
de novo assembly

Rayan Chikhi

Pennsylvania State University

Workshop On Genomics - Cesky Krumlov - January 2013

1/87

COURSE STRUCTURE

Topics I want to convey through this lecture :

- Short intro

- Basic definitions : what an assembly is.

- Fundamentals : what should I know to run an assembler ?

- Metrics : what a satisfactory assembly is.

- Software : how to choose an assembler in 2013.

2/87

YOUR INSTRUCTOR IS..

- PhD at INRIA / ENS Cachan, France

- Postdoc at Penn State, USA

Research :

- Paired string graphs

- Targeted assembly

- Ultra-low memory assembly

- Constant-memory k -mer counting

@RayanChikhi on Twitter
"Rayan Chikhi" on Google for my web page

3/87

NGS

4/87

NGS FUTURE

PacBio Longer reads (5 kbp), low throughput, accuracy not a problem
anymore. Great for gap-filling today.

Nanopore No data yet. Possibly very long reads (10 kbp), very low
throughput. Won’t replace Illumina for all applications

Illumina Will remain medium-sized reads. Currently the only player for
large genomes, RNA-seq, metagenomics.

5/87

ASSEMBLY DIFFICULTY

DNA assembly is still a difficult problem in 2013.
1. High computational resources

2. Hard to find an optimal solution
Conclusions of the GAGE benchmark (2012) : in terms of
assembly quality, there is no single best de novo assembler

6/87

ASSEMBLY DIFFICULTY

DNA assembly is still a difficult problem in 2013.
1. Efficiency : still an area of active research. We’re making progress..

2. Quality : making progress empirically (see SOAPdenovo2 [2013])..

7/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

8/87

Definition of an assembly (a trickier question than it seems)

Set of sequences which best approximate the original sequenced
material.

9/87

Example of a reference genome (top),
and an assembly aligned to it (bottom, sequences separated by blue lines).

Simple facts, the aligned assembly is :

- smaller than the reference,

- fragmented

10/87

Some vocabulary :

Read Any sequence that comes out of the sequencer

Paired read read1, gap ≤ 500 bp, read2

Mate-pair read1, gap ≥ 1 kbp, read2

Single read Unpaired read

k -mer Any sequence of length k

Contig gap-less assembled sequence

Scaffold sequence which may contain gaps (N)

11/87

EXERCICE

Here is a set of reads :

TACAGT

CAGTC

AGTCA

CAGA

1. How many k -mers are in these reads (including duplicates), for k = 3 ?

2. How many distinct k -mers are in these reads ?
I (i) for k = 2
I (ii) for k = 3
I (iii) for k = 5

3. It appears that these reads come from the (toy) genome TACAGTCAGA.
What is the largest k such that the set of k -mers in the genome is
exactly the set of k -mers in these reads ?

4. For any value of k , what is a mathematical relation between N, the
number of k -mers (incl. duplicates)in a sequence, and L, the length of
that sequence ?

12/87

EXERCICE (SOLUTION)

Here is a set of reads :

TACAGT

CAGTC

AGTCA

CAGA

1. How many k -mers are in these reads (including duplicates), for k = 3 ?
12

2. How many distinct k -mers are in these reads ?
I (i) for k = 2 , 7
I (ii) for k = 3 , 7
I (iii) for k = 5 , 4

3. It appears that these reads come from the (toy) genome TACAGTCAGA.
What is the largest k such that the set of k -mers in the genome is
exactly the set of k -mers in these reads ? 3

4. For any value of k , what is a mathematical relation between N, the
number of k -mers (incl. duplicates)in a sequence, and L, the length of
that sequence ? N = L− k + 1

13/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

14/87

GRAPHS

A graph is a set a nodes and a set of edges (directed or not).

a0

a1

a2

a3

a4

a5

a6

a7

15/87

GRAPHS FOR SEQUENCING DATA

Overlaps between reads is the fundamental information used to assemble.
Graphs permit to represent these overlaps.

Two different types of graphs for sequencing data are known :

- de Bruijn graphs Generally used with Illumina data

- string graphs Generally used with 454 data

16/87

DE BRUIJN GRAPHS

A de Bruijn graph for a fixed integer k :

1. Nodes = all k-mers (k -length sub-strings) present in the reads.

2. For each (k + 1)-mer x present in the reads, there is an edge between
the k -mer prefix of x and the k -mer suffix of x .

Exemple for k = 3 and a single read :

ACTG

ACT CTG

17/87

DE BRUIJN GRAPHS

Example for many reads and still k = 3.

ACTG

CTGC

TGCT

ACT CTG TGC GCT

18/87

DE BRUIJN GRAPHS : REDUNDANCY

What happens if we add redundancy ?

ACTG

ACTG

CTGC

CTGC

CTGC

TGCT

TGCT

dBG, k = 3 :

ACT CTG TGC GCT

19/87

DE BRUIJN GRAPHS : ERRORS

How is a sequencing error impacting the de Bruijn graph ?

ACTG

CTGC

CTGA

TGCT

dBG, k = 3 :

ACT CTG TGC

TGA

GCT

20/87

DE BRUIJN GRAPHS : REPEATS

What is the effect of a small repeat on the graph ?

ACTG

CTGC

TGCT

GCTG

CTGA

TGAC

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

21/87

STRING GRAPHS : OVERLAP GRAPHS

Definition of an overlap graph. It is almost a string graph.

1. Nodes = reads.

2. Two nodes are linked by an edge if both reads overlap 1.

Example for k = 3 and a single read :

ACTG

ACTG

1. The definition of overlap is voluntarily fuzzy, there are many possible definitions.
22/87

OVERLAP GRAPHS

Given k > 0, we say that r and r ′ overlap if a suffix of r of length l > k is
exactly a prefix of r ′ of similar length.

Overlap graph for k = 3,
ACTGCT

CTGCT (overlap of length 5)
GCTAA (overlap of length 3)

ACTGCT CTGCT GCTAA

23/87

STRING GRAPHS : OVERLAP GRAPHS

A string graph is obtained from an overlap graph by removing redundancy :

- redundant reads (those fully contained in another read)

- transitively redundant edges(if a→ c et a→ b → c, then remove a→ c)

24/87

FROM OVERLAP GRAPHS TO STRING GRAPHS

Overlap graph for k = 3,

ACTGCT CTGCT GCTAA

String graph for k = 3,

ACTGCT GCTAA

The read CTGCT is contained in ACTGCT, so it is redundant

25/87

COMPARISON STRING GRAPH / DE BRUIJN GRAPH

On the same example, compare the de Bruijn graph with the string graph :

ACTGCT

CTGCTA

GCTAA

String graph, k = 3 :

ACTGCT CTGCTA GCTAA

de Bruijn graph, k = 3 :

ACT CTG TGC GCT CTA TAA

26/87

STRING GRAPH / DE BRUIJN GRAPH (2)

Let’s add an error :

ACTGCT

CTGATA

GCTAA

String graph, k = 3 :

ACTGCT CTGATA GCTAA

de Bruijn graph, k = 3 :

ACT CTG TGC GCT CTA TAA

TGA GAT ATA

27/87

STRING GRAPH / DE BRUIJN GRAPH (2)

How to "fix" the string graph ?
→ use a relaxed definition of overlaps.
String graph where overlaps may ignore 1 error, k = 3 :

ACTGCT CTGATA GCTAA

de Bruijn graph, k = 3 :

ACT CTG TGC GCT CTA TAA

TGA GAT ATA

28/87

STRING GRAPH / DE BRUIJN GRAPH (3)

So, which is better ?

- String graphs capture whole read information
- de Bruijn graphs are conceptually simpler :

I single node length
I single overlap definition

Historically, string graphs were used for long reads and de Bruijn graphs for
short reads.

29/87

HOW DOES ONE ASSEMBLE USING A GRAPH ?

Assembly in theory [Nagarajan 09]
Return a path of minimal length that traverses each node at least once.

Illustration

GAT ATT TTA TAC

CAT

ACA CAA

The only solution is GATTACATTACAA.

30/87

ASSEMBLY IN PRACTICE
Because of ambiguities and low-coverage region, a single path is almost
never found is theory, and is really never found in practice.

Example of ambiguities

ACT CTG TGA GAC ACC

GAA AAT ATG

GAG AGT GTG

Assembly in practice
Return a set of paths covering the graph, such that all possible assemblies
contain these paths.

Solution of the example above
The assembly is the following set of paths :

{ACTGA, TGACC, TGAGTGA, TGAATGA}
31/87

CONTIGS CONSTRUCTION

Contigs construction from a graph (de Bruijn or string).

The naive way is to enumerate all node-disjoint simple paths.

Node-disjoint means that two different paths cannot share a node.
(Edge-disjoint simple paths also work).

32/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :

CTGCT
TGAC
ACT

33/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :

CTGCT
TGAC
ACT

33/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :
CTGCT

TGAC
ACT

33/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :
CTGCT

TGAC
ACT

33/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :
CTGCT
TGAC

ACT

33/87

CONTIGS CONSTRUCTION EXAMPLE

dBG, k = 3 :

ACT CTG TGC

GCTTGAGAC

Contigs :
CTGCT
TGAC
ACT

33/87

HOW AN ASSEMBLER WORKS
[Velvet, ABySS, SOAPdenovo, SGA ..]

1) Construct a graph from the reads.

Assembly graph with variants & errors

2) Likely sequencing errors are removed.

3) Known biological events are removed.
4) Finally, simple paths (i.e. contigs) are returned.

1 1 1 1
2

3

2

3

2

3

2

3

34/87

SHORT NOTE ON REVERSE COMPLEMENTS

Because sequencing isn’t strand-directed :

In assembly, we always identify a read with its reverse complement.

E.g : AAA = TTT, ATG = CAT

35/87

EXERCICE

In this exercice, for simplicity, ignore reverse complements.
Reference genome : TACAGTCAGA.
Reads :

TACAGT

CAGTC

AGTCA

TCAGA

1. Construct the de Bruijn graph for k = 3.
(Reminder : nodes are k -mers and edges correspond to (k + 1)-mers)

2. How many contigs can be created ? (stopping at any branching)

3. At which value of k is there a single contig (i.e., no branching) ?

4. (bonus) Find a mathematical relationship between ka, the smallest value
of k for which a genome can be assembled into a single contig, and `r ,
the length of the longest exactly repeated substring in that genome.

36/87

EXERCICE (SOLUTION)

In this exercice, for simplicity, ignore reverse complements.
Reference genome : TACAGTCAGA.
Reads :

TACAGT

CAGTC

AGTCA

TCAGA

1. Construct the de Bruijn graph for k = 3.
(Reminder : nodes are k -mers and edges correspond to (k + 1)-mers)

2. How many contigs can be created ? (stopping at any branching) 3

3. At which value of k is there a single contig (no branching) ? 4

4. Find a mathematical relationship between ka, the smallest value of k for
which a genome can be assembled into a single contig, and `r , the
length of the longest exactly repeated substring in that genome.
ka = `r + 1

37/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

38/87

METRICS

Preamble : There is no trivial total order (i.e. ranking) between
assemblies.

Why ? > 2 independent criteria to optimize (e.g., total length, and
average size of assembled sequences)

Example Would you rather have an assembly with good coverage and
short contigs, or an assembly with mediocre coverage and
long contigs ?

39/87

REFERENCE-FREE METRICS

- Number of contigs/scaffolds

- Total length of the assembly

- Length of the largest contig/scaffold

- Percentage of gaps in scaffolds (’N’)

- N50 of contigs/scaffolds

- Overlooked but very important : internal consistency

- Number of predicted genes

40/87

REFERENCE-FREE METRICS : N50
N50 = Largest contig length
at which longer contigs co-
ver 50% of the total assem-
bly length

NG50 = Largest contig
length at which longer
contigs cover 50% of the
total genome length

If you didn’t know N50, write down the definition down, there will be an exercice ;)

A practical way to compute N50 :

- Sort contigs by decreasing lengths

- Take the first contig (the largest) : does it cover 50% of the assembly ?

- If yes, this is the N50 value. Else, try the next one (the second largest),
and so on..

41/87

REFERENCE-FREE METRICS : INTERNAL CONSISTENCY

Rarely appears in assemblers articles but extremely useful in de novo
projects.

Internal consistency : Percentage of paired reads correctly aligned back to
the assembly (happy pairs).

Allows to locate certain types of misassemblies (mis-joins).
Recent tools enable to compute this metric :

- REAPR 2

- FRCurve 3 [F. Vezzi (Plos One) 2013]

2. Google : REAPR assembly
3. Google : FRCurve

42/87

INTERNAL CONSISTENCY : EXAMPLE

Hawkeye software

43/87

METRICS USING A REFERENCE : COVERAGE

Given an assembly aligned to a reference.

Coverage Percentage of bases in the reference which are covered by
the alignment.

44/87

METRICS USING A REFERENCE : ASSEMBLY ERRORS

Also requires that the assembly is aligned to a reference.

- Number of substitutions.

- Number of small indels

- Number misjoins, i.e. splitted contigs or scaffolds

45/87

ASSEMBLY ERRORS (2)

Is there a “global“ accuracy metric ?

Allpaths : % of blocks (< 10kbp) aligning with > 90% identity.

Assemblathon 1 : Number of structural errors (indels, misjoins) in the
adjacency graph [Paten 11].

QUAST : Number of splitted alignments.

46/87

ASSEMBLY QUALITY SOFTWARE

In order of preference :

1. With or without a reference genome, the QUAST software is highly
recommended.

2. Assemblathon and GAGE evaluation scripts

3. Many perl/python scripts can compute basic reference-free metrics
(N50).

47/87

EXERCICE

Here are two assemblies, aligned to the same reference :

- For each, compute the following metrics :
I Total size of the assembly, N50, NG50 (bp)
I Coverage (%)

- Which one is better than the other ?

48/87

EXERCICE (SOLUTION)

Here are two assemblies, aligned to the same reference :

- For each, compute the following metrics :
I Total size of the assembly (19 bp, 18 bp), N50 (6 bp, 9 bp), NG50 (6 bp, 5 bp)
I Coverage (%) (90, 90)

- Which one is better than the other ? (I would say first one)

49/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

50/87

LANDSCAPE

- Before Illumina Hi-Seq : Newbler for 454 (reads > 200 bp), any de Bruijn
graph assembler for Illumina (reads < 100 bp).

- Now and later : 150 bp reads, high coverage, mate pairs : grey area for
assembly techniques.

51/87

SHORT-READ ASSEMBLERS

Assembler Method Error Corr. Remarks
Euler de Bruijn pre-assembly Pioneer
Velvet de Bruijn in-assembly (still) Popular
ABySS, CLC-
bio, Meraculous,
SOAPdenovo

de Bruijn in-assembly Parallel, large genomes

Allpaths LG de Bruijn pre-assembly Needs short/long inserts
IDBA de Bruijn pre-assembly Multi-k
Newbler, Celera String in-assembly Long reads
Ray de Bruijn in-assembly Parallel short/long reads
SGA, Fermi String pre-assembly Compressed, promising
Minia de Bruijn in-assembly ultra-low memory

52/87

DE NOVO METAGENOMIC/RNA ASSEMBLERS

de novo metagenomic assemblers :

Genovo : Pioneer. Assembles up to 105 454 reads 4.

MetaVelvet : based on Velvet 5

Meta-Idba : based on IDBA..

RayMéta : based on Ray..

Too early to tell a preferred method.

de novo RNA assemblers :

Oases : Pioneer. A post-processing step for Velvet.

Trinity : de facto reference method 6

Trans-Abyss : based on ABySS

SOAP-Trans : based on SOAPdenovo

4. Recomb 2010, http://cs.stanford.edu/genovo/
5. http://metavelvet.dna.bio.keio.ac.jp/

6. http://trinityrnaseq.sourceforge.net/

53/87

http://cs.stanford.edu/genovo/
http://metavelvet.dna.bio.keio.ac.jp/
http://trinityrnaseq.sourceforge.net/

PERSONAL EXPERIENCE (FOR ILLUMINA ASSEMBLY)

If I had to choose one..

Your data follows the Broad recipe Allpaths-LG

General purpose SOAPdenovo2

If not enough memory Minia

454 Newbler

RNA-Seq Trinity

Metagenome RayMéta (?)

54/87

RNA-SEQ AND ASSEMBLY

Goal : reconstruct mRNA sequences

55/87

RNA-SEQ ASSEMBLY

- Short contigs average mRNA length : 2 kbp

- Uneven coverage varying expression levels

- Contigs are re-used alternative splicing

56/87

RNA-SEQ ASSEMBLY

Despite these differences, DNA-seq assembly methods apply :

- Construct a de Bruijn graph (same as DNA)

- Output contigs (same as DNA)

- Allow to re-use the same contig in many different transcripts (new part)

57/87

RNA-SEQ ASSEMBLY : TRINITY

Quick overview of Trinity steps :

- Inchworm

- Chrysalis

- Butterfly

58/87

RNA-SEQ ASSEMBLY : TRINITY

- Inchworm de Bruijn graph construction, part 1

- Chrysalis de Bruijn graph construction, part 2, then partitioning

- Butterfly Graph traversal using reads, isoforms enumeration

59/87

RNA-SEQ ASSEMBLY : TRINITY - 1

- Inchworm - de Bruijn graph construction, part 1

Using k-mers, construct contigs carelessly.

Contigs might correspond to the most abundant isoform, but no guarantee.

60/87

RNA-SEQ ASSEMBLY : TRINITY - 2
- Chrysalis - de Bruijn graph construction, part 2, then reads partitioning

By overlapping Inchworm contigs, construct the true de Bruijn
graph.

Then,
Partition the graph and output the reads aligning to each partition.

61/87

RNA-SEQ ASSEMBLY : TRINITY - 3

- Butterfly - Graph traversal using reads, isoforms enumeration

Traverse each de Bruijn graph partition to output isoforms

Difference with DNA-seq assembly : isoforms are, by definition, not
k -mer-disjoint.

62/87

TIPS

General assembly advice follows

63/87

THE k PARAMETER

There is no optimal k -mer size, it varies with each dataset.

A few things to keep in mind :

- Low limit : For common genomes sizes (10 Mbp - 1 Gbp), there is a high
chance that any ≈ 12-mers will be repeated in many locations
(412 = 16 · 106).

- High limit : with very good error-correction, the Broad typically uses
k = |readlen| − 1..

- Ideally, k should be the highest value such that ≥ 2 error-free k -mer is
present in the reads.

- If you have time, re-assemble with many different k values.

64/87

ERROR CORRECTION

Except if you have excellent coverage, error-correction may help getting
better assemblies.

- Allpaths-LG stand-alone error corrector (highly recommended)

- Quake

- SOAPdenovo stand-alone corrector

A good assembly is typically done with several pre-correction stages :

- low-quality reads removal

- trimming

- overlapping paired reads merged into single reads

65/87

SCAFFOLDING

Scaffolding is the step that maps paired reads to contigs in order to create
scaffolds.

If an assembly software returns scaffolds, that means that it includes its own
scaffolder (SOAP, SGA, ABySS, Velvet..).

Several stand-alone scaffolders are also developped, and some give good
practical results.

E.g. : SSPACE (generally outperforms Bambus 2, Opera, etc..)
I haven’t tried it yet, but SOAPdenovo2 scaffolder looks promising.

66/87

TYPICAL PIPELINE

67/87

LAST EXERCICE

Reads :

1. AGTC

2. TCAA

3. AATT

4. GTCT

5. TATT

6. TCTA

1. Assemble these reads

2. What was special about this genome ?

68/87

LAST EXERCICE (SOLUTION)

1. AGTCAATT

AGTCTATT

2. "diploid genome", 1 SNP

69/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

70/87

MINIA

How the assembler Minia works : Warning : slides taken from a computer science talk

1. Storing the de Bruijn graph in memory

2. Actual contigs construction procedure

71/87

de Bruijn graph [Idury, Waterman 95]
Nodes are k -mers, edges are (k − 1)-overlaps between nodes.

GAT ATT TTA TAC ACA CAA

Only nodes need to be encoded, as edges are inferred.

How to encode the de Bruijn graph using as little space as possible ?

Memory usage (illustration for k = 25)

- Explicit list : 2k · n bits 50 bits per node

- Self-information of n nodes : [Conway, Bromage 11]

log2

((
4k

n

))
bits

20 bits per node.

72/87

Bloom filter
Bit array to represent any set with a “precision” of ε.

- a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k -mers in a Bloom filter :

k -mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k -mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

73/87

Bloom filter
Bit array to represent any set with a “precision” of ε.

- a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k -mers in a Bloom filter :

k -mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k -mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

73/87

Bloom filter
Bit array to represent any set with a “precision” of ε.

- a proportion ε of elements will be wrongly included (false positives).

To represent a set of n elements, requires ≈ 1.44 log2(
1
ε
) · n bits.

Storing k -mers in a Bloom filter :

k -mer hash value
ATC 0
CCG 0
TCC 5
CGC 6
.

Bloom filter
1
0
0
0
0
1
1
0
0
0

Queries :
Is the k -mer ATA (hash value 9) present ? No.

AAA (hash value 0) present ? Yes, maybe : either a true or a false positive.

73/87

Set of nodes : {TAT, ATC, CGC, CTA, CCG, TCC, GCT}
Graph as stored in a Bloom filter : [Pell et al 12]

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT

Black nodes : true positives ; Red nodes : false positives

74/87

Insight : to traverse the graph from true positive nodes, only a small
fraction of the false positives need to be avoided (critical false positives,
CFP).

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG

CCG

TTG

TCC

GCT

75/87

Proposed method
Store nodes on disk for sequential enumeration,
and in memory store the Bloom filter + the critical FPs explicitly.

Bloom filter
1
0
0
0
0
1
1
0
0
0

TAT

AAA

ATC

CGA

CGC

AGC

ATT

GGA

CTA

GAG

TGG
CCG

TTG
TCC

GCT

Nodes self-information :

dlog2

(
43

7

)
e = 30 bits

Our structure size :

10︸︷︷︸
Bloom

+ 3 · 6︸︷︷︸
Crit. false pos.

= 28 bits

76/87

Construction time (for n nodes)
Assume that k -mer arithmetic takes constant time.

- Bloom filter construction : O(n)
- cFP construction :

I Enumeration of neighbors of all graph nodes, keeping only Bloom-positive
neighbors : O(n)

I Intersection between Bloom-positive neighbors and nodes, with limited
memory usage : O(k

log(k)n)

77/87

OPTIMAL BLOOM FILTER SIZE

78/87

DEPENDENCE ON THE PARAMETER k

79/87

Result statement
The de Bruijn graph can be encoded using

1.44 log2(
16k
2.08

)︸ ︷︷ ︸
Bloom

+ 2.08︸︷︷︸
cFP

bits of memory per node.
k = 25 : 13 bits per node.

- Below the self-information (20 bits/node for k = 25)

- The part stored in memory doesn’t support enumeration of nodes, only
traversal

Graph-based assemblers typically modify the graph to remove artifacts
(variants, errors).
Is it possible to perform de novo assembly with this (immutable) structure ?
→ Yes, using localized traversal. [RC DL, WABI 11]

80/87

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Whole graph

81/87

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Start with an empty graph

81/87

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Pick a new node, construct the first portion

81/87

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Construct the second portion

81/87

LOCALIZED TRAVERSAL

Traverse the graph greedily, according to these rules :

Will traverse : variant sub-graphs

s t

BFS from s until a depth of breadth 1
is reached, keeping breadth < b and

depth < d

Won’t traverse : long branches

s

BFS from s, breadth remains > 1 for
depths 1..d

Example : Construct the third portion

81/87

ASSEMBLER IMPLEMENTATION

k -mer counting - Need to determine the set of solid nodes (seen
≥ x times)

- Current methods (e.g. Jellyfish) require more
memory than our structure

- We designed a constant-memory k -mer counting
procedure

Graph traversal - Nodes which have already been traversed need to
be marked

- No extra information can be stored in our structure
- We used a separate hash table to remember if

branching or dead-end nodes have already been
visited.

Contigs construction Consensus from each path obtained by localized
traversal

82/87

PLAN
What is a de novo assembly

Description
Short Exercice

Some useful assembly theory
Graphs
Contigs construction
Exercice

How to evaluate an assembly
Reference-free metrics
Metrics using a reference
Exercice

Assembly software
DNA-seq assembly
RNA-seq assembly
Tips
Exercice

Minia
Analysis
Assembly aspects
Results

Short case study : assembling a human genome with Minia

83/87

ASSEMBLING A HUMAN GENOME WITH MINIA

Step 1 : Data preparation

1. Download raw human genome reads from a public FTP server
(SRX016231)

2. Decompress them

3. Create a list of all FASTQ files (HG_reads.txt)

84/87

ASSEMBLING A HUMAN GENOME WITH MINIA (2)

Step 2 : Running Minia

Command line :
./minia HG_reads.txt 27 5 3000000000 human_assembly

85/87

ASSEMBLING A HUMAN GENOME WITH MINIA (3)

Step 3 : Evaluate results
Human genome assembly Minia C. & B. ABySS SOAPdenovo

Value of k chosen 27 27 27 25

Contig N50 (bp) 1156 250 870 886
Sum (Gbp) 2.09 1.72 2.10 2.08
> 95% Accuracy (%) 94.6 - 94.2 -

Nb of nodes/cores 1/1 1/8 21/168 1/40
Time (wall-clock, h) 23 50 15 33
Memory (sum of nodes, GB) 5.7 32 336 140

86/87

CONCLUSION, WHAT WE HAVE SEEN

- What is a good assembly ?
I No total order
I Main metrics : N50, coverage, accuracy
I Use QUAST

- How are assemblies made ?
I Typically, using a de Bruijn graph or a string graph.
I Errors and small variants are removed from the graph.
I Contigs are just simple paths from the graph.

- Assembly software
I Recommended software for Illumina data : SOAPdenovo2, Allpaths-LG
I Plethora of other software for custom needs : Minia for low-memory, SGA for

very accurate assembly, etc..
I Recommended software for 454 data : Newbler, Celera

- A few tips
I How to choose k : always try many values
I Put the assembler inside a pipeline : error correction, scaffolding, gap-filling

- Case study
I How to assemble a human genome with Minia

87/87

	What is a de novo assembly
	Description
	Short Exercice

	Some useful assembly theory
	Graphs
	Contigs construction
	Exercice

	How to evaluate an assembly
	Reference-free metrics
	Metrics using a reference
	Exercice

	Assembly software
	DNA-seq assembly
	RNA-seq assembly
	Tips
	Exercice

	Minia
	Analysis
	Assembly aspects
	Results

	Short case study: assembling a human genome with Minia

