Maximum Likelihood in Phylogenetics

23 January 2013
Workshop on Molecular Evolution
Český Krumlov
Paul O. Lewis
Department of Ecology \& Evolutionary Biology
University of Connecticut, Storrs, CT

Goals

Explain jargon Increase comfort level
Provide background In other words...give a hand up

The Plan

- Likelihood
- Substitution models
- What does it mean?
- Likelihood of a single sequence
- Maximum likelihood distances
- Likelihoods of trees
- Markov model basics
- Transition probabilities
- Survey of models
- Rate heterogeneity
- Codon models

Combining probabilities

- Multiply probabilities if the component events must happen simultaneously (i.e. where you would naturally use the word AND when describing the problem)

Using 2 dice, what is the probability of

$$
\begin{aligned}
& (\bullet \text { AND } \because \vdots ? \\
& (1 / 6) \times(1 / 6)=1 / 36
\end{aligned}
$$

AND rule in phylogenetics

Combining probabilities

- Add probabilities if the component events are mutually exclusive (i.e. where you would naturally use the word OR in describing the problem)

Using one die, what is the probability of

$$
\underset{(1 / 6)+(1 / 6)=1 / 3}{ }
$$

Combining AND and OR

What is the probability that the sum of two dice is 7 ?

$(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)+(1 / 36)=1 / 6$

Using both AND and OR in phylogenetics

AND rule used to compute probability of the observed data for each combination of ancestral states.

OR rule used to combine different combinations of ancestral states.

Independence

This is always true...

$$
\underset{\text { joint probability }}{\operatorname{Pr}(\mathrm{A} \text { and } \mathrm{B})}=\operatorname{Pr}(\mathrm{A}) \underset{\substack{\text { conditional } \\ \text { probability }}}{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})}
$$

If we can say this...

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B})
$$

...then events A and B are independent and we can express the joint probability as the product of $\operatorname{Pr}(\mathrm{A})$ and $\operatorname{Pr}(\mathrm{B})$

$$
\operatorname{Pr}(\mathrm{A} \text { and } \mathrm{B})=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B})
$$

Likelihood

The Likelihood Criterion

The probability of the observations computed using a model tells us how surprised we should be.
The preferred model is the one that surprises us least.

Suppose I threw 20 dice down on the table and this was the result...

11

The Fair Dice model

$\operatorname{Pr}($ obs. \mid fair dice model $)=\left(\frac{1}{6}\right)^{20}=\frac{1}{3,656,158,440,062,976}$

You should have been very surprised at this result because the probability of this event is very small: only 1 in 3.6 quadrillion!

The Trick Dice model

(assumes dice each have 5 on every side)
$\operatorname{Pr}($ obs. \mid trick dice model $)=1^{20}=1$

You should not be surprised at all at this result because the observed outcome is certain under this model

Results

Model	Likelihood	Surprise level
Fair Dice	$\frac{1}{3,656,158,440,062,976}$	Very, very, very surprised
Trick Dice	1.0	Not surprised at all

Likelihood and model comparison

- Analyses using likelihoods ultimately involve model comparison
- The models compared can be discrete (as in the fair vs. trick dice example)
- More often the models compared differ continuously:
- Model 1: branch length is 0.05
- Model 2: branch length is 0.06

Tree jargon

Likelihood of a single tip node

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla:

GAAGTCCTTGAGAAATAAACTGCACACACTGG

$$
\begin{aligned}
L & =\pi_{G} \pi_{A} \pi_{A} \pi_{G} \pi_{T} \pi_{C} \pi_{C} \pi_{T} \pi_{T} \pi_{G} \pi_{A} \pi_{G} \pi_{A} \pi_{A} \pi_{A} \pi_{T} \pi_{A} \pi_{A} \pi_{A} \pi_{C} \pi_{T} \pi_{G} \pi_{C} \pi_{A} \pi_{C} \pi_{A} \pi_{C} \pi_{A} \pi_{C} \pi_{T} \pi_{G} \pi_{G} \\
& =\pi_{A}{ }^{12} \pi_{C}{ }^{7} \pi_{G}{ }^{7}{ }^{\prime} \pi_{T}{ }^{6} \quad \text { Note that we are assuming independence among sites here } \\
\log L & =12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right)
\end{aligned}
$$

We can already see by eye-balling this that a model allowing unequal base frequencies will fit better than a model that assumes equal base frequencies because there are about twice as many As as there are Cs, Gs and Ts.

Model ranking using AIC

The Akaike Information Criterion (AIC) can be used to evaluate whether an unconstrained model ("free") fits the data significantly better than a constrained version ("equal") of the same model.

Find maximum $\log \mathrm{L}$ under the unconstrained model:

$$
\begin{aligned}
\log L_{\text {free }} & =12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{C}\right)+7 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right) \\
& =12 \log (0.375)+7 \log (0.219)+7 \log (0.219)+6 \log (0.188) \\
& =-43.1 \quad \text { This model has 3 parameters }
\end{aligned}
$$

Find maximum logL under the constrained model:

$$
\begin{aligned}
\log L_{\text {equal }} & =12 \log \left(\pi_{A}\right)+7 \log \left(\pi_{C}\right)+7 \log \left(\pi_{G}\right)+6 \log \left(\pi_{T}\right) \\
& =12 \log (0.25)+7 \log (0.25)+7 \log (0.25)+6 \log (0.25) \\
& =-44.4 \quad \text { This model has } 0 \text { parameters }
\end{aligned}
$$

Model ranking using AIC

Calculate AIC for each model:

$$
\begin{aligned}
A I C & =2 k-2 \log \left(L_{\max }\right) \\
A I C_{\text {free }} & =2(3)-2(-43.1)=92.2 \\
A I C_{\text {equal }} & =2(0)-2(-44.4)=88.8
\end{aligned}
$$

The constrained model ("equal") is a better choice than the unconstrained model ("free") according to AIC

Likelihood of the simplest tree

To keep things simple, assume that the sequences are only 2 nucleotides long:

$$
\begin{aligned}
& \underset{\text { ste12 }}{\substack{\text { GA }}} \uparrow_{\text {site2 }}^{\text {root (arbitrary) }} \\
& L=L_{1} L_{2} \\
& =\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t}\right)\right]\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}\right)\right] \\
& \text { Pr(G) } \\
& \operatorname{Pr}(\mathrm{G} \mid \mathrm{G}, \alpha t) \\
& \operatorname{Pr}(\mathrm{A}) \\
& \operatorname{Pr}(\mathrm{G} \mid \mathrm{A}, \alpha t)
\end{aligned}
$$

Maximum likelihood estimation

First 32 nucleotides of the $\psi \eta$-globin gene of gorilla and orangutan: gorilla GAAGTCCTTGAGAAATAAACTGCACACACTGG orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

$$
L=\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t}\right)\right]^{30}\left[\left(\frac{1}{4}\right)\left(\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}\right)\right]^{2}
$$

number of substitutions $=$ rate \times time

Overall substitution rate is 3α, so the expected number of substitutions (v) is

$$
v=3 \alpha t
$$

Rate and time are confounded

Later this week you will be introduced to models in which constraints on times can be used to infer rates (and vice versa), but without some extra information or constraints, sequence data allow only estimation of the number of substitutions.

A convenient convention

Because rate and time are confounded, it is convenient to arbitrarily standardize things by setting the rate to a value such that one substitution is expected to occur in one unit of time for each site.

This results in "time" (the length of a branch) being measured in units of evolutionary distance (expected number of substitutions per site) rather than years (or some other calendar unit).
evolutionary distance $v=3 \alpha t$

$$
v=3\left(\frac{1}{3}\right) t \quad \begin{aligned}
& \text { Setting } \alpha=1 / 3 \text { results } \\
& \text { in } v \text { equalling } t
\end{aligned}
$$

Evolutionary distances for several common models

Model	Expected no. substitutions: $v=\{r\} t$
JC69	$v=\{3 \alpha\} t$
F81	$v=\left\{2 \mu\left(\pi_{R} \pi_{Y}+\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right\} t$
K80	$v=\{\beta(\kappa+2)\} t$
HKY85	$v=\left\{2 \mu\left[\pi_{R} \pi_{Y}+\kappa\left(\pi_{A} \pi_{G}+\pi_{C} \pi_{T}\right)\right]\right\} t$

In the formulas above, the overall rate r (in curly brackets) is a function of all parameters in the substitution model.

Note that one of the parameters of the substitution model can always be determined from the branch length (using our convention that $v=t$).

Typically, all other model parameters are estimated for the entire tree (for example, each branch uses the same value of κ)

Likelihood of an unrooted tree

(data shown for only one site)

Likelihood for site k

Note use of the AND probability rule

Brute force approach would be to calculate L_{k} for all 16 combinations of ancestral states and sum them

Note use of the OR probability rule

Pruning algorithm (same result, less time)

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376

Substitution Models

Jukes-Cantor (JC69) model

- The four bases (A, C, G, T) are expected to be equally frequent in sequences ($\pi_{\mathrm{A}}=\pi_{\mathrm{C}}=\pi_{\mathrm{G}}=\pi_{\mathrm{T}}=0.25$)
- Assumes same rate for all types of substitution $\left(r_{\mathrm{A} \rightarrow \mathrm{C}}=r_{\mathrm{A} \rightarrow \mathrm{G}}=r_{\mathrm{A} \rightarrow \mathrm{T}}=r_{\mathrm{C} \rightarrow \mathrm{G}}=r_{\mathrm{C} \rightarrow \mathrm{T}}=r_{\mathrm{G} \rightarrow \mathrm{T}}=\alpha\right)$
- Usually described as a 1-parameter model (the parameter being the branch length)
- Remember, however, that each branch in a tree can have its own length, so there are really as many parameters in the model as there are edges in the tree!
- Assumes substitution is a Markov process...

What is a Markov model?

Lineage starts with base T at some site

A substitution occurs, changing T to C

If it is irrelevant that there was a T present at this site before time 0 , then this is a Markov model.

Transition Probabilities

A substitution occurs, changing T to C

Lineage starts with base T at some site

Note: the term transition here comes from the terminology of stochastic processes and refers to any change of state (and even non-changes!).
If this kind of transition represents a change from one nucleotide state to a
different nucleotide state, it could thus be either a transition-type or a transversion-type substitution.

Jukes-Cantor transition probabilities

Here is the probability that a site starting in state T will end up in state G after time t when the individual substitution rates are all α :

$$
P_{T G}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
$$

The JC69 model has only one unknown quantity: αt
(The symbol e represents the base of the natural logarithms: its value is $2.718281828459045 \ldots$...)

Where does a transition probability formula such as this come from?

"ACHNyons" vs. substitutions

ACHN $=$
"Anything
Can Happen
Now"

If the base that appears is different from the base that was already there, then a substitution event has occurred.

C

When an achnyon occurs, any base can appear in a sequence.

Note: achnyon is my term for this make-believe event. You will not see this term in the literature.

G

The rate (α) at which any particular substitution occurs will be $1 / 4$ the achnyon rate (μ).
That is, $\alpha=\mu / 4$
(or $\mu=4 \alpha$)

Deriving a transition probability

Calculate the probability that a site currently T will change to G over time t when the rate of this particular substitution is α :
$\operatorname{Pr}($ zero achnyons $)=e^{-\mu t} \quad$ (Poisson probability of zero events)
$\operatorname{Pr}($ at least 1 achnyon $)=1-e^{-\mu t}$
$\operatorname{Pr}($ last achnyon results in base $G)=\frac{1}{4}$
$\operatorname{Pr}($ end in $\mathrm{G} \mid \operatorname{start}$ in T$)=\frac{1}{4}\left(1-e^{-\mu t}\right)$
Remember that the rate (α) of any particular substitution is one fourth the achnyon rate (μ) :

$$
P_{G T}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
$$

Expected number of substitutions

Transition Probabilities: Remarks

$$
\begin{aligned}
& P_{T A}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
& P_{T C}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
& P_{T G}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
& P_{T T}(t)=\frac{1}{4}\left(1-e^{-4 \alpha t}\right)
\end{aligned} \quad \begin{gathered}
\text { These should add to } \\
1.0 \text { because T must } \\
\text { change to } \\
\text { something! }
\end{gathered}
$$

$$
1-e^{-4 \alpha t}
$$

Doh! Something must be wrong here...

Transition Probabilities: Remarks

$$
\begin{aligned}
P_{T A}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T C}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T G}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right) \\
P_{T T}(t) & =\frac{1}{4}\left(1-e^{-4 \alpha t}\right)+e^{-4 \alpha t}
\end{aligned}
$$

Forgot to account for the possibility of no acnyons over time t

Equilibrium frequencies

- The JC69 model assumes that the frequencies of the four bases (A, C, G, T) are equal
- The equilibrium relative frequency of each base is thus 0.25
- Why are they called equilibrium frequencies?

Equilibrium Frequencies

Imagine a bottle of perfume has been spilled in room A .

The doors to the other rooms are closed, so the perfume has, thus far, not been able to spread.

What would happen if we opened all the doors?

Equilibrium Frequencies

If the doors are suddenly opened, the perfume would begin diffusing from the area of highest concentration to lowest.

Molecules of perfume go both ways through open doors, but more pass one way than another, leading to a net flow from room A to rooms B and C .

In the instant that the doors are opened, A is losing perfume molecules at twice the rate each of the other rooms is gaining molecules. As diffusion progresses, however, the rate of loss from A drops, approaching an equilibrium.

Equilibrium Frequencies

Eventually, all four rooms have essentially the same concentration of perfume.

Molecules still move through doors, but now the rates are the same in all directions.

Back to sequence evolution: assume a sequence began with only A nucleotides (a poly-A sequence). Over time, substitution would begin converting some of these As to Cs, Gs, and Ts, just as the perfume diffused into adjacent rooms.

JC69 rate matrix

1 parameter:
α

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.

K80 (or K2P) rate matrix

2 parameters:

Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.

K80 rate matrix

(looks different, but actually the same)

2 parameters:

 $\kappa$$\beta$

	A	C	G	T
A	$-\beta(\kappa+2)$	β	$\kappa \beta$	β
C	β	$-\beta(\kappa+2)$	β	$\kappa \beta$
G	$\kappa \beta$	β	$-\beta(\kappa+2)$	β
T	β	$\kappa \beta$	β	$-\beta(\kappa+2)$

$\begin{aligned} & \text { All I've done is re-parameterize the rate matrix, } \\ & \text { letting } \kappa \text { equal the transition/transversion rate ratio }\end{aligned} \longrightarrow \kappa=\frac{\alpha}{\beta}$
Note: the K80 model is identical to the JC69 model if $\kappa=1(\alpha=\beta)$

F81 rate matrix

Note: the F81 model is identical to the JC69 model if all base frequencies are equal

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum

HKY85 rate matrix

\(\left.\begin{array}{cccc}\mathrm{A} \& \mathrm{C} \& \mathrm{G} \& \mathrm{T}

\mathrm{A}

\mathrm{C}

\mathrm{T}

\pi_{A} \beta \& - \& \pi_{G} \beta \& \pi_{T} \beta \kappa

\pi_{A} \beta \kappa \& \pi_{C} \beta \& - \& \pi_{T} \beta

\pi_{A} \beta \& \pi_{C} \beta \kappa \& \pi_{G} \beta \& -\end{array}\right]\)| π_{G} |
| :--- |

5 parameters:

κ
 β
 π_{A}
 π_{C}
 π_{G}

Note: the HKY85 model is identical to the F81 model if $\kappa=1$. If, in addition, all base frequencies are equal, it is identical to JC69.

F84 vs. HKY85

F84 model:

$\mu \quad$ rate of process generating all types of substitutions
$k \mu \quad$ rate of process generating only transitions
Becomes F81 model if $k=0$

HKY85 model:

$\beta \quad$ rate of process generating only transversions
$\kappa \beta \quad$ rate of process generating only transitions
Becomes F81 model if $\kappa=1$

F84 first used in Felsenstein's PHYLIP package in 1984, first published by: Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170-179.

GTR rate matrix

A			
C			
G			
T			
$\pi_{A} a \mu$	-	$\pi_{G} d \mu$	$\pi_{T} e \mu$
$\pi_{A} b \mu$	$\pi_{C} d \mu$	-	$\pi_{T} f \mu$
$\pi_{A} c \mu$	$\pi_{C} e \mu$	$\pi_{G} f \mu$	-

Identical to the F 81 model if $a=b=c=d=e=f=1$. If, in addition, all the base frequencies are equal, GTR is identical to JC69. If $a=c=d=f=\beta$ and $b=e=\kappa \beta$, GTR becomes the HKY85 model.

Rate Heterogeneity

Green Plant rbc L

First 88 amino acids (translation is for Zea mays)

Q--L--G--V--P--P--E--E--A--G--A--A--V--A--A--E--S--S--T--G--T--W--T--T--V--W--T--D--G--L--T--S--L--D--R--Y--K--G--R--C--Y--H--I--E-CAACCTGGCGTTCCACCTGAAGAAGCAGGGGCTGCAGTAGCTGCAGAATCTTCTACTGGTACATGGACTACTGTTTGGACTGACGGATTAACTAGTTTGGACCGATACAAAGGAAGATGCTACGATATTGAA

Site-specific rates

Each defined subset (e.g. gene, codon position) has its own relative rate

r_{1} applies to subset 1
r_{2} applies to subset 2
(e.g. sites 1-1000)
(e.g. sites 1001-2000)

Site-specific rates

$$
L=\operatorname{Pr}\left(D_{1} \mid r_{1}\right) \cdots \operatorname{Pr}\left(D_{1000} \mid r_{1}\right) \operatorname{Pr}\left(D_{1001} \mid r_{2}\right) \cdots \operatorname{Pr}\left(D_{2000} \mid r_{2}\right)
$$

Gene 1

Gene 2

Site-specific rates

JC69 transition probabilities that would be used for every site if rate homogeneity were assumed:

$$
\begin{aligned}
P_{i i}(t) & =\frac{1}{4}+\frac{3}{4} e^{-4 \alpha t} \\
P_{i j}(t) & =\frac{1}{4}-\frac{1}{4} e^{-4 \alpha t}
\end{aligned}
$$

Site specific rates

JC69 transition probabilities that would be used for sites in gene 1:

$$
\begin{aligned}
& P_{i i}(t)=\frac{1}{4}+\frac{3}{4} e^{-4 r_{1} \alpha t} \\
& P_{i j}(t)=\frac{1}{4}-\frac{1}{4} e^{-4 r_{1} \alpha t}
\end{aligned}
$$

JC69 transition probabilities that would be used for sites in gene 2:

$$
\begin{aligned}
P_{i i}(t) & =\frac{1}{4}+\frac{3}{4} e^{-4 r_{2} \alpha t} \\
P_{i j}(t) & =\frac{1}{4}-\frac{1}{4} e^{-4 r_{2} \alpha t}
\end{aligned}
$$

Site-specific Approach

Pro: costs less: need to buy just one coat for every person
Con: every person in a group has to wear the same size coat, so the fit will be poor for some people if they are much bigger or smaller than the average size for the group in which they have been placed

Mixture Models

All relative rates applied to every site

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid r_{1}\right) \operatorname{Pr}\left(r_{1}\right)+\operatorname{Pr}\left(D_{i} \mid r_{2}\right) \operatorname{Pr}\left(r_{2}\right)
$$

Common examples $\left\{\begin{array}{l}\text { Invariable sites (I) model } \\ \text { Discrete Gamma (G) model }\end{array}\right.$

Mixture Model Approach

Pro: every person experiences better fit because they can choose the size coat that fits best Con: costs more because two coats much be provided for each person

Invariable Sites Model

A fraction $p_{\text {invar }}$ of sites are assumed to be invariable (i.e. rate $=0.0$)

Reeves, J. H. 1992. Heterogeneity in the substitution process of amino acid sites of proteins coded for by mitochondrial DNA. Journal of

Invariable sites model

If site i is a constant site, both terms will contribute to the site likelihood:

$$
L_{i}=\operatorname{Pr}\left(D_{i} \mid 0.0\right) p_{\text {invar }}+\operatorname{Pr}\left(D_{i} \mid r_{2}\right)\left(1-p_{\text {invar }}\right)
$$

If site i is a variable site, there is no way to explain the data with a zero rate, so the first term is zero:

$$
L_{i}=\underline{\operatorname{Pr}\left(D_{i} \mid 0.0\right) \widehat{p_{\text {invar }}}}+\operatorname{Pr}\left(D_{i} \mid r_{2}\right)\left(1-p_{\text {invar }}\right)
$$

Discrete Gamma Model

No relative rates are exactly 0.0 , and all are equally probable

$$
L=\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{1}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{2}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{3}\right)+\left(\frac{1}{4}\right) \operatorname{Pr}\left(D_{i} \mid r_{4}\right)
$$

Relative rates are constrained to a discrete gamma distribution Number of rate categories can vary (4 used here)

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10:1396-1401.
Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39:306-314.

Relative rates in 4-category case

Gamma distributions

Codon models

The Genetic Code

First 12 nucleotides at the 5^{\prime} end of the $r b c \mathrm{~L}$ gene in corn:

5^{\prime}-ATG\|TCA \mid CCA \mid CAA -3^{\prime} coding strand			
$3^{\prime}-$ TAC \|AGT	GGT	GTT-5' templates strand	

First codon models

- Muse and Gaut model (MG94) is simplest $\alpha=$ synonymous substitution rate $\beta=$ nonsynonymous substitution rate $\pi_{\mathrm{A}}, \pi_{\mathrm{C}}, \pi_{\mathrm{G}}, \pi_{\mathrm{T}}=$ base frequencies
- Goldman and Yang model (GY94) similar
- accounts for synon./nonsynon. and trs/trv bias and amino acid properties (later simplified, see Yang et

[^0]Table I. Part of Muse and Gaut's 61×61 instantaneous rate matrix ${ }^{\text {a }}$

Interpreting codon model results

$\omega=\beta / \alpha$ is the nonsynonymous/synonymous rate ratio

omega	mode of selection	example(s)
$\omega<1$	stabilizing selection (nucleotide substitutions rarely change the amino acid)	functional protein coding genes
$\omega=1$	neutral evolution (symonymous and onsynonymous substititions occura tuthe same rate)	pseudogenes
$\omega>1$	positive selection	envelope proteins in viruses under active positive selection

[^0]: Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous substitution rates, with application to the chloroplast genome. Molecular Biology and Evolution 11:715-724.

 Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 11:725-736.

 Yang, Z., Nielsen, R., and Hasegawa, M. 1998. Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution 15:1600-1611.

