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Overview of divergence time estimation
• Relaxed clock models – accounting for variation in
substitution rates among lineages
• Dirichlet process prior for lineage-specific rates

break

• Tree priors and fossil calibration

lunch

BEAST Tutorial:

• Walk through: set up BEAST input file in BEAUti and
execute BEAST MCMC analysis

• On your own: complete analysis by summarizing output



A T-S  E

• Reconstruct ancestral
ranges

• Environmental or
geological correlates to
diversification

• Morphological character
change over time

• Detect shifts in rates of
diversification

• Lineage-specific
substitution rate

(Antonelli & Sanmartín. Syst. Biol. 2011)
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A T-S  E

• Reconstruct ancestral
ranges

• Environmental or
geological correlates to
diversification

• Morphological character
change over time

• Detect shifts in rates of
diversification

• Lineage-specific
substitution rate

(Nabholz, Glémin, Galtier. MBE 2008)



D T E

Goal: Estimate the ages of interior nodes to understand the
timing and rates of evolutionary processes

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

External calibration
information for estimates of
absolute node times

calibrated node
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U H B

“From East Gondwana to Central America: historical
biogeography of the Alstroemeriaceae”

(Chacón et al., J. Biolgeograpy 2012)



D T E

Historical biogeography
requires external calibration

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

External calibration
information for estimates of
absolute node times

(Chacón et al., J. Biolgeograpy 2012)
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What about when the fossil record (or other types of
calibration information) is poor or absent?

Example: Despite the rich
diversity of Anolis there are
few fossils

There are some amber
fossils, but these fossils fall
within a narrow time range

Amber Anolis fossil (http://www.anoleannals.org/2012/03/06/the-hi-tech-world-of-anole-paleontology/)



D T E

What about when the fossil
record is poor or absent?

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

Estimation of relative
divergence times

Anolis hendersoni (Image courtesy of L. Mahler)



R T  D

“Ecological opportunity and the rate of morphological
evolution in the diversification of Greater Antillean Anoles”

Anolis fowleri (image courtesy of L. Mahler)

(Mahler, Revell, Glor, & Losos. Evolution 2010)



D T E

The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time

length = rate × time length = rate length = time

Methods for dating species divergences estimate the
substitution rate and time separately



S R

Substitution rate: the rate
at which mutations are fixed
in a population

Depends on: mutation rate,
selection, population size,
drift length = subst. rate

Mutation rate measures the rate at which mutations occur
over time and is affected by metabolic rate, generation time,
DNA repair efficiency
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The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time

length = rate × time length = rate length = time

Methods for dating species divergences estimate the
substitution rate and time separately



R  T

The sequence data
provide information
about branch length

for any possible rate,
there’s a time that fits
the branch length
perfectly
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time = 0.8
rate = 0.625

branch length = 0.5

(based on Thorne & Kishino, 2005)
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length = rate length = time

R = (r, r, r, . . . , rN−)

A = (a, a, a, . . . , aN−)

N = number of tips
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B D T E

Posterior probability

f (R,A, θR, θA, θs | D, τ)

R Vector of rates on branches

A Vector of internal node ages

θR, θA, θs Model parameters

D Sequence data

τ Tree topology (assumed known for the moment)
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f (R,A, θR, θA, θs | D) =
f(D | R,A, θR, θA, θs)f(R,A, θR, θA, θs)

f(D)

f(D | R,A, θR, θA, θs) Likelihood

f(R,A, θR, θA, θs) Joint prior density

f(D) Marginal probability of the data



B D T E

The likelihood depends on the node times and the rates of
evolution, but not on the processes generating the rates and
node times

f (D | R,A, θR, θA, θs) = f (D | R,A, θs)



B D T E

Assume that the process governing the ages of nodes
operates independently of processes governing mutation, and
that the process governing the total rates of substitutions is
independent from the mutational parameters that determine
relative rates of different substitutions:

f(R,A, θR, θA, θs) = f(R | θR) f(A | θA) f(θR) f(θA) f(θs)



B D T E

After enforcing these assumptions, the posterior distribution
of the parameters and hyperparameters can be expressed as:

f(R,A, θR, θA, θs | D) =

f (D | R,A, θs) f(R | θR) f(A | θA) f(θR) f(θA) f(θs)

f(D)



B D T E

Estimating divergence times relies on 2 main elements:

• Branch-specific rates: f (R | θR)

• Node ages: f (A | θA,C)



M R V
Some models describing lineage-specific substitution rate
variation:

• Global molecular clock (Zuckerkandl & Pauling, 1962)
• Local molecular clocks (Hasegawa, Kishino % Yano 1989;
Kishino & Hasegawa 1990; Yoder & Yang 2000; Yang & Yoder

2003, Drummond and Suchard 2010)

• Compound Poisson process model (Huelsenbeck, Larget and
Swofford 2000)

• Log-normally distributed autocorrelated rates (Thorne,
Kishino & Painter 1998; Kishino, Thorne & Bruno 2001; Thorne &

Kishino 2002)

• Uncorrelated/independent rates models (Drummond et al.
2006; Rannala & Yang 2007; Lepage et al. 2007; Heath, Holder,

Huelsenbeck 2012)

Models of Lineage-specific Rate Variation



G M C

The substitution rate is
constant over time

All lineages share the same
rate

branch length = substitution rate

low high

Models of Lineage-specific Rate Variation (Zuckerkandl & Pauling, 1962)



G M C

Assume the clock rate is
gamma-distributed

R = (r, r, . . . , r)

r ∼ Gamma(α, λ)

f (R | θR) = f (r | α, λ)

rate
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r

rate prior distribution

Models of Lineage-specific Rate Variation (Zuckerkandl & Pauling, 1962)



G M C

The sampled rate is applied
to every branch in the tree

rate

d
e
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r

rate prior distribution

Models of Lineage-specific Rate Variation (Zuckerkandl & Pauling, 1962)



R  G M C

Rates of evolution vary across lineages and over time
(and how!)

Mutation rate:
Variation in

• metabolic rate

• generation time

• DNA repair
branch length = substitution rate

low high

Rejecting the Strict Clock



R  G M C

Rates of evolution vary across lineages and over time
(and how!)

Fixation rate:
Variability in

• strength and targets of
selection

• population sizes

branch length = substitution rate

low high

Rejecting the Strict Clock



L M C

Rate shifts occur
infrequently over the tree

Closely related lineages
have equivalent rates
(clustered by sub-clades)

low high

branch length = substitution rate

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



L M C

Most methods for
estimating local clocks
required specifying the
number and locations of
rate changes a priori

Drummond and Suchard
(2010) introduced a
Bayesian method that
samples over a broad range
of possible random local
clocks

low high

branch length = substitution rate

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



A R

Substitution rates evolve
gradually over time –
closely related lineages have
similar rates

The rate at a node is
drawn from a lognormal
distribution with a mean
equal to the parent rate

low high

branch length = substitution rate

Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



A R

R = (r, r, . . . , rN−)

σ2 = ψ ∗∆t

μ = ln(rpi)−
σ2

2

ri ∼ Lognormal(μ, σ2)

f (R | θR) = f (R | ψ,A, rroot)

ψ is the variance parameter

∆t is the difference in time
between the 2 nodes
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Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



A R

The rate at a node is drawn
from a lognormal distribution with
a mean equal to the parent rate

The rate for the branch is equal
to the mean of the two
subtending nodes
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Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)
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Rate changes occur along
lineages according to a
point process

At rate-change events, the
new rate is a product of
the parent’s rate and a
Γ-distributed multiplier

low high

branch length = substitution rate

Models of Lineage-specific Rate Variation (Huelsenbeck, Larget and Swofford 2000)



I/U R

Lineage-specific rates are
uncorrelated when the rate
assigned to each branch is
independently drawn from
an underlying distribution

low high

branch length = substitution rate

Models of Lineage-specific Rate Variation (Drummond et al. 2006)



I/U R

In BEAST, the rates for
the branches are drawn
from a discretized
lognormal distribution
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Models of Lineage-specific Rate Variation (Drummond et al. 2006)
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0 2.01.51.00.5

Branch rate (r)
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Branch rates under the uncorrelated, discritized LN model

Models of Lineage-specific Rate Variation (Drummond et al. 2006)
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Branch rates under the uncorrelated, discritized LN model

Models of Lineage-specific Rate Variation (Drummond et al. 2006)



I/U R
It is necessary to sample the parameters of the base
distribution when assuming a discretized model

We can do this using a
hierarchical model
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0 2.01.51.00.5

Branch rate (r)

Branch rates under the uncorrelated, discritized LN model

Graphical Model

exp

dist

branch

rates

LN parameters

exp

dist

E(M) = λ−
M

Models of Lineage-specific Rate Variation
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From the bottom up:

The parameter χ is
assumed to be drawn
from an exponential
distribution

Hyperparameter
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Parameter

Prior

Digression: A Generic Hierarchical Bayesian Model



A H B M

In Bayesian inference,
a parameter describing
a prior distribution is
called a
hyperparameter

Hyperparameter
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Parameter

Prior

Digression: A Generic Hierarchical Bayesian Model



A H B M

The exponential prior
on χ has a
hyperparameter: λ

Hyperparameter

D
e

n
s
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y

Parameter

Prior

Digression: A Generic Hierarchical Bayesian Model



A H B M

λ represents the rate
of the exponential
distribution

In a non-hierarchical
model, the user is
required to specify the
value of λ

Hyperparameter
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Parameter

Prior

Digression: A Generic Hierarchical Bayesian Model
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Hyperprior:
second order prior
placed on a
hyperparameter

λ becomes a random
variable under the
hierarchical model

Hyperprior
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Digression: A Generic Hierarchical Bayesian Model
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Hyperprior:
allows for inference
under a richer class of
models

Hyperprior
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Parameter
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Digression: A Generic Hierarchical Bayesian Model
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Hyperprior:
frees the user from
the difficulty of
specifying the value
of λ

Hyperprior
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Parameter

Prior

Digression: A Generic Hierarchical Bayesian Model



A H B M

Hyperprior:
values of χ are
sampled by MCMC
from a mixture of
exponential
distributions
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Digression: A Generic Hierarchical Bayesian Model



A H B M

Hyperprior:
provides estimates of
the hyperparameter

accounts for and
quantifies uncertainty
in the hyperparameter
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Digression: A Generic Hierarchical Bayesian Model



I/U R
It is necessary to sample the parameters of the base
distribution when assuming a discretized model

We can do this using a
hierarchical model
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Are our models appropriate across all data sets?

cave bear

American 

black bear

sloth bear

Asian 
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American giant 
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t 1

Eocene Oligocene Miocene Plio Plei Hol

34 5.3 1.823.8 0.01

Epochs

Ma

Global expansion of C4 biomass
Major temperature drop and increasing seasonality

Faunal turnover

Krause et al., 2008. Mitochondrial genomes reveal an
explosive radiation of extinct and extant bears near the
Miocene-Pliocene boundary. BMC Evol. Biol. 8.
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Santini et al., 2009. Did genome duplication drive the origin
of teleosts? A comparative study of diversification in
ray-finned fishes. BMC Evol. Biol. 9.



T D P P (DPP)

A stochastic process that models data as a mixture of
distributions and can identify latent classes present in the
data

Branches are assumed to be
clustered into distinct
substitution rate classes

(r1 , . . . , r2N−2 ) ∼ DPP(α,G0 )
branch length = substitution rate

c
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c
2

substitution rate classes

c
1

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



T D P P (DPP)

The concentration parameter: α
controls partitioning of branches into specific rate categories

Random variables under the
DPP:

• k = the number of
rate classes

• the assignment of
branches to classes

branch length = substitution rate

c
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substitution rate classes

c
1

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



T D P P (DPP)

G0 represents the
parametric distribution from
which substitution rates are
drawn for each category

substitution rate
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class-rate prior distribution
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= the rate value for
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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class-rate prior distribution

branch length = substitution rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



T D P P (DPP)

G
0

α
c

∞

rate classes

branch length = substitution rate

2
c
1

rate

d
e

n
s
it
y

ci
r

class-rate prior distribution

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



T D P P (DPP)

2+α
α

2+α
2

G
0

α
c

∞

rate classes

branch length = substitution rate

2
c
1

rate

d
e

n
s
it
y

ci
r

class-rate prior distribution

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



T D P P (DPP)

Independent

rates

G
0

1
c
1

1
c
18

1
c
3

1
c
2

rate classes

branch length = substitution rate

rate

d
e

n
s
it
y

ci
r

class-rate prior distribution

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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Current implementation: DPPDiv

Time

A

B

C

D

E

F

G

H

I

J

Availability:
http://phylo.bio.ku.edu/content/tracy-heath-dppdiv

*with optimized and paralleized versions by Diego Darriba, Tomáš Flouri, & Alexis Stamatakis

DPP Relaxed Clock–Implementation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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Global Molecular

Clock (GMC)

Local Molecular

Clocks (LMC)

Compound Poisson

process (CPP)

Log-Norm dist

Autocorrelated

Rates (AR-LN)

Gamma-dist

Independent

Rates (IR-G)

Dirichlet process

prior rates (DPP)100 Replicates

10 taxa

Simulate substitution rate

variation under 6 different 

models

Simulate data

GTR + Γ 
(2000 bases)

Simulate tree topologies

and branching times 

under a birth-death

process

DPP Relaxed Clock–Simulations



S: A

Global Molecular

Clock (GMC)

Local Molecular

Clocks (LMC)

Compound Poisson

process (CPP)

Log-Norm dist

Autocorrelated

Rates (AR-LN)

Gamma-dist

Independent

Rates (IR-G)

Dirichlet process

prior rates (DPP)

100 Replicates

Models of rate variation:
• Dirichlet process prior

• Gamma-dist
hyperprior on α,
expected value:
E[α] = 1 .93

• Global molecular clock

• Independent rates
(Gamma-distributed)

Relative node ages

DPP Relaxed Clock–Simulations
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95% CI
A measure of uncertainty

Approximation of the interval
containing 95% of the highest
posterior density (HPD)

DPP Relaxed Clock–Simulations



B A  S D

Node Age

D
e

n
s
it
y

Node Age

D
e

n
s
it
y

Node Age

D
e

n
s
it
y

95% CI

True Age

Coverage Probability:

The proportion of the time the
95% credible interval (CI)
contains the true value is a
measure of accuracy

Simulations: Methods
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Node Age
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Node Age
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Node Age
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95% CI

True Age

Power:

An estimator can have high
coverage probability, but reduced
power when 95% CIs are very
large

Simulations: Methods



B R: A

The DPP and Independent Rates models had higher
coverage for estimates of branch rates, depending on the
simulation model

Coverage probability*
Rate DPP Independent Global
Simulation Rates Clock
GMC – global molecular clock 0.988 0.963 0.920

LMC – local molecular clocks 0.908 0.908 0.398

CPP – compound Poisson 0.807 0.861 0.318

AR-LN – autocorrelated rates 0.801 0.844 0.257

IR-G – independent rates 0.874 0.939 0.126

DPP – Dirichlet process 0.912 0.908 0.292

*Accuracy: proportion of time the 95% credible interval covers the true branch

rate

DPP Relaxed Clock–Performance



B R: P E
The percent error in mean branch rate estimates

% Error =
|r̂i − ri|
ri

× 100%

 0

 50

 100

 150

 200

 250

 300

GMC LMC CPP AR-LN IR-G DPP

B
ra

nc
h 

ra
te

 p
er

ce
nt

 e
rr

or

DPP
Global Clock
Independent Rates

DPP Relaxed Clock–Performance



B R: P
95% CI size compared to TRUE branch rate
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DPP Relaxed Clock–Performance Analyses: DPP, Global clock, and Independent rates



N A: A

Node age estimates under DPP are more accurate compared
to an independent rate model and the global molecular clock

Coverage probability*
Rate DPP Independent Global
Simulation Rates Clock
GMC – global molecular clock 0.989 0.951 0.965

LMC – local molecular clocks 0.881 0.840 0.485

CPP – compound Poisson 0.801 0.770 0.504

AR-LN – autocorrelated rates 0.743 0.699 0.436

IR-G – independent rates 0.871 0.954 0.303

DPP – Dirichlet process 0.934 0.834 0.479

*Accuracy: proportion of time the 95% credible interval covers the true node age

DPP Relaxed Clock–Performance Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.
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DPP Relaxed Clock–Performance Analyses: DPP, Global clock, and Independent rates
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DPP Relaxed Clock–Performance Analyses: DPP, Global clock, and Independent rates



S MCMC   DPP

MEAN PARTITION:

Identified from MCMC
samples under the DPP

DPP–Identifying the Mean Partition



S MCMC   DPP

MEAN PARTITION:

Identified from MCMC
samples under the DPP

DPP–Identifying the Mean Partition



S MCMC   DPP

MEAN PARTITION:

Identified from MCMC
samples under the DPP

DPP–Identifying the Mean Partition



S MCMC   DPP

MCMC samples different
branch-partition assignments

DPP–Identifying the Mean Partition



S MCMC   DPP

MEAN PARTITION:

Identified from MCMC
samples of different
branch-partition assignments
under the DPP

DPP–Identifying the Mean Partition



S MCMC   DPP

PARTITION DISTANCE:

The minimum number of elements that must be removed to
make 2 identical partitions

DPP–Identifying the Mean Partition



S MCMC   DPP

PARTITION DISTANCE:

The minimum number of elements that must be removed to
make 2 identical partitions

DPP–Identifying the Mean Partition



S MCMC   DPP

MEAN PARTITION:

The set of branch-partition
assignments that minimizes
the sum of squared
distances to all of the
partition sets sampled by
MCMC

DPP–Identifying the Mean Partition



S MCMC   DPP

MEAN PARTITION:

Useful for identifying
lineages that may share
similar properties

DPP–Identifying the Mean Partition



S MCMC   DPP

0.1

substitutions/site

A

B

C

D

E

F

G

H

I

J

True Local Clock Tree Branch lengths generated
under a local molecular
clock (LMC)

3 rate categories
(substitutions/site*time−1):

• 0.2
• 0.7
• 1.2

DPP–Mean Partition



S MCMC   DPP
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S MCMC   DPP
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L-S S R

DPP provides robust estimates of branch-rate and node-age
without significant loss in power

The flexibility of the DPP
allows it to encompass
different branch-wise models
of substitution rate variation

Including cases in which
distant branches have
equivalent (or nearly
equivalent) rates

branch length = substitution rate

c
5

c
4

c
3

c
2

substitution rate classes

c
1

DPP Branch Rates Availability: DPPDiv @ http://phylo.bio.ku.edu/content/tracy-heath-dppdiv



L-S S R

DPP provides robust estimates of branch-rate and node-age
without significant loss in power

The mean branch partition
found under the DPP
allows for the identification
of latent classes

Efficient MCMC
implementations

branch length = substitution rate

c
5

c
4

c
3

c
2

substitution rate classes

c
1

DPP Branch Rates Availability: DPPDiv @ http://phylo.bio.ku.edu/content/tracy-heath-dppdiv



let’s take a break...



B D T E

Estimating divergence times relies on 2 main elements:

• Branch-specific rates: f (R | θR)

• Node ages: f (A | θA,C)



P  N T

Relaxed clock Bayesian analyses require a prior distribution
on node times

Uniform prior: the time at
a given node has equal
probability across the
interval between the time
of the parent node and the
time of the oldest daughter
node

Uniform prior

Birth-death prior



P  N T

Relaxed clock Bayesian analyses require a prior distribution
on node times

Birth-death prior: node
times are sampled from a
stochastic process with
parameters for speciation, S ,
and extinction, E , (and in
some cases taxon sampling)

f (A | S , E)

Uniform prior

Birth-death prior



F C

Fossil and geological data
can be used to estimate the
absolute ages of ancient
divergences

Time (My)

Calibrating Divergence Times



F C

The ages of extant taxa
are known

Time (My)

Calibrating Divergence Times



F C

Fossil taxa are assigned to
monophyletic clades

Time (My)Minimum age

Calibrating Divergence Times



F C

Fossil taxa are assigned to
monophyletic clades and
constrain the age of the
MRCA

Minimum age Time (My)

Calibrating Divergence Times



M B P

Assume constant
rates of
speciation (S)
and extinction
(E)

(20 extant taxa)

0175 255075100125150

Time

Birth-death model



M B P

Assume constant
rates of
speciation (S)
and extinction
(E)

(20 extant taxa)

0175 255075100125150

Time

Birth-death model



M T P

Fossilization
events were
generated
according to a
Poisson process

this example has

162 fossilization

events

0175 255075100125150

Time

Modeling the Process of Fossilization



M T P

The fossil
sampling rate
was evolved
under an
autocorrelated
Brownian motion
model

0.2 1.05

Sampling Rate

0175 255075100125150

Time

Modeling the Process of Preservation/Recovery



M T P

The fossil
sampling rate
was evolved
under an
autocorrelated
Brownian motion
model

0.2 1.05

Sampling Rate

0175 255075100125150

Time

Modeling the Process of Preservation/Recovery



M T P

18 fossils were
“recovered” in
proportion to
their sampling
rates

0.2 1.05

Sampling Rate

0175 255075100125150

Time

Recovered

fossil

Modeling the Process of Preservation/Recovery



R F

Assume we
know the true
phylogenetic
placement of the
recovered fossils

0175 255075100125150

Time

Modeling the Process of Preservation/Recovery



C F

Only the oldest
fossil assigned to
a given node
can be used for
calibration

0175 255075100125150

Time

Fossil Calibration



C F

Only the oldest
fossil assigned to
a given node
can be used for
calibration

0175 255075100125150

Time

Fossil Calibration



C F

Only the oldest
fossil assigned to
a given node
can be used for
calibration

0175 255075100125150

Time

Fossil Calibration



C F

Taphonomic bias

• disparity in
fossilization
and
preservation

• geographical
distribution

• recovery
bias

• identification 0175 255075100125150

Time

Fossil Calibration



A F  C

Misplaced fossils can affect node age estimates throughout
the tree – if the fossil is older than its presumed MRCA

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



A F  C

Crown clade: all
living species and
their most-recent
common ancestor
(MRCA)

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



A F  C

Stem lineages:
purely fossil forms
that are closer to
their descendant
crown clade than
any other crown
clade

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



A F  C

Fossiliferous
horizons: the
sources in the
rock record for
relevant fossils

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



F C

Age estimates from fossils
can provide minimum time
constraints for internal
nodes

Reliable maximum bounds
are typically unavailable

Minimum age Time (My)

Calibrating Divergence Times



P D  C N

Parametric distributions are
typically off-set by the age
of the oldest fossil assigned
to a clade

These prior densities do not
(necessarily) require
specification of maximum
bounds

Uniform (min, max)

Exponential (λ) 

Gamma (α, β)

Log Normal (µ, σ2)

Time (My)Minimum age

Calibrating Divergence Times



P D  C N

Describe the waiting time
between the divergence
event and the age of the
oldest fossil

Uniform (min, max)

Exponential (λ) 

Gamma (α, β)

Log Normal (µ, σ2)

Time (My)Minimum age

Calibrating Divergence Times



P D  C N

Describe the waiting time
between the divergence
event and the age of the
oldest fossil

Minimum age Time (My)

Calibrating Divergence Times



P D  C N

Overly informative priors
can bias node age
estimates to be too young

Minimum age

Exponential (λ) 

Time (My)

Calibrating Divergence Times



P D  C N

Uncertainty in the age of
the MRCA of the clade
relative to the age of the
fossil may be better
captured by vague prior
densities

Minimum age

Exponential (λ) 

Time (My)

Calibrating Divergence Times
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Calibrating Divergence Times



P  M C

It is unlikely that
multiple fossil
calibrations can be
characterized by a
single prior density

Calibrating Divergence Times



P  M C

An appropriate prior
for some nodes can
also be an overly
informative prior for
other nodes

Calibrating Divergence Times



P  M C

Our knowledge of the
fossil and rock records
indicate that there is
variation in the
precision of geological
data as minimum age
constraints

Calibrating Divergence Times



P  M C

Uncertainty in the
time difference can be
better captured by
vague prior densities

Calibrating Divergence Times



P  M C

Specifying appropriate
prior densities for a
range of minimum
age constraints is a
challenge for most
molecular biologists

Calibrating Divergence Times
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Hyperparameter

Parameter

Prior

Hyperprior

Calibrating Divergence Times



H  C N

Dirichlet process prior on rate-parameters of exponential prior
densities on multiple calibrated nodes

Sample the time from
the MRCA to the
fossil from a mixture
of different
exponential
distributions

Account for
uncertainty in values
of λ λ1 λ3λ2

1

1

3

2

2

parameter classes

DPP Hyperprior on Calibration-Node Prior Densities (Heath, Syst. Biol. 2012)



C M  M

Modeling
branching
patterns AND
fossilization,
preservation, and
recovery for use
as priors for
divergence time
estimation

0.2 1.05

Sampling Rate

0175 255075100125150

Time

Models of Stratigraphy, Fossilization, and Preservation for Bayesian Inference



C M  M

Incorporate more
information from
the fossil and
rock records and
construct better
and more
realistic tree
priors

0.2 1.05

Sampling Rate

0175 255075100125150

Time

Models of Stratigraphy, Fossilization, and Preservation for Bayesian Inference



C  R C M

• Dependent on and sensitive to fossil calibrations – fossil
age estimates and node assignment are not without
error

• Models are not biologically realistic

• Different methods/models can produce very different
estimates of the same divergence times

• Priors are too informative

• Studies comparing methods have produced conflicting
and unclear results



MCMC U  P

It is critical for any
Bayesian analysis to sample
under the prior

Allows you to assess your
prior specification and
examine prior sensitivity
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S   P

Marginal posterior densities of mean branch rate
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C N A E

0175 255075100125150

Time

Fossil Simulations: Results
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F T D

Ideally, we would like to
include all of the available
data

Account for uncertainty in
the placement of fossil
lineages

Keep all fossil data, not just
the oldest descendant for a
given node

Time



F T D

Fredrik Ronquist and his
colleagues implemented tip
dating in MrBayes

Early radiation of
Hymenoptera

• 66 extant taxa

• 45 fossil taxa

• 7 genes, ∼ 5kB
(extant taxa only)

• 343 morphological
characters (12%
complete for fossils)
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(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



F T D

• Hymenoptera fossils are
mostly poorly-preserved
impression fossils,
difficult to place
phylogenetically

• With node dating, their
set of 45 fossils are
reduced to 9 calibration
points

• They developed a,
presumably, vague
uniform prior on node
times
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(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



F T D

Thorough analysis is
necessary for this kind of
dataset

Ronquist et al. used Bayes
factors to choose a relaxed
clock model (this is rarely
done, but really important)

Compared node dating and
tip dating

Data acquisition

Prior setting

Calibrated Analyses

molecular matrix 

66 extant taxa 

     7 genes 

     ~5kB

morphological matrix 

61 extant taxa 

     343 characters

     (77% complete)

morphological matrix 

45 fossil taxa 

     343 characters

     (12% complete)

non-clock analysis 1

combined matrix 

113 extant &  

     fossil taxa

combined matrix 

68 extant taxa

non-clock analysis 2 

   fixed topology

strict-clock analysis 

   fixed topology

best topology

substitution
branch lengths

time
branch lengths

informative hyper-priors 
on rate variation in 
relaxed clock models

informative prior on 
calibrated clock rate

estimate of
among-branch
rate variation

tree height in 
substitutions

minimum and maximum age 
of tree from fossil record

node dating analysis total-evidence analysis

phylogeny and
divergence-time
estimates

7 calibration points 
based on the 45 fossils

(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



F T D

• Resulted in a fairly
unresolved phylogeny,
but fossils significantly
contribute to estimates
of node ages

• Posteriors on node
times are less sensitive
to priors compared with
node dating

• Higher precision for
divergence time
estimates
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The Hymenoptera crown
group dates back to the
Carboniferous, approximately
309 Ma (95% interval:
291–347 Ma)

And diversified into major
extant lineages much earlier
than previously thought,
well before the Triassic
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In groups with rich fossil
records, tip dating is an
ideal approach

Allows for dating trees with
more of the available fossils

Investigate questions (i.e.
historical biogeography,
character evolution) with
extinct lineages

Notogoneus osculus – early growth series

illustrating the ontogeny of the scale covering

(Grande & Grande J. Paleont. 2008)
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Fossil tip-dating methods are available in MrBayes and
BEAST, though our understanding of how well these
methods work is still incomplete


