Multiple Sequence Alignment Introduction

What is an alignment?

- An arrangement of two or more DNA, RNA or protein sequences
 - A multiple sequence alignment is one of more than two sequences
- Homologous sites between sequences are aligned
 - This is achieved by inserting gaps

Why do we align?

- Alignments allow for identification of regions of similarity between sequences
- Identify indels (insertion and deletions) caused by DNA/RNA replication

What is an alignment used for?

- Building phylogenetic trees
- Looking for sites of interest/conservation within a gene (motifs, binding sites, etc.)
- Identifying positive/negative selection
- Using as references for short read analysis

How do we align?

- The goal of alignment programs is to maximise a score based on 3 modifiers:
 - rewarding matches (+ score)
 - penalising rare substitutions (- score)
 - requires a substitution matrix
 - penalising gaps (- score)
 - requires gap opening and extension penalty scheme
- Different programs go about it through different methods

Substitution matrices

- Places weights upon comparison of characters
- Most simple is +1 for a match and 0 for a mismatch
- As some substitutions are more acceptable than others these must be weighted
- Substitution matrices assign scores to each substitution
 - Built from alignments of given similarity
 - BLOSUMx where x is the similarity
 - PAMx where x is the number of subsitutions/100 amino acids

BLOSUM62

	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	lle	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val
Val	0	- 3	- 3	- 3	- 1	- 2	- 2	- 3	- 3	3	1	- 2	1	- 1	- 2	- 2	0	- 3	- 1	4
Tyr	- 2	- 2	- 2	- 3	- 2	- 1	- 2	- 3	2	- 1	- 1	- 2	- 1	3	- 3	- 2	- 2	2	7	
Trp	- 3	- 3	- 4	- 4	- 2	- 2	- 3	- 2	- 2	- 3	- 2	- 3	- 1	1	- 4	- 3	- 2	11		
Thr	0	- 1	0	- 1	- 1	- 1	- 1	- 2	- 2	- 1	- 1	- 1	- 1	- 2	- 1	1	5			
Ser	1	- 1	1	0	- 1	0	0	0	- 1	- 2	- 2	0	- 1	- 2	- 1	4				
Pro	- 1	- 2	- 2	- 1	- 3	- 1	- 1	- 2	- 2	- 3	- 3	- 1	- 2	- 4	7					
Phe	- 2	- 3	- 3	- 3	- 2	- 3	- 3	- 3	- 1	0	0	- 3	0	б						
Met	- 1	- 1	- 2	- 3	- 1	0	- 2	- 3	- 2	1	2	- 1	5							
Lys	- 1	2	0	- 1	- 3	1	1	- 2	- 1	- 3	- 2	5								
Leu	- 1	- 2	- 3	- 4	- 1	- 2	- 3	- 4	- 3	2	4									
lle	- 1	- 3	- 3	- 3	- 1	- 3	- 3	- 4	- 3	4										
His	- 2	0	1	- 1	- 3	0	0	- 2	8											
Gly	0	- 2	0	- 1	- 3	- 2	- 2	б												
Glu	- 1	0	0	2	- 4	2	5													
Gln	- 1	1	0	0	- 3	5														
Cys	0	- 3	- 3	- 3	9															
Asp	- 2	- 2	1	б																
Asn	- 2	0	б																	
Arg	- 1	5																		
Ala	4																			

Gaps

- Represent an insertion in 1 or more sequences or a deletion in the remaining sequences
- Two types of penalties are associated with gaps:
 - Gap opening
 - To make an initial opening of a gap in a sequence
 - Gap extension
 - To add an extra gap character to an existing gap
 - Gap extension penalty usually smaller than gap opening

Pairwise alignment

- Dot-matrix
 - 1 sequence as a row, 1 sequence as a column
 - A dot where two characters match
- Dynamic programming
 - Use a scoring function to optimally align sequences
 - Either a global or local algorithm used
- Word
 - Heuristic method using 'words' of a given size
 - Find matching words and extend alignments until 1 sequences ends or score drops below a threshold

Global versus local

- A global alignment method attempts to align sequences end-to-end
 - Useful when sequences are of approximately the same length
 - Needleman-Wunsch algorithm
- A local alignment method attempts to find one or more stretches of similar sequences
 - Useful when one sequence is significantly longer than the other or there are small similar motifs within large dissimilar sequences
 - Smith-Waterman algorithm

Multiple Sequence Alignment

- Progressive
 - Do a pairwise alignment
 - Use a clustering method to create a guide tree
 - Using the guide tree create a succession of pairwise alignments starting with the two closest sequences and ending with the most distant from these
- Iterative
 - Given a MSA remove a sequence and realign to the others
 - May also optimise weights and distance measures
 - Repeat to convergence

MUSCLE

- A progressive alignment is created starting with a word-based pairwise method
- A new distance matrix is created from this
- The old and new trees are compared and sequences realigned to reflect new guide tree
 - If old and new tree are the same we stop
- The alignment is split into 2 profiles and these are aligned as above
 - Different bipartitions are tried until convergence is reached

MAAFT

- Options for a standard progressive alignment (word based)
- Iterative alignment available using guide tree reconstruction and realignment
- Can use dynamic programming (local or global) instead of word based initial pairwise alignment

Editing alignments

- Trimming
 - Removal of poorly aligned regions can improve subsequent analysis
 - Cut-offs of gap proportions or amino acid variation (entropy) are used to remove columns
- Manual
 - Some sequences are difficult for optimal automated aligning
 - Manual editing of alignments based on users biological knowledge may improve alignments