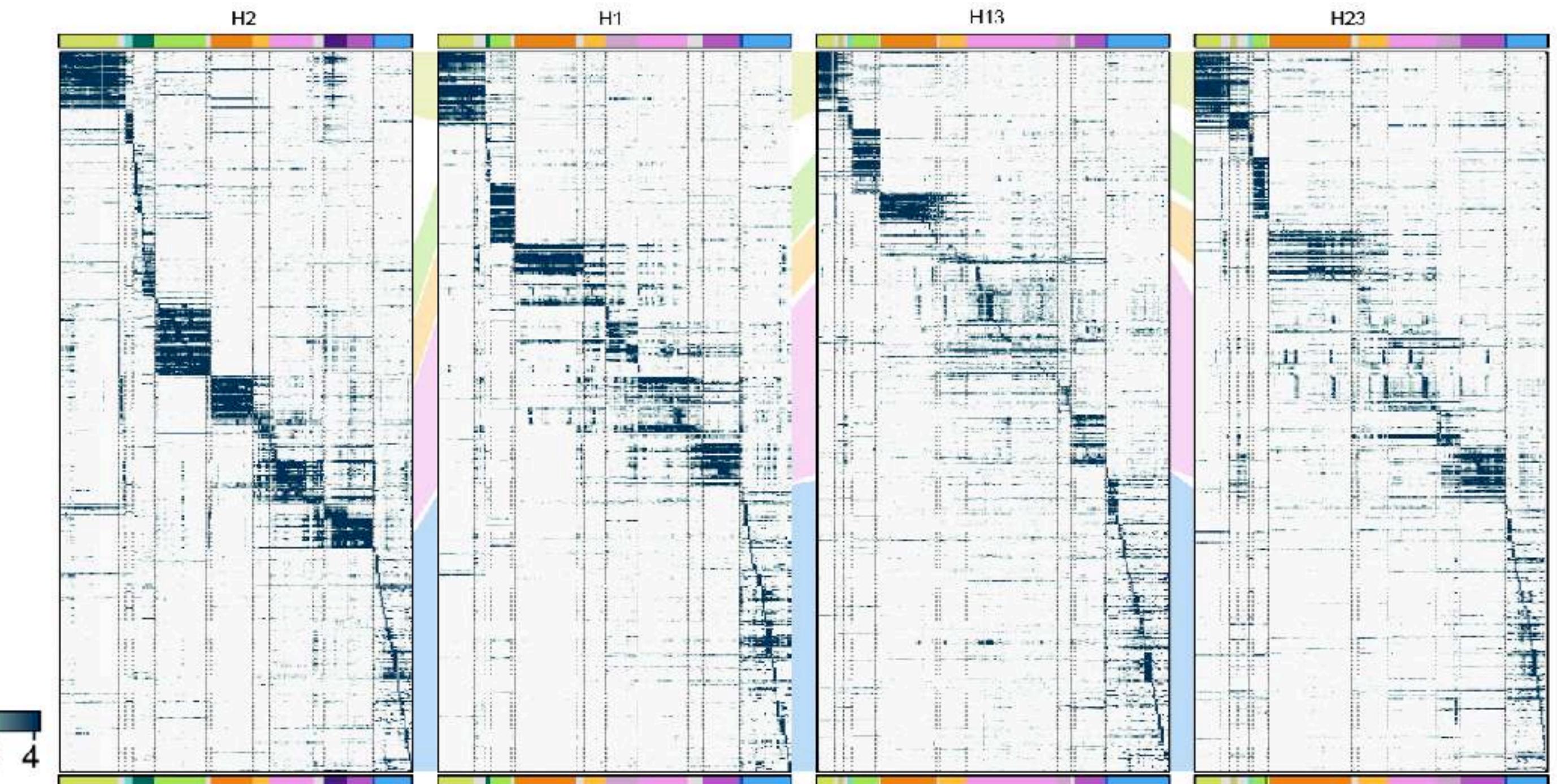


Conserved broad cell types across Placozoa

- ***Trichoplax adhaerens* H1**
- ***Trichoplax* sp.H2**
- Cladhexea* sp.H11
- ***Hoilungia hongkongensis* H13**
- Hoilungia* sp.H4
- Cladertia* sp.H6
- ***Cladertia collaboinventa* H23**

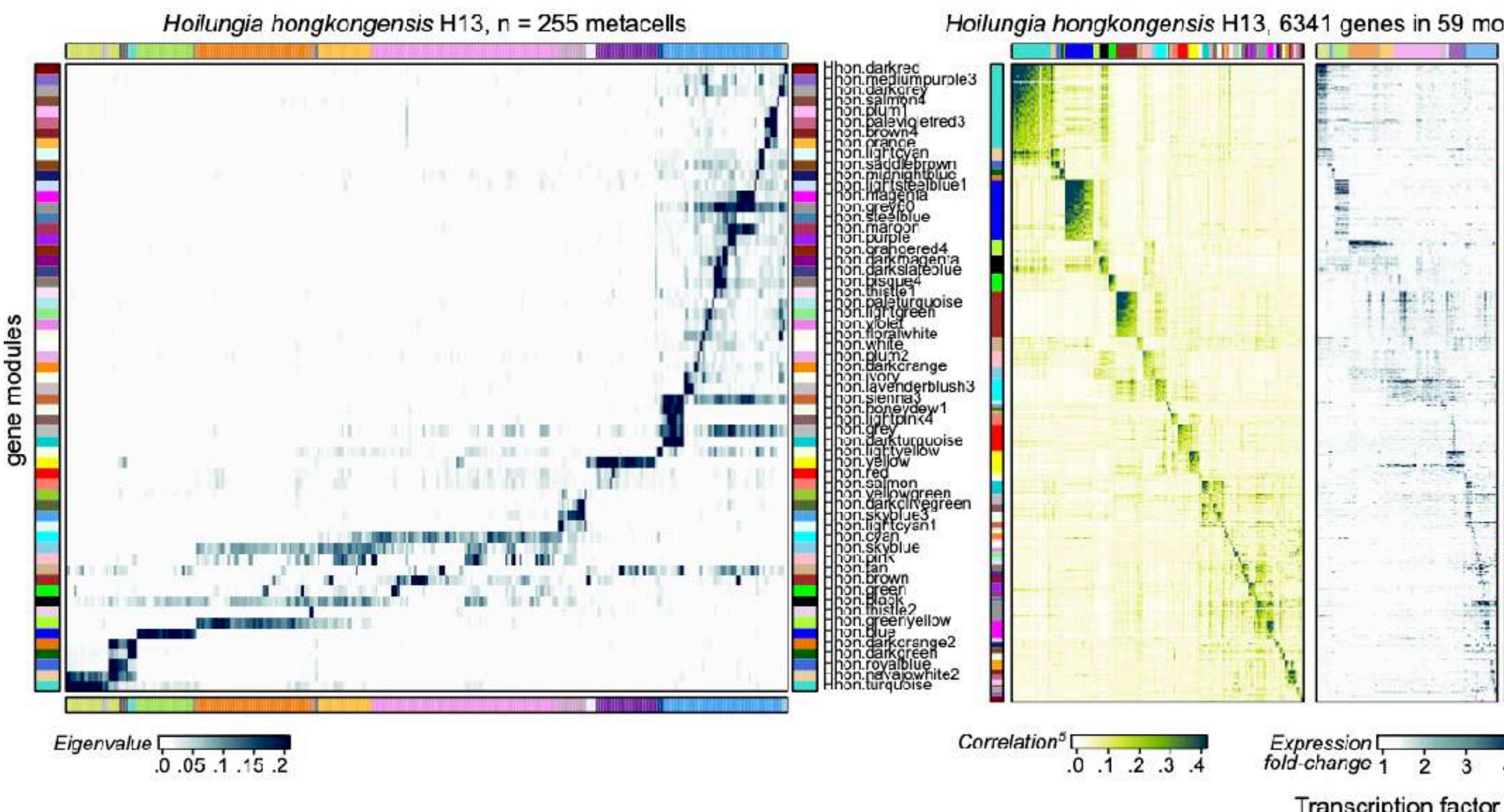


Multi-species cell type clustering

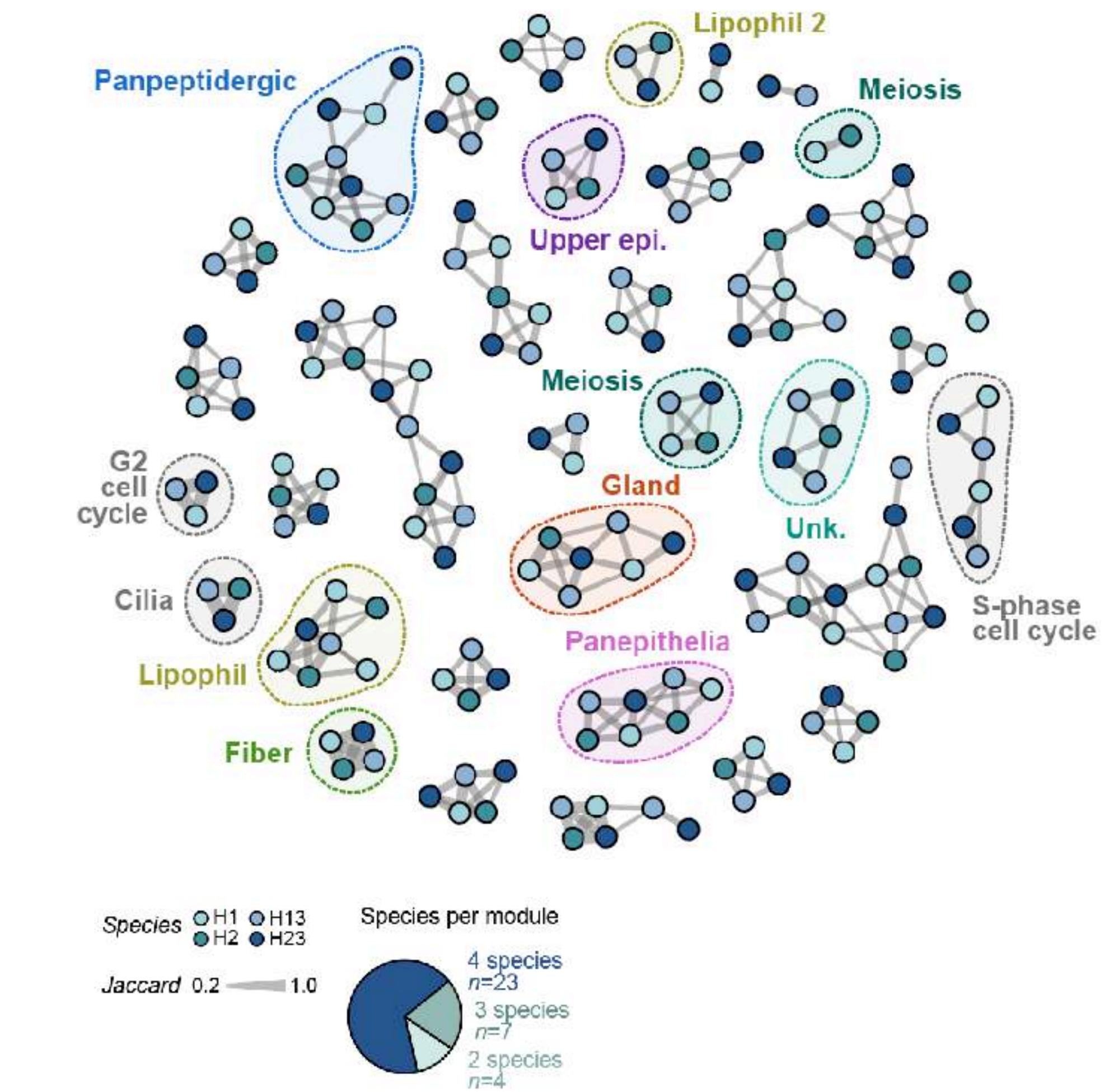


Highly conserved gene modules across Placozoa

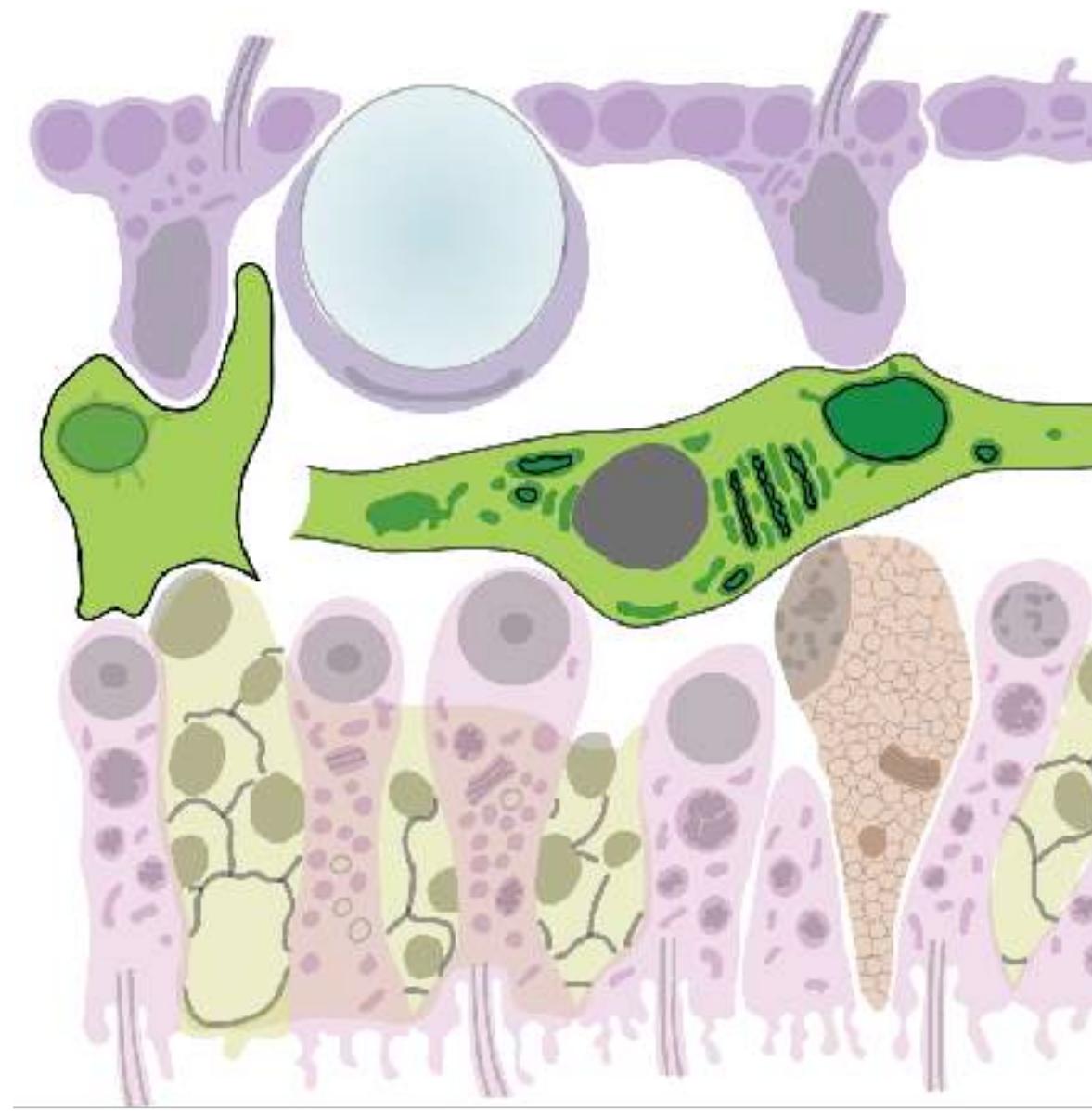
Single-species gene modules
(based on metacell-level gene-gene correlations)



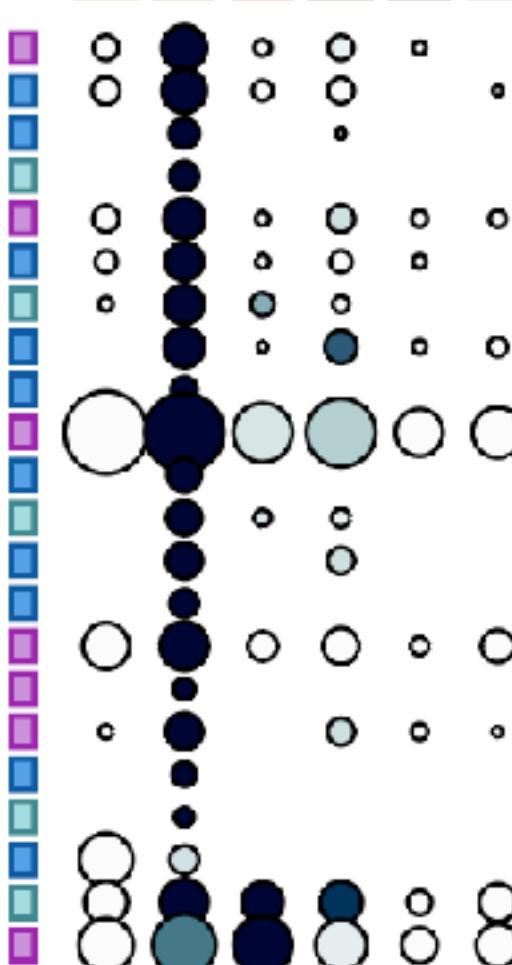
Multi-species gene module clustering



Functional enrichments in cross-species gene modules: fiber cells



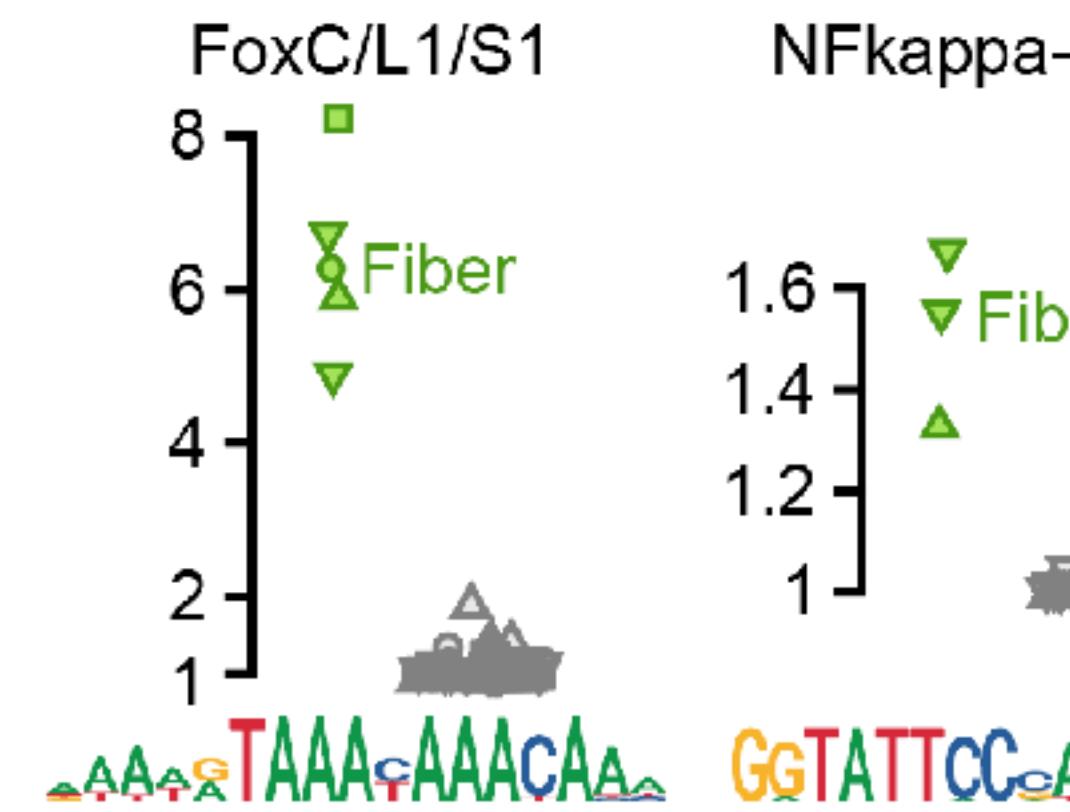
Lipophil
Fiber
Gland
Upper epi.
S-phase
Ciliary



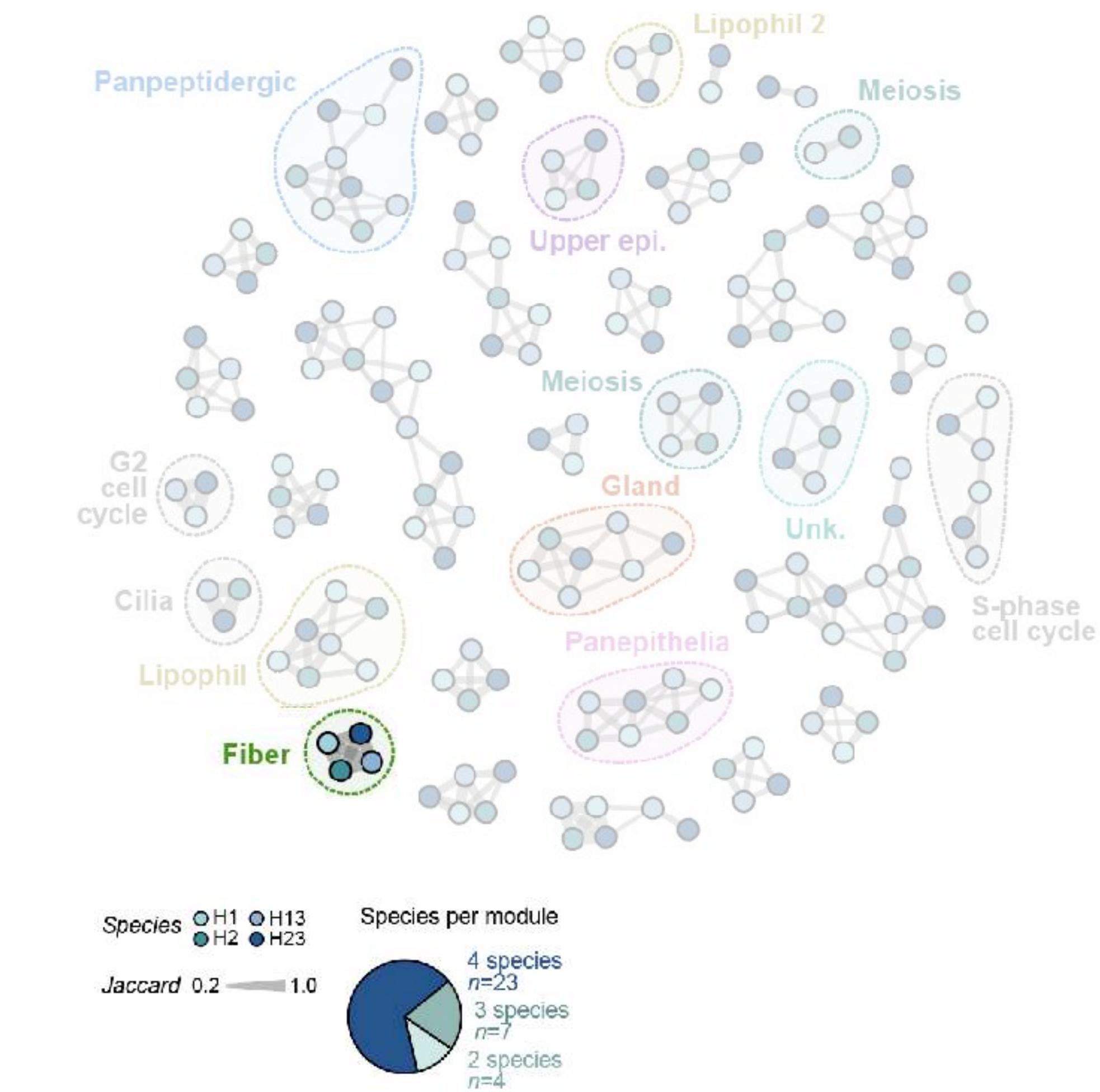
GO enrichments

GO:0005925 focal adhesion
GO:0032496 response to lipopolysaccharide
GO:007157 heterophilic cell-cell adhesion via plas...
GO:0070573 metalloendopeptidase activity
GO:0030027 lamellipodium
GO:0034446 substrate adhesion-dependent cell spread...
GO:0005201 extracellular matrix structural constitu...
GO:0051092 positive regulation of NF-kappaB transcr...
GO:0033625 positive regulation of integrin activati...
GO:0005886 plasma membrane
GO:0071711 basement membrane organization
GO:0005178 integrin binding
GO:0007229 integrin-mediated signaling pathway
GO:0060073 micturition
GO:0045177 apical part of cell
GO:0005587 collagen type IV trimer
GO:0005884 actin filament
GO:2000601 positive regulation of Arp2/3 complex-me...
GO:0008384 IkappaB kinase activity
GO:0006635 fatty acid beta-oxidation
GO:0005509 calcium ion binding
GO:0005576 extracellular region

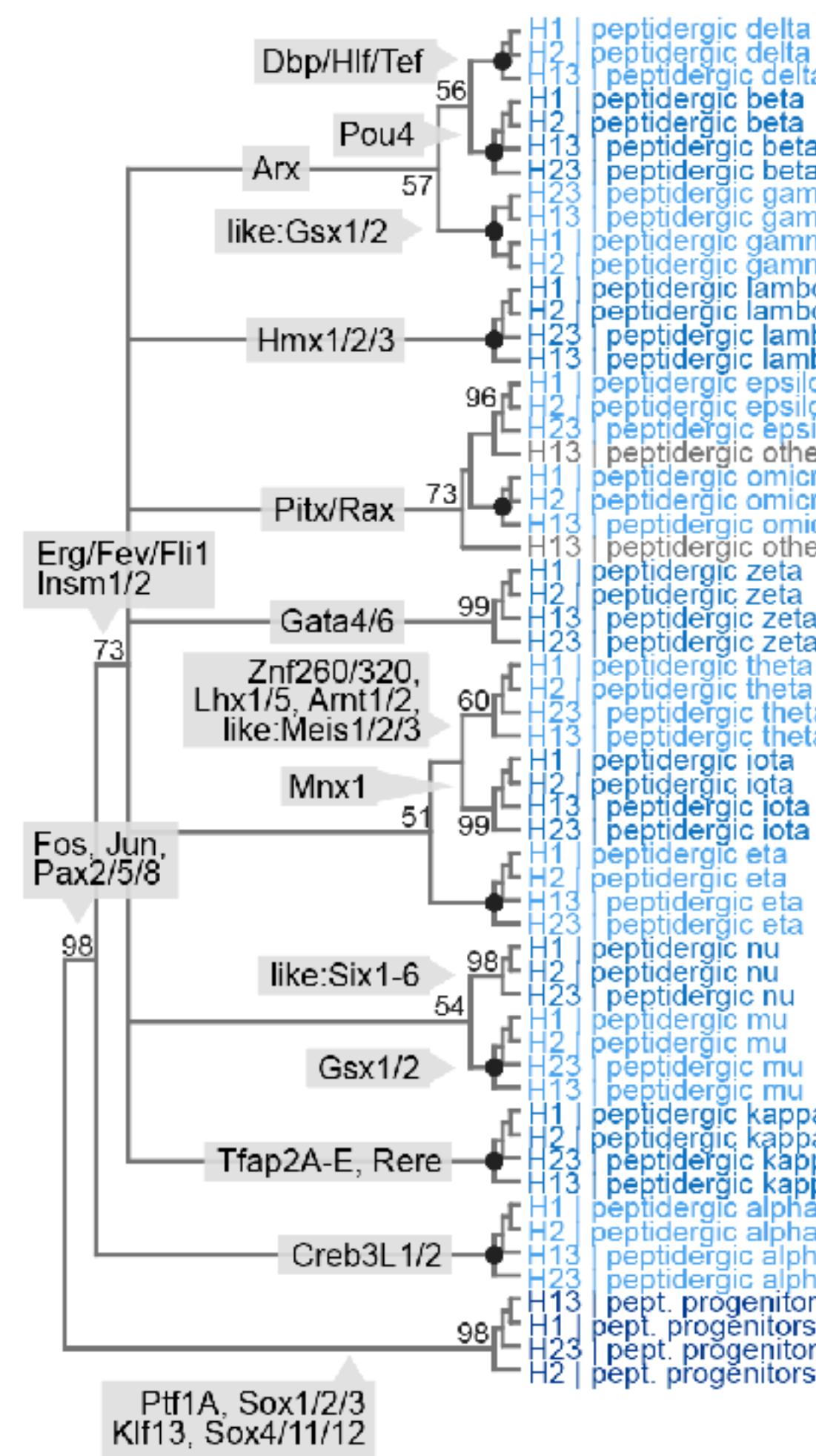
Transcription factors



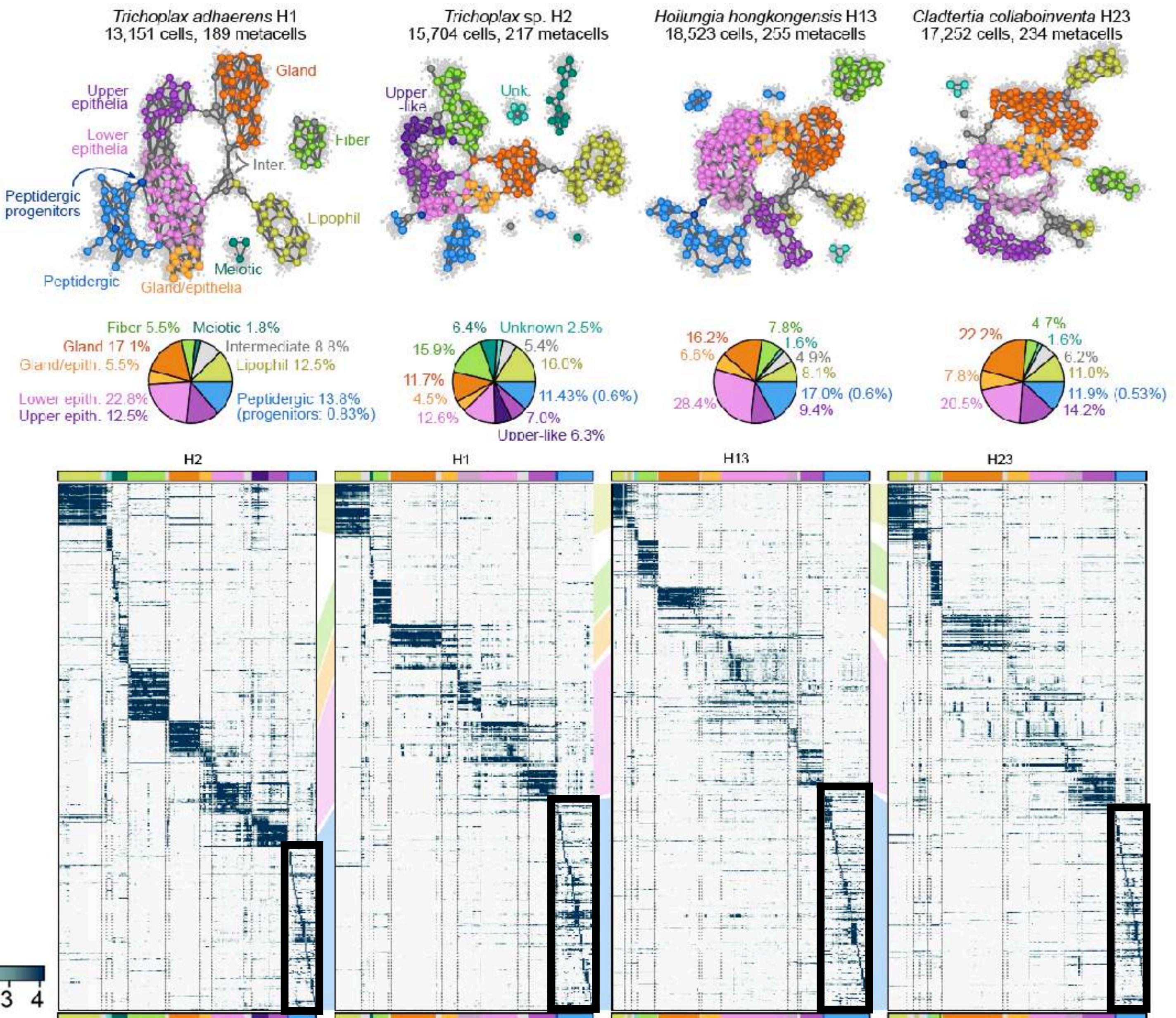
Multi-species gene module clustering



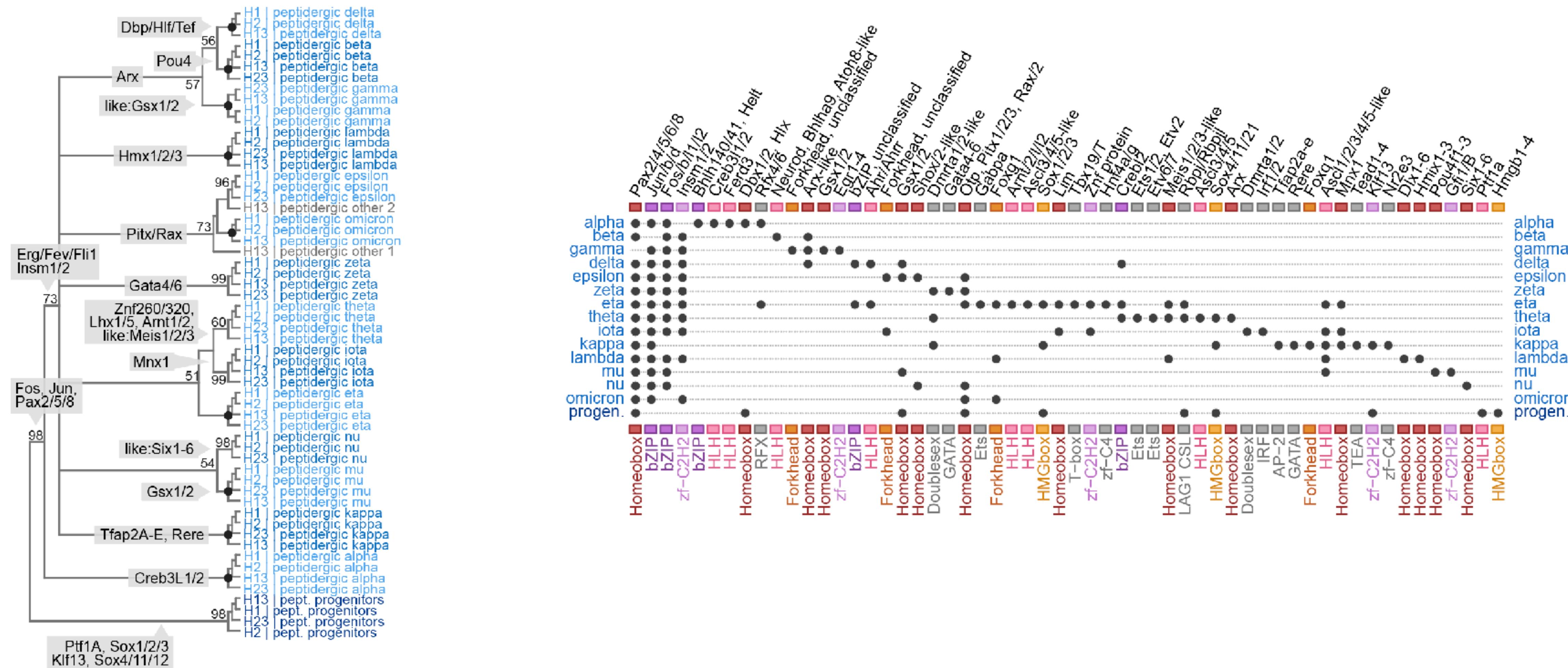
Unexpected diversity of peptidergic cell types



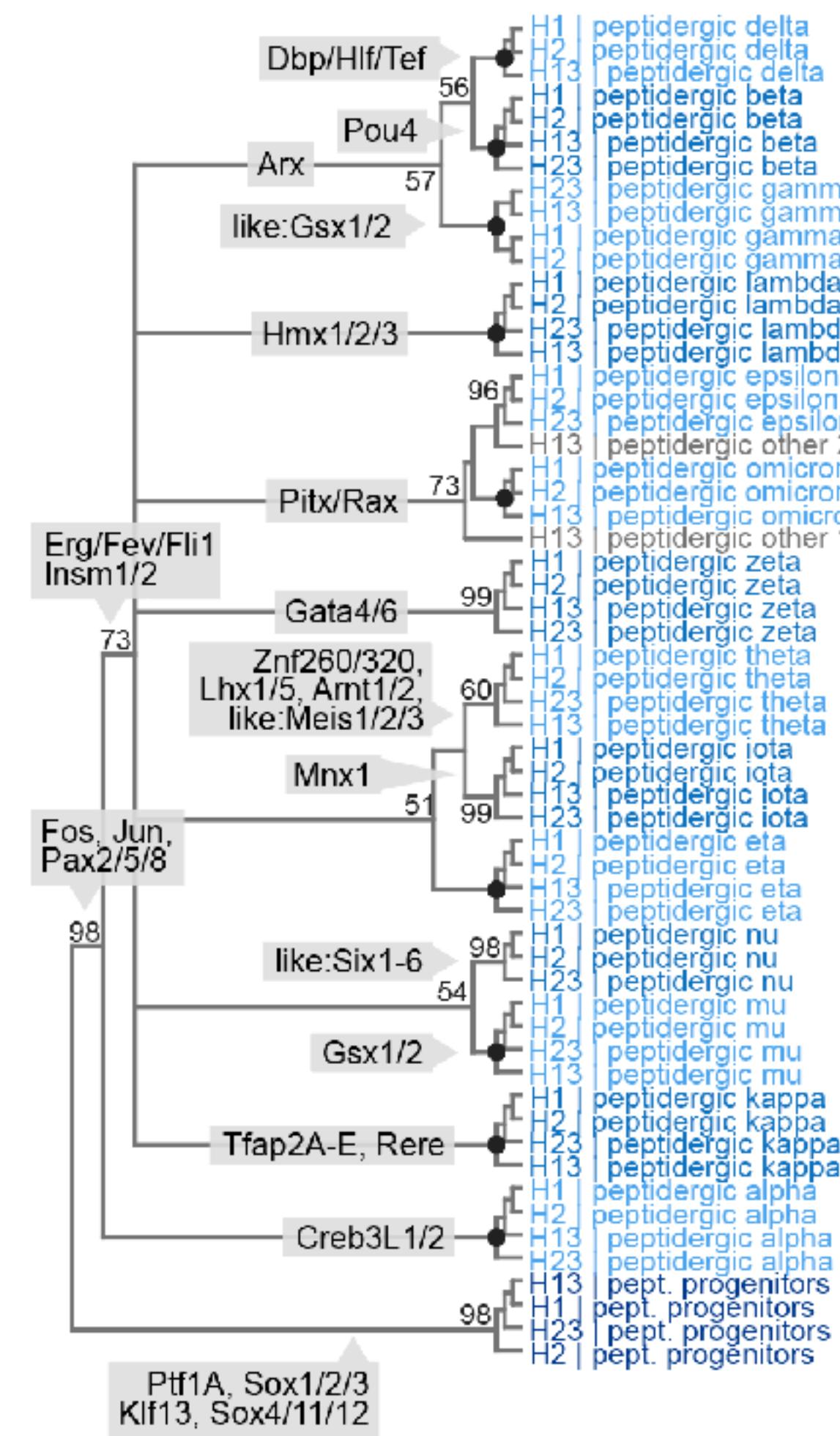
Expression
fold change



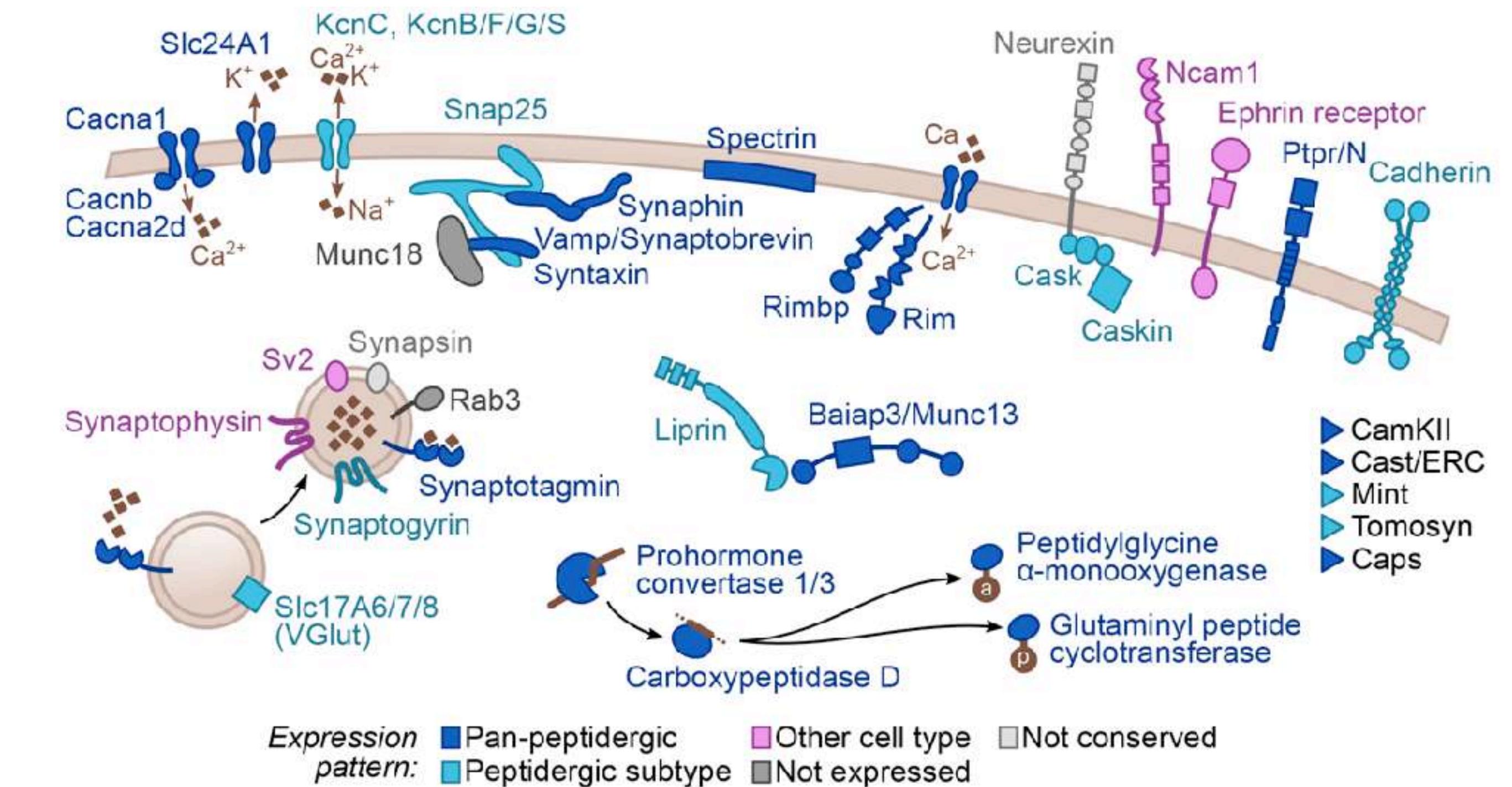
Peptidergic cell types transcription factor code



Shared, pan-peptidergic gene modules

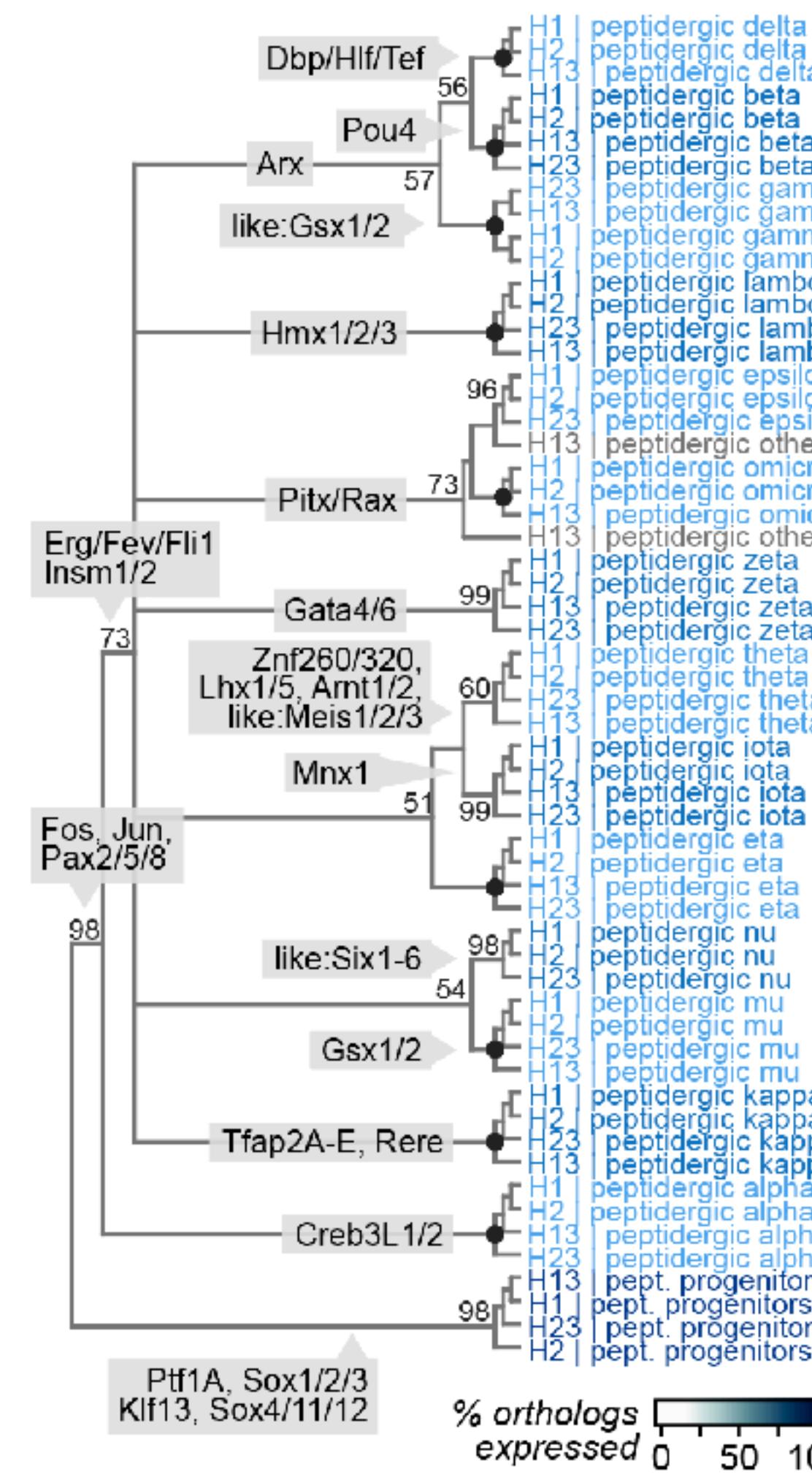


Peptidergic expression of presynaptic scaffold genes

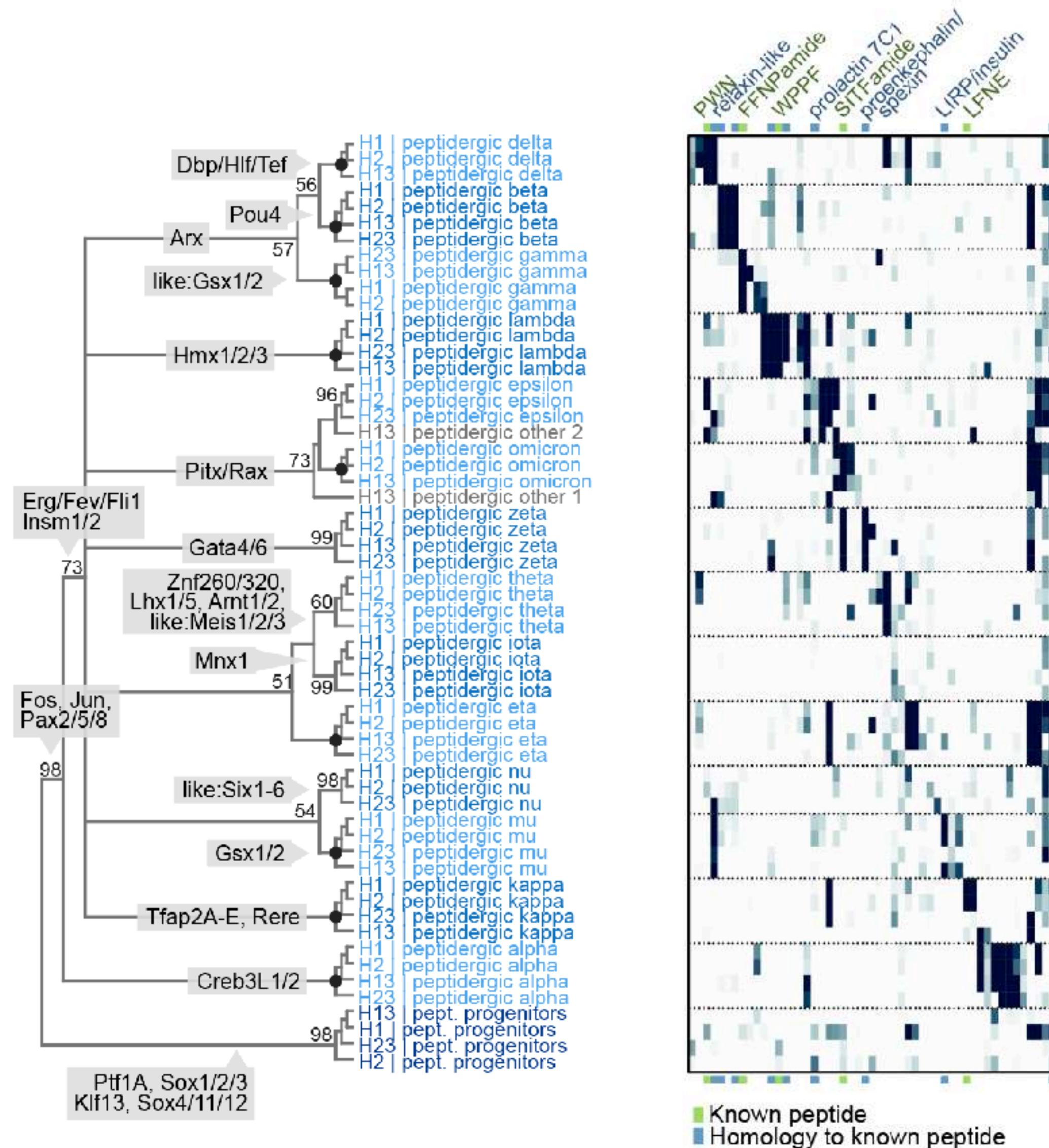
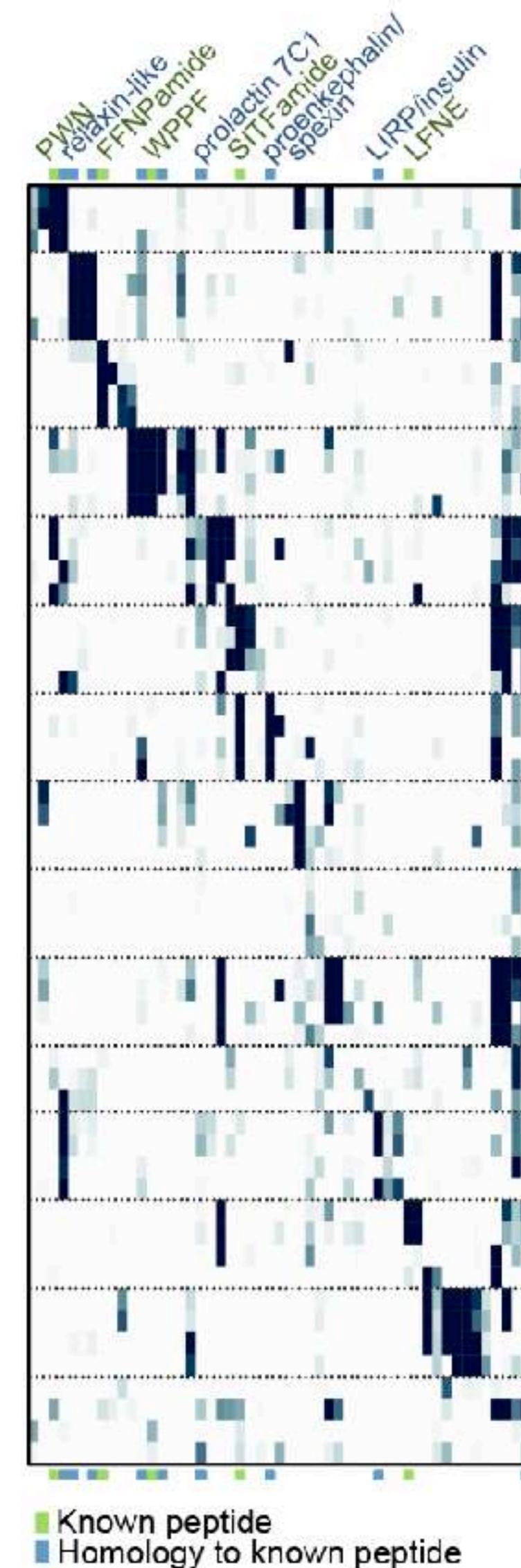


... and neuropeptide processing genes

Identifying small peptides and their post-translational modifications

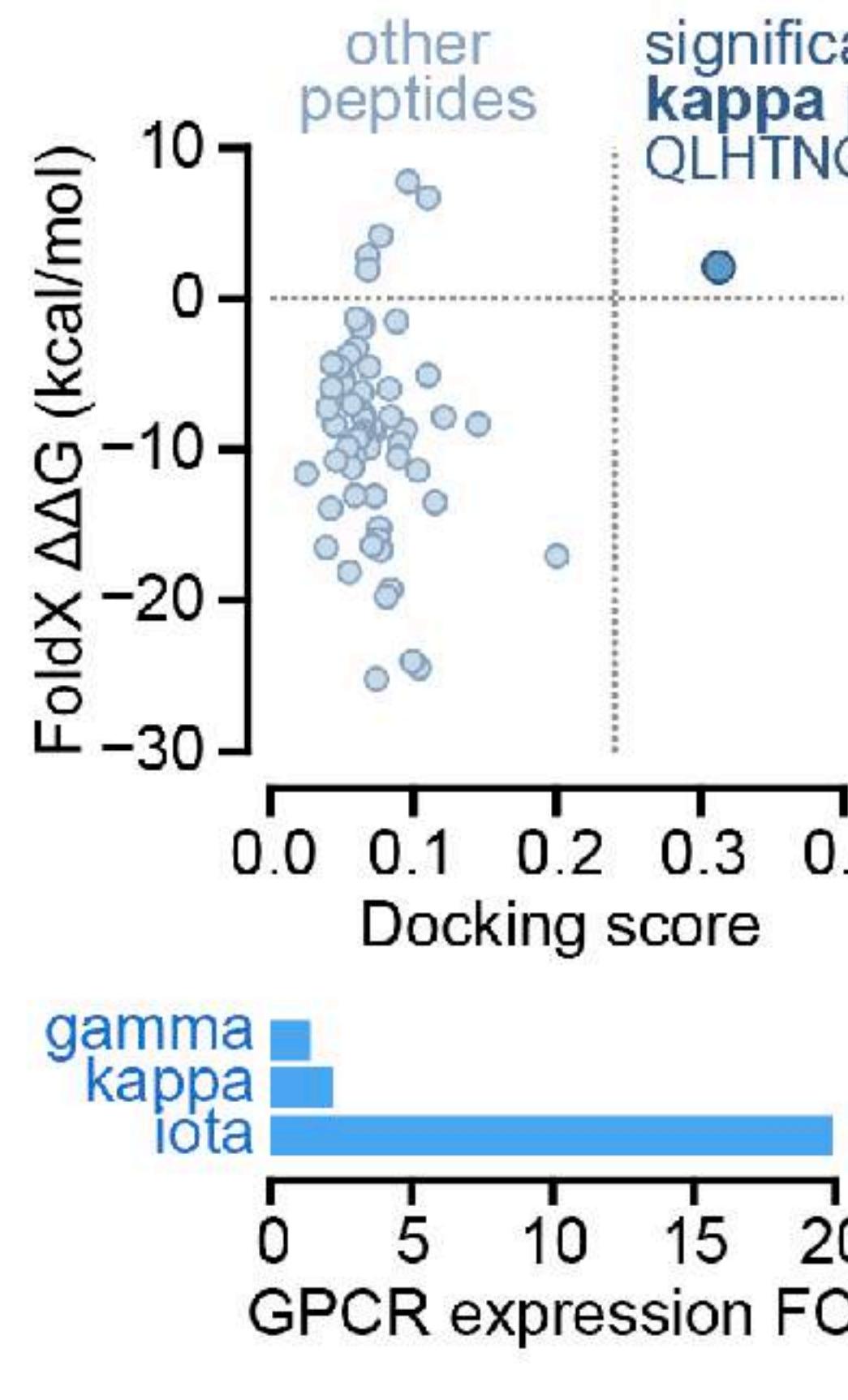
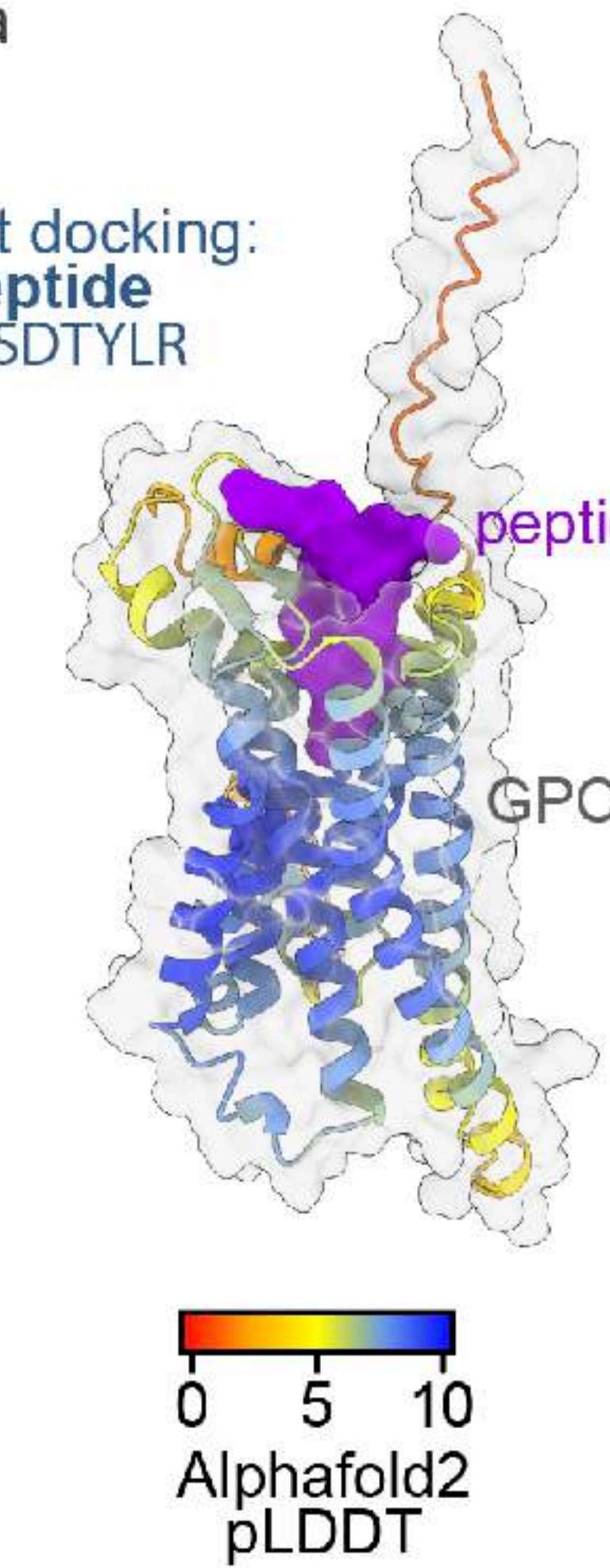


Unique combinations of peptides and GPCRs across peptidergic cell types



Predicting peptidergic cell-cell communication in Placozoa

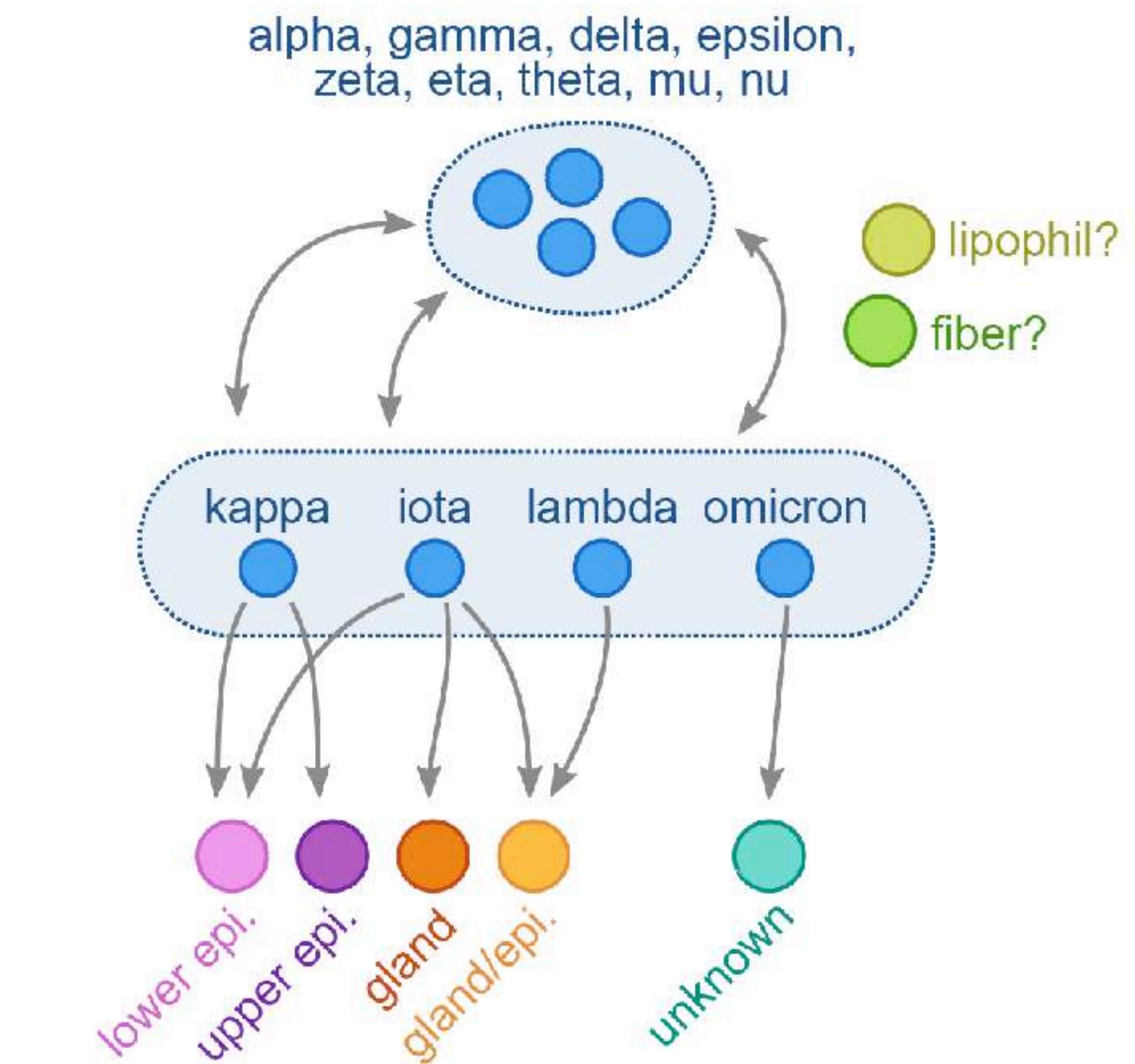
Peptide dockings for a iota-specific GPCR



Damiano
Cianferoni

Luis Serrano

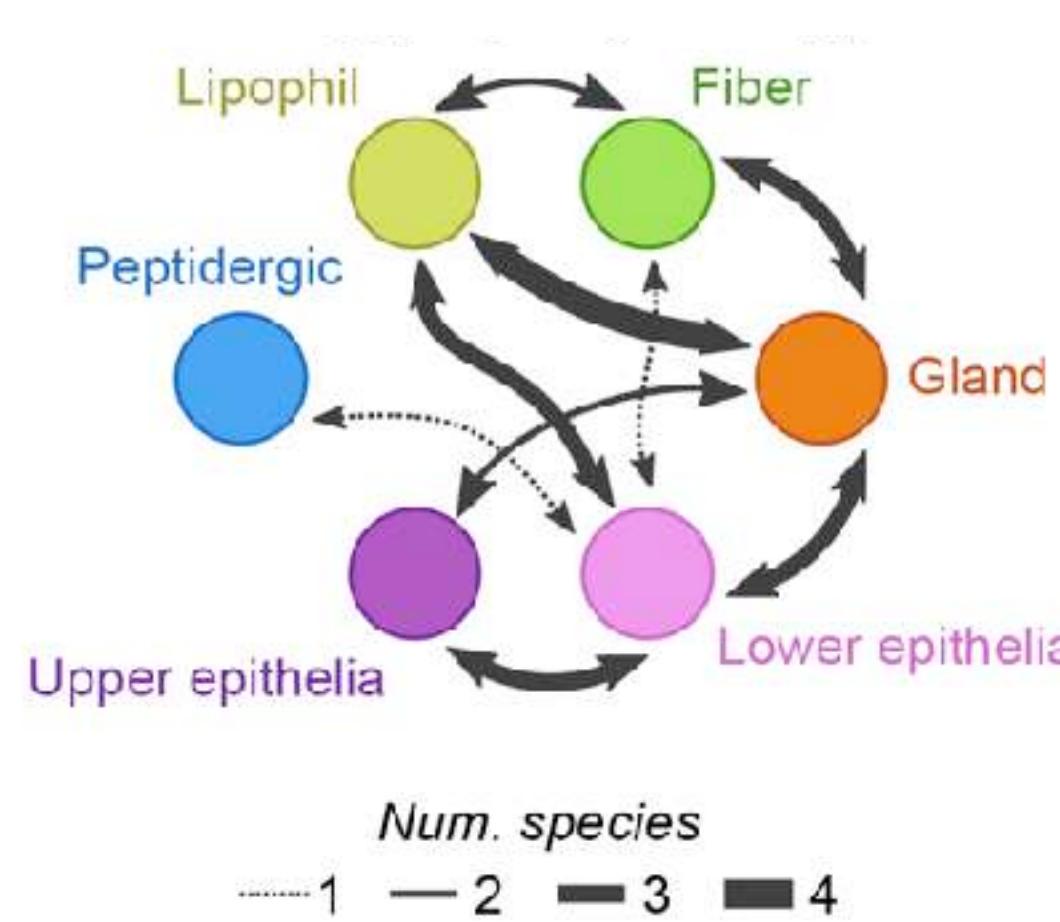
Hypothetical peptidergic signalling network



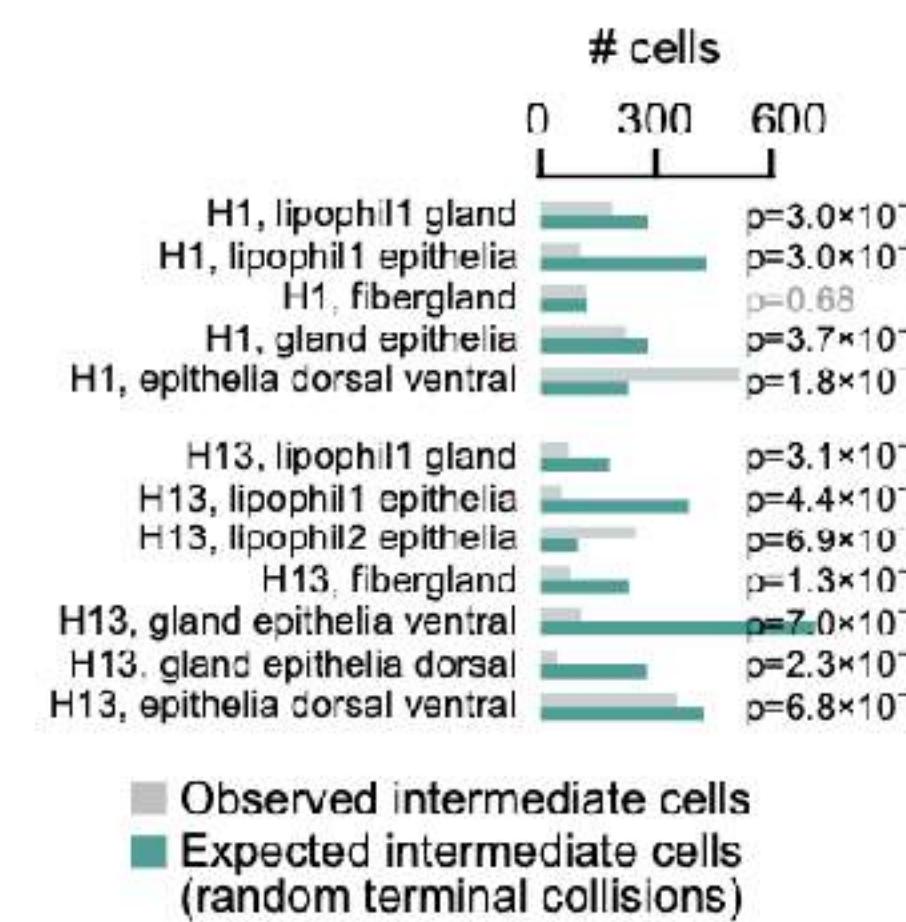
Neuropeptide+GPCR structural modeling (AlphaFold2), and docking analysis to predict peptide-receptor pairs

30 peptide-receptor pairs + cell type-specific expression patterns

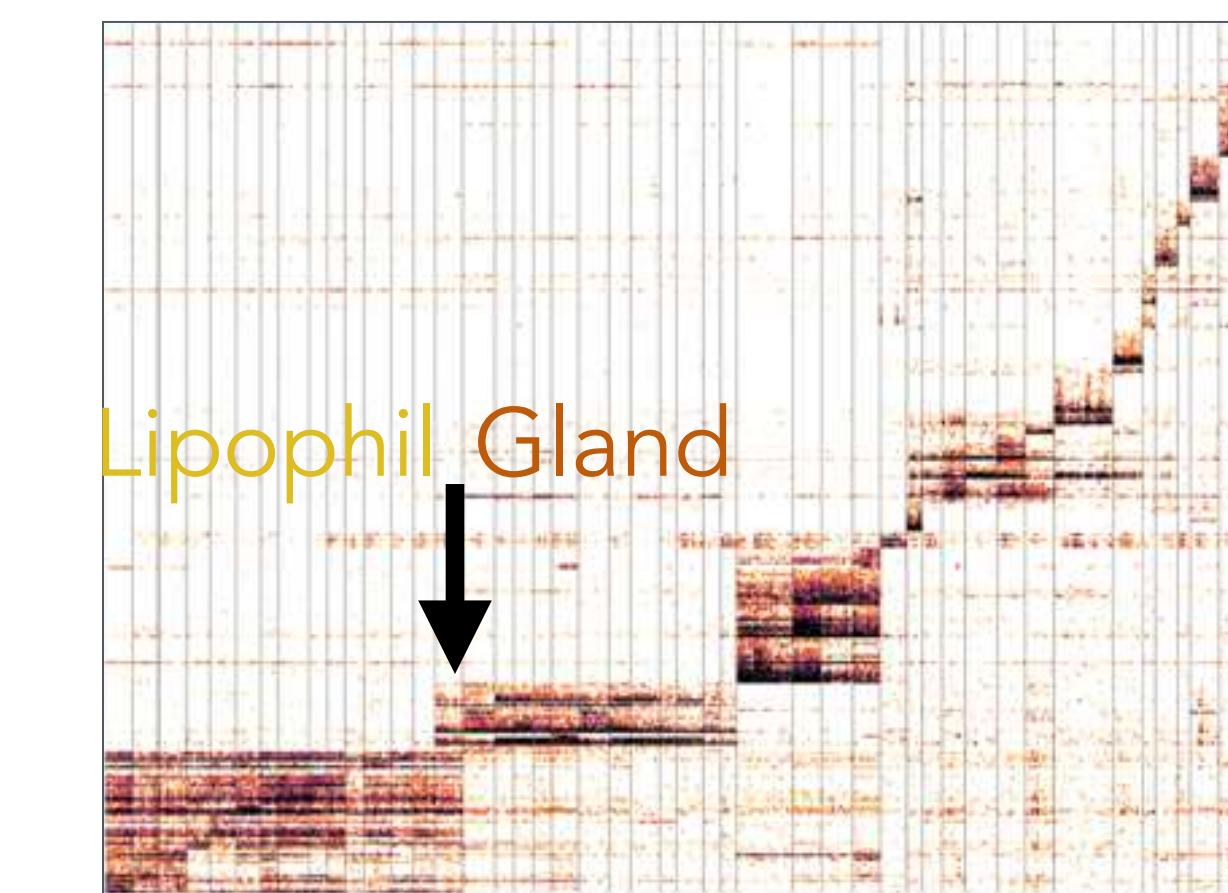
Placozoa intermediate cell states: transdifferentiation?



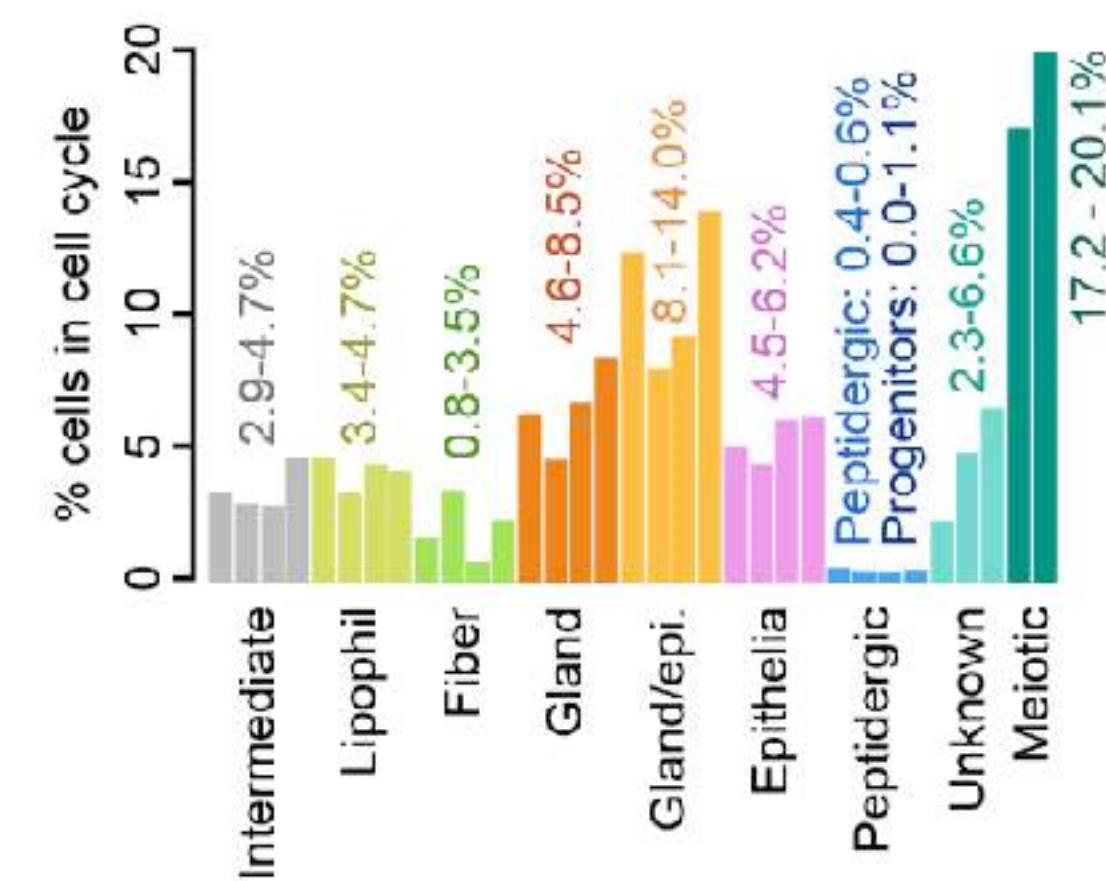
Observed in multiple species



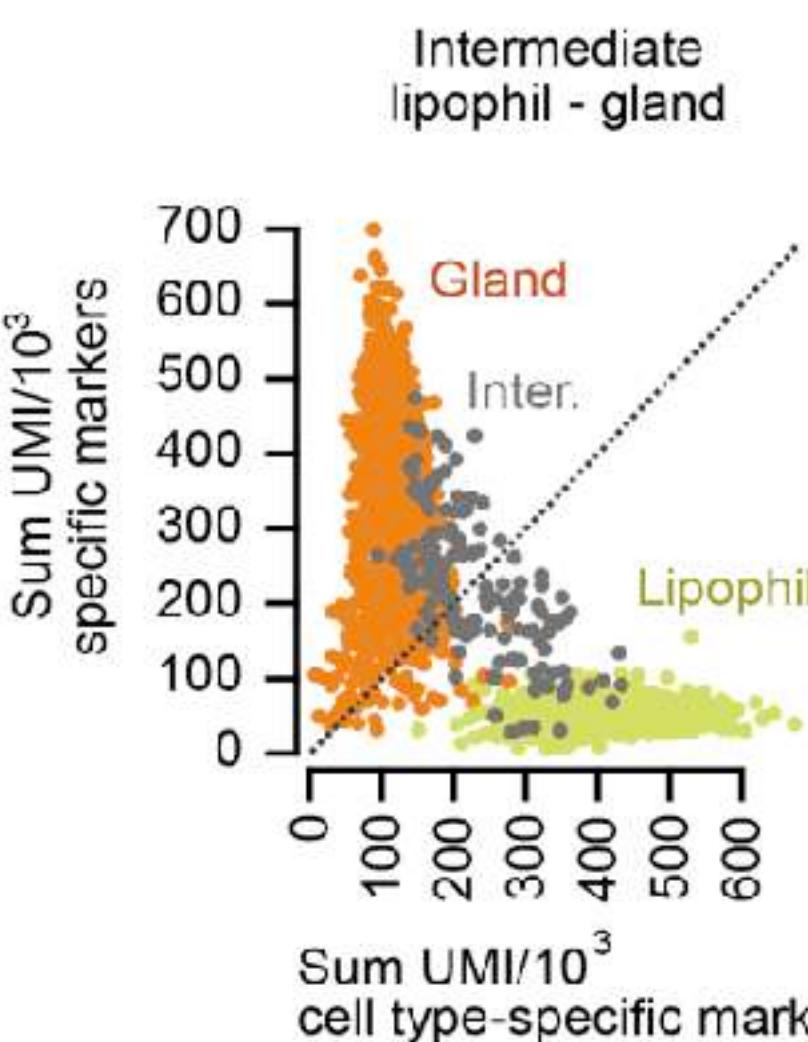
Not explained by random co-encapsulation ("doublets")



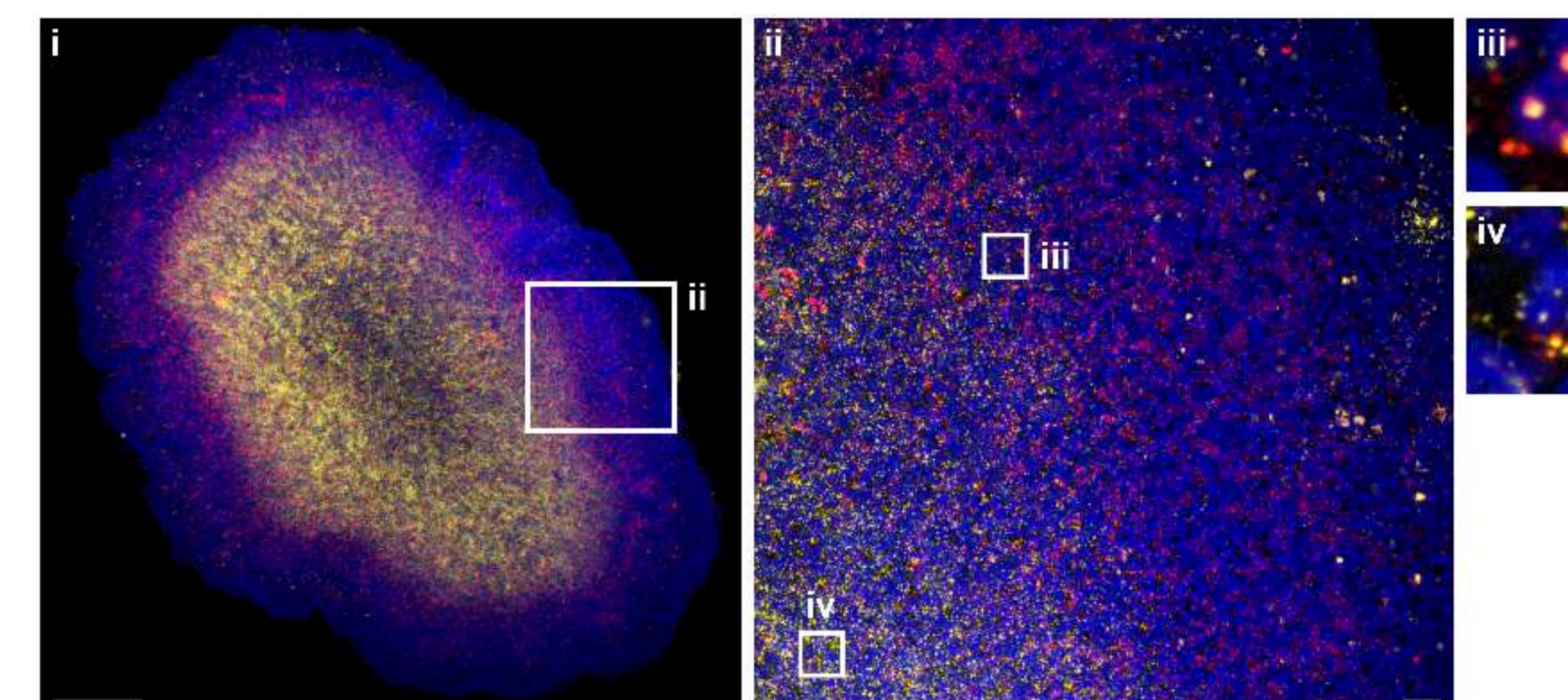
Also observed in our 2018 MARS-seq *Trichoplax* sc atlas



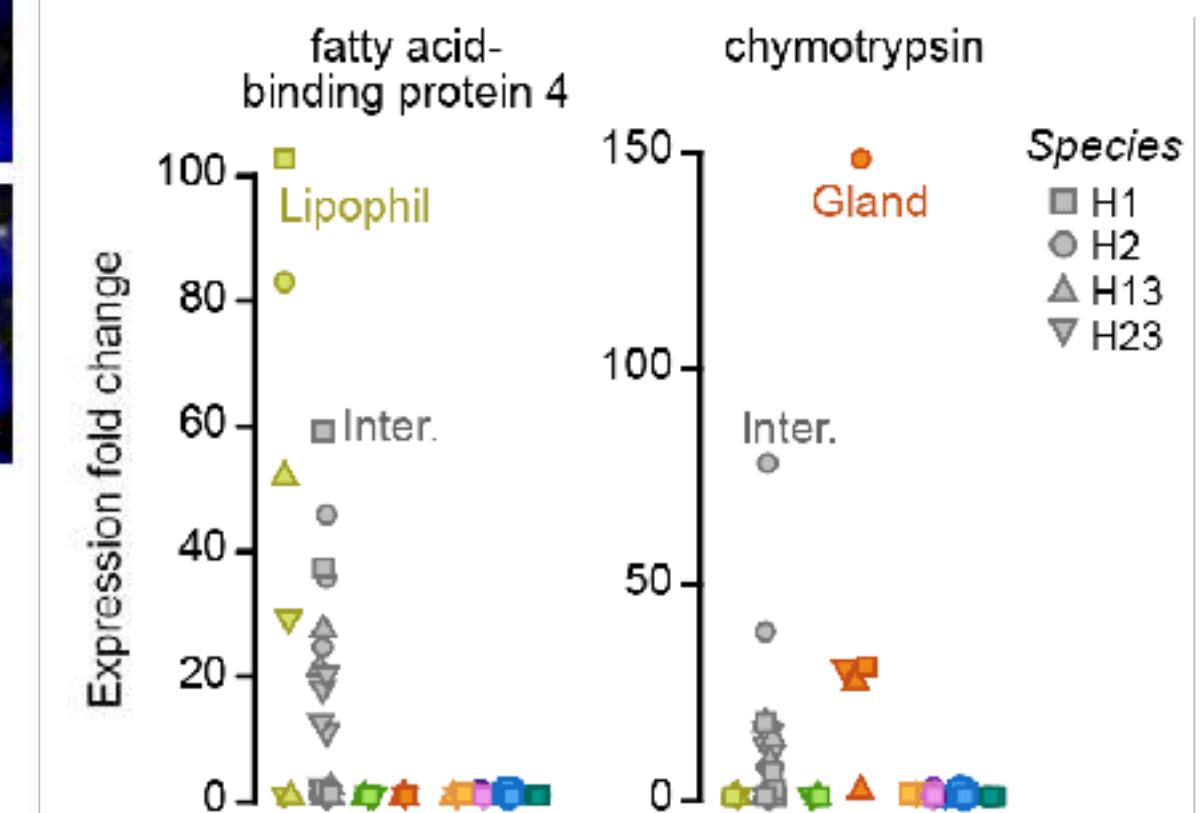
Many differentiated cells express cell cycle genes



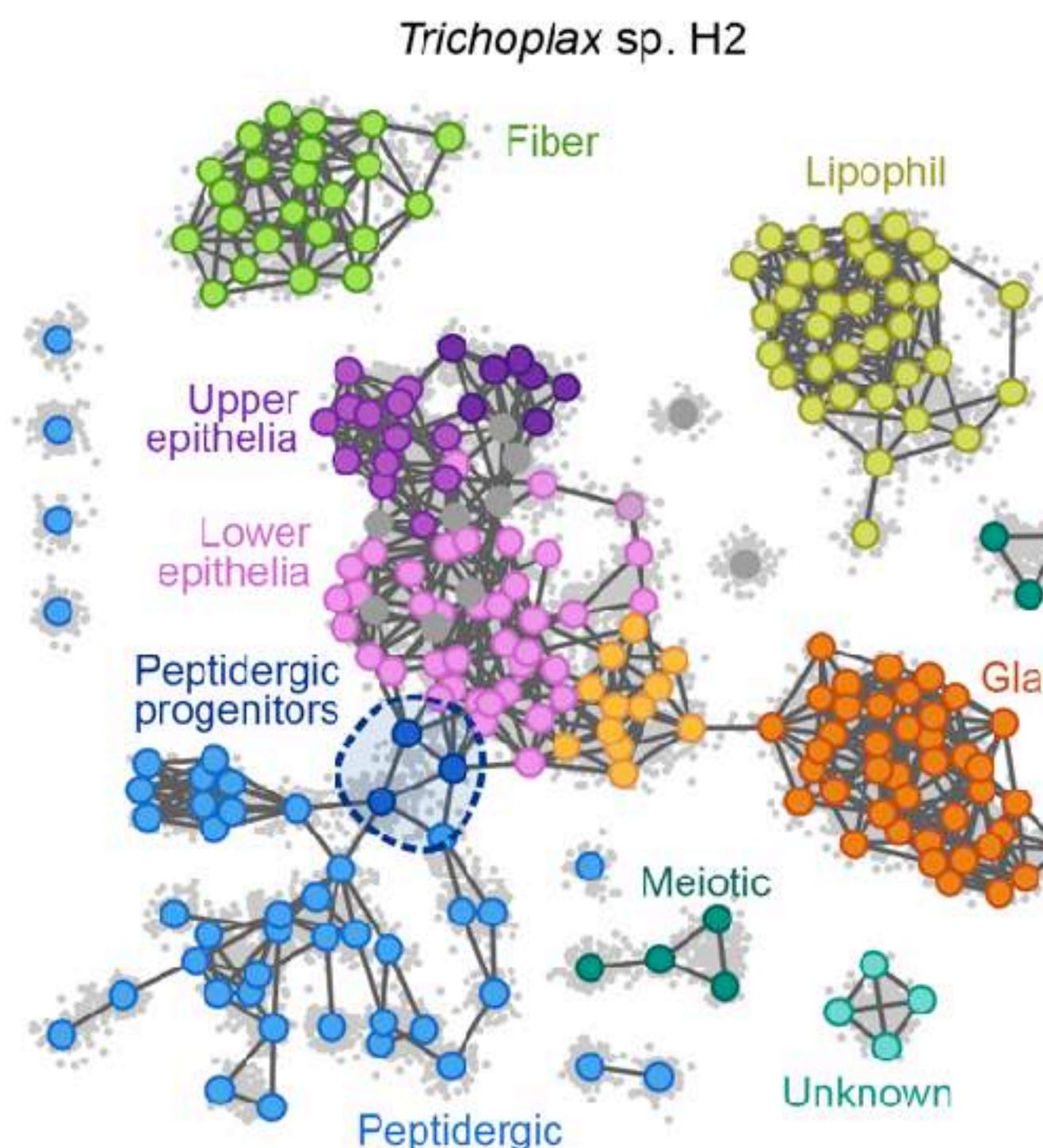
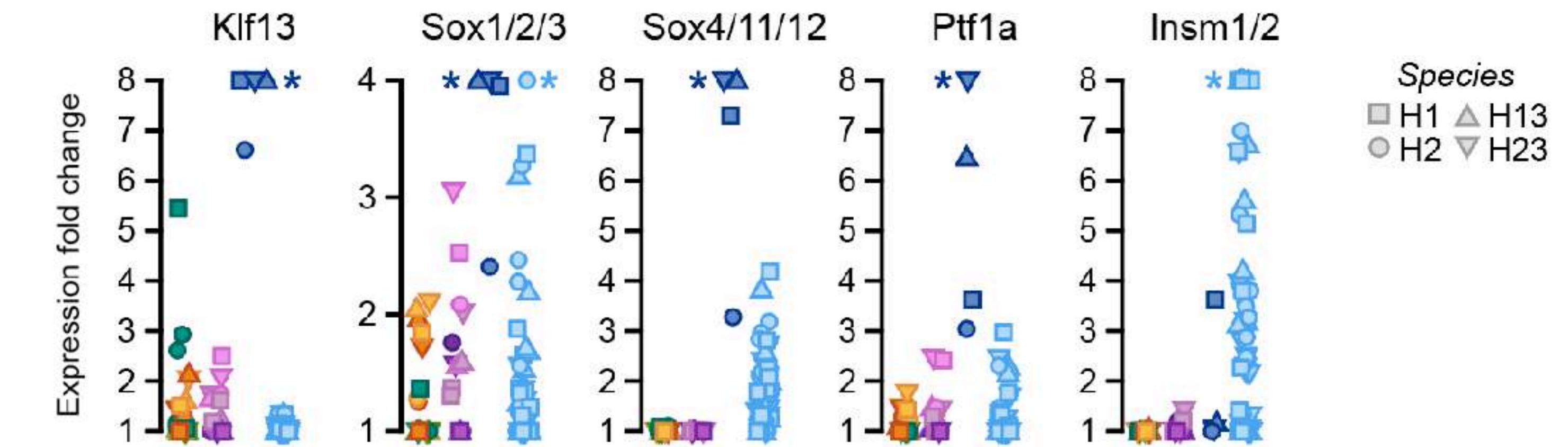
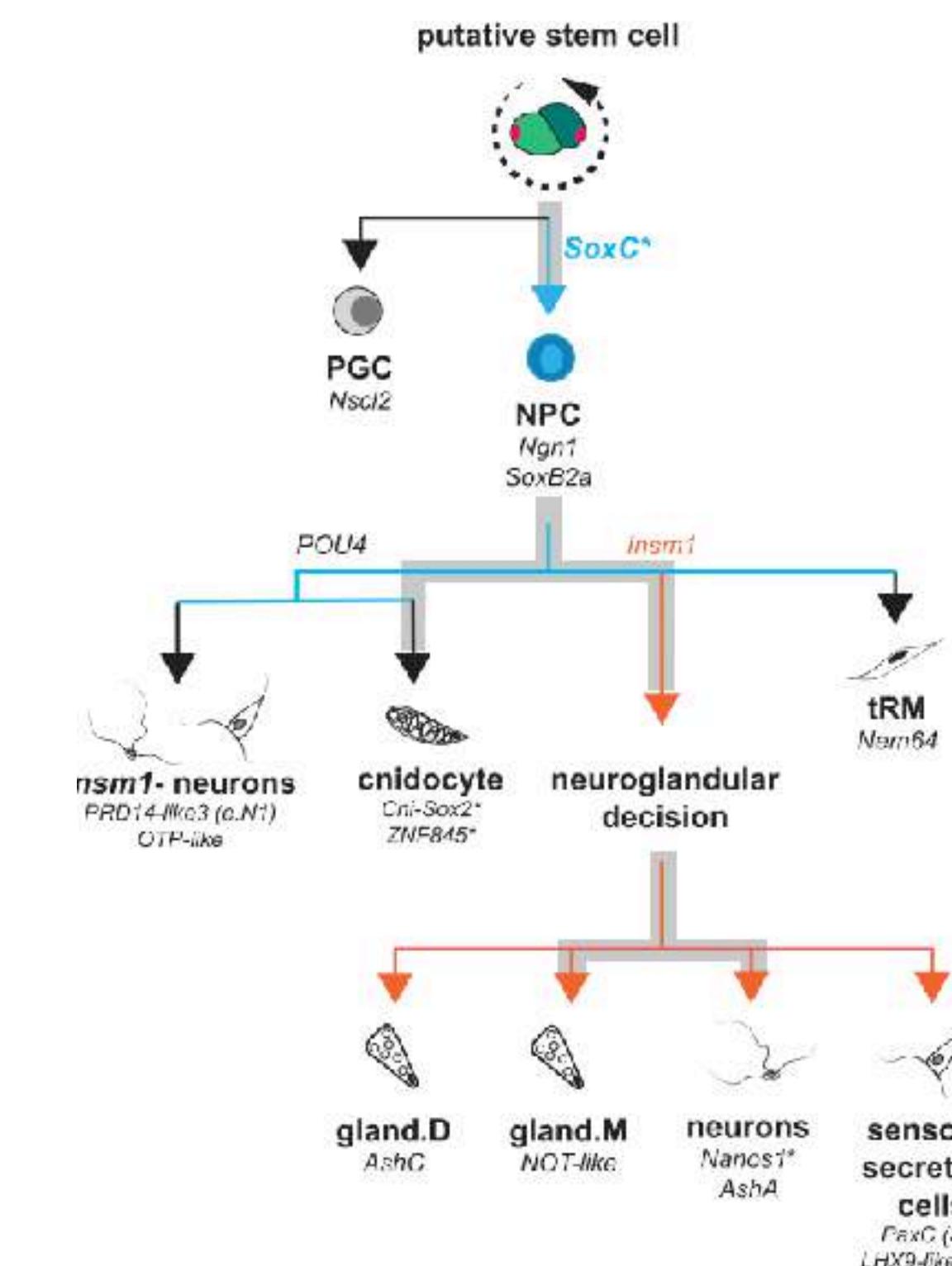
Observed by ISH (and FACS-ISH)



Chymotrypsin, gland cells
Fatty acid-binding protein 4, lipophil cells
DAPI, nuclei



Peptidergic progenitors express TFs involved in neurogenesis in other animals



Cell Reports

CelPress
OPEN ACCESS

Resource

Single-cell transcriptomics identifies conserved regulators of neuroglandular lineages

Julia Steger,^{1,4} Alison G. Cole,^{1,4,5} Andreas Denner,^{1,4} Tatjana Lebedeva,¹ Grigory Ganikhovich,¹ Alexander Ries,¹ Robert Reischl,¹ Elisabeth Taubes,¹ Mark Lüsning,¹ and Ulrich Tschirhart^{1,6,7,8,9}

¹Department of Neuroscience and Developmental Biology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria

²Max-Perutz Labs, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria

³Research Platform "SingleCellR: Single Cell Regulation of Stem Cells," University of Vienna, 1030 Vienna, Austria

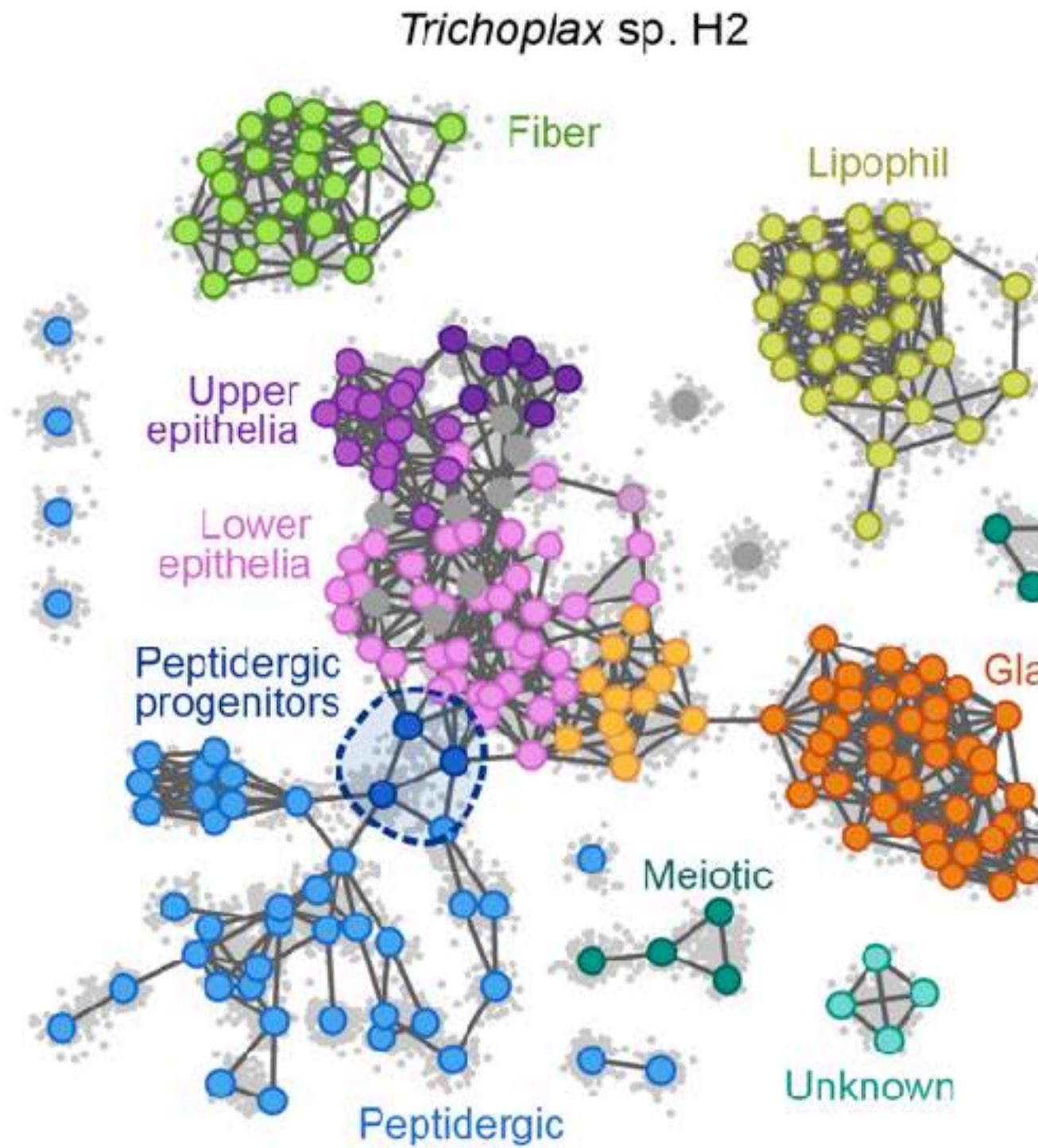
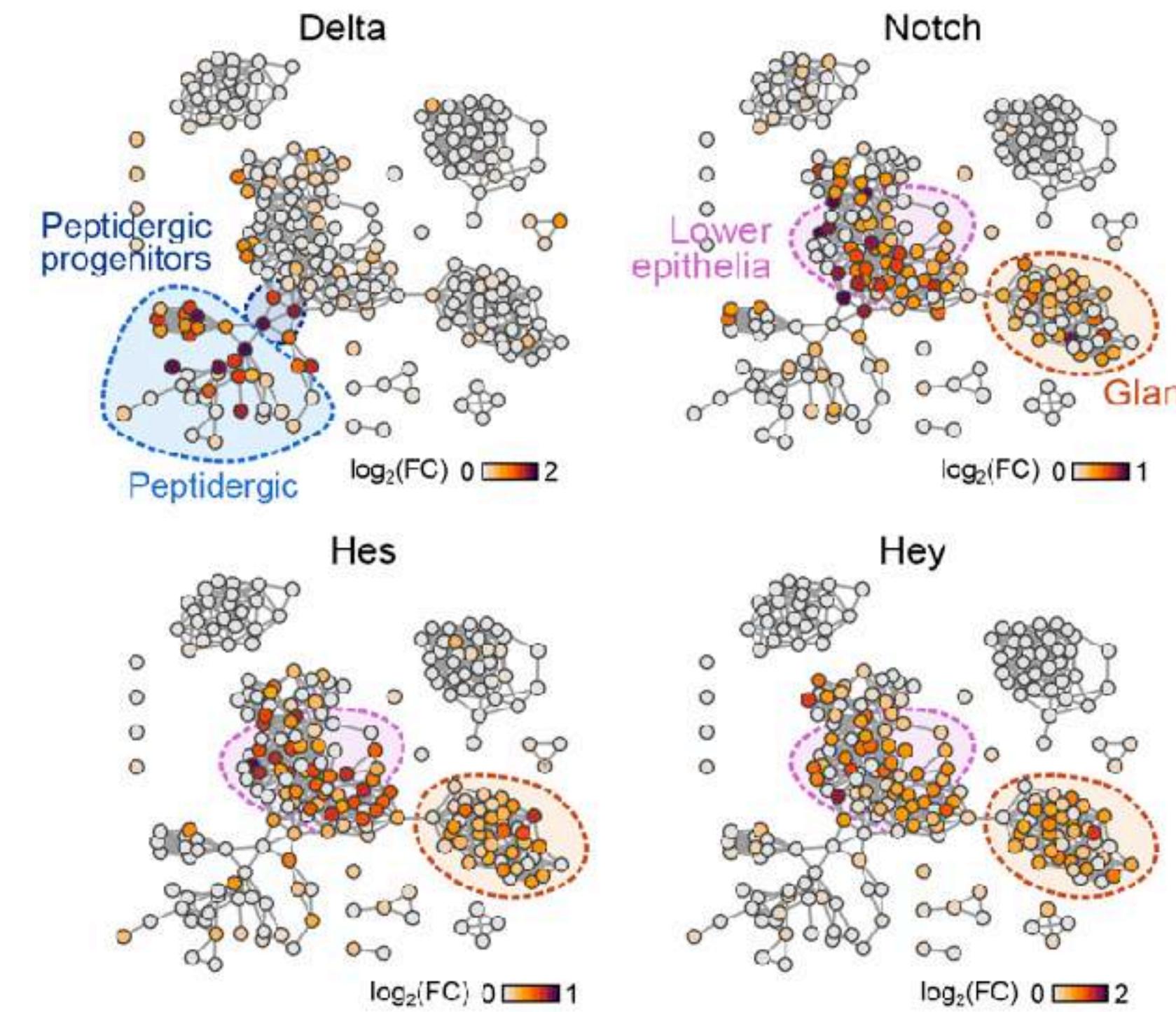
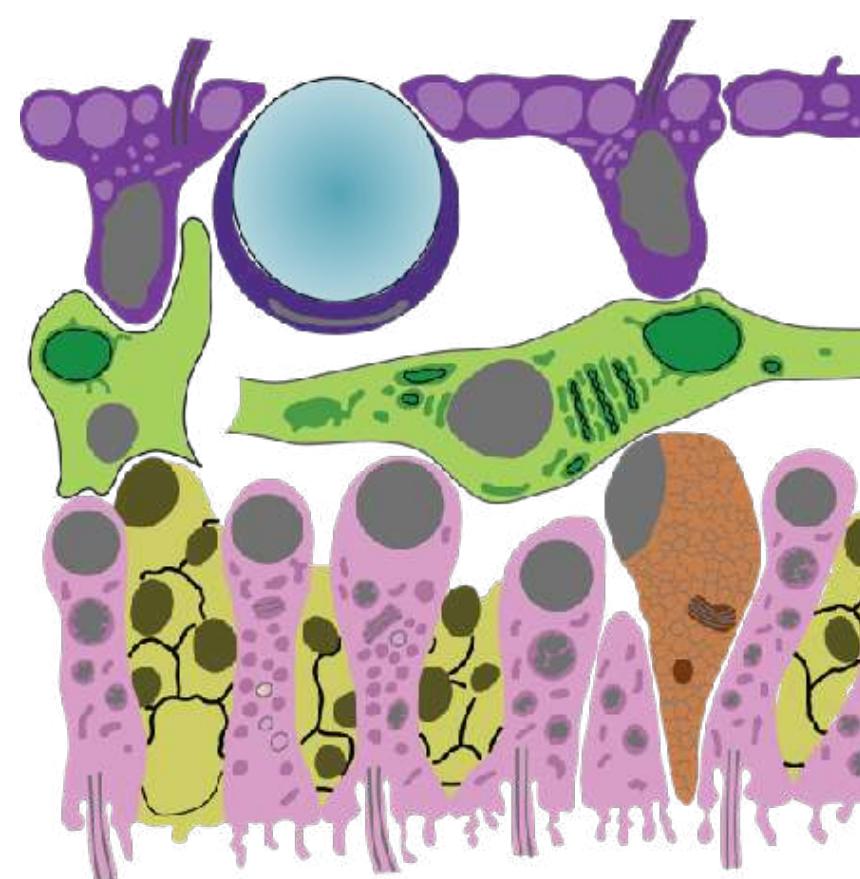
⁴These authors contributed equally

⁵Lead contact

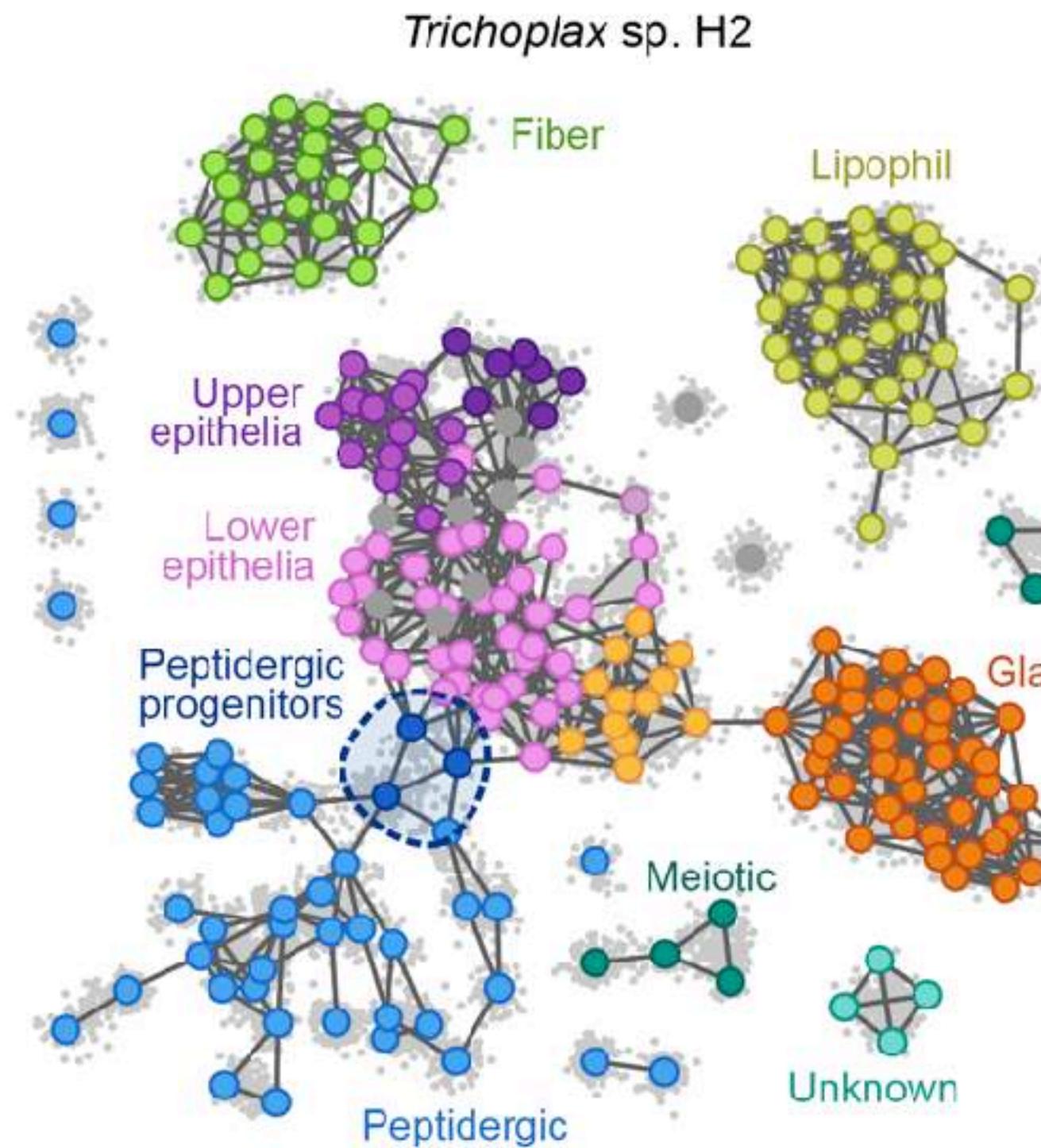
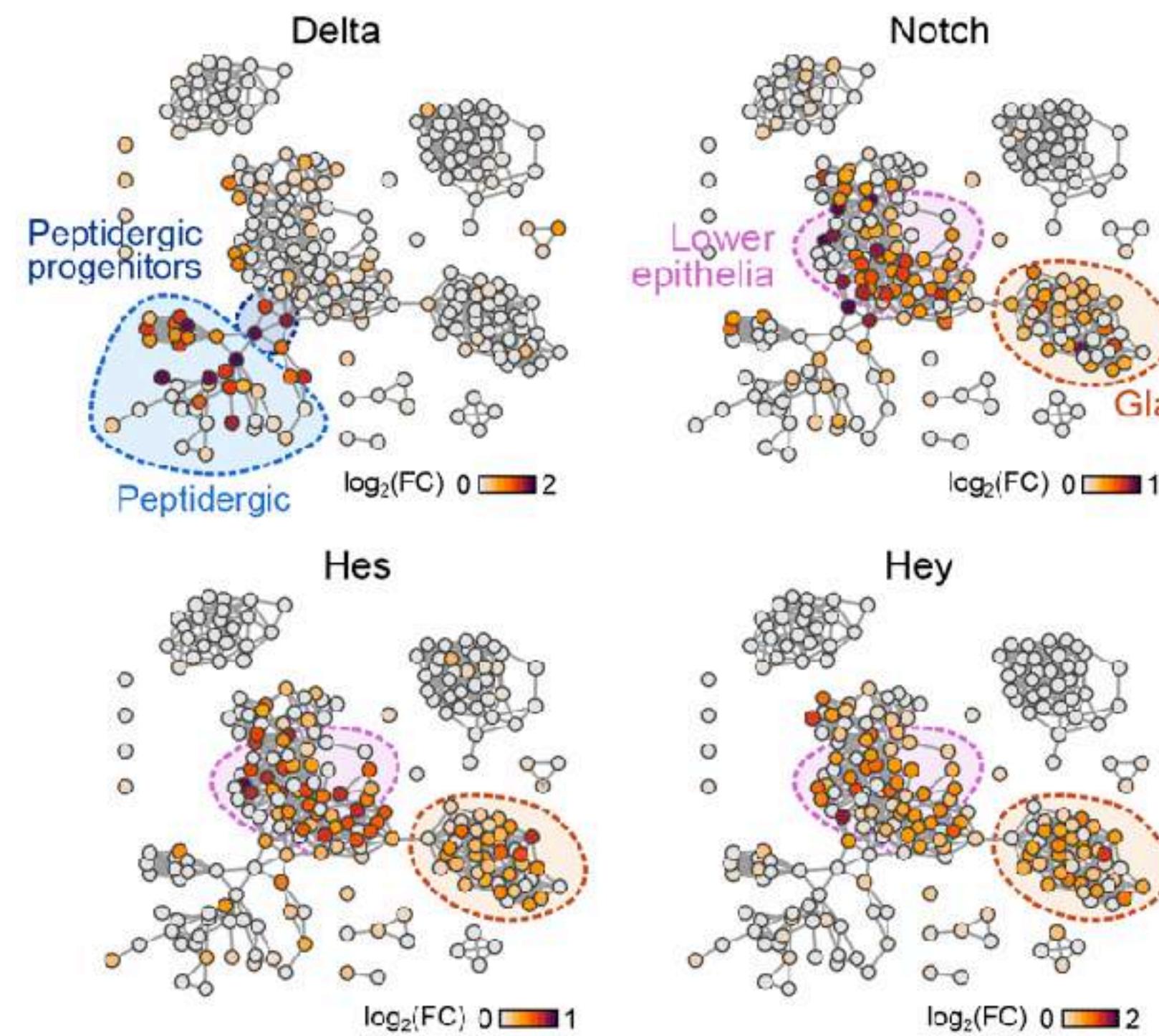
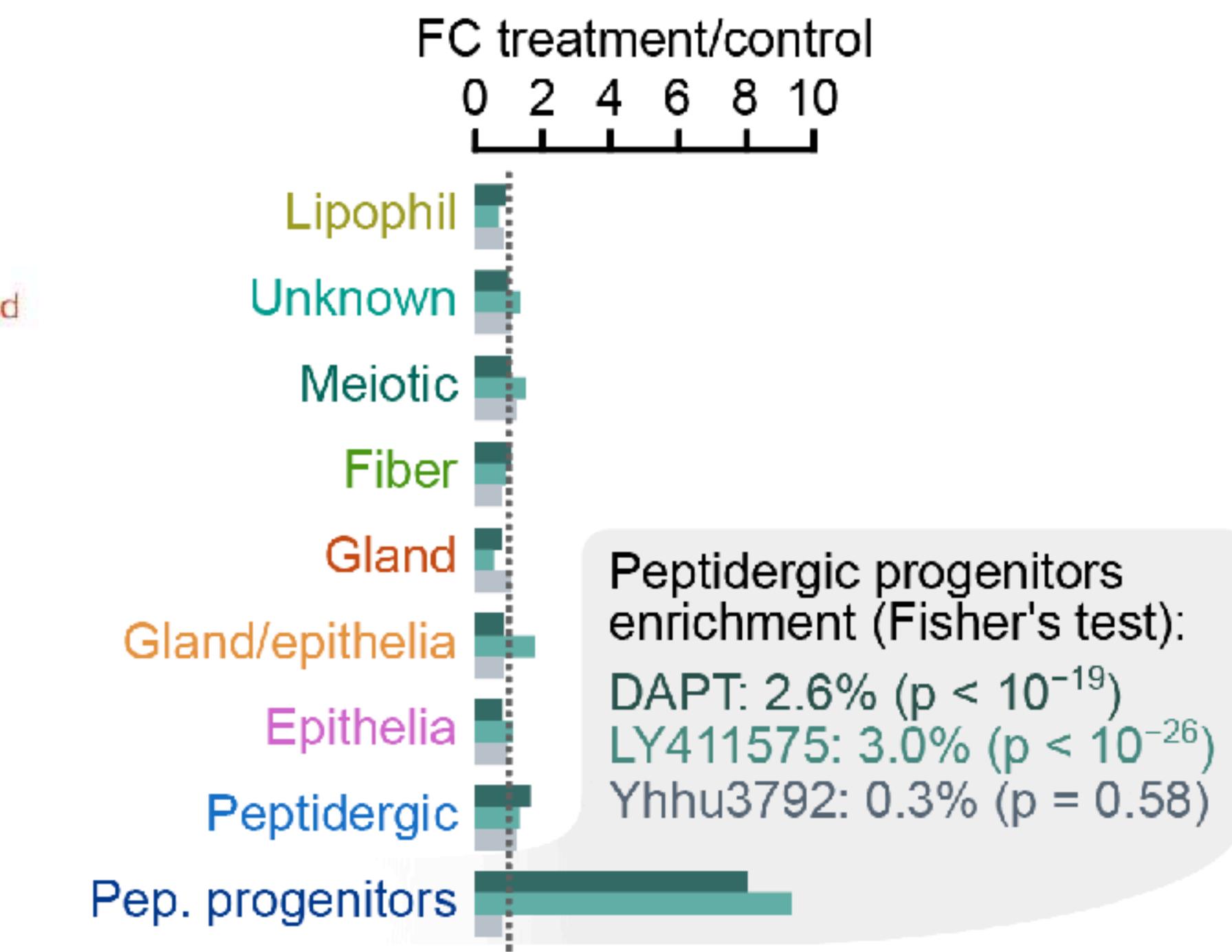
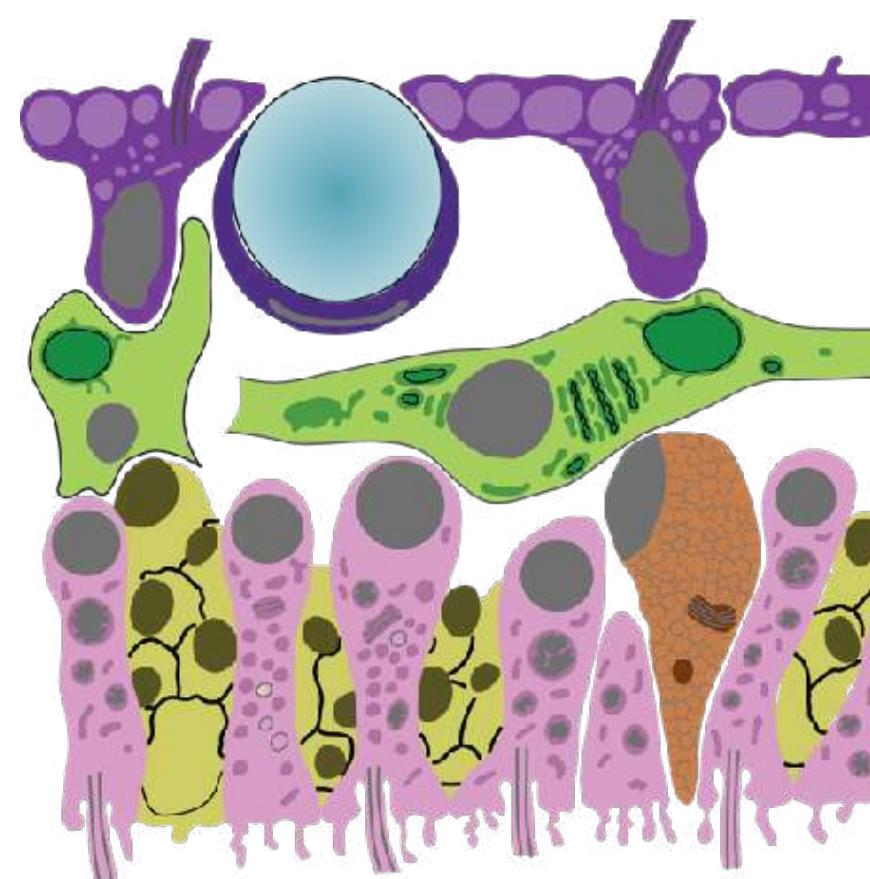
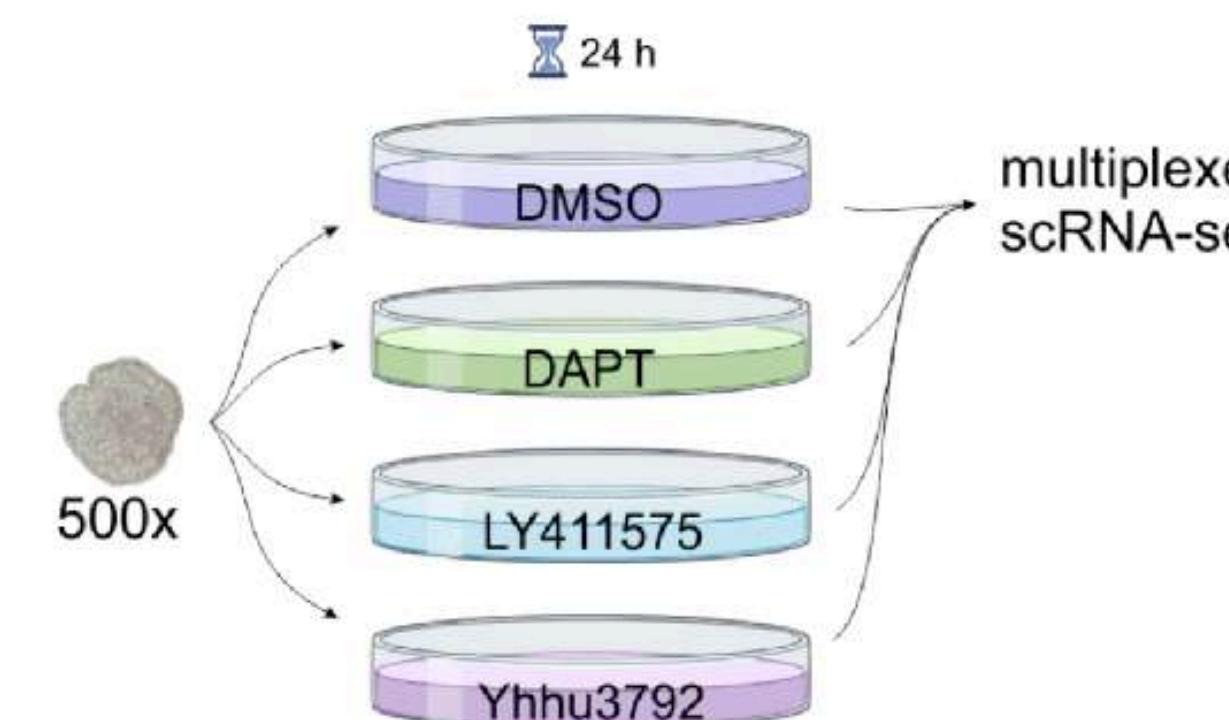
⁶Correspondence: alison.cole@univie.ac.at (A.G.C.), ulrich.tschirhart@univie.ac.at (U.T.)

<https://doi.org/10.1016/j.celrep.2022.11370>

Peptidergic progenitors are specified by Notch-Delta signaling

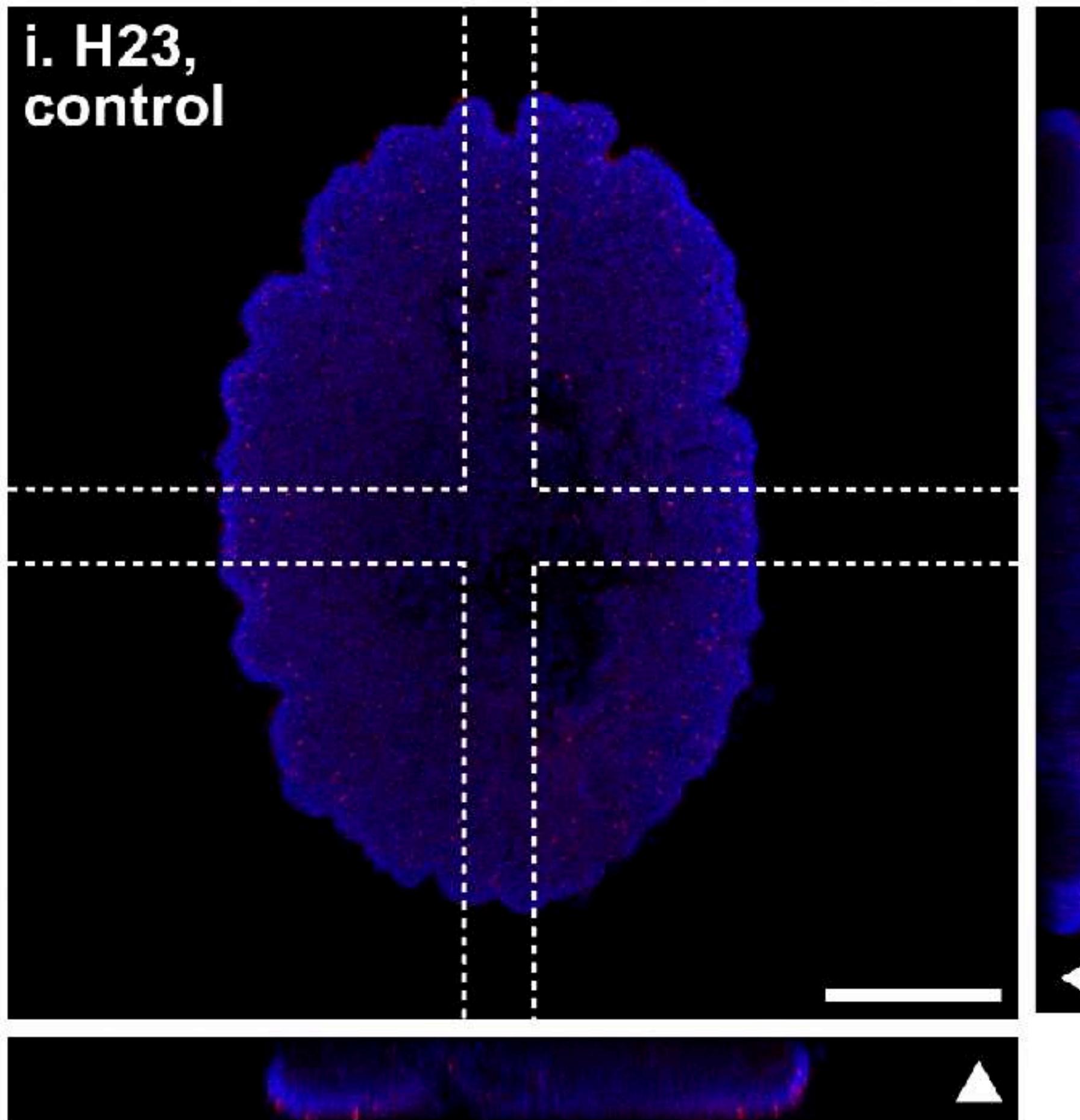
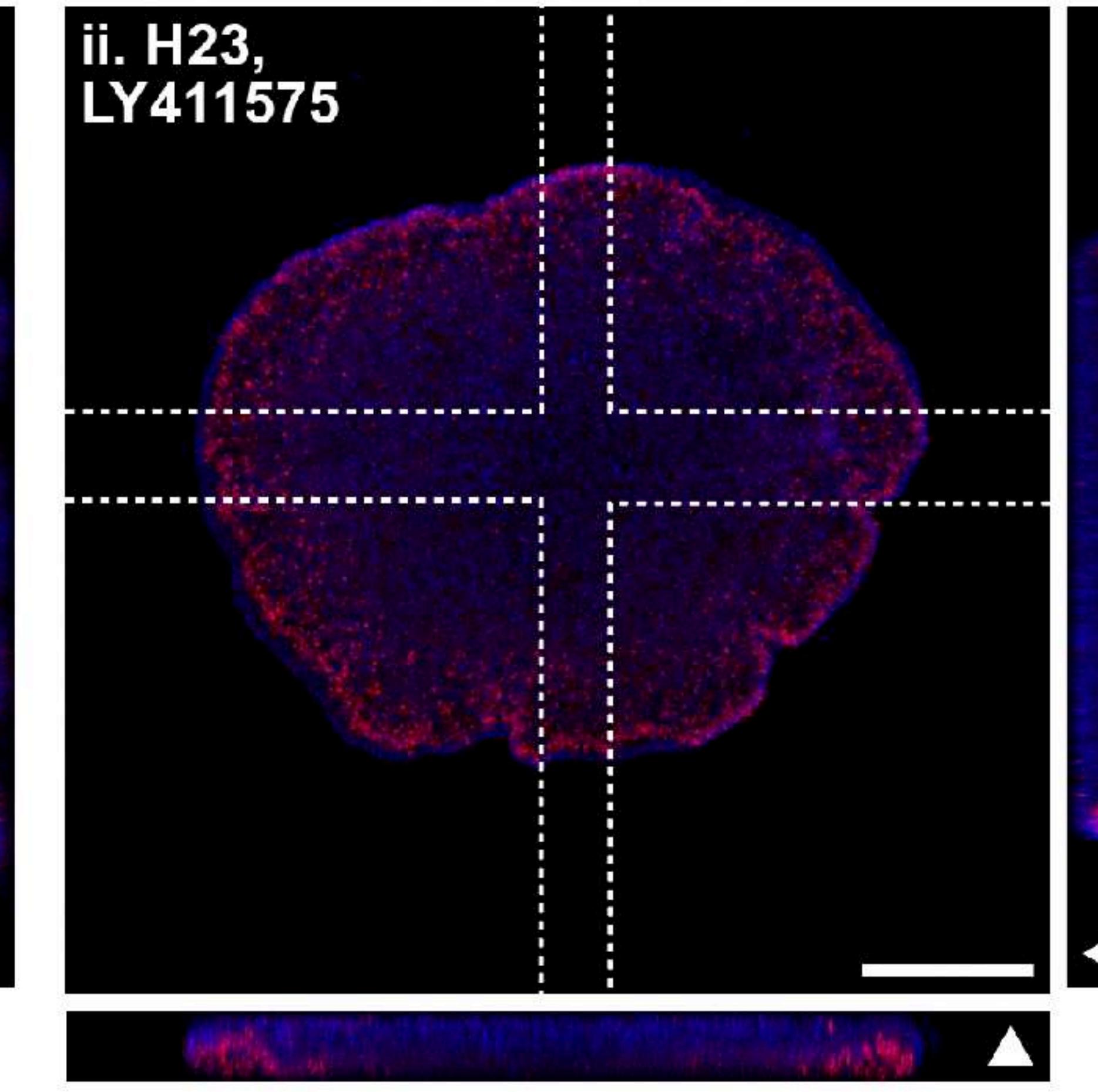


Peptidergic progenitors are specified by Notch-Delta signaling

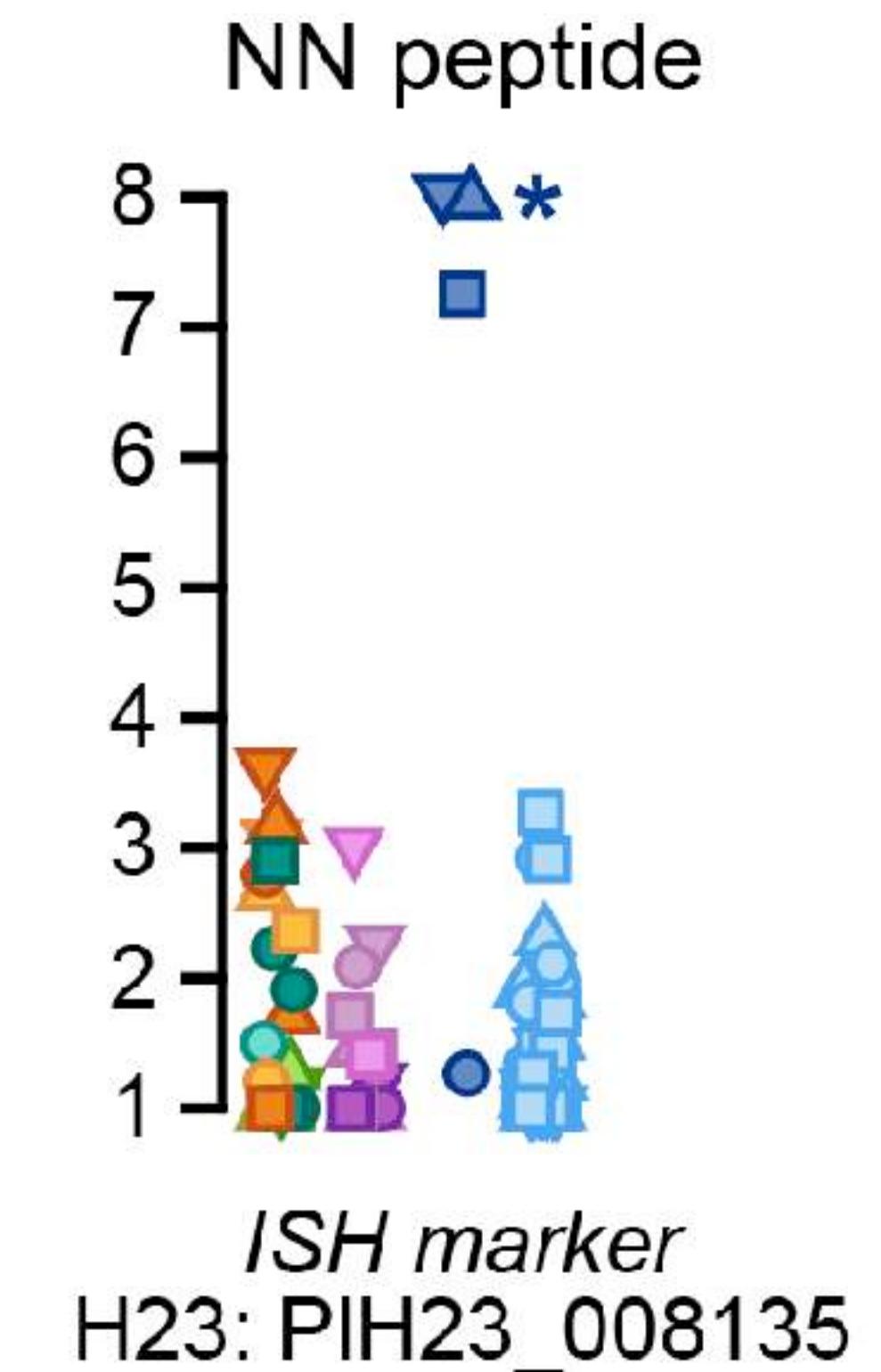


Notch antagonists increase the relative abundance of peptidergic progenitor cells

Peptidergic progenitors are located in the peripheral lower epithelium



● NN peptide ● DAPI, nuclei



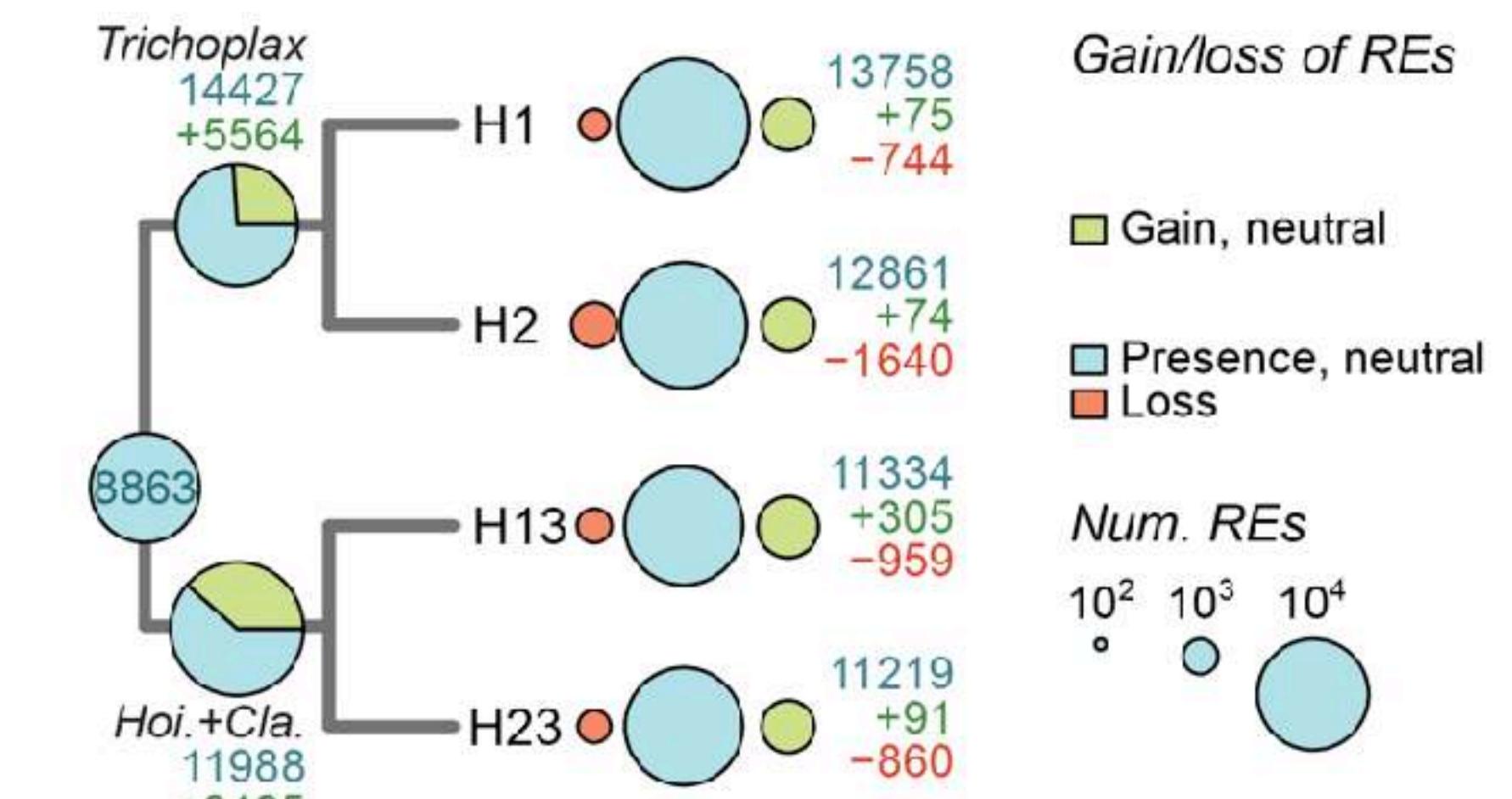
The genetic basis of placozoan cell type gene expression evolution

Mapping *cis*-regulatory elements in four placozoans (ATAC, H3K4me3, H3K4me2)

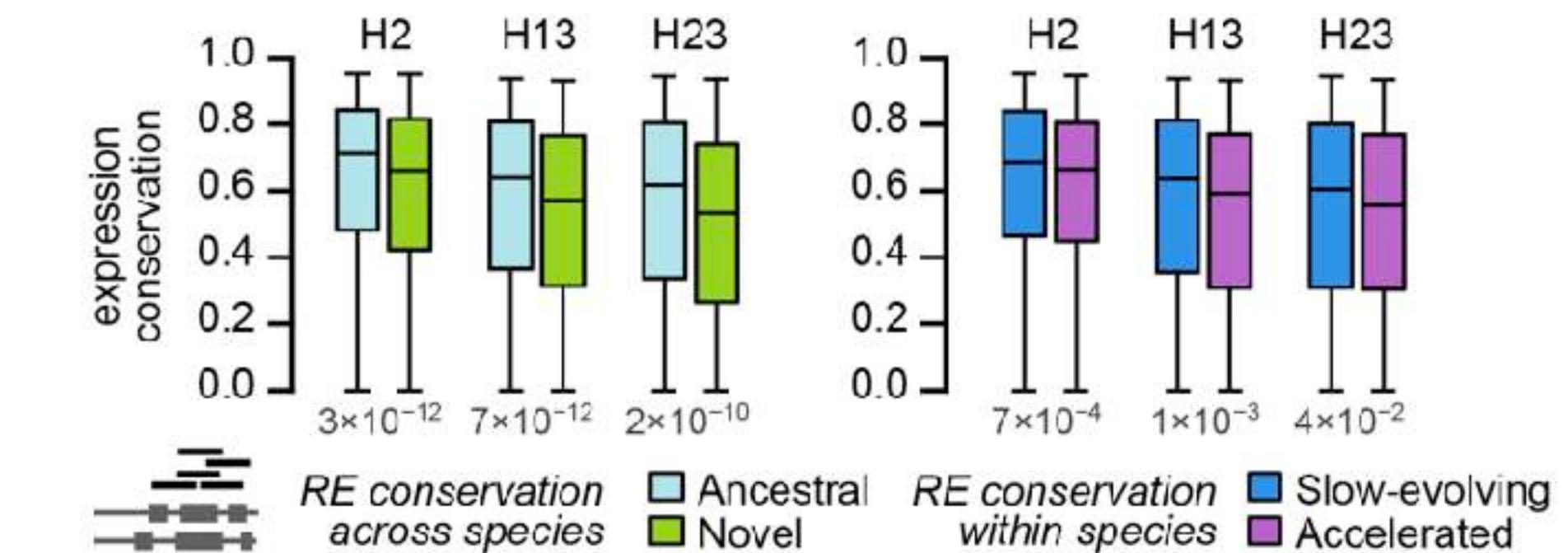


Classifying REs into novel and ancestral and into fast and slow-evolving

CRE gains and losses across placozoan phylogeny

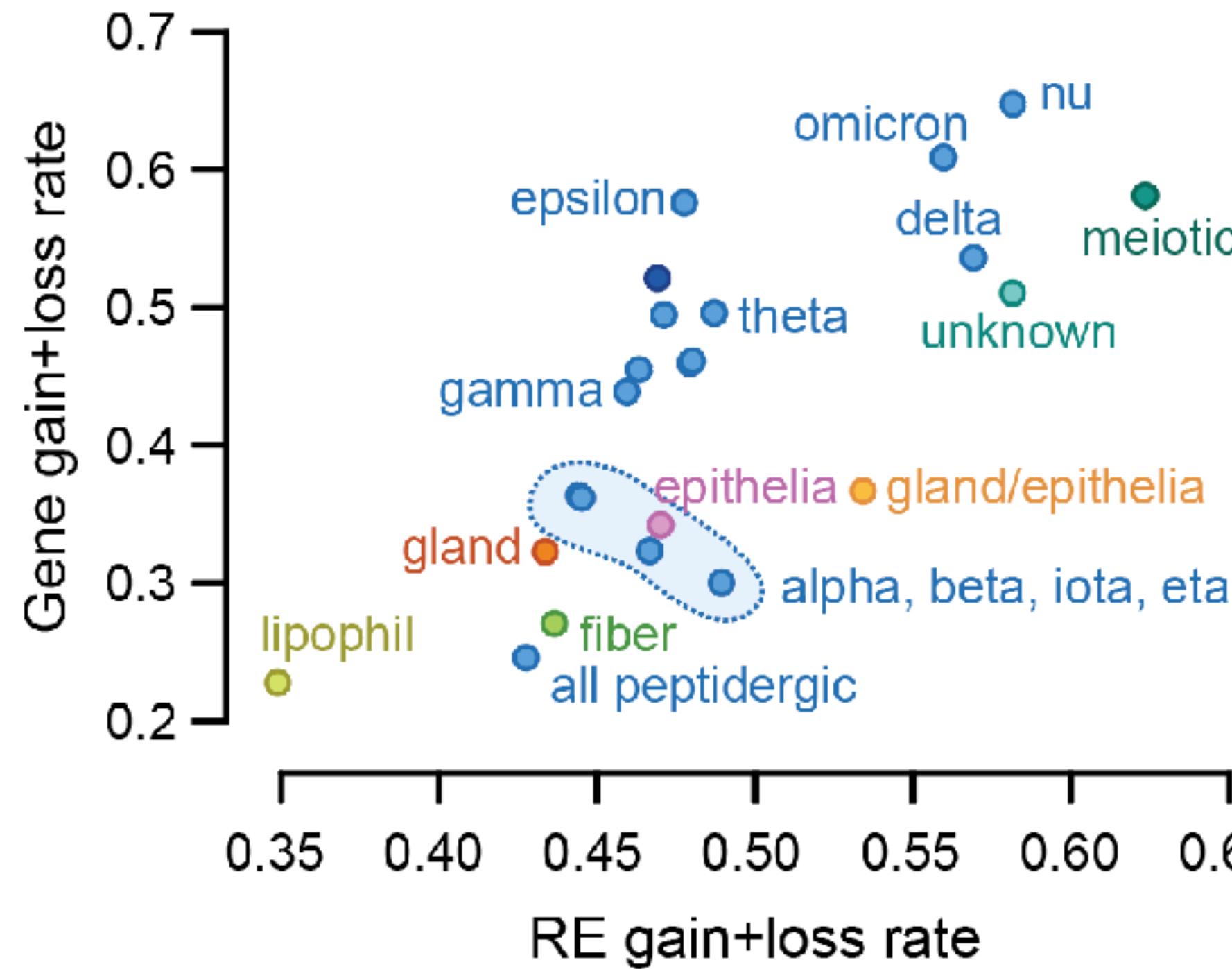


CRE evolution linked to gene expression divergence

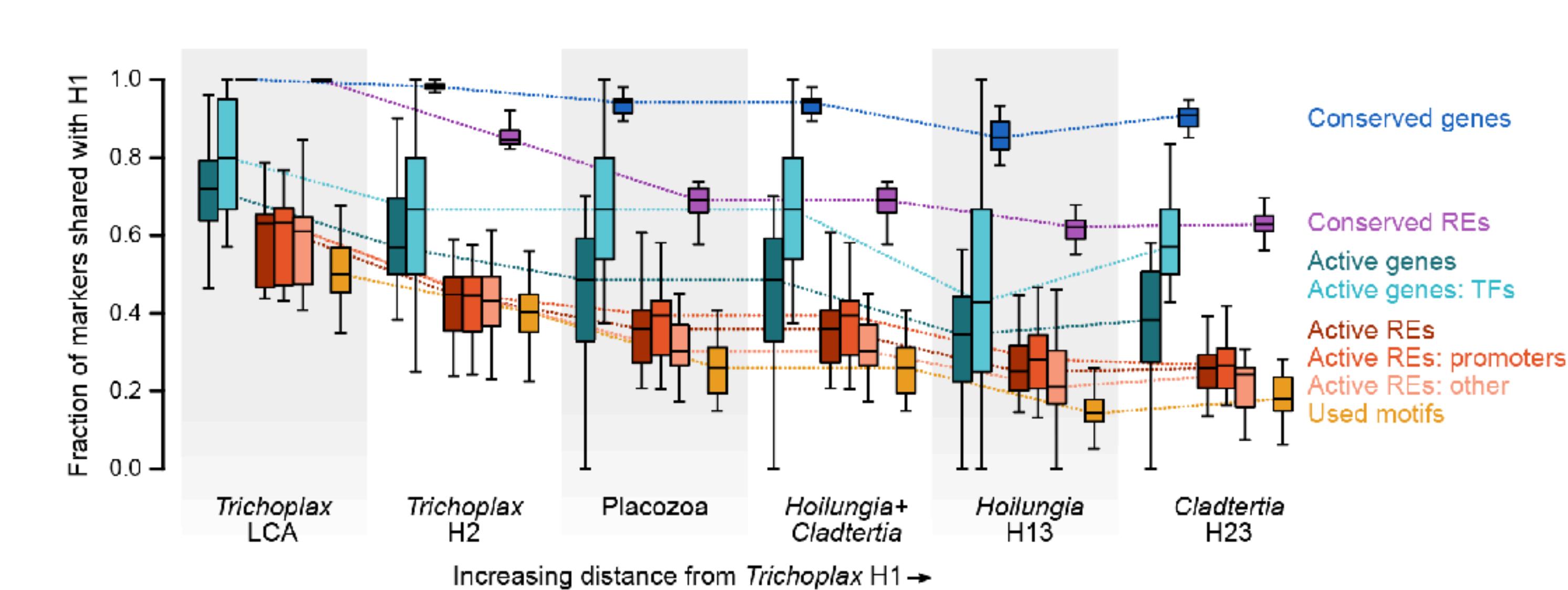
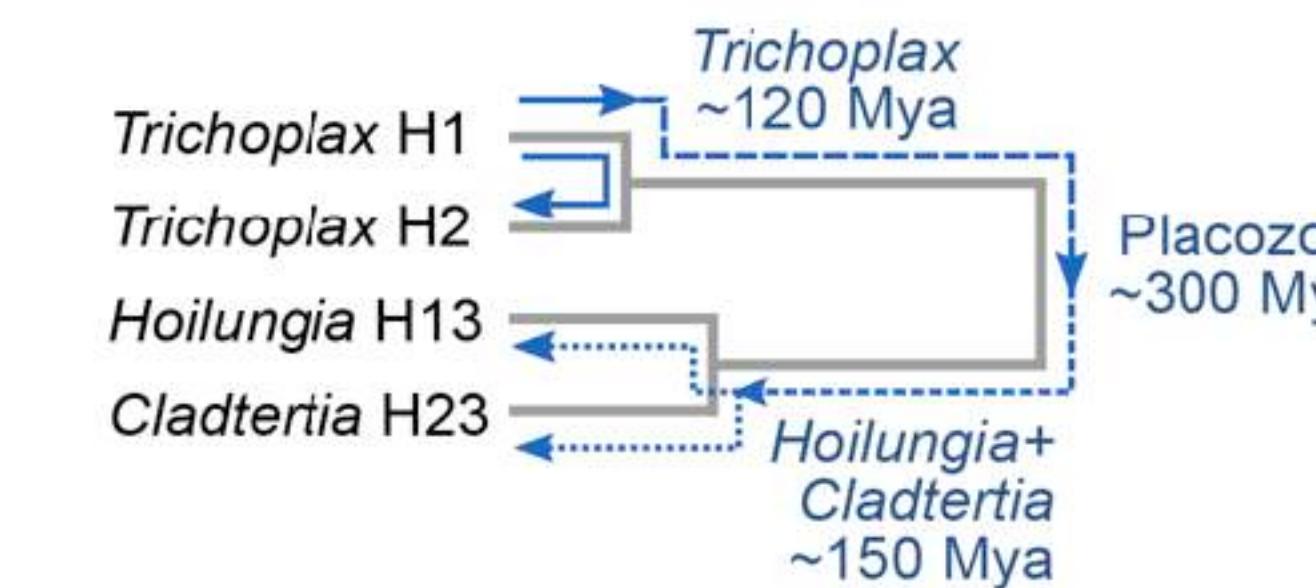


The genetic basis of placozoan cell type gene expression evolution

Some cell types evolve faster than others
(gene and RE gains/losses are correlated)



Degree of conservation of cell identity
determinants with phylogenetic divergence



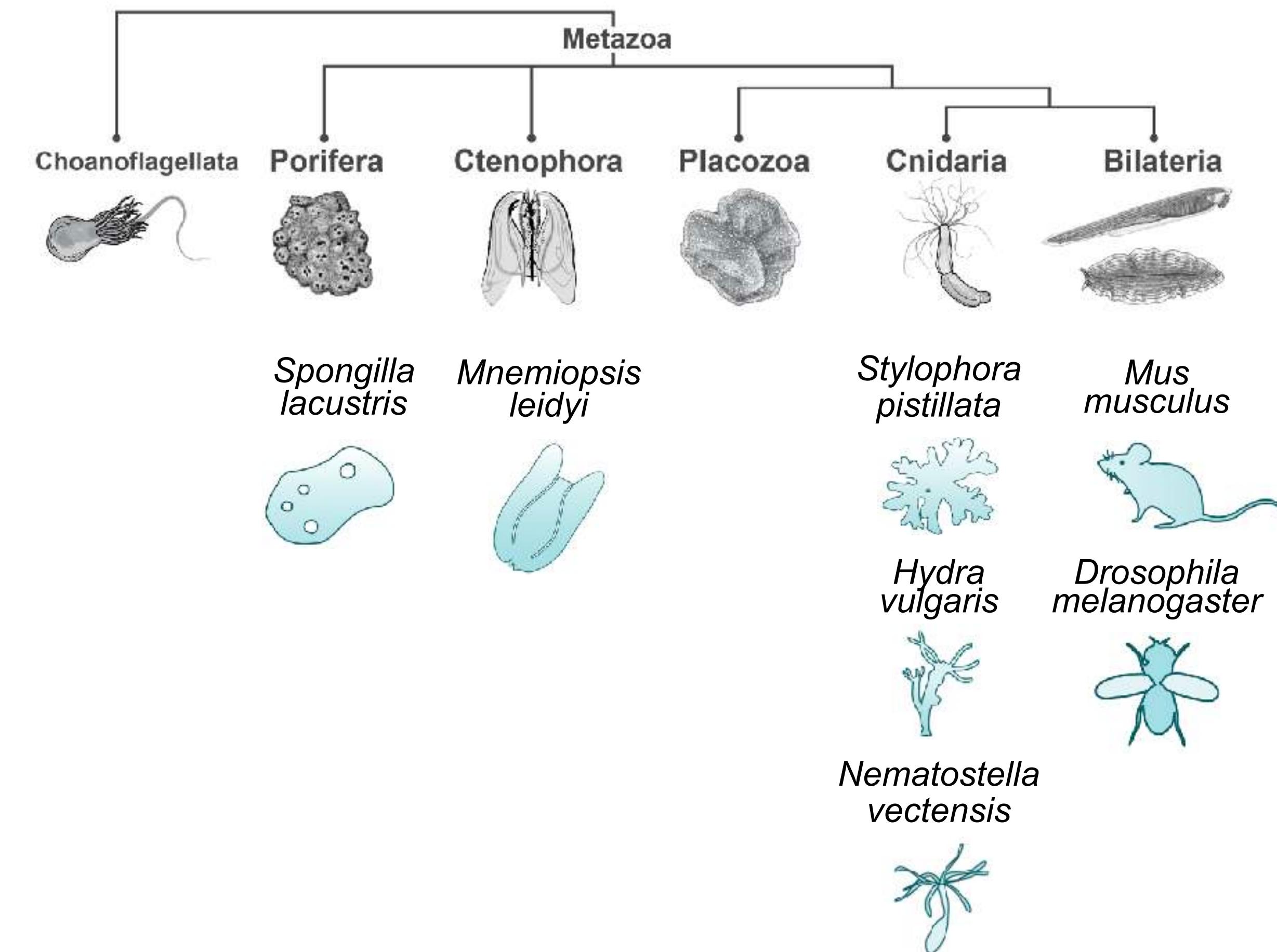
**Evidence for a common evolutionary rate
in metazoan transcriptional networks**

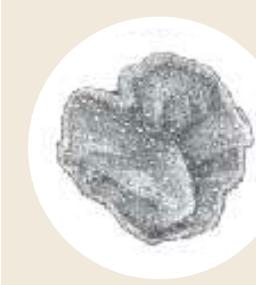
Anne-Ruxandra Carvunis[†], Tina Wang[†], Dylan Skola[†], Alice Yu, Jonathan Chen, Jason F Kreisberg, Trey Ideker^{*}

Department of Medicine, University of California, San Diego, La Jolla, United States

Cell type transcriptome macroevolutionary comparisons

Cross-phyla cell type comparisons
using published whole-organism cell atlases

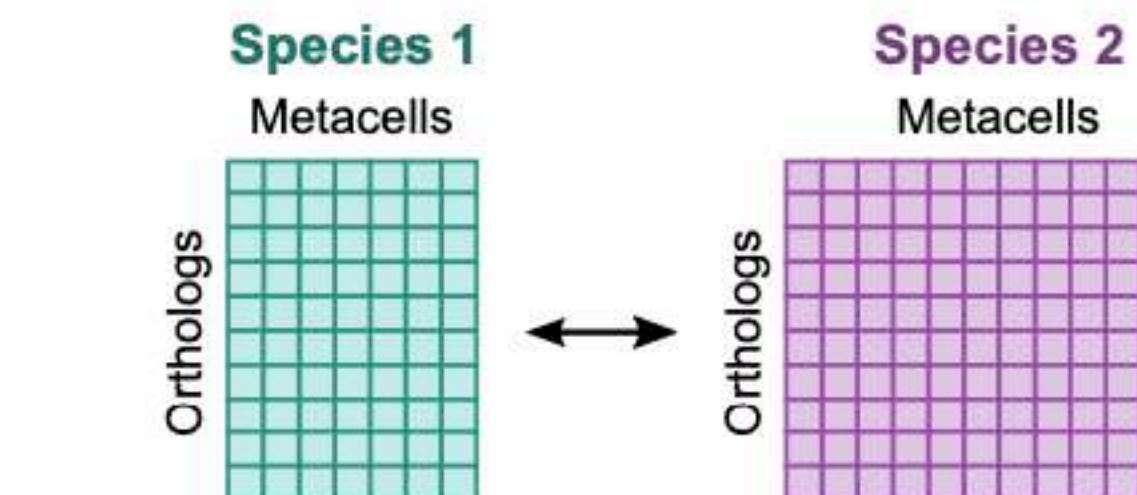




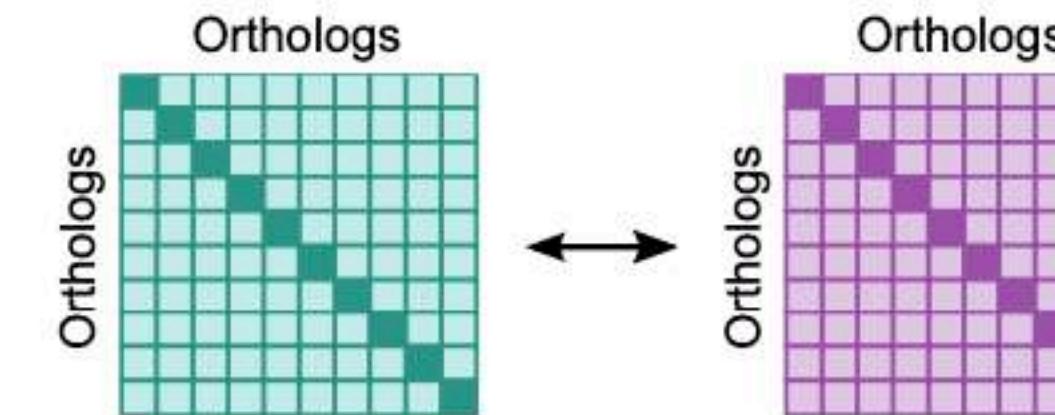
Expression Conservation scores (EC) via Iterative Comparison of Coexpression (ICC)

A

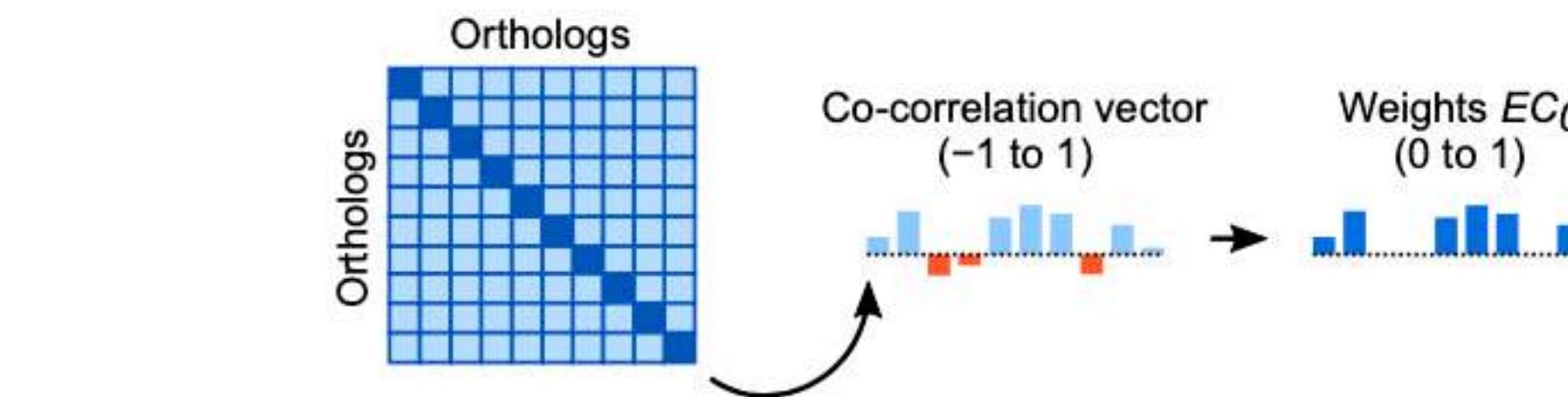
1. Expression matrices
Conditions are unmatched
Orthologs are matched
Only one-to-one orthologs



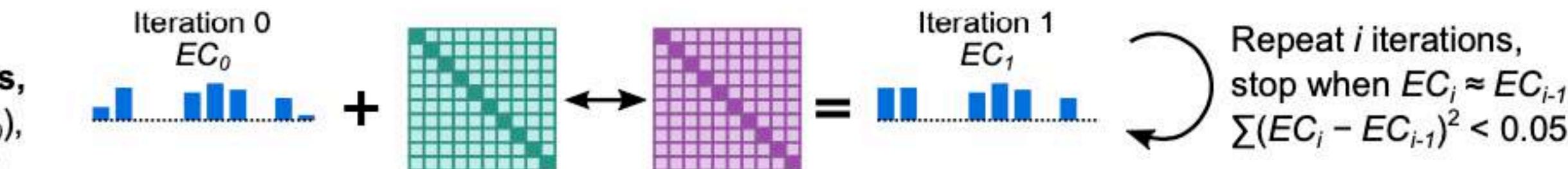
2. One-to-one ortholog correlation matrices
Orthologs are matched
Pearson correlation



3. Correlation between correlation values for ortholog pairs, to obtain pair-specific weight vector (range: 0 to 1), or expression conservation vector EC_0

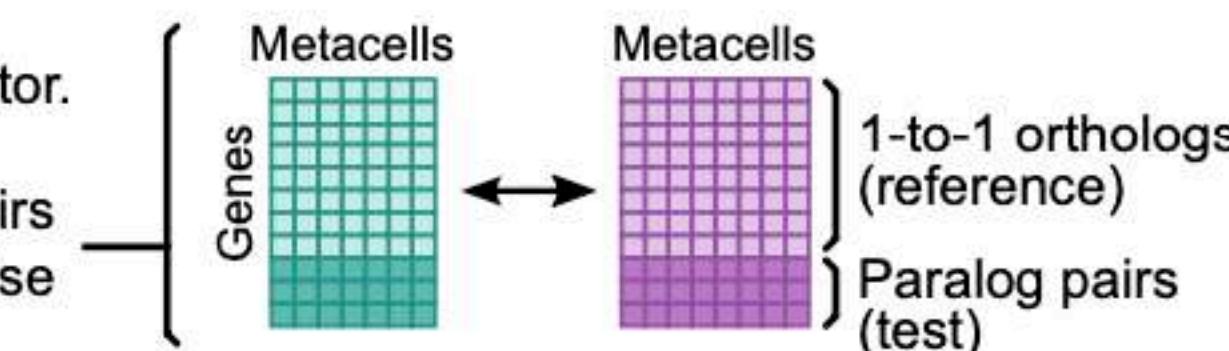


4. Weighted Pearson correlation between species correlation matrices, using weights from initial iteration (EC_0), resulting in a new vector (EC_1). Repeat for i iterations until $EC_i \approx EC_{i-1}$

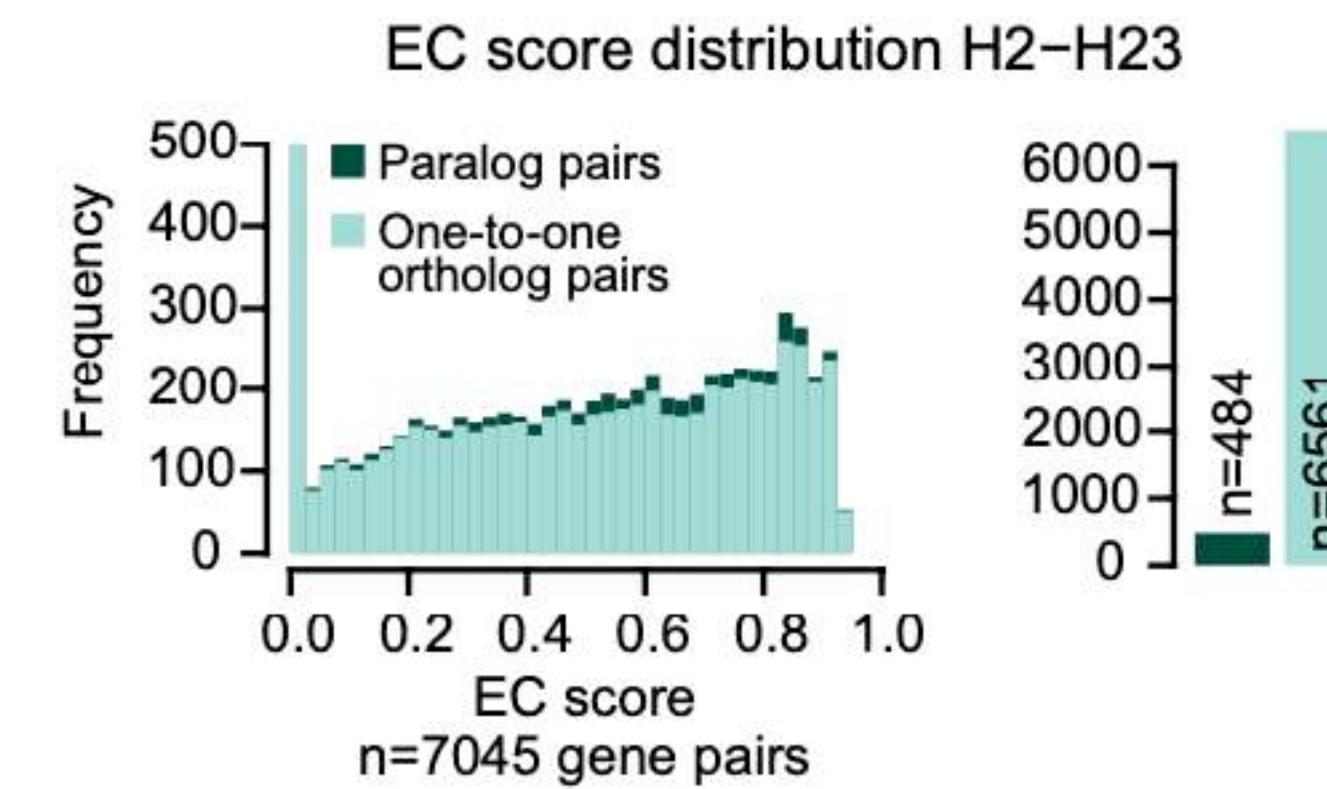


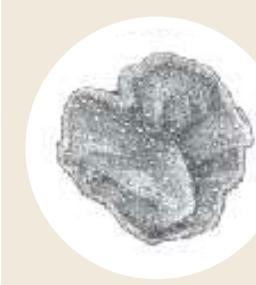
5. Expression conservation scores for each ortholog pair correspond to the final EC_i vector.

6. Best paralog selection: repeat steps one through five adding sets of paralogous gene pairs to the one-to-one ortholog matrices, and selecting the pair of paralogs with the highest pairwise EC score.



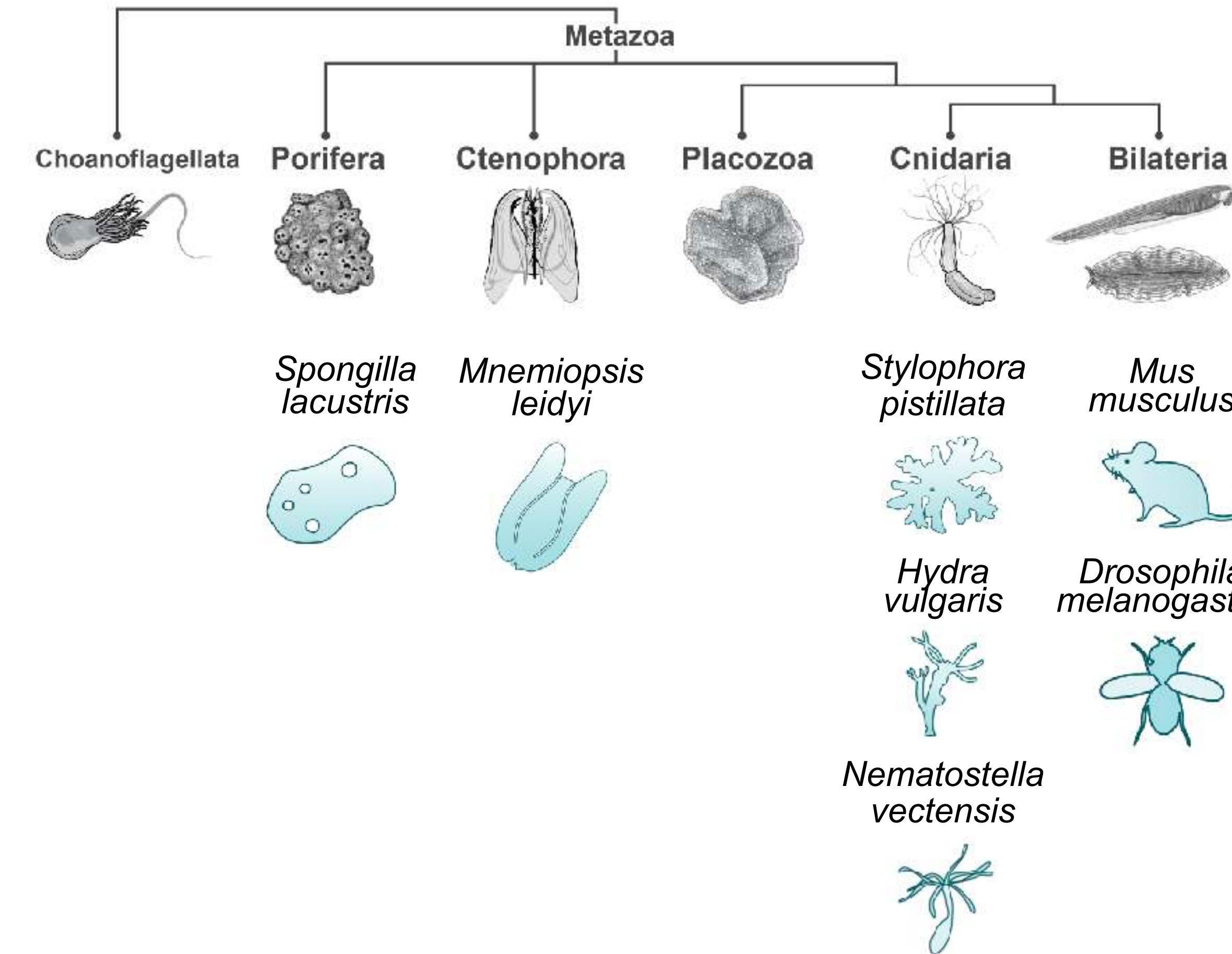
Open Access
Research
Comparative analysis indicates regulatory neofunctionalization of yeast duplicates
Itay Tirosh* and Naama Barkai†
Addresses: *Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel. †Department of Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot, Israel.
Correspondence: Naama Barkai. Email: naama.barkai@weizmann.ac.il
Published: 5 April 2007
Genome Biology 2007, 8:R50 (doi:10.1186/gb-2007-8-4-r50)
Received: 21 December 2006
Revised: 15 February 2007
Accepted: 5 April 2007



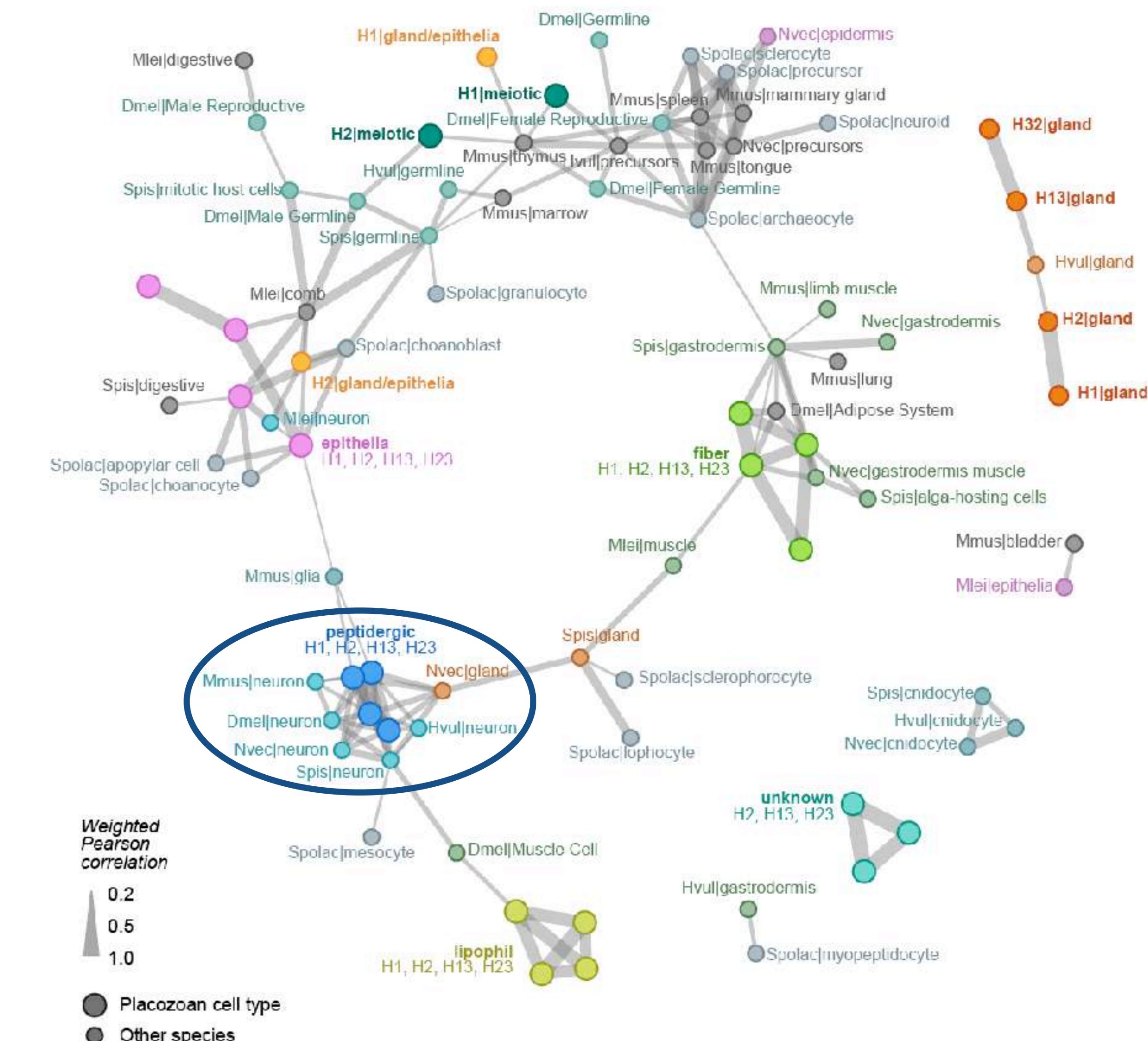


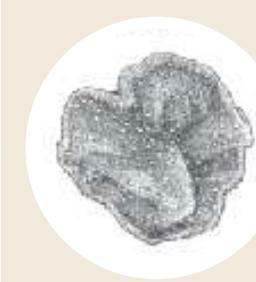
Cell type transcriptome macroevolutionary comparison

Cross-phyla cell type comparisons using published whole-organism cell atlases



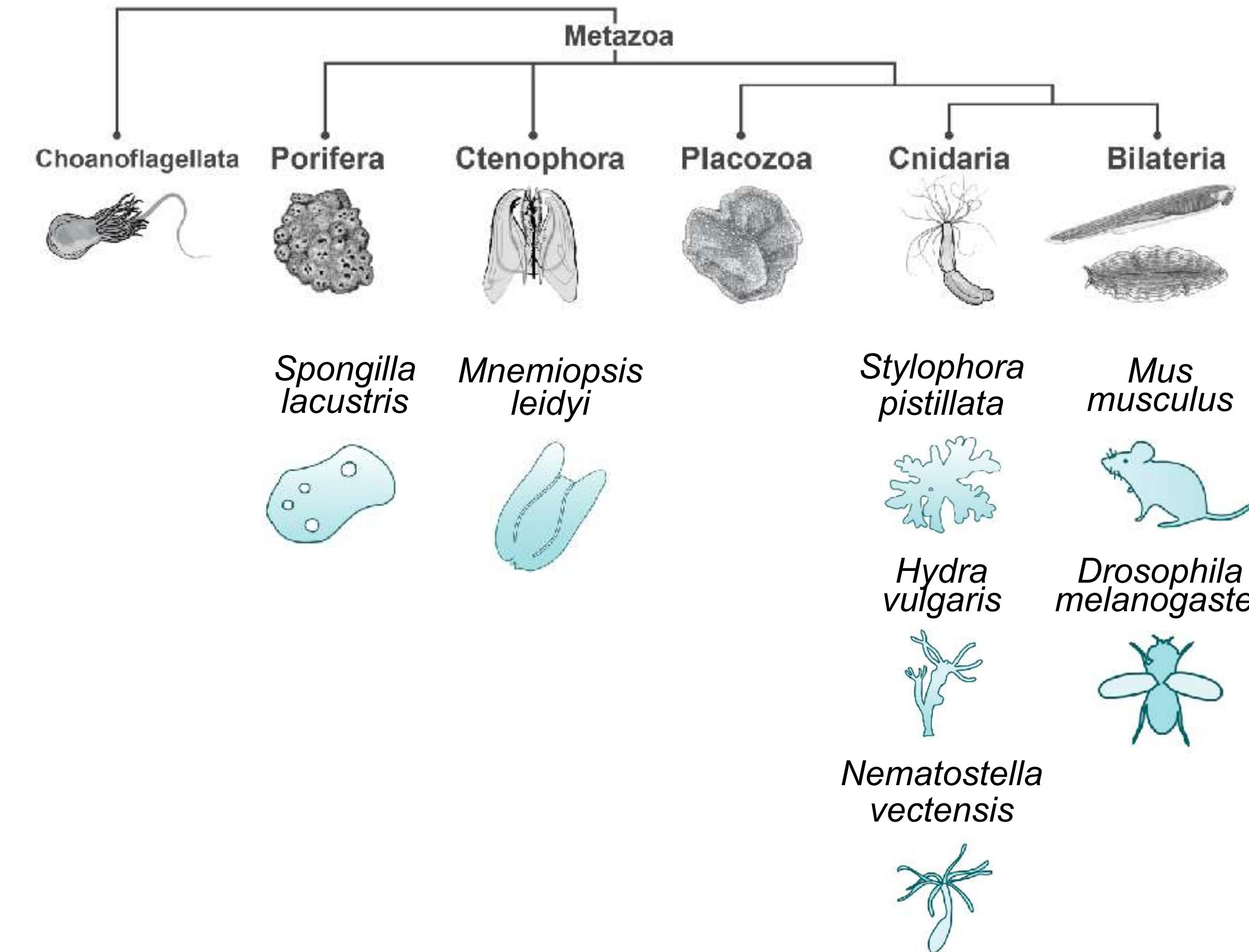
Peptidergic cells transcriptionally resemble neurons



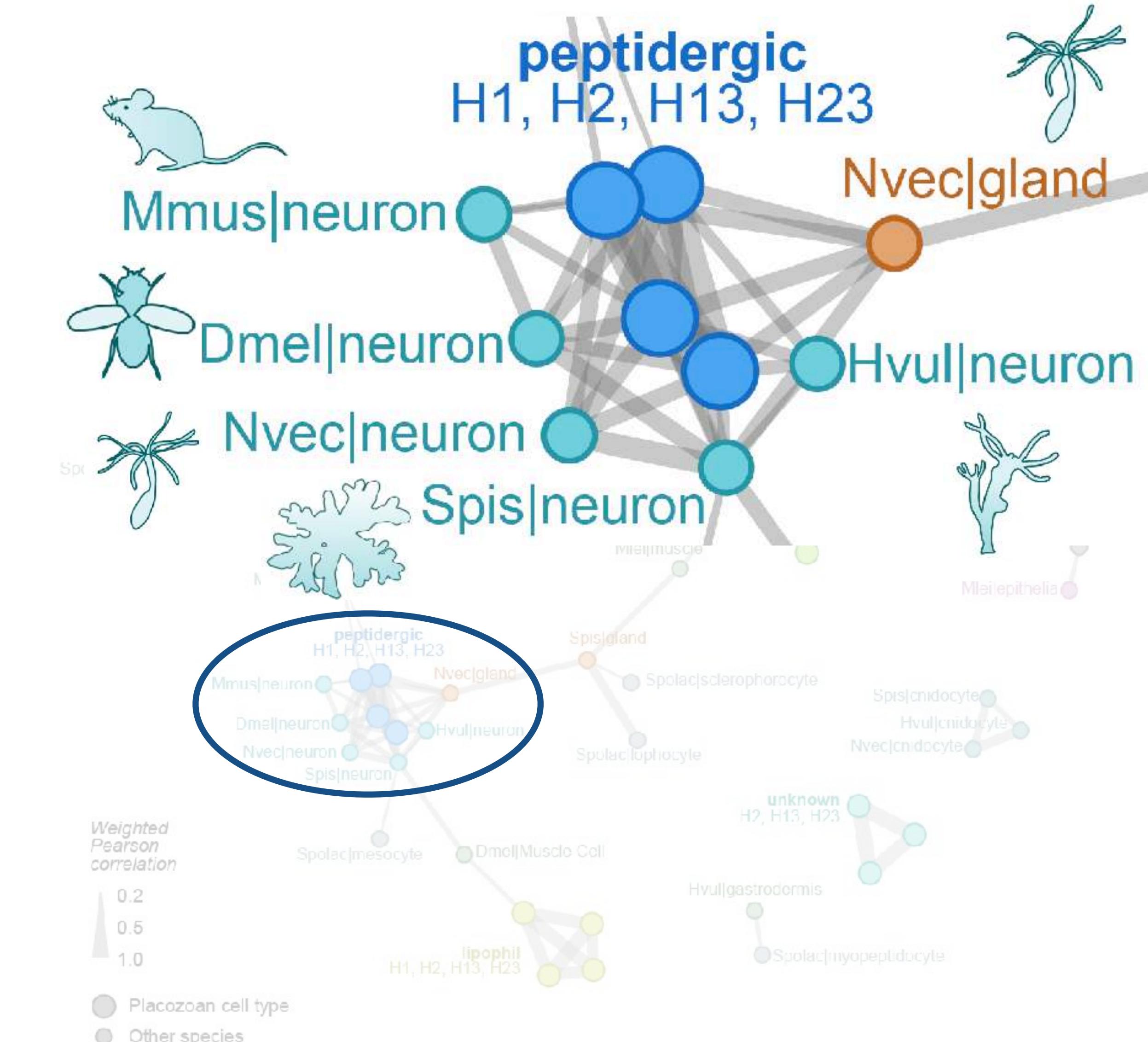


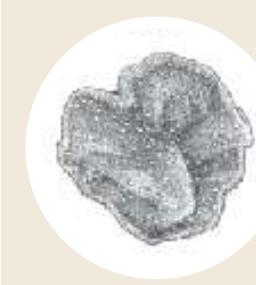
Cell type transcriptome macroevolutionary comparison

Cross-phyla cell type comparisons using published whole-organism cell atlases



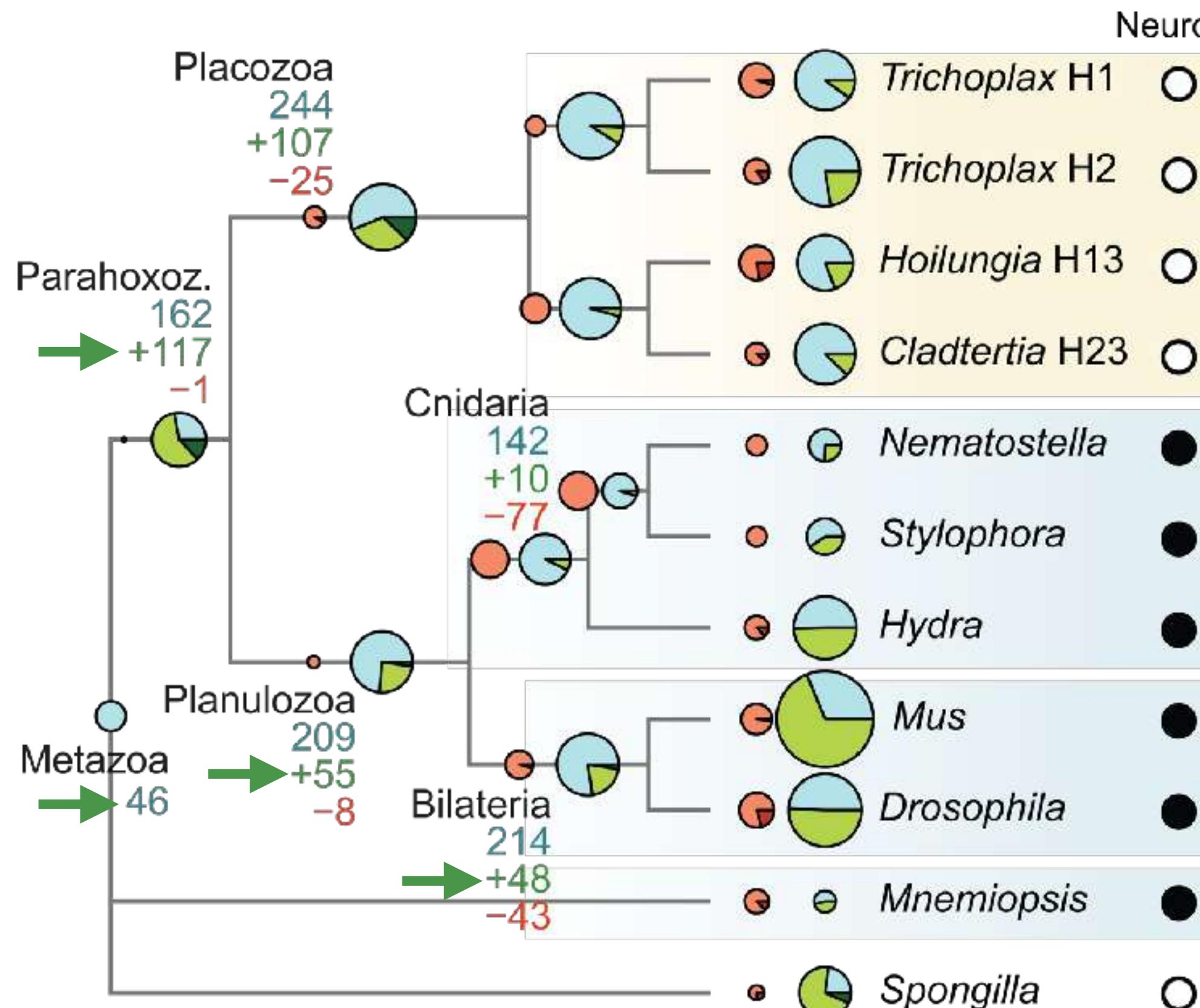
Peptidergic cells transcriptionally resemble neurons



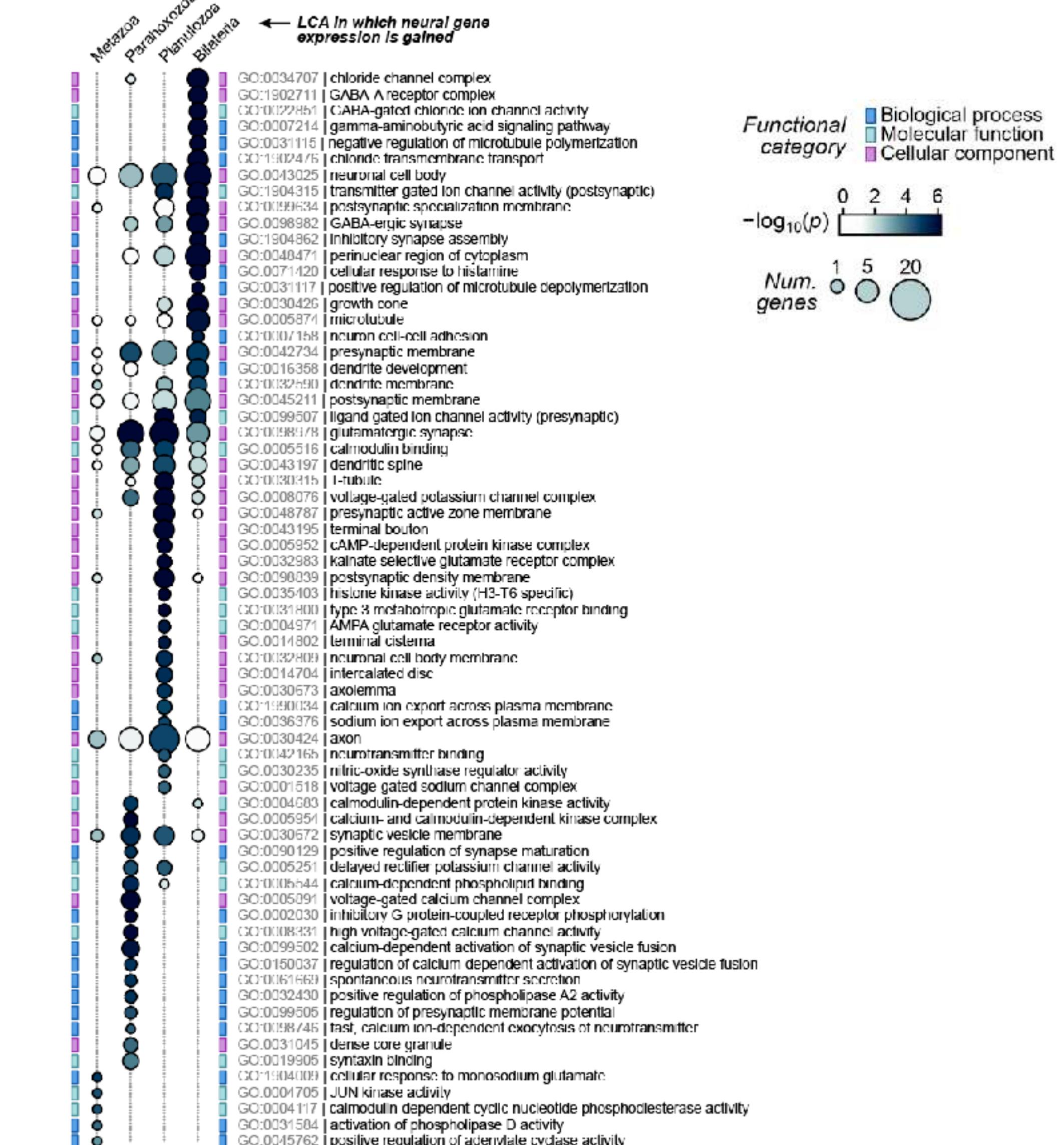


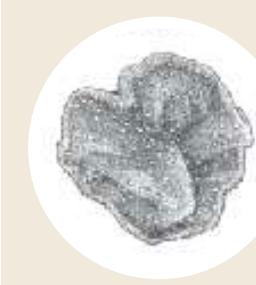
Evolution of the neuronal gene expression program

Reconstruction of gene expression ancestral states, losses and novelties in neurons/neuronal-like cells



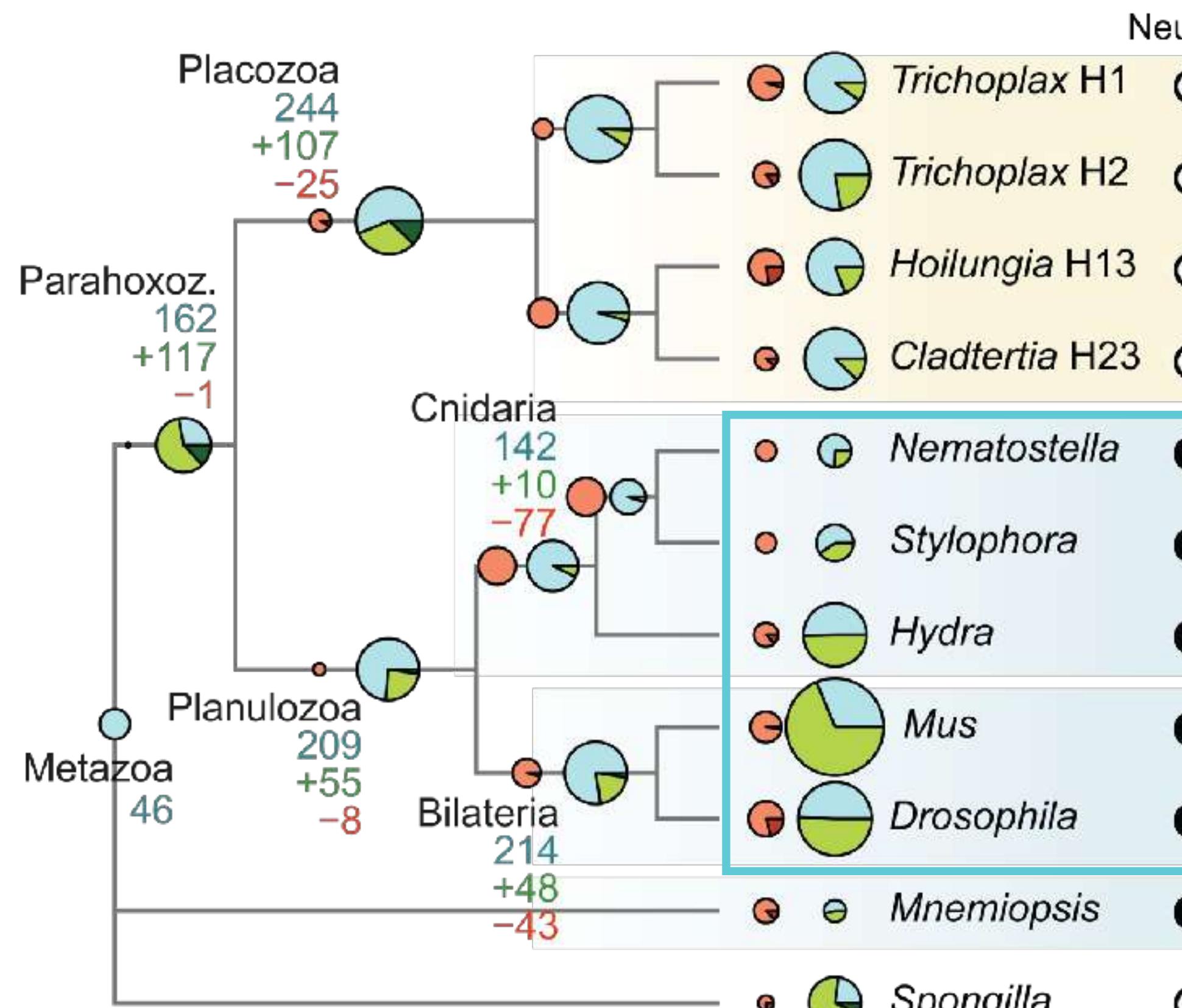
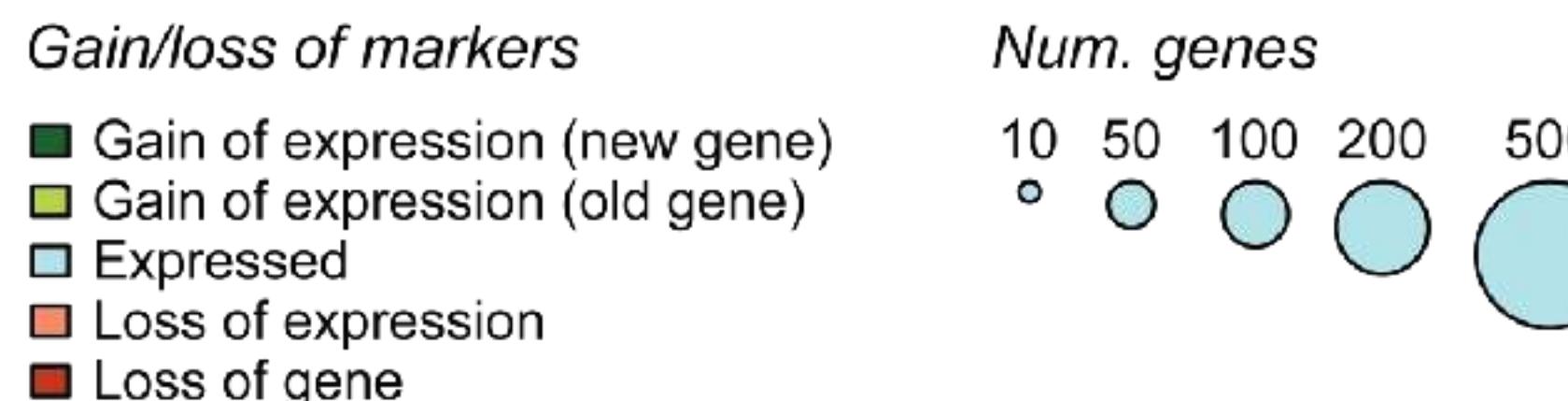
Gene gains enriched functional categories



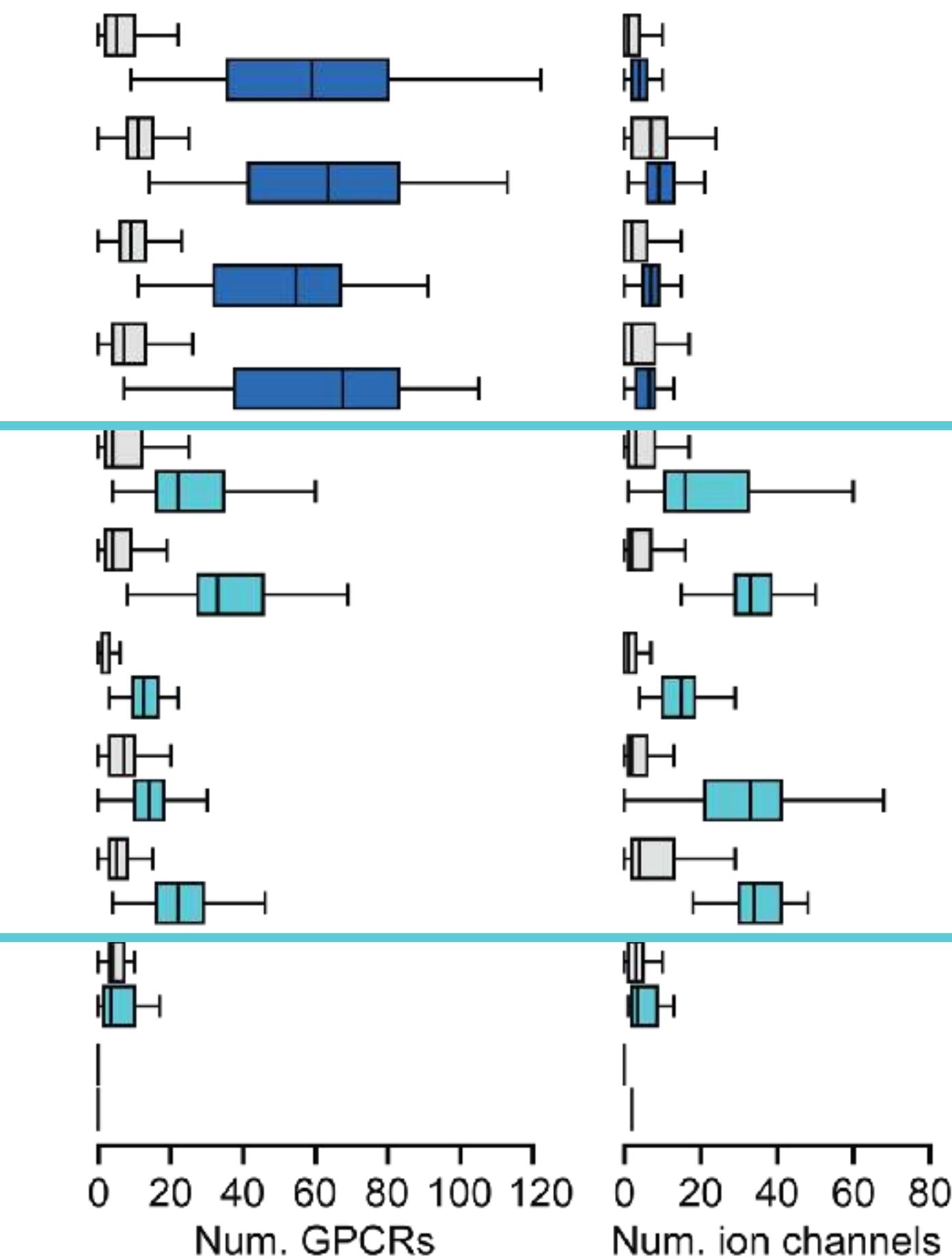


Stepwise evolutionary emergence of the neuronal gene expression program

Reconstruction of gene expression ancestral states, losses and novelties in neurons/neuronal-like cells

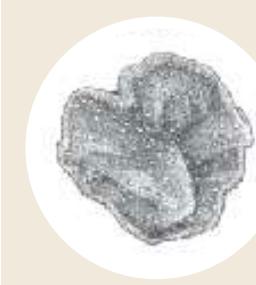


High GPCR and Ion Channel gene counts is a hallmark of cnidarian and bilaterian neurons

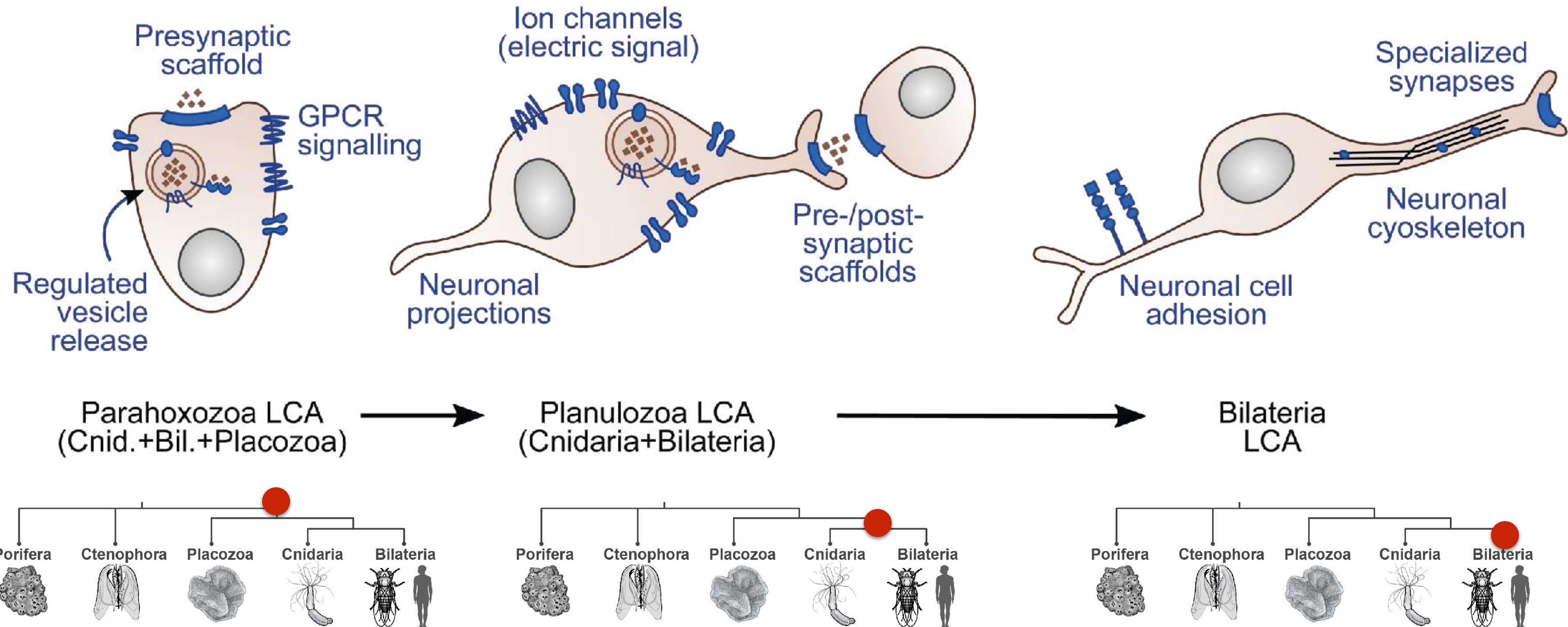


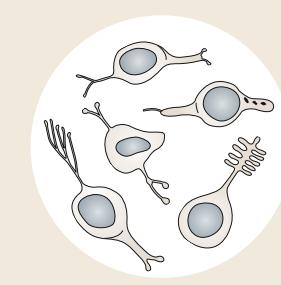
Number expressed
genes in:

- Peptidergic metacells
- Neuron metacells
- Other metacells

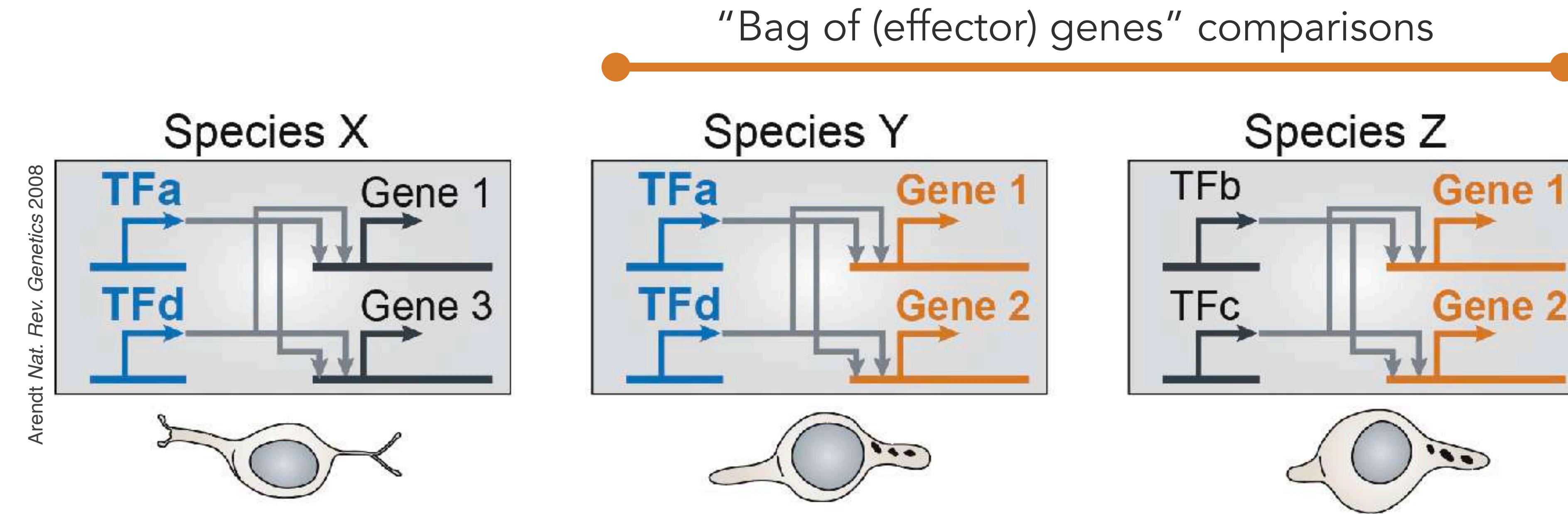


Evolution of the neuronal gene expression program

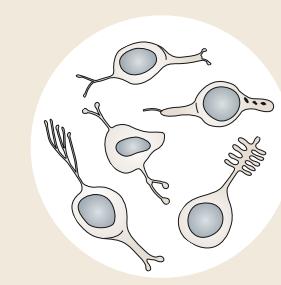




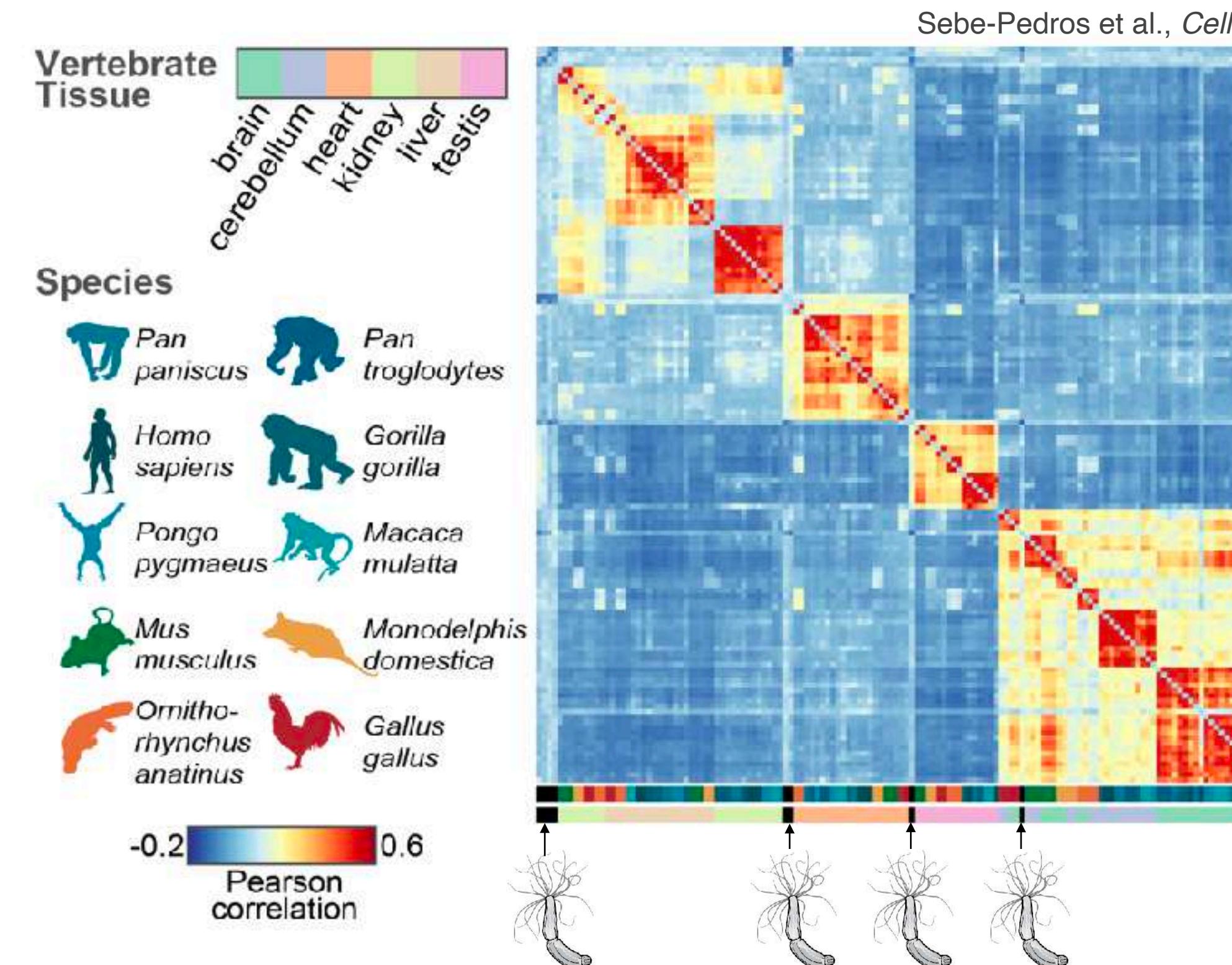
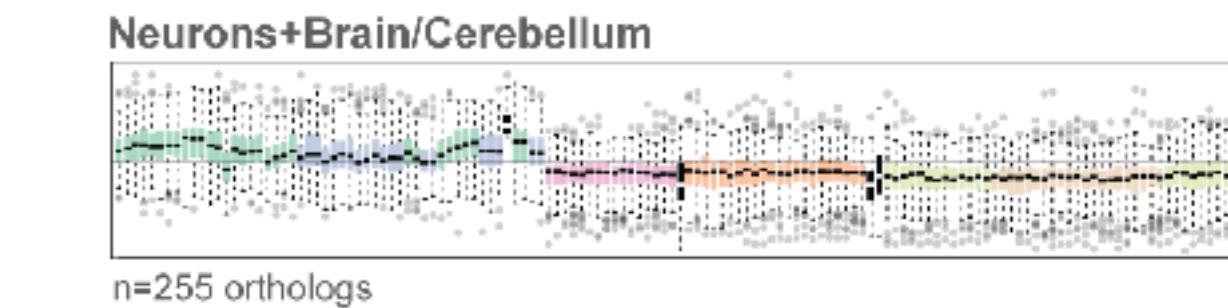
Cell type macroevolution, similarity beyond form and function



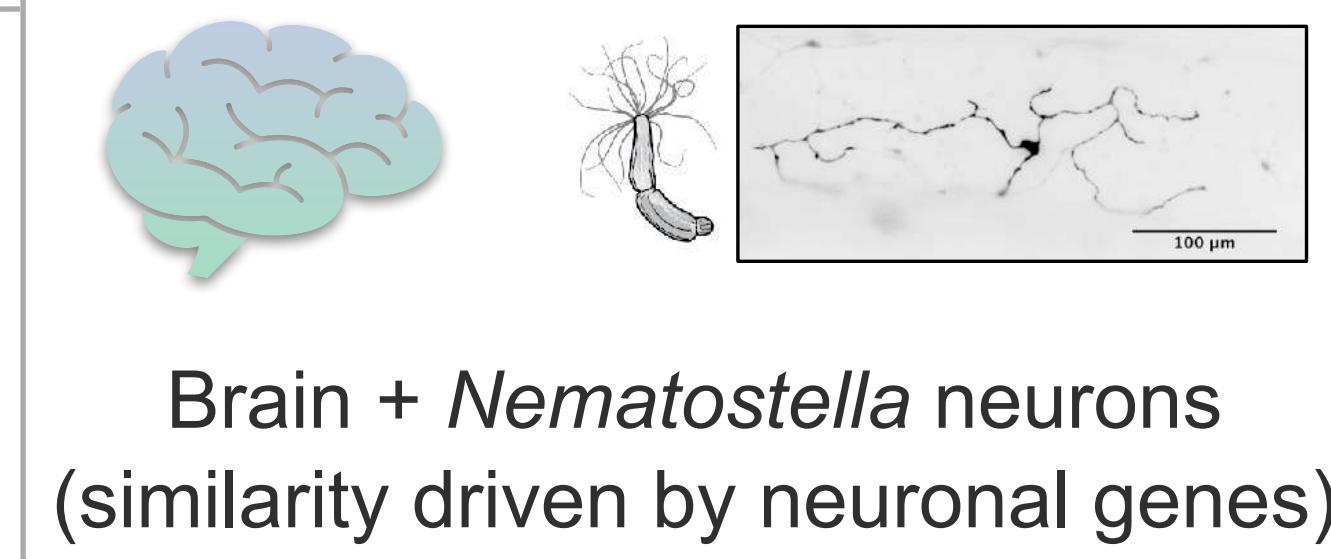
1. Functional constraints -> convergent (and divergent) gene usage.
2. We don't apply explicit evolutionary models for gene expression characters.
3. Genes are not independent characters.



Cell type macroevolution, similarity beyond form and function



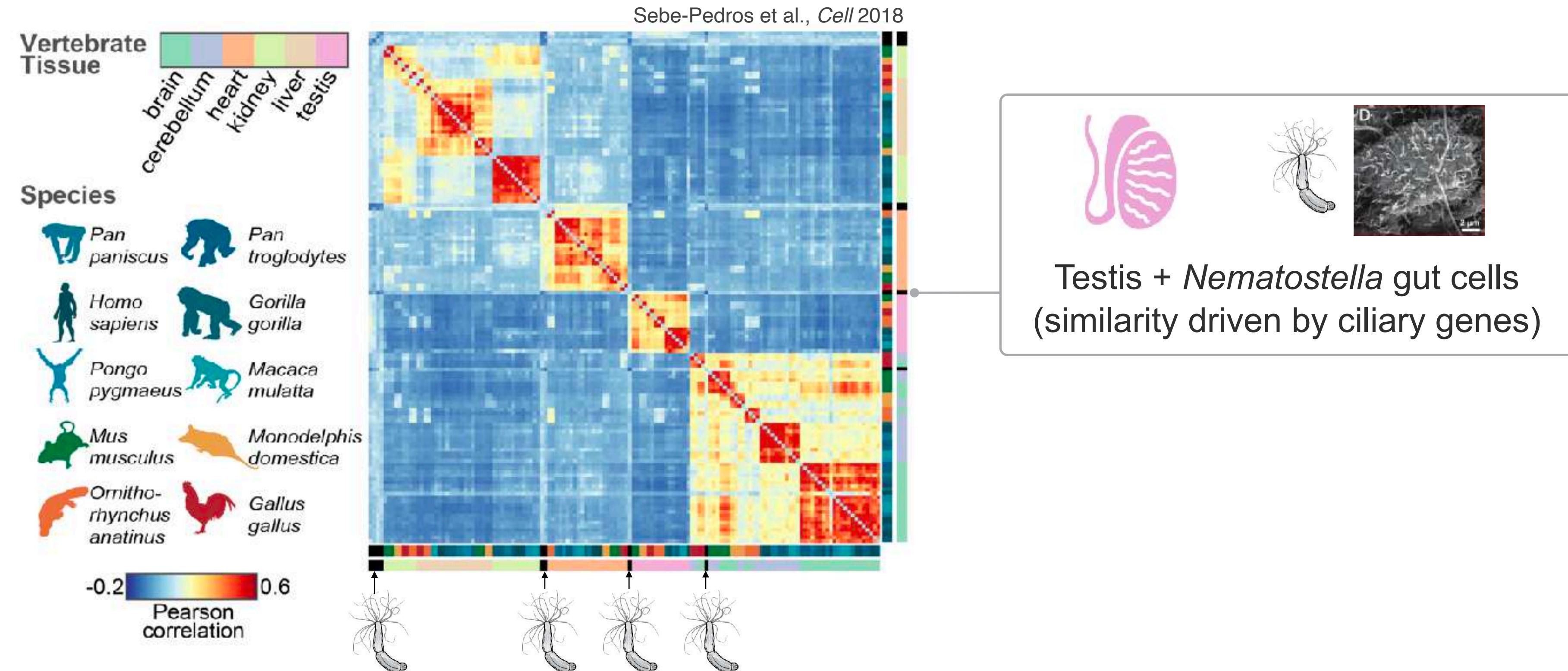
Term	Description	Population	Set	log2FC
GO:0005244	voltage-gated ion channel activity	22	12	2.5
GO:0048058	cAMP metabolic process	17	9	2.5
GO:0022839	ion gated channel activity	28	14	2.4
GO:0070382	exocytic vesicle	26	12	2.3
GO:0098794	postsynapse	46	17	1.9
GO:0004930	G-protein coupled receptor activity	69	23	1.8
GO:0098793	presynapse	56	18	1.7
GO:0030425	dendrite	61	19	1.7
GO:0045202	synapse	112	33	1.6
GO:0005218	ion channel activity	51	15	1.6
GO:0007258	chemical synaptic transmission	55	16	1.6
GO:0038477	somatodendritic compartment	87	24	1.5
GO:0043005	neuron projection	146	33	1.2
GO:0097458	neuron part	188	41	1.2
GO:0030182	neuron differentiation	164	34	1.1
GO:0046699	generation of neurons	181	35	1.2
GO:0022008	neurogenesis	191	36	1.0
GO:0007399	nervous system development	294	54	1.0



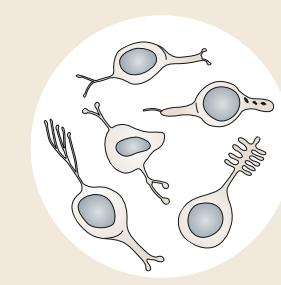
Cnidarian neurons (transcriptionally) resemble vertebrate brain/cerebellum



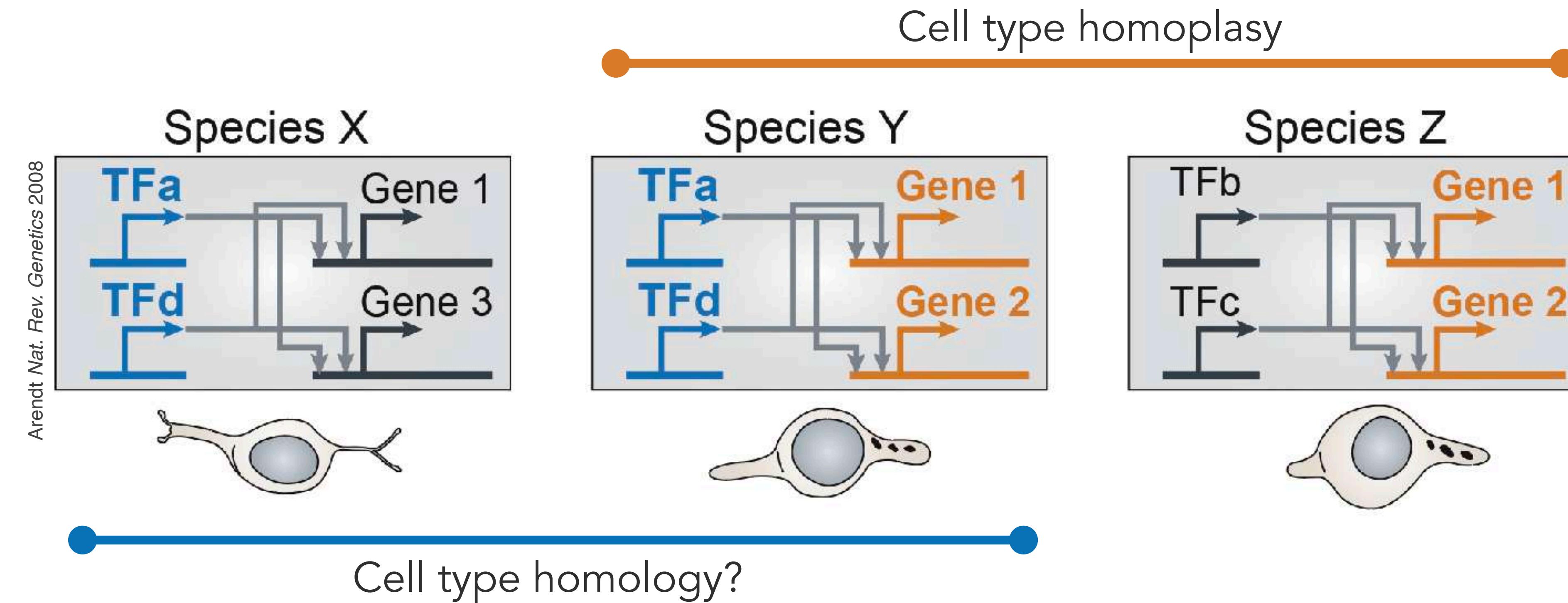
Cell type macroevolution, similarity beyond form and function

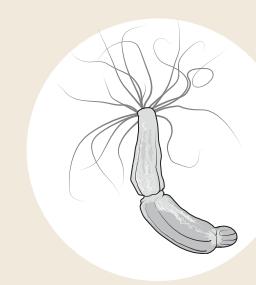


Direct comparisons of cell type transcriptomes are confounded
by convergent effector gene usage
(and divergent gene usage, and TF replacement, and more)

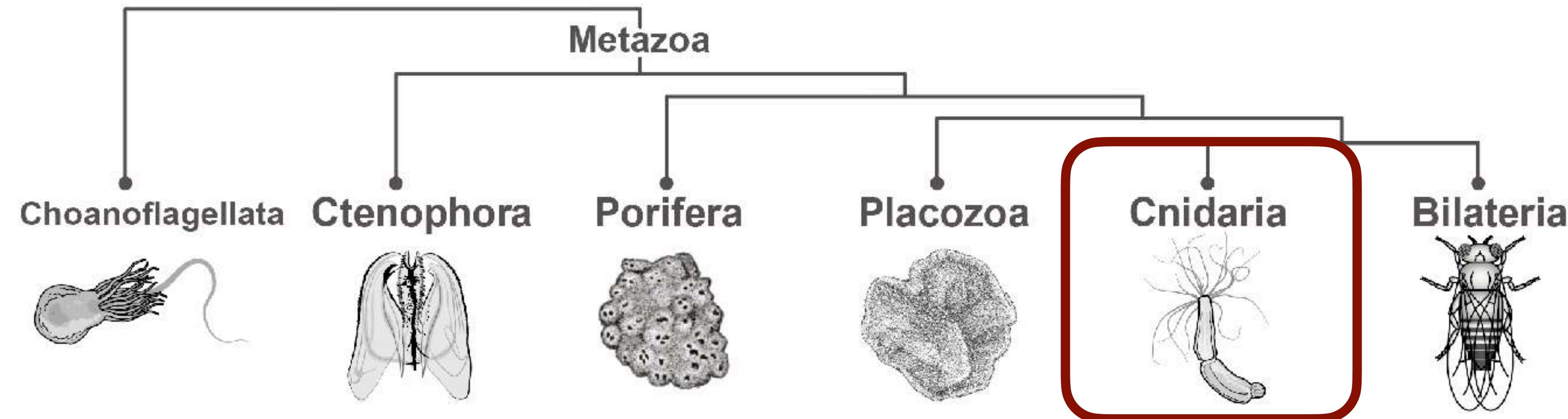


Cell type macroevolution, similarity beyond form and function

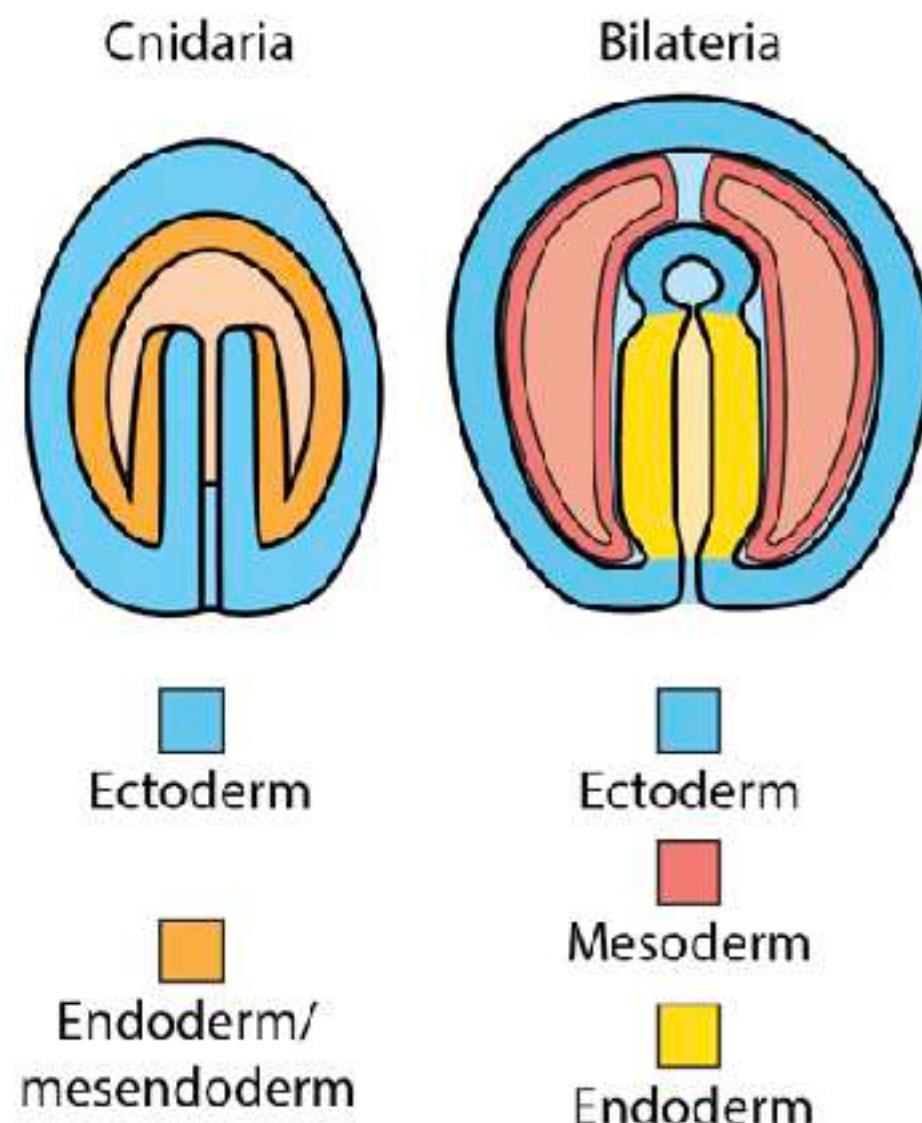




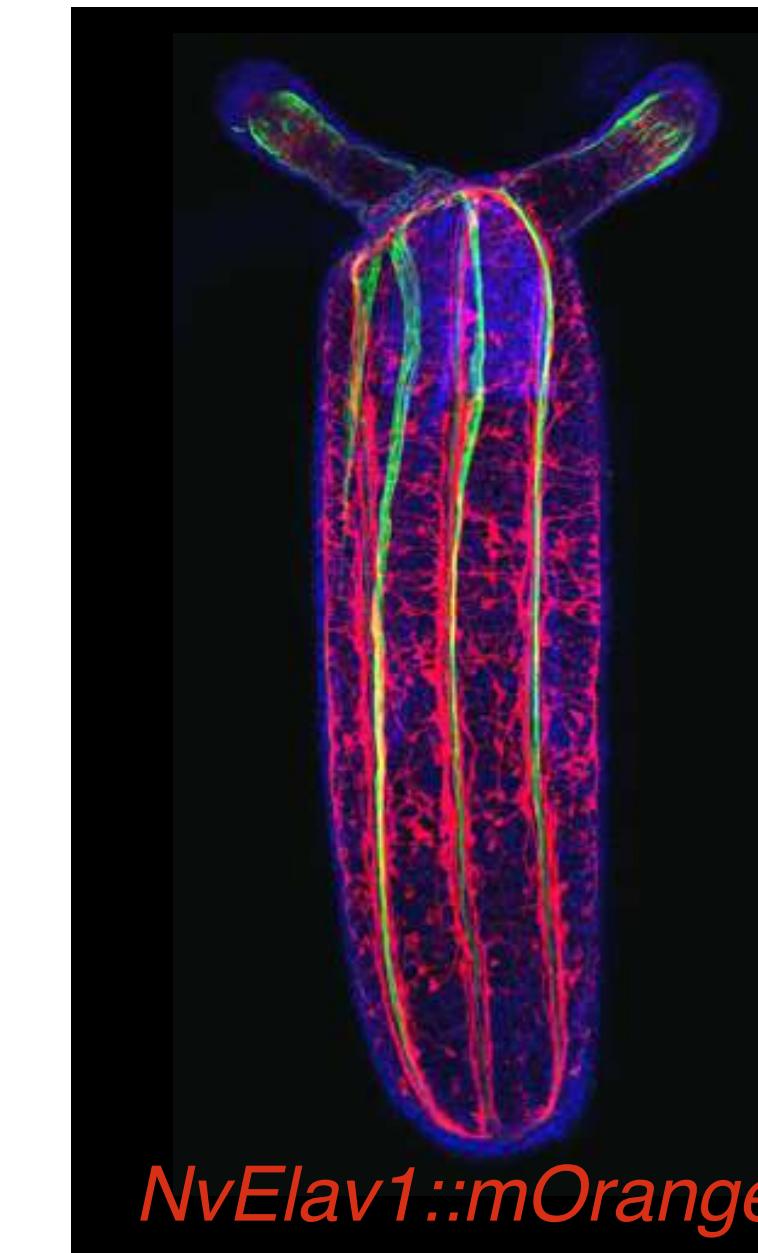
Story 3: Decoding cnidarian cell type regulatory identities



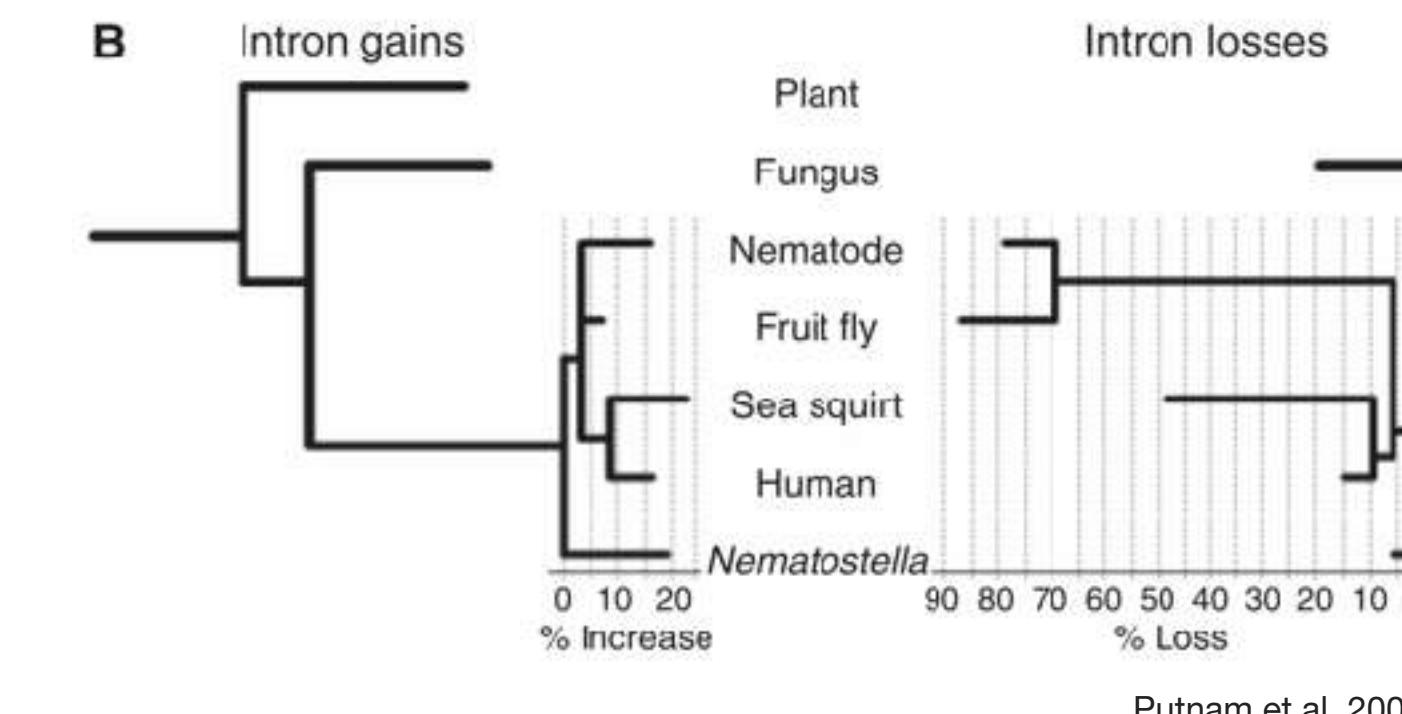
Diploblastic (no mesoderm)



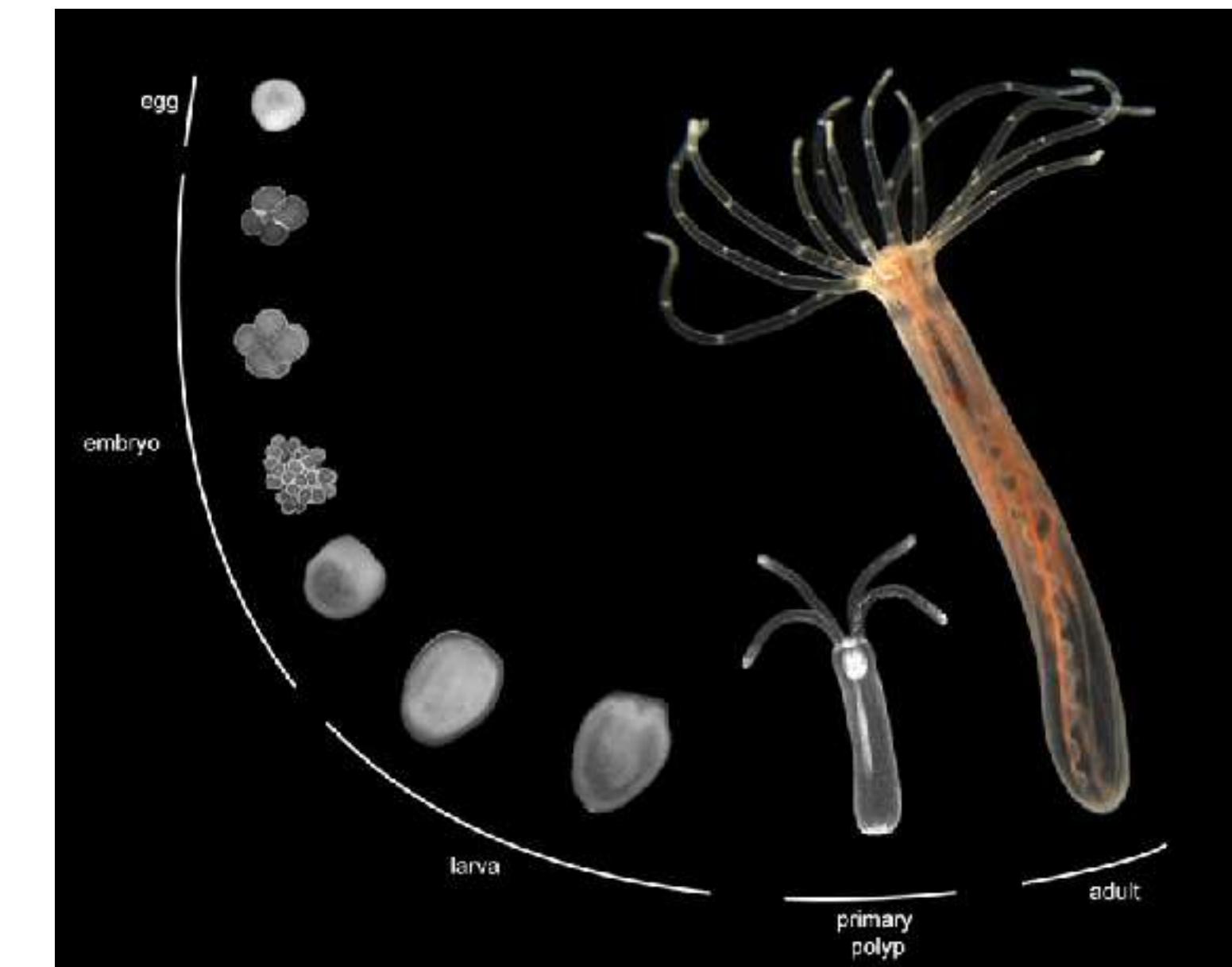
Neurons, but no CNS

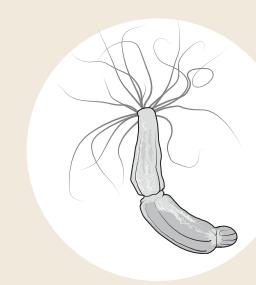


Slow-evolving genome:
conserved intron positions, syntenic
blocks, gene repertoire

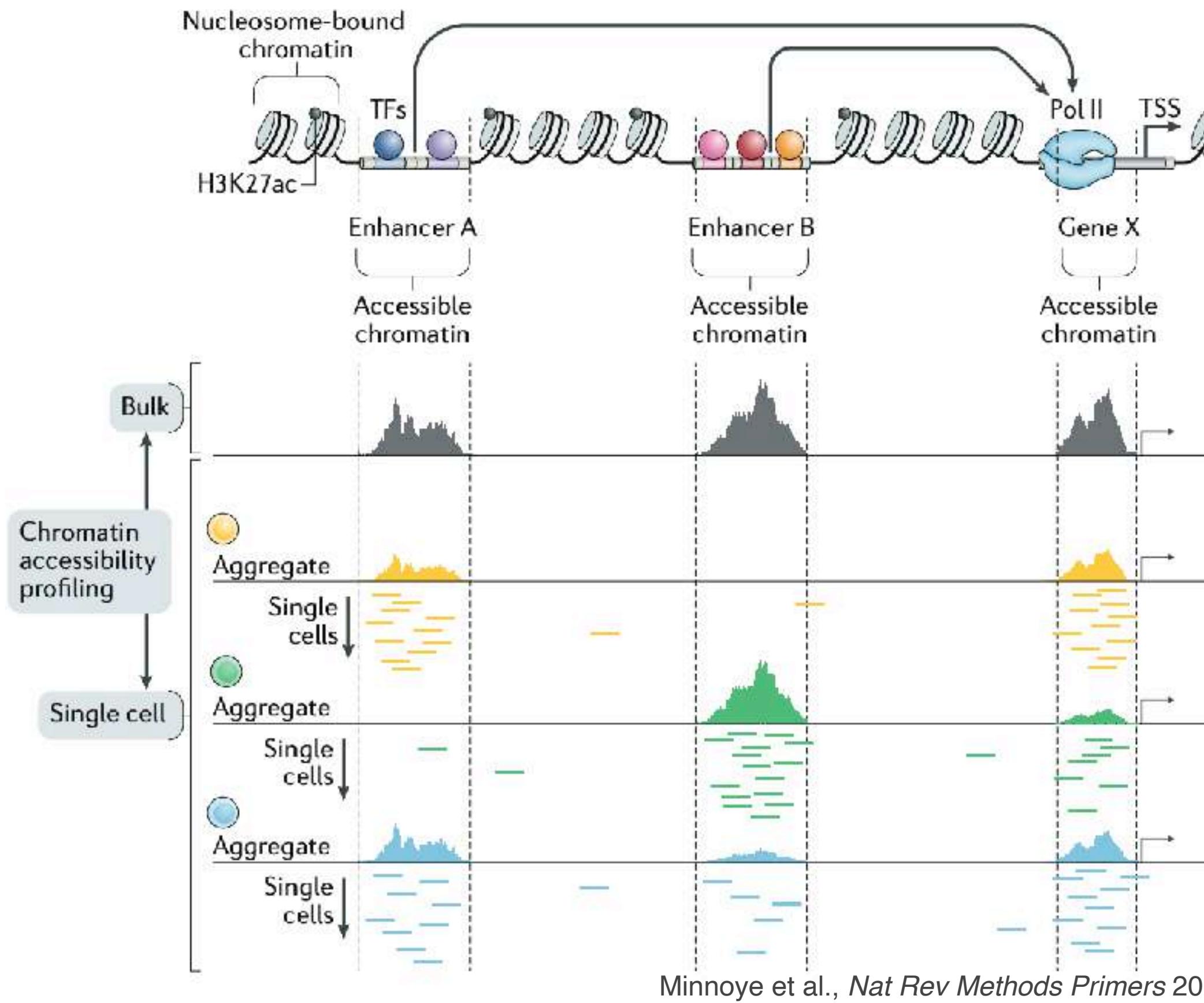


Indirect development (dispersive larva)



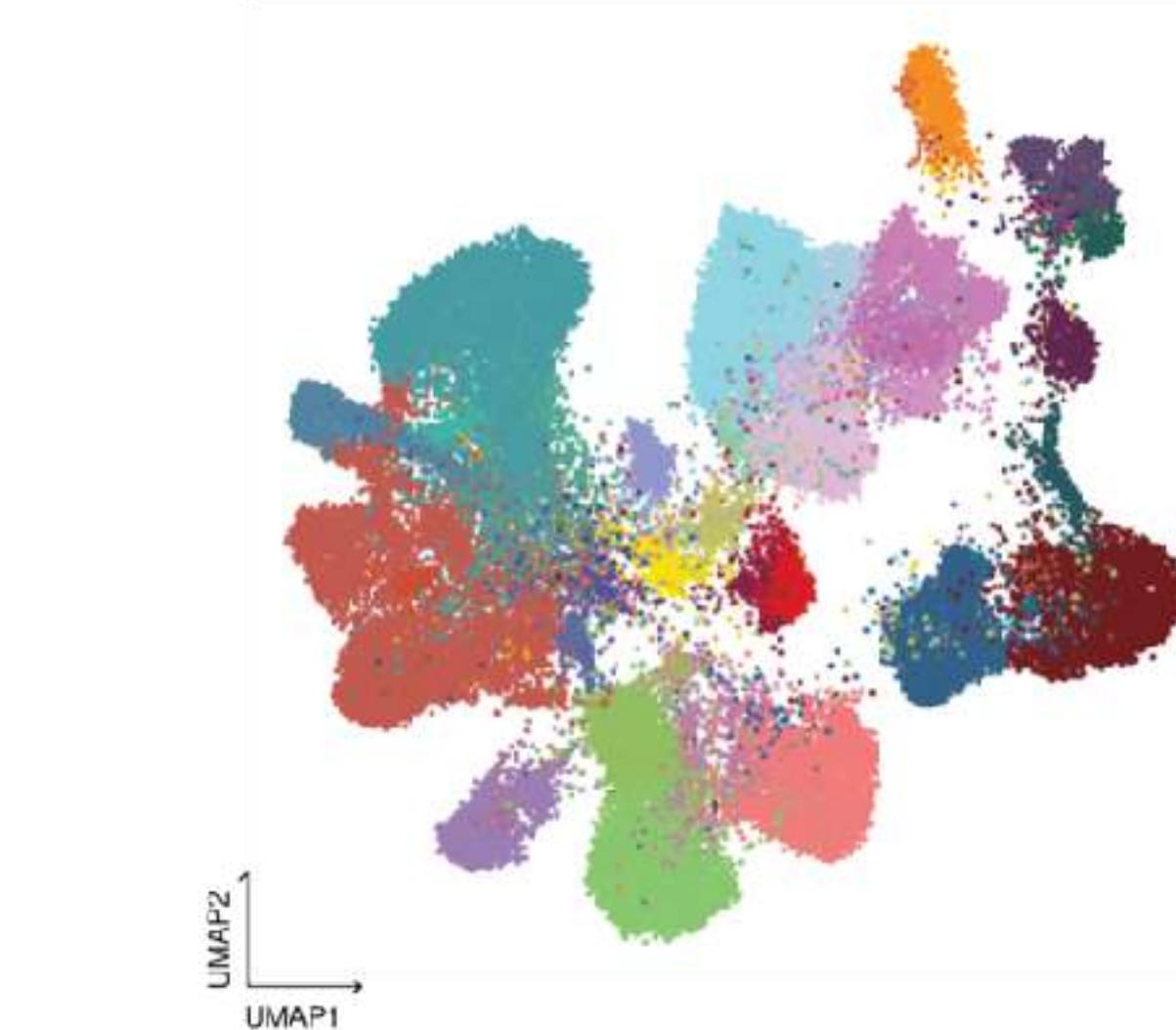


Nematostella single-cell chromatin accessibility atlas



Anamaria Elek

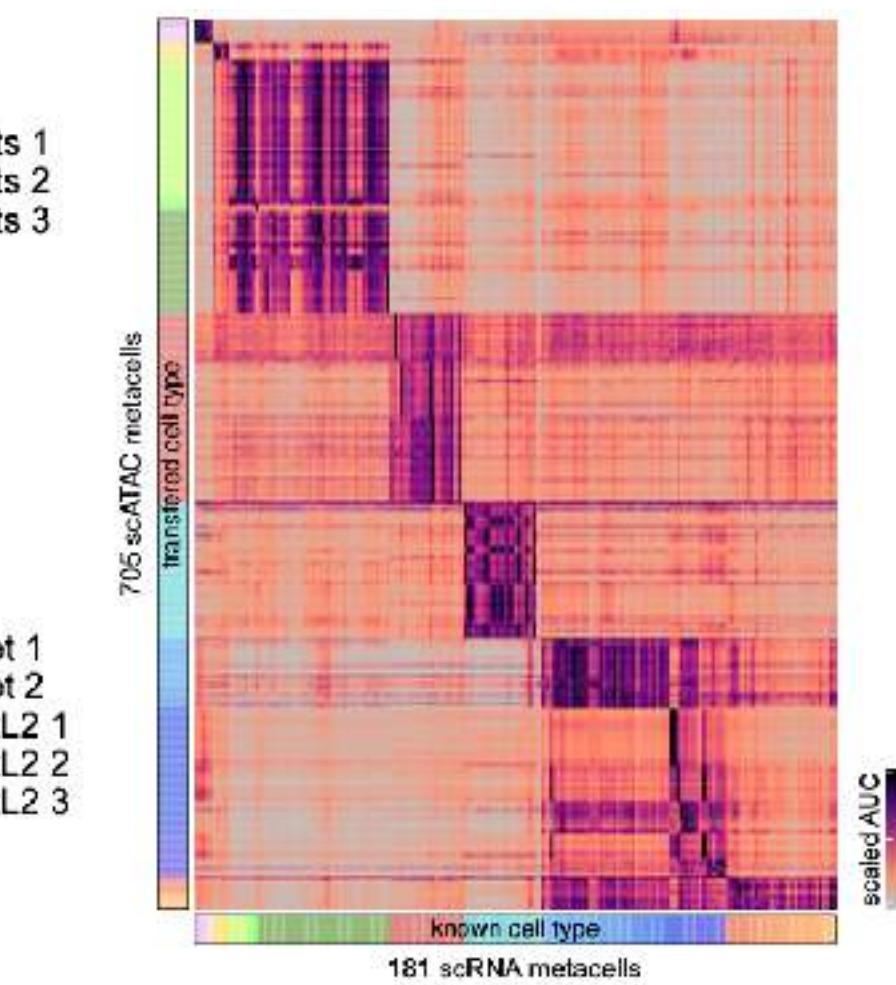
Marta Iglesias



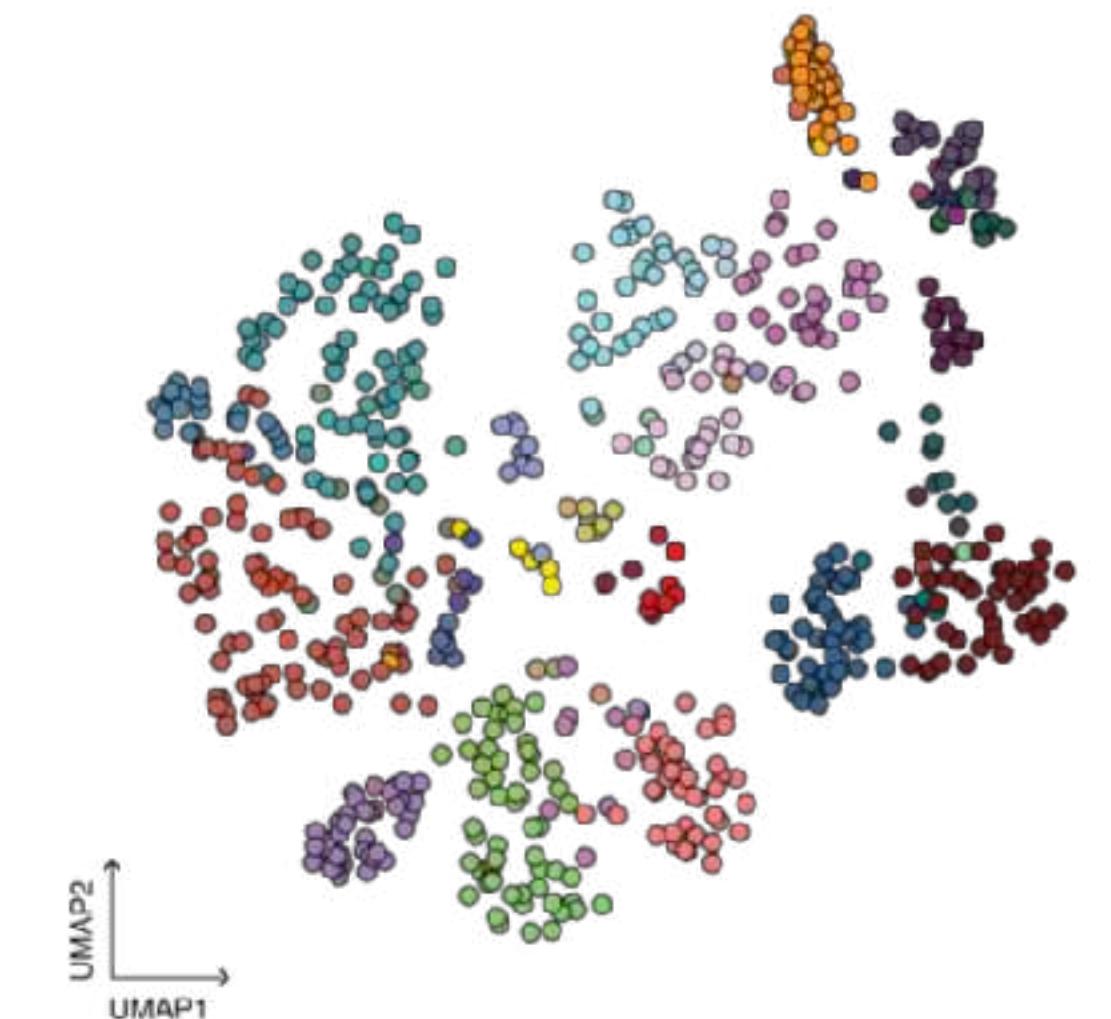
>65,000 scATAC-seq profiles

Adult cell types

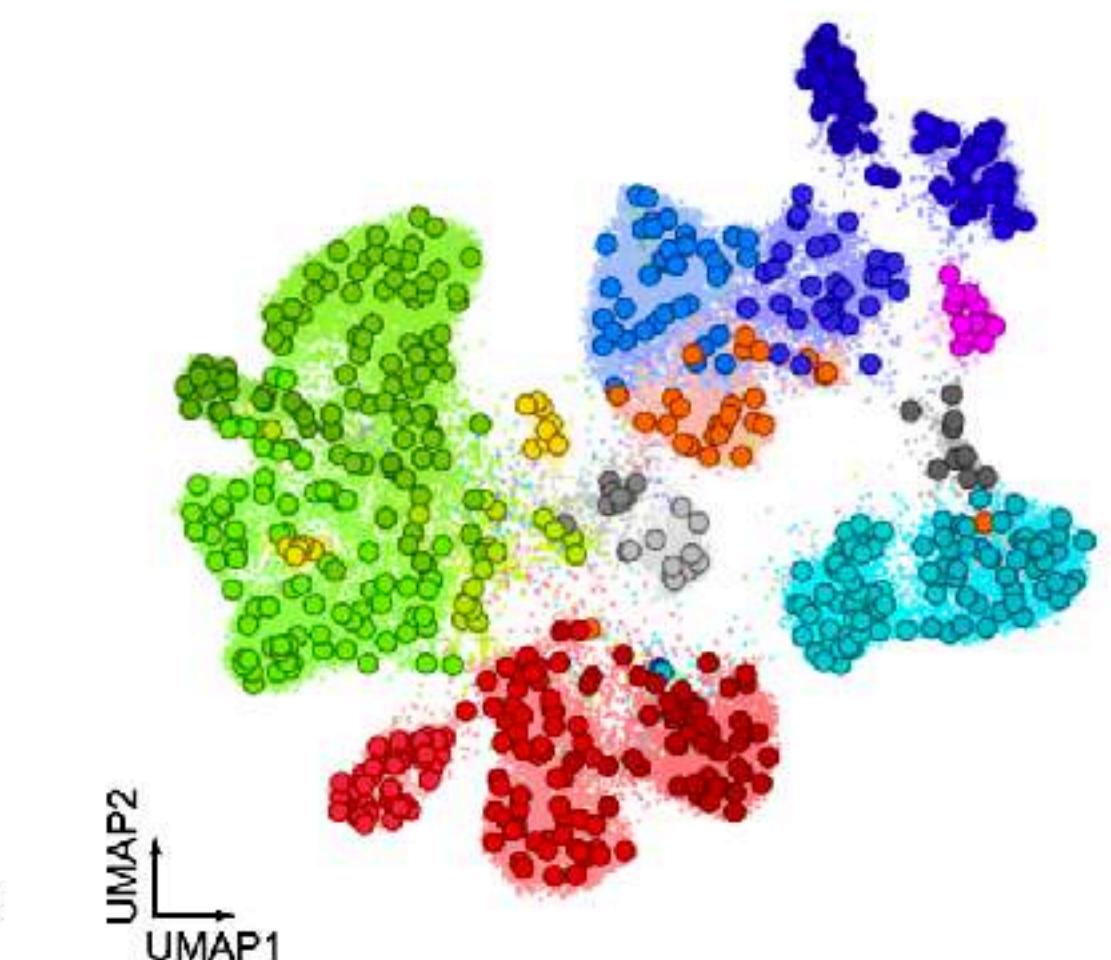
- cnidocyte
- digestive filaments 1
- digestive filaments 2
- digestive filaments 3
- epidermis 1
- epidermis 2
- gastro/CM 1
- gastro/CM 2
- gastro/PM
- gastro unk. 1
- gastro unk. 2
- gland
- MR muscle
- TR muscle
- neuron GATA/Islet 1
- neuron GATA/Islet 2
- neuron Pou4/FoxL2 1
- neuron Pou4/FoxL2 2
- neuron Pou4/FoxL2 3
- precursors 1
- precursors 2
- precursors 3

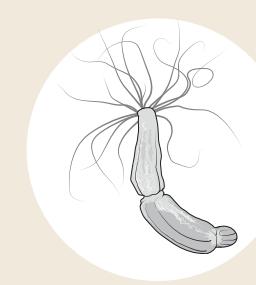


Annotation transfer from scRNA-seq atlas

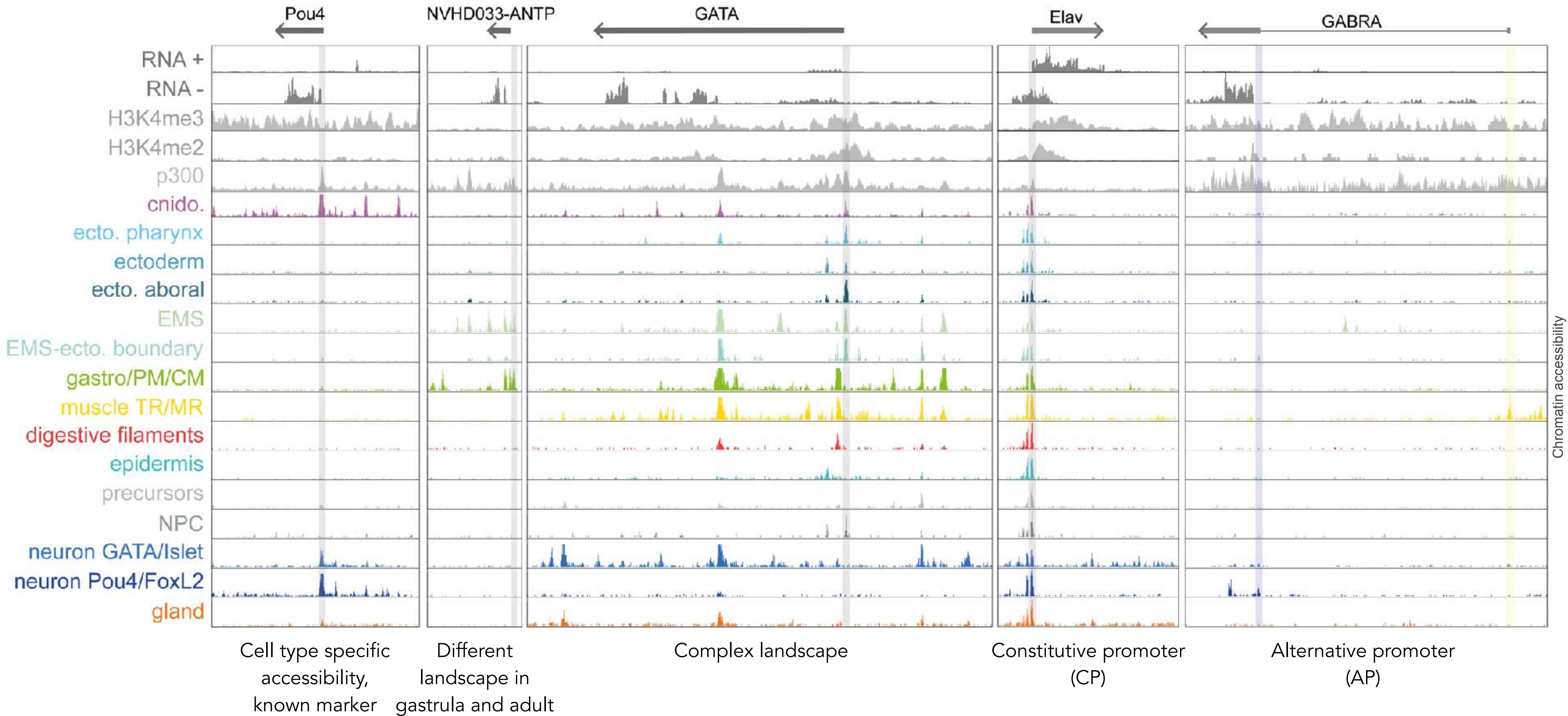


Reduced into 705 metacells





Cell type-specific gene regulatory landscapes



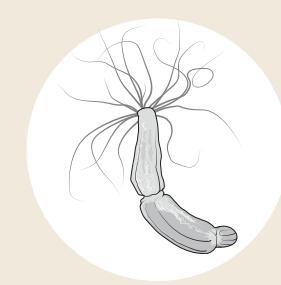
Cell type specific accessibility, known marker

Complex landscape

Constitutive promoter (CP)

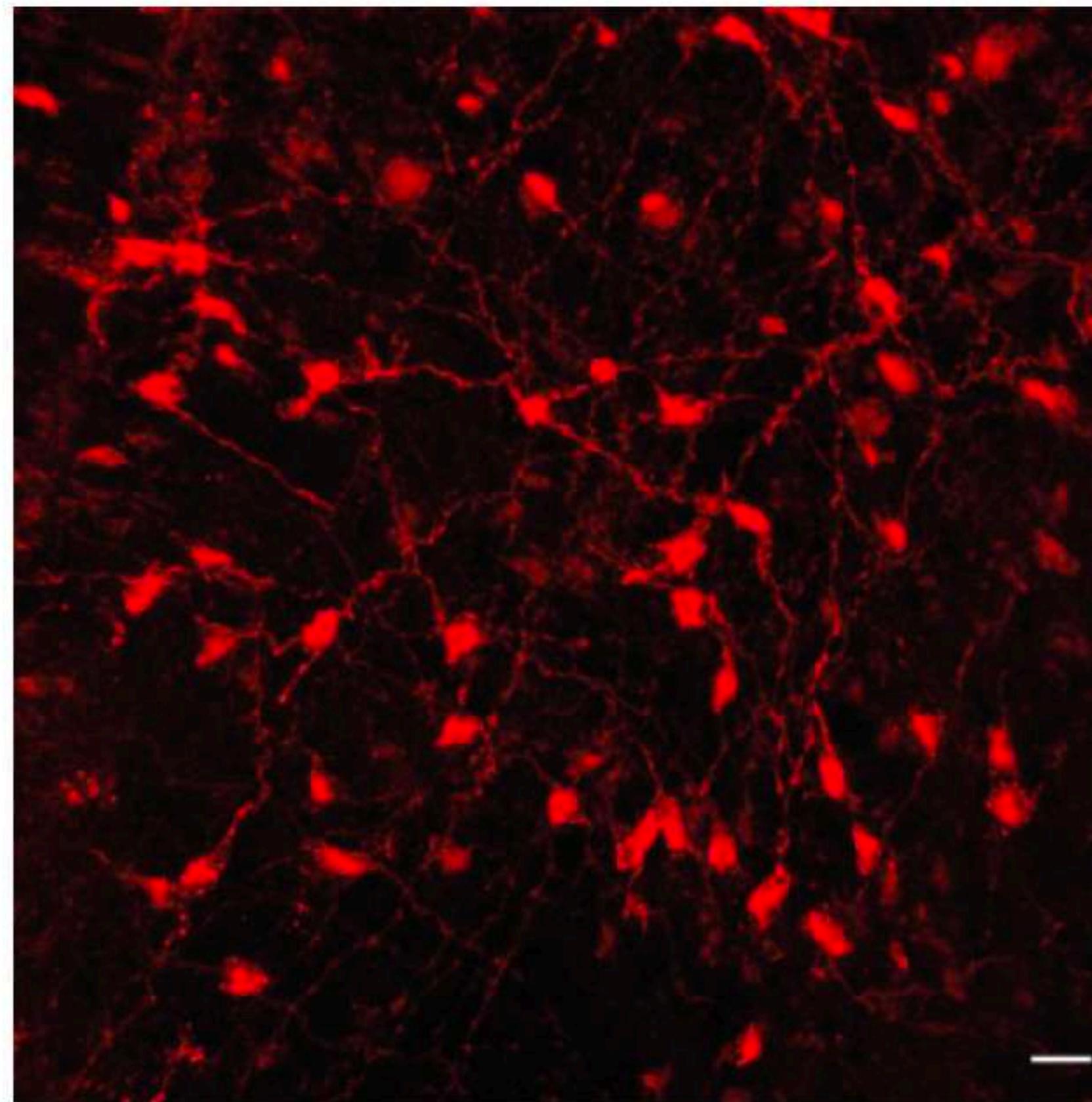
Alternative promoter (AP)

Different landscape in gastrula and adult

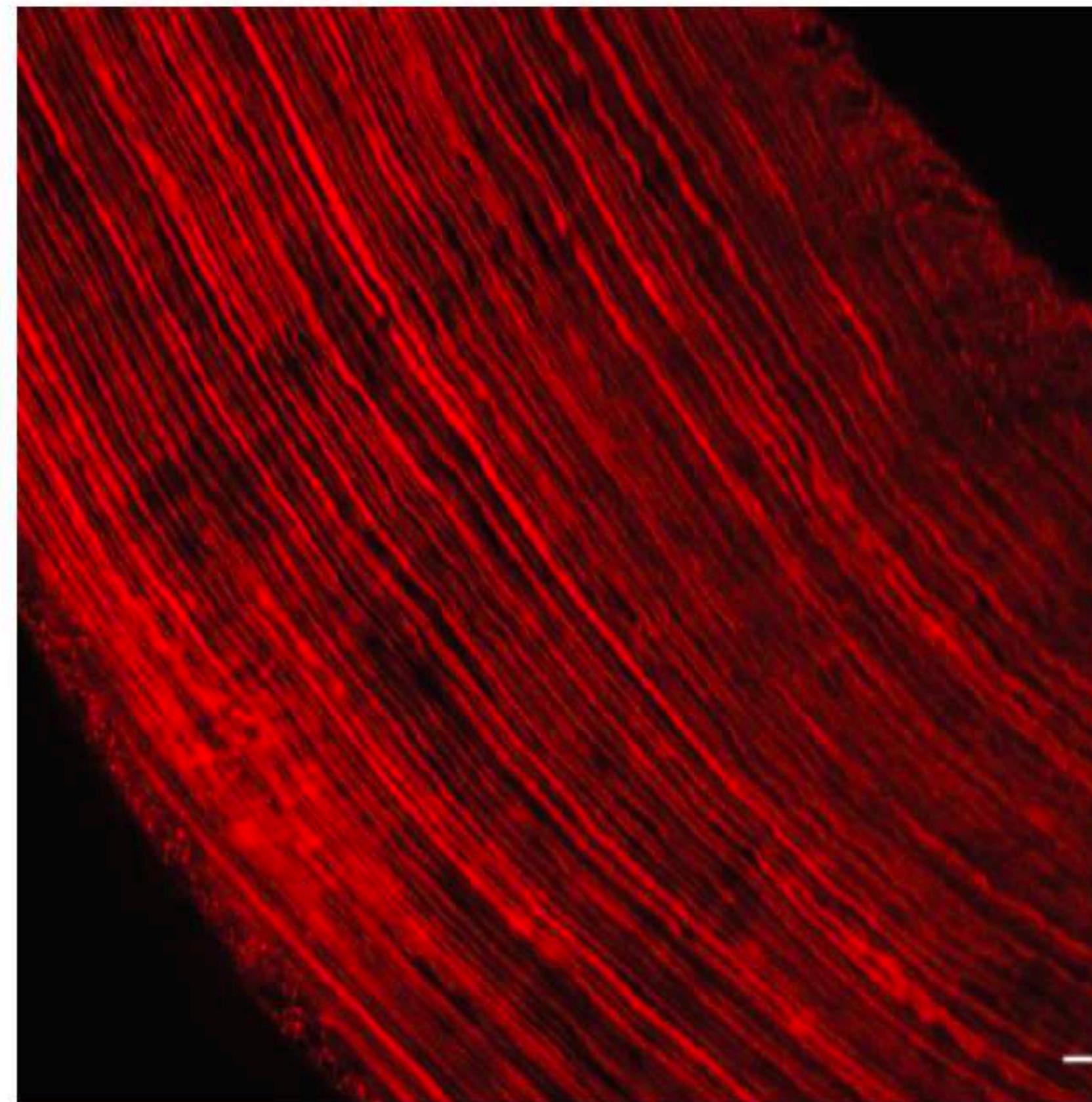
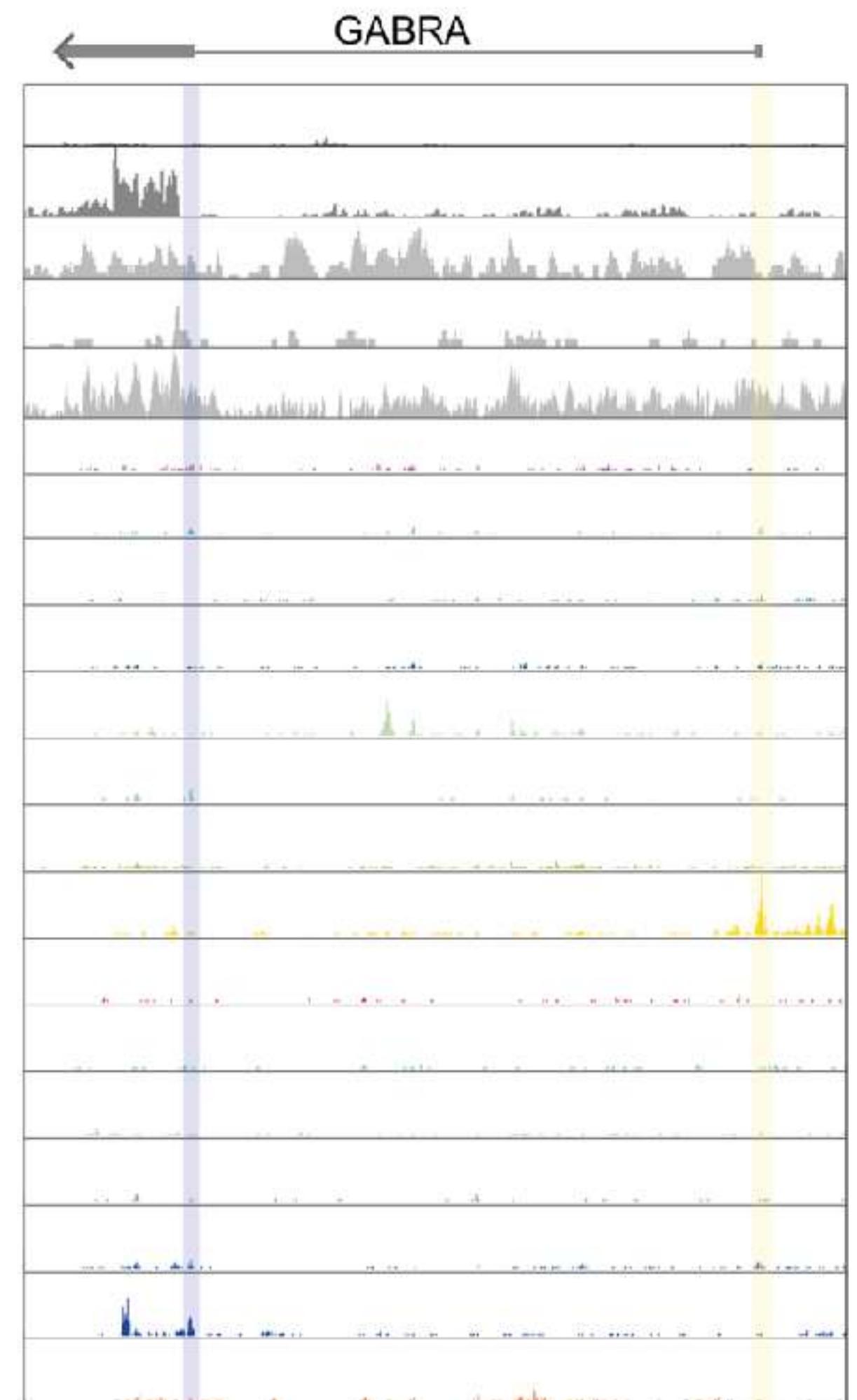


Cell type-specific gene regulatory landscapes

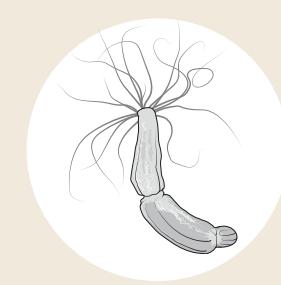
(1) *NeuroPou4/FoxL2-AP::mOrange*



(2) *tRM-AP::mOrange*

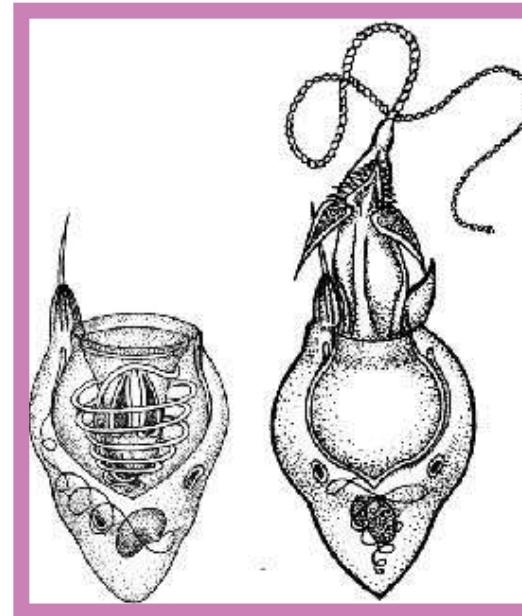
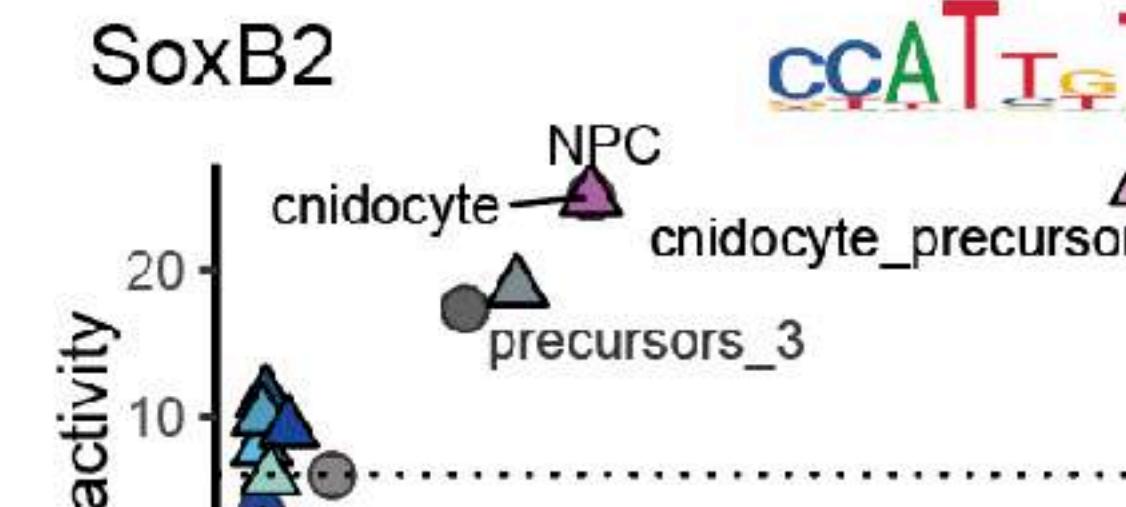
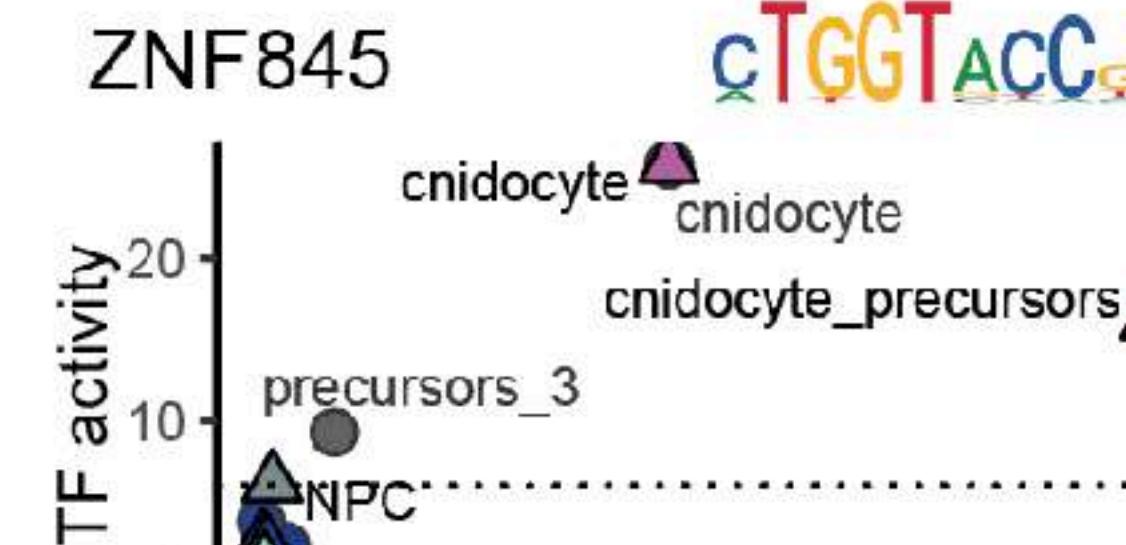
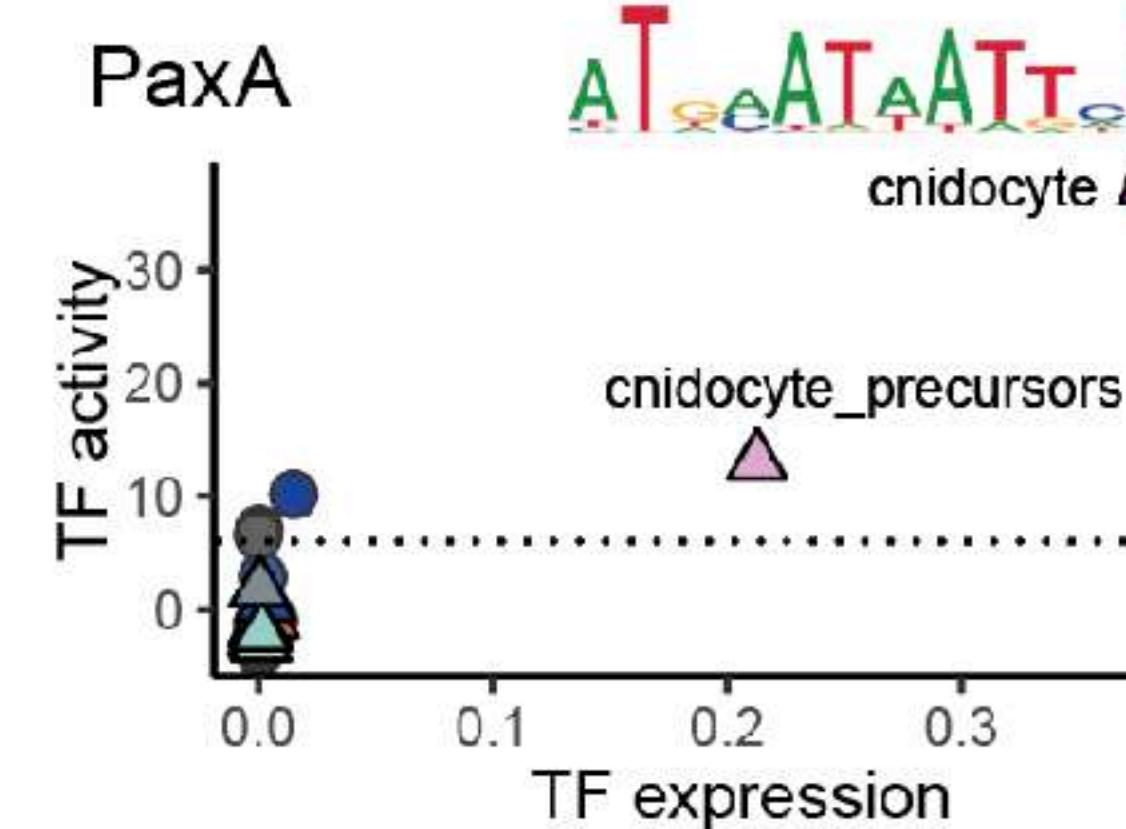
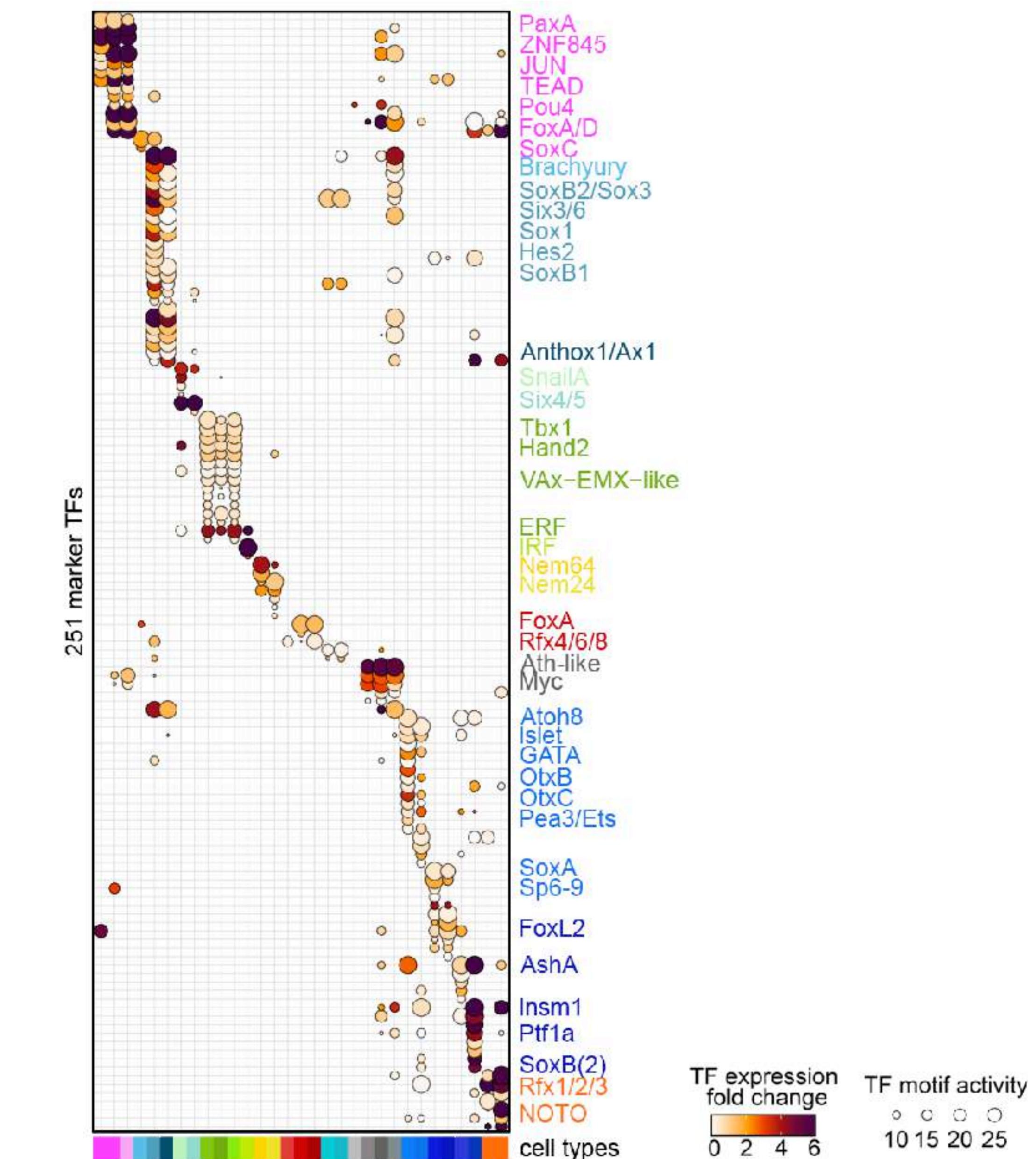


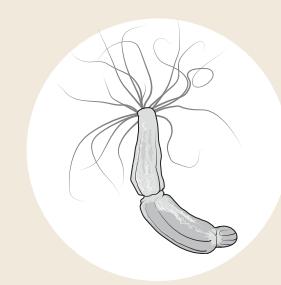
Alternative promoter
(AP)



Cell type regulatory identity 1: Transcription Factor activity

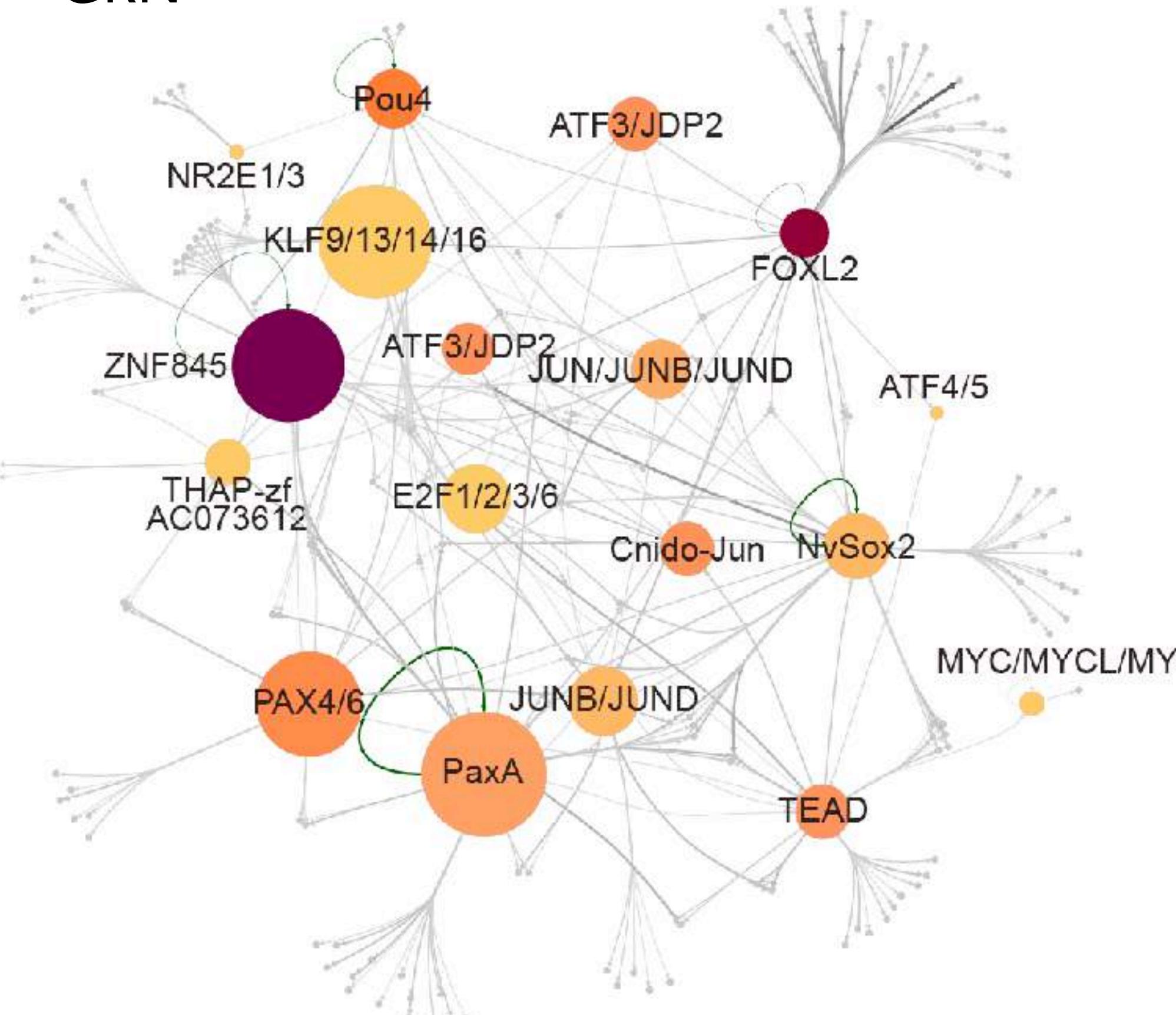
Cnidocyte TF activity





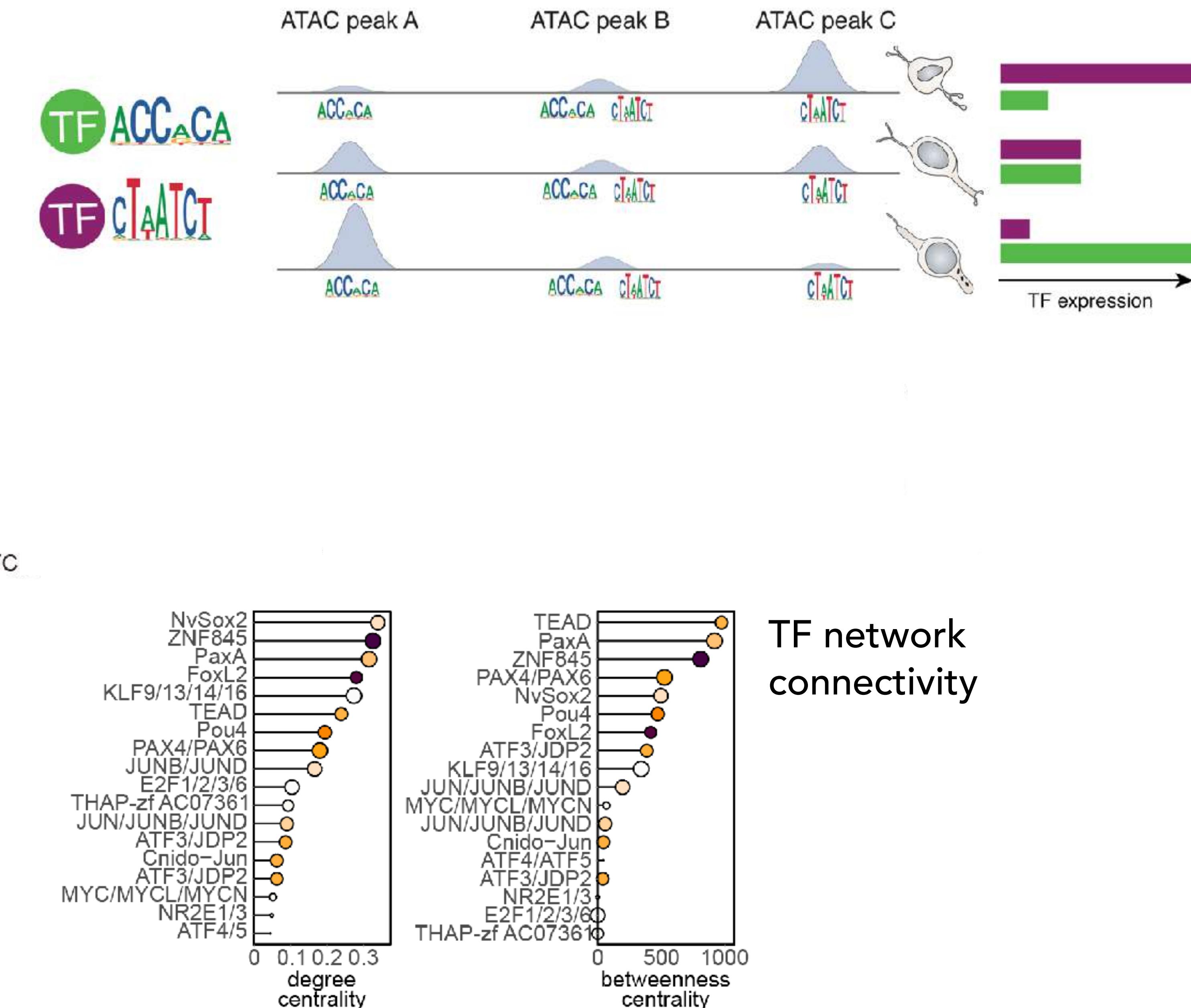
Cell type regulatory identity 2: Gene Regulatory Networks

Cnidocyte GRN

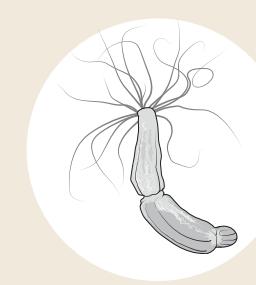


in silico ChIP score TF expression fold change TF motif activity

0.1 → 0.4 → 0.7 → 0 2 4 6 5 15 25

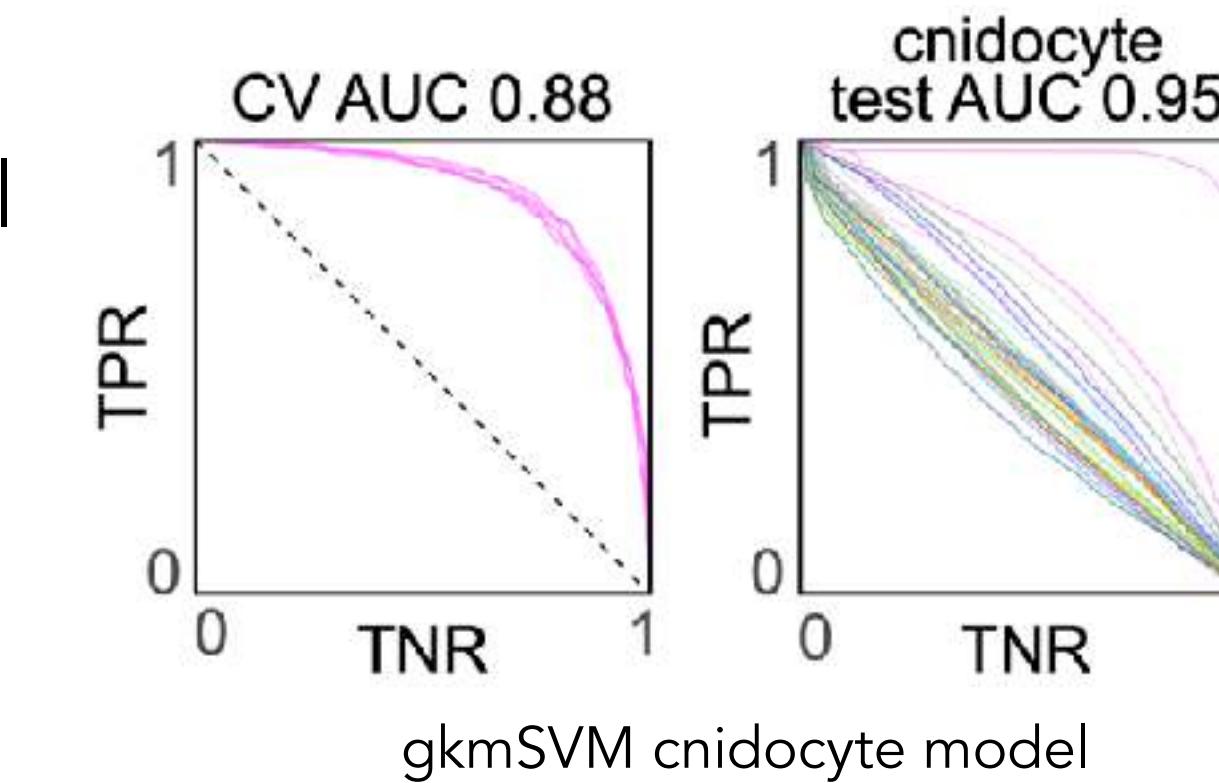


TF network
connectivity

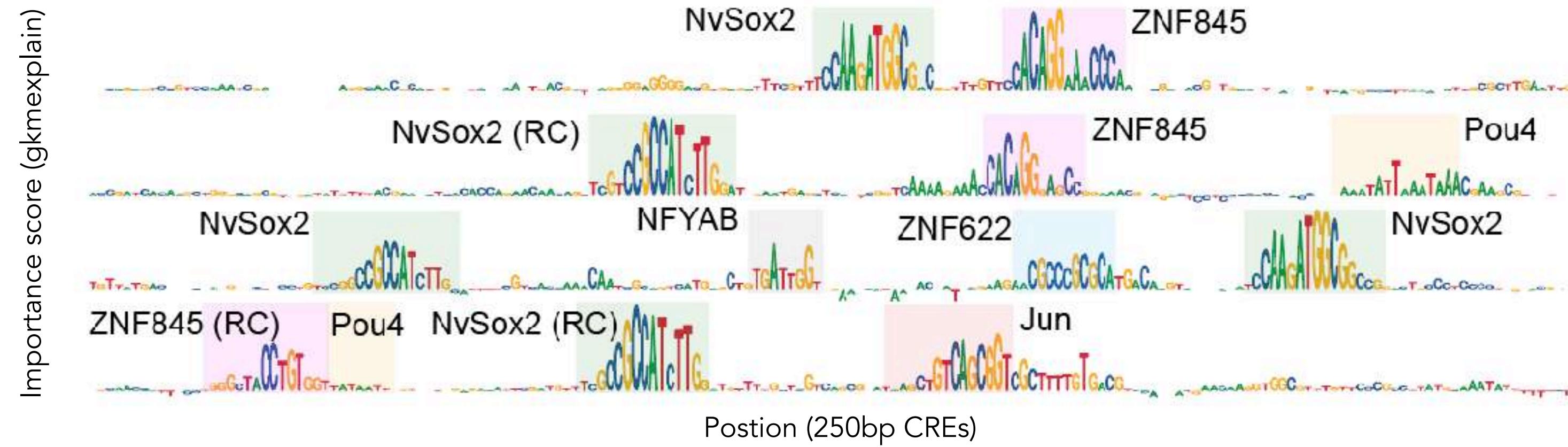


Cell type regulatory identity 3: Sequence motif grammars

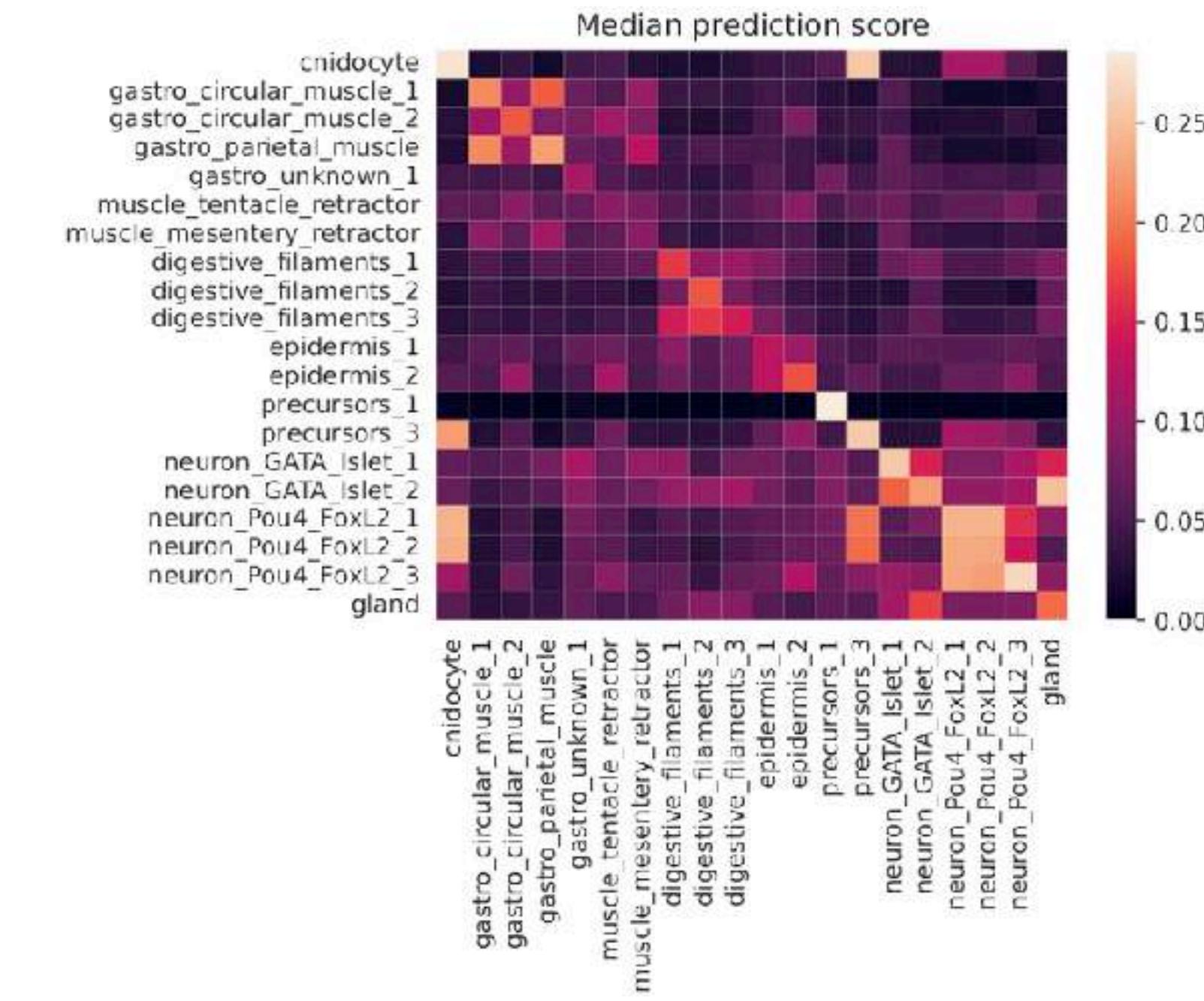
Cnidocyte CRE sequence model

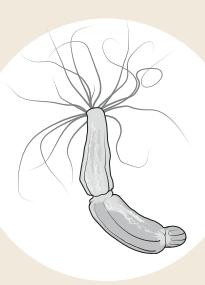


Most common motif lexicons in cnidocyte CREs



Apply sequence model classifiers across cell types





Cell type relationships inferred from effector gene usage versus regulatory characters

